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Abstract

This work proposes the use of the mathematical concepts of similarity and distance in metric spaces to relate the covalency and ion-
icity indices of chemical bondings. Numerical results arising from the Bray–Curtis and divergence measures are reported and discussed in
selected molecules. The procedure opens new possibilities to define and to relate complementary quantities.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Most of the chemical indices used to describe electronic
structures of atoms and molecules are not sensu strictu

observables from a quantum mechanical point of view.
This is the case when dealing with concepts such as cova-

lency (described by bond indices whose physical meaning
is the electron population or shared electrons involved in
bondings between atoms), unshared populations (electrons
not involved in bondings, i.e., core and lone pair electrons),
ionicity, valence, free valence (which accounts for the
unpaired electrons), etc. The main task to properly define
any feasible parameter describing any of these mentioned
concepts is to clarify its physical meaning and then to find
a suitable quantitative formulation tool [1,2].

The techniques of particle population analysis evaluate
electron populations associated with atomic regions and
shared electron populations in bonding regions. These
methods draw out the required information by means of
the first-order reduced density matrix (1-RDM) [3]. Simi-
larly, the hole population analyses provide hole popula-
tions using the first-order hole reduced density matrix

(1-HRDM), related with the concepts of free valence or
effectively unpaired populations [4]. As is well-known,
0009-2614/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.cplett.2007.05.068

* Corresponding author. Fax: +54 11 45763357.
E-mail address: rboc@df.uba.ar (R.C. Bochicchio).
these techniques are classified according to the nature of
the used space, Hilbert space [5–8] or physical space
[9,10]. These procedures permit one to evaluate the elec-
tronic magnitudes in several ways, applying different
approaches to describe the same concepts. Therefore, the
definitions of the electronic parameters are not unique.
This is, for instance, the case of bond indices [11,12] and
free valences of atoms within the molecular framework,
where different manners to relate electron populations with
their counterpart hole populations lead to various defini-
tions of the effectively unpaired electron density matrix
[4,13,14].

In a previous work [15] we have shown the relationship
between two different approaches to define the effectively
unpaired electron density matrix or u matrix. Using the
mathematical concepts of similarity and distance in metric
spaces, we have achieved to relate both definitions of this
quantity pointing out that each of them arises from differ-
ent measures of a space. In this work we deal with ionicities
and covalent bond indices. We use again the interrelated
mathematical concepts of distance and similarity measures
in metric spaces to show that different possibilities to define
these mathematical tools provide different definitions for
the chemical parameters, leading to different numerical val-
ues. This treatment also allows us to show the complemen-
tary character of these parameters in a rigorous way. To
perform this task we describe the molecular systems in
terms of the domain-restricted first-order reduced density
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matrices [16,17] arising from the decomposition of the
1-RDM according to the isopycnic localization model
[17]. This procedure, which has been widely tested, has
the advantage of performing only one set of localized orbi-
tals in which all domain-restricted matrices are diagonal
[18,19]. Therefore, bond indices and ionicities may be
defined within the same basis set for all domains.

The article is organized as follows. In Section 2, we
briefly introduce the theoretical framework of the
domain-restricted 1-RDMs as well as the concepts of sim-
ilarity and distance measures and their relationships
according to the metrics used. Section 3 is devoted to estab-
lish the definitions for bond index and ionicity arising from
the Bray–Curtis and divergence metrics. Section 4 describes
the computational details and the discussion of the numer-
ical results obtained in selected molecular systems, to assess
the capability of those definitions. Finally, in Section 5 we
collect the concluding remarks.

2. Theoretical background

Let us begin by introducing the decomposition of the
spin-free first-order reduced density matrix corresponding
to an N-electron system, according to the isopycnic locali-
zation model [17]. As is well-known any linear transforma-
tion which leaves the first-order reduced density matrix
unchanged is called isopycnic [20]. This is the framework
in which our theoretical and numerical developments will
be carried out. We will express that first-order reduced den-
sity matrix, C(x,x 0), in terms of its orthonormal natural
orbitals, wi(x), and their corresponding occupation num-
bers, ni [3]

Cðx; x0Þ ¼
X

i

niw
�
i ðxÞwiðx0Þ; ð1Þ

where x, x 0 stand for the space coordinates. Under an iso-
pycnic linear transformation [20] given by /iðxÞ ¼P

jCijwjðxÞ, the first-order reduced density matrix remains
invariant, (Cij = Uij (nj/mi)

1/2 and Uij and mi are the matrix
elements of a unitary matrix and the occupation numbers
of the functions /i, respectively), that is

Cðx; x0Þ ¼
X

i

mi/
�
i ðxÞ/iðx0Þ ð2Þ

fulfilling mi ¼
P

jnjU �ijU ij and 0 6 mi 6 2. This isopycnic
transformation is accomplished by finding a set of coeffi-
cients C which maximize the localization index [18,21]
L ¼

P
i

P
klmnm

2
i C�ikCilC

�
imCin

P
XhwkjwliXhwmjwniX, where

ÆwkjwlæX and ÆwmjwnæX stand for the overlap integrals over
the Bader atomic domains X [9]. Although the localized
orbitals /i resulting from this procedure are in general non-
orthonormal, they are associated with chemical concepts
(appropriate localization in space, high transferability,
etc.) [18,21] so that they can be regarded as the theoretical
counterparts of the classical chemical pictures such as
bonds, non-bonding electron pairs, core orbitals, valences
and so forth.
The isopycnic localization model [17] for partitioning
the first-order reduced density matrix into domain-

restricted first-order reduced density matrices CX(x,x 0) is
expressed by

Cðx; x0Þ ¼
X

X

CXðx; x0Þ ¼
X

X

X
i

miðXÞ/�i ðxÞ/iðx0Þ; ð3Þ

where mi(X) = miÆ/ij/iæX stands for the occupation numbers
for each CX and the integrals Æ/ij/iæX are again defined over
the Bader domains X, satisfying the relationships 0 6
Æ/ij/iæX 6 1 and

P
Xh/i j /iiX ¼ 1.

We have shown [22] that the domain-restricted first-
order reduced density matrices CX(x,x 0) constitute first-
order reduced density matrices associated with the domains
X. All these matrices diagonalize in identical basis set {/i}
and possess similar features to those of the ordinary
reduced density matrices: each matrix is Hermitian and
its trace, given by NX ¼

P
imiðXÞ, is the Bader charge (the

number of electrons within the domain X). Moreover, the
occupation numbers mi (X) of the nonorthogonal localized
orbitals /i fulfill 0 6 mi (X) 6 2.

As will be shown in next section, an analysis of the
domain-restricted reduced density matrices may be carried
out by means of the mathematical concepts of distance [23]
and similarity measures [24,25]. The distance measure, d,
between two n-dimensional elements x and y in a metric
space M is defined as a real valued function fulfilling the
following properties [15,24,25]:

dðx; yÞP 0; dðx; yÞ ¼ 0 () x ¼ y;

dðx; yÞ ¼ dðy; xÞ ðsymmetryÞ;
dðx; zÞ 6 dðx; yÞ þ dðy; zÞ ðtriangle inequalityÞ:

ð4Þ

Particular examples [24,25] of distance measure d in differ-
ent metric spaces M are those of Bray–Curtis (BC)

dBCðx; yÞ ¼
Pn

i¼1jxi � yijPn
i¼1jxi þ yij

ð5Þ

and divergence (D)

dDðx; yÞ ¼
Pn

i¼1ðxi � yiÞ
2Pn

i¼1ðxi þ yiÞ
2
; ð6Þ

where {xi} and {yi} stand for the components of the x and
y elements, respectively.

The concept of similarity, s, is complementary to the
idea of distance. Its value is given by a real valued function
s fulfilling the properties

0 6 sðx; yÞ 6 1;

sðx; xÞ ¼ 1;

sðx; yÞ ¼ sðy; xÞ;
ð7Þ

that quantifies the number of matches between some fea-
tures of two objects (quantitative or qualitative), whereas
the distance measures the ‘difference’ between them. The
use of similarities instead of distances requires to consider
some specific functional relationships between s and d. In



D.R. Alcoba et al. / Chemical Physics Letters 442 (2007) 157–163 159
this work we will use s = 1 � d due to the physical nature
of the quantities involved [24,25]. Note that in this frame-
work the distance function is bounded to unity, i.e., it is
normalized [24,25].
3. Ionicity and covalent bond indices from different similarity
measures

3.1. Bray–Curtis metric

As it has been mentioned above, the definition of a
quantity is a consequence of the chosen metric. Let us first
present an ionicity definition expressed as [16,26]

iABðiÞ ¼
miðAÞ � miðBÞ
miðAÞ þ miðBÞ

����
����; ð8Þ

where mi(A) and mi(B) stand for the occupation numbers of
the ith isopycnic localized natural orbital corresponding to
the domain-restricted first-order reduced density matrices

associated with the domains A and B, respectively. At this
stage it may be noted that Eq. (8) can be regarded as a par-
tial distance di between mi(A) and mi(B) occupation numbers
within the Bray–Curtis metric (cf. Eq. (5)). Thus, the pro-
posed specific functional relationship provides the corre-
sponding similarity si given by si = 1 � di. This allows us
to define the quantity

pABðiÞ ¼ 1� miðAÞ � miðBÞ
miðAÞ þ miðBÞ

����
���� ¼ 1� iABðiÞ ð9Þ

which may be physically interpreted as a covalent bond in-
dex because it is complementary of the ionicity. A purely
covalent nature requires pAB(i) = 1, which means that both
occupation numbers are equal mi(A) = mi(B). In the case
that one of the occupation numbers is zero (i.e., mi(A) = 0
or mi(B) = 0), pAB(i) = 0 and the bonding contribution of
this orbital is totally ionic. Intermediate cases reveal the io-
nic fraction of the bonding. As Eqs. (8) and (9) express par-
tial distances di and similarities si respectively, it can be
concluded that covalent bond indices pAB(i) are partial sim-
ilarities between particle populations of given orbitals cor-
responding to different atomic domains. Thus the total
ionicity of a bonding or simply the bond ionicity between
two domains may be defined as a weighted average of the
partial ionicities as

NAB ¼
X

i

miðAÞ þ miðBÞ
2

����
���� � iABðiÞ

¼
X

i

miðAÞ � miðBÞ
2

����
����; ð10Þ

where the weight is given by the mean population of each
orbital in both domains A and B, i.e., miðAÞþmiðBÞ

2
. Thus, this

average takes into account the importance of the contribu-
tion of each orbital involved in the summation throughout
its corresponding mean population. Hence, using the same
rule for the bond index it follows that
P AB ¼
X

i

miðAÞ þ miðBÞ
2

����
���� � pABðiÞ

¼
X

i

miðAÞ þ miðBÞ
2

����
����� miðAÞ � miðBÞ

2

����
����

� �
: ð11Þ

Therefore Eqs. (10) and (11) express total ionicity and
covalent bond index from Bray–Curtis similarity measure.
3.2. Divergence metric

Let us now consider identical complementary quantities
than in the previous subsection but using a different mea-
sure. The ionic and covalent fractions associated with the
ith orbital arising from the divergence metric are given by

iABðiÞ ¼
miðAÞ � miðBÞ
miðAÞ þ miðBÞ

� �2

ð12Þ

and

pABðiÞ ¼ 1� miðAÞ � miðBÞ
miðAÞ þ miðBÞ

� �2

; ð13Þ

respectively. Hence, Eq. (12) defines a partial distance while
Eq. (13) expresses the corresponding partial similarity.

Using the square of the mean population miðAÞþmiðBÞ
2

� �2

to

weight each orbital contribution one obtains

NAB ¼
X

i

miðAÞ þ miðBÞ
2

� �2

� iABðiÞ

¼
X

i

miðAÞ � miðBÞ
2

� �2

ð14Þ

and

P AB ¼
X

i

miðAÞ þ miðBÞ
2

� �2

� pABðiÞ

¼
X

i

miðAÞ þ miðBÞ
2

� �2

� miðAÞ � miðBÞ
2

� �2
" #

¼
X

i

miðAÞmiðBÞ: ð15Þ

Eqs. (14) and (15) represent the total ionicity and the cova-
lent bond index in the divergence metric, respectively. Note
that Eq. (15) coincides with Cioslowki et al. definition for
the covalent bond order within the framework of the iso-
pycnic localization procedure reported in Ref. [26]. There-
fore the functional relationship between the partial
distances and similarities di = 1 � si chosen for introducing
the covalency and ionicity definitions seems to be a suitable
indicator for describing such chemical quantities of com-
plementary character.

To finish this section it is important to underline that
Eqs. (8) and (15) were early proposed as partial ionicities
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and total covalent bond order definitions respectively in
Ref. [26]. These definitions, as it is clear now from our
derivations, were not considered within a measure frame-
work and thus do not lie within the same metric space.
Consequently there is not a complementary relationship
between them. Eqs. (9)–(11), which are derived for the
first time in the present work, lie within the same metric
space and correspond to definitions of partial bond orders
or covalent orbital contributions, total ionic and total
covalent bond orders, respectively induced by the BC
measure. Similar considerations are valid for Eqs. (12)–
(14) regarding they are related to Eq. (15) in the diver-
gence measure. Hence, an appropriate evaluation of the
ionic character of a determined bonding and its comple-
mentary covalent character requires to express both quan-
tities in the same metric space in order to get an
appropriate comparison of results. Thus, Eqs. (8) and
(9) must be used jointly (Bray–Curtis metric) or alterna-
tively Eqs. (12) and (13) (divergence metric), as iAB(i)
can be interpreted as the Bray–Curtis or divergence dis-
tance between mi(A) and mi(B) occupation numbers, pAB(i)
can be interpreted as the similarity between these popula-
tions. These arguments do not invalidate the definitions
previously reported by other authors [21,26,27] but they
provide a rigorous scheme for interpretation of results.
Comparative analyses of several index definitions have
been reported in Refs. [28,29].
Table 1
Calculated fragment electronic populations, mi(X), type and degeneracies of th
Curtis (BC) and divergence (D) type, iBC

AB;ðiÞ; iD
ABðiÞ and covalent bond indices

hydrides in the CISD treatment using the 6-31G** basis set

System Fragment
(X)

NX mi (X) Assignment D

BeH2 Be 2.277 1.991 1sBe 1
0.138 rBeH 2

H 1.862 1.804 rBeH 1

BH3 B 2.946 1.997 1sB 1
0.307 rBH 3

H 1.685 1.576 rBH 1

CH4 C 5.845 2.000 1sC 1
0.947 rCH 4

H 1.039 0.967 rCH 1

NH3 N 8.010 2.000 1sN 1
1.929 Lone pair 1
1.339 rNH 3

H 0.663 0.606 rNH 1

H2O O 9.148 2.000 1sO 1
1.974 r-lone pair 1
1.953 p-lone pair 1
1.573 rOH 2

H 0.426 0.389 rOH 1

HF F 9.711 2.000 1sF 1
1.988 r-lone pair 1
1.975 p-lone pair 2
1.706 rFH 1

H 0.289 0.289 rFH 1
4. Computational details and discussion

The definition of partial ionicity iAB(i) is a linear func-
tion of the difference of electronic occupations of the
involved orbitals within the Bray–Curtis measure (cf. Eq.
(8)) whereas it is quadratic within the divergence metric
(cf. Eq. (12)). Then, both definitions will provide close
numerical values when these differences nearly vanish or
when they take their maximum values. These situations
correspond to mi(A) � mi(B) and to mi(A) � 2 and mi(B) � 0
(mi(A) � 0 and mi(B) � 2). The first case stands for purely

covalent orbital contributions. The second one means
purely ionic contributions.

In order to analyze the results arising from the cova-
lency and ionicity definitions reported in the previous sec-
tion, we have chosen a set of selected systems which
covers different types of bonding. The calculations for these
systems were carried out using the GAUSSIAN 03 package
[30], which generated both the first-order reduced density
matrix elements and the overlap matrices ÆwijwjæX. In a sub-
sequent step, these matrices were subjected to the proposed
formalisms using our own computational code which are
available upon request. The reported results were obtained
at configuration interaction (CI) level of approximation
using single and double excitations (CISD). The employed
basis sets have been 6-31G** except for the acetylene mol-
ecule which has been calculated with the 6-31G basis set to
e isopycnic natural orbitals, ionicities of bonds (as a percentage) of Bray–
of Bray–Curtis (BC) and divergence (D) type, P BC

AB, P D
AB for second-row

egeneracy iBC
ABðiÞ iD

ABðiÞ Bond P BC
AB P D

AB

Be–H 0.174 0.261
85.8 73.6
85.8 73.6 H–H 0.057 0.088

B–H 0.410 0.512
67.4 45.4
67.4 45.4 H–H 0.133 0.136

C–H 1.016 0.970
1.1 0.0
1.1 0.0 H–H 0.080 0.038

N–H 0.663 0.875

37.7 14.2
37.7 14.2 H–H 0.054 0.015

O–H 0.430 0.655

60.4 36.4
60.4 36.4 H–H 0.032 0.006

F–H 0.290 0.479

73.0 53.3
73.0 53.3
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avoid the occurrence of the non-nuclear attractor which
appears with the former set [17,31,32]. For all systems,
the geometries were optimized within this approximation.

Tables 1 and 2 report numerical results which allow us
to discuss the general features stated above. The two defi-
nitions for partial ionicity (see Eqs. (8) and (12)) and cov-
alency (see Eqs. (11) and (15)) can provide different values
for these quantities according to the used metrics, which
can have effects on the characterization of the bonding nat-
ure. Table 1 gathers the results corresponding to the
hydrides of the second-row elements in order to study the
different bondings H–X (X = Be, B, C, N, O, F) according
to the electronegativity of the elements of that series.

Let us illustrate how to read the partial quantities from
this Table before giving a detailed discussion of the
reported values. Consider for instance, the rBeH bond in
the BeH2 system; the electronic populations mi for this
bonding orbital are 0.138 and 1.804 for Be and H domains,
respectively; therefore in the BC metric, application of Eq.

(8) for the partial ionicity gives j1:804 � 0:138j
j1:804 þ 0:138j ¼ 0:858 and
Table 2
Calculated fragment electronic populations, mi(X), type and degeneracies of th
Curtis (BC) and divergence (D) type, iBC

ABðiÞ; iD
ABðiÞ and covalent bond indice

molecules and hydrocarbons in the CISD treatment using the 6-31G** basis s

System X NX mi (X) Assignment D

N2 N 7.000 2.000 1sN 1
1.966 r-lone pair 1
0.989 rNN 0 1
0.974 pNN 0 2

CO C 4.738 1.996 1sC 1
1.856 r-lone pair 1
0.224 rCO 1
0.288 pCO 2

O 9.262 2.000 1sO 1
1.983 r-lone pair 1
1.754 rCO 1
1.666 pCO 2

F2 F 9.000 2.000 1sF 1
1.978 r-lone pair 1
1.956 p-lone pair 2
0.964 rFF0 1

C2H6 (D3h) C 5.838 2.000 1sC 1
H3C–C0H03 0.936 rCC0 1

0.930 rCH 3
H 1.054 0.979 rCH 1

C2H4 C 5.953 2.000 1sC 1
H2C–C0H02 0.981 rCH 2

0.965 rCC0 1
0.917 pCC0 1

H 1.024 0.951 rCH 1

C2H2
* C 6.137 2.000 1sC 1

HC–C0H 0 1.175 rCH 1
0.972 rCC0 1
0.955 pCC0 2

H 0.863 0.797 rCH 1

* Calculated in the 6-31G basis set.
expressed as a percentage iBC
rBH
¼ 85:8 which is the value

given in the table. The other quantities are obtained
straight from the formulas indicated above. As can be seen
in that Table, the greatest quantitative difference between
both metric definition results appears in the ionicity contri-
butions to the bonds in NH3 and H2O systems. In the first
system the iBC(rNH) index is more than two times greater
than that of the divergence metric, iD(rNH). However, for
the H2O molecule the difference between both metric-
dependent ionicity contributions (iBC(rOH) and iD(rOH))
is lower than for the NH3 one. The covalent bond indices
do not show important differences for both molecules
although they are greater than for the other systems
reported in this Table. The ionicity from both measures
decreases outstandingly from the BeH bond towards the
CH bond, then to grow also in a valuable way up to the
FH bond. As expected, the minimum of ionicity (or the
maximum of covalency) appears in the system CH4 for
the CH bond, in good agreement with the well-known
covalent nature of this bond. Then, all the values of ionicity
e isopycnic natural orbitals, ionicities of bonds (as a percentage) of Bray–
s of Bray–Curtis (BC) and divergence (D) type, P BC

AB, P D
AB for diatomic

et

egeneracy iBC
ABðiÞ iD

ABðiÞ Bond P BC
AB P D

AB

N–N 3.022 2.913

0.0 0.0
0.0 0.0

C–O 0.953 1.558

77.4 59.8
70.5 49.7

77.4 59.8
70.5 49.7

F–F 1.135 1.180

0.0 0.0

C–C0 1.067 0.985
C–H 1.003 0.963

2.6 0.1
2.6 0.1 H–H 0.082 0.040

C–C 2.005 1.857
1.6 0.0 C–H 1.022 0.984

1.6 0.0 H–H 0.077 0.031

C–C 2.959 2.785
19.2 3.7 C–H 0.857 0.986

19.2 3.7 H–H 0.053 0.001
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are consistent with the electronegativity of the elements
which compose the bonds. The covalent bond index values
follow a similar pattern to that of the ionicity one. They are
very similar in both metrics in the series of systems BeH2 to
CH4. From there, the difference between the values from
both metrics begins to be notable, which again fit with
the difference of electronegativities of the elements forming
the bond as may be observed from numerical values of the
electron populations NX for each domain in the table.

Table 2 refers to systems more complex than the previous
one. It contains results corresponding to homonuclear and
heteronuclear diatomic molecules and organic systems
which are paradigmatic examples of single, double and tri-
ple bonds. Although the atoms N and F possess a very dif-
ferent electronegativity, the ionicities in the molecules N2

and F2 are identically zero due to symmetry reasons and
their covalent bond indices (covalency) are similar for both
metrics. The last three compounds in this Table are of
organic nature. C2H6 shows a low partial ionicity contribu-
tion at the CH bond and a zero one at the CC bond in both
metrics. The covalent bond indices are close to one for both
bonds in both metrics, revealing a single bond. C2H4 also
shows a low ionicity at its CH bond in both metrics (zero
at the divergence one). The covalent bond indices fit well
with this picture but different values arise from Bray–Curtis
and divergence metrics for the CC bond (2.005 and 1.857,
respectively). The first of these results predicts a double
bond while the second one predicts a slight but appreciable
departure from this kind of bonding which may be inter-
preted in terms of the diradical character of this bond
[33]. The CC covalent bond indices in C2H2 system are con-
sistent with a triple bond. However, its rCH bonds possess
an appreciably different covalent bond index in both metrics
(close to one in the divergence metric and lower in the Bray–
Curtis one). This result is in agreement with the high ionic-
ity of this bond in the BC metric. These two last systems
seem to be better described by the divergence metric.

The CO molecule constitutes a particular case. As can be
observed in Table 2, this system presents three orbitals
forming the CO bond, that is, an orbital rCO and two pCO

degenerate ones, all of them with strong ionic character.
The most striking result is the low covalency found, since
the BC metric predicts an effective single bond whereas
the divergence one provides the value 1.6, although it is
commonly admitted that this linkage is triple (bond multi-
plicity) according to the presence of the three orbitals above
mentioned [34,35]. However, this kind of discrepancy is
only apparent and occurs in compounds having high ionic-
ity bonds as the CO molecule. In these situations the bond
order must be assessed taking into account also the influ-
ence of the ionicity. As a consequence of the interrelation
between covalency and ionicity, the restricted summations
over the bonding orbitals in Eqs. (10) and (11) (for the
BC measure) or in Eqs. (14) and (15) (for the divergence
one) express jointly the number of electron pairs involved
in the bonding although these electron pairs are unequally
shared by both atoms in this kind of systems. Hence, as it
has been mentioned above, the covalent bond index defini-
tion can be extended to an ionic bond index and the sum of
both covalent and ionic electron populations associated
with the orbitals which constitute a bonding turn out to
be representative of the bond order. Thus, the bond multi-
plicity that would be expected from Lewis’ structure (3 in
the case of the CO molecule) is reached jointly by both
contributions.

5. Concluding remarks

In this work, we have shown that the use of different sim-
ilarity measures allows us to relate two different procedures
to define covalency and ionicity indices. This result opens
the possibility of using any arbitrary measure to explore
other ways to understand and formulate a determined
quantity. We highlight that a definition for any quantity
may be expressed in terms of a similarity which implies
the use of a determined measure. This method provides a
rigourous mathematical support to properly describe com-
plementary quantities. As a direct consequence of this anal-
ysis we indicate the necessity of considering covalent and
ionic electron population contributions to recover Lewis
bond multiplicities.
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