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a b s t r a c t

When the data used to fit an heteroscedastic nonparametric regression model are
contaminated with outliers, robust estimators of the scale function are needed in order
to obtain robust estimators of the regression function and to construct robust confidence
bands. In this paper, local M-estimators of the scale function based on consecutive
differences of the responses, for fixed designs are considered. Under mild regularity
conditions, the asymptotic behavior of the localM-estimators for general weight functions
is derived.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider the nonparametric regression model

Yi = g(xi)+ Uiσ(xi), 1 ≤ i ≤ n, (1)

where 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 are fixed design points in [0, 1], σ is an unknown scale function, g denotes the unknown
regression function and the errors Ui are i.i.d. random variables with common distribution F0. The estimation of the scale
function, both in homoscedastic and heteroscedastic models, has become an essential problem, nearly as important as the
estimation of g itself, for direct applications and also because the performance of the estimators of the regression function
depends on the behavior of those of the scale function (see, Dette et al., 1998).
Examples of scale estimation appear in diverse fields such as economy and engineering. Ruppert et al. (1997) report

on a study where the main interest is the analysis of data from a Monte Carlo simulation of turbulence. The estimation of
the conditional variance of the particle speed given the position and its derivatives are essential. Ullah (1985) discusses
data consisting of observations of individuals’ annual income versus age, taken from the 1971 Canadian Population Census.
Levine (2003) suggests that ‘‘variance estimation for such a data set is of some economic interest. It is a well known in labor
economics that the discrepancy in individuals incomes depends primarily on educational level. Moreover, this difference
tends to increase with age’’.
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In homoscedastic nonparametric regression, scale estimators based on differences are widely used (Hall et al., 1990).
These scale estimates are defined as

σ̂ 2r,n =
1

(n− r)

n−m2∑
i=m1+1

(
m2∑

k=−m1

dkYi+k

)2
,

where {di}
m2
i=−m1

is a difference sequence of real numbers satisfying
∑m2
i=−m1

di = 0 and
∑m2
i=−m1

d2i = 1, with d−m1 6= 0,
dm2 6= 0 for m1 and m2 non-negative integers. The integer r = m1 + m2 is the estimator order. When r = 1, σ̂

2
r,n = σ̂

2
Rice,n

is simply the well-known estimator proposed by Rice (1984)

σ̂ 2Rice,n =
1

2(n− 1)

n−1∑
i=1

(Yi+1 − Yi)2 .

This class of scale estimators has been extended to heteroscedastic nonparametric models. See, for instance, Müller and
Stadtmüller (1987), and Brown and Levine (2007), who considered local estimators based on kernel weights.
It is well known that scale estimators based on squared differences are not robust against outliers and inliers. Robust

estimators of scale are needed, for instance, to detect outliers (Hannig and Lee, 2006), to provide robust estimators of the
regression function (see Härdle and Gasser, 1984; Härdle and Tsybakov, 1988; Boente and Fraiman, 1989), or to improve the
accuracy of bandwidth selectors when estimating g (see, among others, Boente et al., 1997; Cantoni and Ronchetti, 2001;
Leung et al., 1993; Leung, 2005).
When the scale function is constant, Boente et al. (1997) proposed the robust scale estimator σ̂MSD,n = q1/2/

{
√
2Φ−1(3/4)}, where q1/2 is the median of the absolute differences |Yi+1 − Yi|, 1 ≤ i ≤ n − 1. Also, for homoscedastic

nonparametric regressionmodels, Ghement et al. (2008) generalized the above estimators using a robustM-estimator based
on differences defined as a solution σ̂0 of

1
n− 1

n−1∑
i=1

χ

(
Yi+1 − Yi
aσ̂0

)
= b (2)

whereχ is a score function, a is a positive constant chosen to attain Fisher-consistency at the centralmodel and b is a positive
tuning constants that gives the robustness level of the estimator.
We consider the situation where the scale function is not necessarily constant and define localM-estimates of the scale

function based on differences. Our estimators can be seen as the robust counterpart of the variance estimators of order 1
considered by Levine (2003) and Brown and Levine (2007) and are regression free, in the sense that they do not require
previous nor simultaneous estimation of the regression function. Besides, their asymptotic distribution does not depend on
the regression function. However, for small sample sizes, the performance of the estimators can be affected by the shape
of the regression function g . As mentioned by Rousseeuw and Hubert (1996), similar situations exist in other models such
as location–scale and linear regression models, in the sense that robust scale estimators are typically based on an initial
estimator of the location or the regression parameters. However, as it iswell known, robust location-free scale estimators are
also available, see, for instance, Rousseeuw and Croux (1993). Rousseeuw and Hubert (1996) considered robust regression-
free estimators of scale by considering triplets of data points. Our purpose is to construct robust estimators of the variance
function under the heteroscedastic regression model (1) which do not depend on the choice of the regression estimators ĝ .
In some sense, our estimators are related to those considered by Rousseeuw and Croux (1993) for the location–scale model,
but our estimates are based onM-functionals in a nonparametric setting.
Preliminary estimation of the scale function is motivated, basically, by two reasons. Simultaneous estimation of the re-

gression and scale function substantially increases the algorithmic complexity and, in consequence, the computational time.
Another reason, particularly important in the heteroscedastic context, is the possible lack of robustness of the regression
function when considering simultaneous estimation. This conjecture is based on the fact that, in the location–scale model
Y = µ+ σU , when estimating simultaneously location and scale the location estimator µ̂ does not attain a 1/2 breakdown
point (see Maronna et al., 2006).
It should be noted that the asymptotic properties of the robust proposals are derived under mild conditions on the errors

distribution, in particular, without imposing moments conditions. It is also worth noticing that our results are based on the
asymptotic behavior of weighted sums of r-dependent random variables, and so, our proposal can easily be extended to
robust estimators based on any difference orders. However, as mentioned by Dette (2002), ‘‘for moderate sample sizes the
Rice (1984) andGasser et al. (1986) estimateswill be sufficient inmost cases’’.Moreover, as itmaybe expected, the resistance
of the estimators to contamination will decrease as the difference order increases, since contaminations propagate over the
considered differences. This fact is analogous to the behavior observed in time series by Caliskan et al. (2009) who proposed
estimators based on three consecutive observations attaining atmost a breakdownpoint of 0.25, see also Gelper et al. (2009).
Note also that the breakdown point of the estimators considered in Rousseeuw and Hubert (1996) is at most 20%. Hence,
we shall develop the theory only for robust estimators based on differences of order 1.
The rest of the paper is organized as follows. Section 2 describes the robust local M-estimates of the scale function.

In Section 3, we discuss finite sample properties of the estimators, while in Section 4, the consistency and asymptotic
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distribution of our estimates are derived. Finally, Section 5 provides some concluding remarks. All the proofs are delayed to
the Appendix.

2. The estimators and robust proposals

In this section, we introduce a family of robust estimators of the scale function σ(x) which we call local M-estimates of
scale based on differences. Throughout this paper, we consider observations satisfying model (1) with errors {Ui}i≥1 having
common distribution G from the gross-error neighborhood Pε(F0) defined as

Pε(F0) = {G : G(y) = (1− ε)F0(y)+ εH(y);H ∈ D, y ∈ R} ,

where D denotes the set of all distribution functions, F0 is the central model, generally the normal distribution, and H is
any arbitrary distribution function modeling the contamination. The amount of contamination ε ∈ [0, 1/2) represents the
fraction of outliers that we expect to be present in the sample. Finally, Gx will denote the distribution of σ(x)(U2−U1)where
U1 andU2 are independent random variables with common distribution G. Notice that, as mentioned in the Introduction, we
do not assume the existence of moments for the errors distribution G nor the symmetry of the central model distribution
F0.
For x ∈ (0, 1), we define the local M-estimator of the scale function σ(x) based on successive differences of the responses

variables as

σ̂M ,n(x) = inf

{
s > 0 :

n−1∑
i=1

wn,i(x)χ
(
Yi+1 − Yi
as

)
≤ b

}
, (3)

where {wn,i(x)}n−1i=1 is a sequence of weight functions (such as kernel or nearest neighbor weights), χ is a score function, the
constants a ∈ (0,∞) and b ∈ (0, 1) satisfy

E[χ(Z1)] = b and E
[
χ

(
Z2 − Z1
a

)]
= b, (4)

with {Zi}i=1,2 independent random variables with common distribution Z1 ∼ F0. Typically, the score function χ : R → R
is even with χ(0) = 0, non-decreasing on R+ and 0 < ‖χ‖∞ where ‖f ‖∞ = supx∈R |f (x)|. It is worth noticing that the
infimum in (3) is needed to define the estimates when the score function is discontinuous. When χ is continuous, it is easy
to see that σ̂M ,n(x) satisfies

∑n−1
i=1 wn,i(x)χ

(
(Yi+1 − Yi)/(aσ̂M ,n(x))

)
= b. Besides, the constant b is related to the robustness

properties of the estimatorwhile the constant a ensures the Fisher-consistency under the centralmodel, as discussed below.
Some examples. Based on (3), in the sequel, we give some examples of local scaleM-estimators.

(i) When χ(x) = x2, a =
√
2 and b = 1, we obtain the classical local Rice estimator

σ̂Rice,n(x) =

[
n−1∑
i=1

wn,i(x)
(
Yi+1 − Yi
√
2

)2]1/2
.

(ii) The proposal considered by Boente et al. (1997) can be extended to deal with heteroscedastic nonparametric regression
models by choosing χ(y) = I{u: |u|>Φ−1(3/4)}(y), a =

√
2 and b = 1/2 in (3). This estimator will be denoted by σ̂MSD,n(x),

and called from now on the local median of the squared differences.
(iii) For c > 0 fixed, let

χc(y) =
{
3 (y/c)2 − 3 (y/c)4 + (y/c)6 if |y| ≤ c
1 if |y| > c

be the score function introducedbyBeaton andTukey (1974). Let σ̂BT ,n(x) stand for the localM-estimatorwith BT function
that is, the solution of (3) with score function χc with c = 0.70417, a =

√
2 and b = 3/4.

Some robustness considerations. In Section 4, we show that, under regularity conditions, for all G in the contamination
neighborhood, the sequence

{
σ̂M ,n(x)

}
n≥1 converge almost surely to

S(Gx) = inf
{
σ > 0 : E

[
χ

(
σ(x) (U2 − U1)

aσ

)]
≤ b

}
.

As mentioned above, if χ is a continuous function, S(Gx) is the unique solution of

E
[
χ

(
σ(x) (U2 − U1)
aS(Gx)

)]
= b. (5)

For any fixed x denote S(G) = S(Gx) with G the errors distribution and by Fn(y|x) the empirical conditional distribution,
Fn(y|x) =

∑n−1
i=1 wn,i(x)I(−∞,y](Yi+1 − Yi). Then, we have that S(Fn(·|x)) = σ̂M ,n(x) and so, our estimator is related to a
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Table 1
Mean and standard deviation (between brackets) of the îsel for the local scale estimates under different amounts of symmetric contamination, i.e., when
G(y) = (1− ε)Φ(y)+ εH and H(y) = C(0, σ 2)with σ = 4.

Estimator ε = 0 ε = 0.10 ε = 0.20 ε = 0.30 ε = 0.35 ε = 0.40

σ̂Rice ,n 0.021 (0.017) 3.893 (5.467) 6.631 (6.894) 8.701 (7.623) 9.613 (7.999) 10.429 (8.231)
σ̂MSD ,n 0.036 (0.030) 0.074 (0.060) 0.204 (0.138) 0.470 (0.271) 0.670 (0.356) 0.918 (0.442)
σ̂BT ,n 0.052 (0.047) 0.082 (0.068) 0.177 (0.128) 0.357 (0.210) 0.487 (0.260) 0.647 (0.314)

robust functional (defined on a wide class of distribution functions) in the sense that this functional is weakly continuous
and such that at the central model F0, S is Fisher-consistent, i.e., S(F0) = σ(x) which means that σ̂M ,n(x) estimates the
true value σ(x) at the central model. For a discussion regarding robust weakly continuous functionals in the nonparametric
context, see Boente and Fraiman (1991).
When the scale function is constant, Ghement et al. (2008) showed that under certain regularity conditions and design

restrictions, M-estimators of scale attain their maximum breakdown point of 1/2 when b = 3/4. In heteroscedastic
models, it might occur that the local breakdown point is lower, similar to local M-estimators of the regression function
in nonparametric regression (see Boente and Rodriguez, 2008; Maronna et al., 2006, Chapter 4). The empirical breakdown
point and influence function of localM-estimates of scale are discussed in Sections 3 and 5.

3. Finite sample properties

Robust procedures are expected to be less sensitive to outliers than their classical counterparts. A popular measure
of robustness is the finite sample breakdown point (BP). To investigate the resistance of our proposals to different
amounts/sizes of contamination (and to get some insight about their finite sample BP) we conduct a simulation study
comparing the performance of the classical estimator, σ̂Rice,n(x), and two robust local M-estimators of the scale function,
σ̂MSD,n(x) and σ̂BT ,n(x), introduced in Section 2. We consider the regression model (1) with g(x) = 2sen(4πx) and
σ(x) = exp(x). This model has been considered for homoscedastic testing in Dette and Hetzler (2009). Similar results
were obtained for others models (see Ruiz, 2008, for further details).
The design points are chosen as xi = i/(n + 1), 1 ≤ i ≤ n while the error’s distribution is G(y) = (1 − ε)Φ(y) + ε H ,

withΦ the standard normal distribution and H modeling two types of contamination,

(a) a symmetric outlier contamination, where H(y) = C(0, τ 2) is the Cauchy distribution centered at 0 with scale τ = 4
and

(b) asymmetric contaminations, where H = N(µ, τ 2) is the normal distribution with means µ = 10, 100, 1000 and
common variance τ = 0.1.

In the first contamination scenario, we have a heavy-tailed distributionwhile, in the second one, there is a sub-population in
data (see Maronna et al., 2006). The amounts of contamination were ε = 0, 0.1, 0.2, 0.30, 0.35 and 0.40. The main reason
to incorporate high contaminations proportions and extremely asymmetric contaminations is to give some insight on the
breakdown point of the estimators. The sample size considered is n = 100 and, the number of replications, N = 10 000.
For both, the classical and robust estimators, we have used the Nadaraya–Watson weights, wn,i(x) = K((x − xi)/hn)[∑n−1
j=1 K

(
(x− xj)/hn

)]−1
, with a standard Gaussian kernel. As in any smoothing procedure, a value for the smoothing

parameter must be selected. However, the study of data-driven bandwidth selectors for the scale function is less developed.
When considering scale estimators based on squared differences, Levine (2006) recommended a version of K -fold cross-
validation for selecting the smoothing parameter. As in nonparametric regression, this approach can be sensitive to
outliers even when it is combined with robust scale estimators. The ideas of robust cross-validation can be adapted to the
present situation, however, the study of robust selectors is beyond the scope of the paper. Based on extensive preliminary
comparisons, we selected a smoothing parameter hn = 0.20 for our simulations.
To asses the behavior of each estimator Tables 1 and 2 report, as summarymeasures, themean and the standard deviation

of the integrated square error in logarithmic scale of the estimators, îsel , defined as

îsel j(σ̂n) =
1
n

n∑
i=1

[
log

(
σ̂
(j)
n (xi)
σ (xi)

)]2
where σ̂ (j)n (xi) denotes the scale estimator, classical or robust, obtained at the jth replication.
As expected, under the central model, ε = 0, the classical local Rice scale estimator performs better than the robust

ones that show a loss of efficiency measured through the îsel . On the other hand, the performance of the classical local Rice
estimator is highly sensitive to the presence of outliers in the sample.When anomalous observations are present, regardless
of the amount of contamination and the sample size σ̂Rice,n has a very poor integrated square error, in both contamination
scenarios. In particular, note thatwith only 10% of contamination themean of the îsel (σ̂Rice,n) suffers a considerable increase
confirming the expected non-robustness of this estimator.
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Table 2
Mean and standard deviation (between brackets) of the îsel for the local scale estimates under different amounts of asymmetric contamination, i.e., when
G(y) = (1− ε)Φ(y)+ εH and H = N(µ, σ 2), with µ = 10, 100, 1000 and σ 2 = 0.1.

µ Estimator ε = 0.10 ε = 0.20 ε = 0.30 ε = 0.35 ε = 0.40

10 σ̂Rice ,n 1.353 (0.321) 2.060 (0.261) 2.453 (0.218) 2.574 (0.202) 2.656 (0.186)
σ̂MSD ,n 0.108 (0.088) 0.386 (0.352) 1.141 (0.862) 1.541 (1.015) 1.790 (1.097)
σ̂BT ,n 0.099 (0.081) 0.201 (0.147) 0.323 (0.236) 0.372 (0.283) 0.390 (0.307)

100 σ̂Rice ,n 11.530 (1.152) 13.744 (0.722) 14.899 (0.675) 15.132 (0.492) 15.344 (0.443)
σ̂MSD ,n 0.118 (0.147) 0.829 (1.411) 5.235 (4.786) 6.380 (4.854) 8.333 (5.190)
σ̂BT ,n 0.107 (0.087) 0.291 (0.237) 1.002 (0.899) 1.229 (1.119) 1.636 (1.379)

1000 σ̂Rice ,n 32.413 (2.001) 36.101 (1.180) 37.832 (0.878) 38.339(0.787) 38.678 (0.704)
σ̂MSD ,n 0.149 (0.329) 1.999 (3.480) 10.917 (9.110) 16.817 (10.638) 21.564 (10.964)
σ̂BT ,n 0.117 (0.108) 0.600 (0.891) 3.092 (3.166) 5.246 (4.286) 7.438 (4.888)

Under none or small (10%) symmetric contamination, the behavior of σ̂MSD,n and σ̂BT ,n are similar. On the other hand,
under both contamination schemes, if the amount of the contamination is large, the localM-estimate σ̂BT ,n performs better
than σ̂MSD,n, especially under asymmetric contamination. These results suggest that the breakdown point of σ̂MSD,n is lower
than that of σ̂BT ,n.
Another useful robustness measure is the empirical influence function (EIF) introduced by Tukey (1977). EIF reflects the

behavior of the estimator when a single sample point is replaced by a new observation that does not follow the original
model.
Wewill followan approach similar to that ofManchester (1996),who introduced a graphicalmethod to display sensitivity

of a kernel estimator in nonparametric regression. Given a data set {(xi, yi)}1≤i≤n, let σ̂ (x) be the scale estimator computed
at xwith the Nadaraya–Watson weights. Thus, for a smooth χ-function, the estimator σ̂ (x) is the solution of

n−1∑
i=1

K
(
x− xi
hn

)[
χ

(
Yi+1 − Yi
aσ̂ (x)

)
− b

]
= 0.

Assume that z = (x0, y0) represents a contaminating point with x0 ∈ [0, 1] and denote σ̂z the scale estimator based on the
augmented data set {(x1, Y1), . . . (xn, Yn), z}. Thus, if xj0 ≤ x0 ≤ xj0+1, we have that σ̂z(x) is the solution of

0 =
∑

1≤i≤n−1,i6=j0

K
(
x− xi
hn

)[
χ

(
Yi+1 − Yi
aσ̂z(x)

)
− b

]
+ K

(
x− xj0
hn

)[
χ

(
y0 − Yi
aσ̂z(x)

)
− b

]
+ K

(
x− x0
hn

)[
χ

(
Yj0+1 − y0
aσ̂z(x)

)
− b

]
.

In order to detect if a contaminating point influences the scale estimator, we can define the EIF of σ̂ (x) at (x0, y0) as

EIF(σ̂ (x); (x0, y0)) = (n+ 1) |log (σ̂z(x))− log (σ̂ (x))| .

The log function is introduced in order to study the influence to inliers. Fig. 1 gives the surface plots for one of the samples
generated under the central model described above, i.e., with g(x) = 2sen(4πx), σ(x) = exp(x), xi = i/(n + 1), n = 100
and ε = 0 when x = 0.5 to illustrate the performance at a central point. To build each surface plot, we consider a grid of
values (x0, y0) taking values on a equidistant grid on each axis of size 40×200 on [0.25, 0.75]×[−100, 100]. Thus, we have
a grid of 800 points (x0, y0) and for each of themwe have computed the empirical influence function, EIF(σ̂ (x); (x0, y0)) for
each estimator.
As expected, the classical estimator based on square differences has an unbounded EIF, while the EIF of the robust

alternatives related to bounded χ functions remain bounded. It is worth noticing that the irregularity showed by
EIF(σ̂MSD,n(x); (x0, y0)) may be related to the non-differentiability of the score function. Note that EIF(σ̂BT ,n(x); (x0, y0))
show larger values than EIF(σ̂MSD,n(x); (x0, y0)), this fact may be related to the local-global robustness trade-off of σ̂BT ,n.
Besides, as it is well known, the robust scale estimators may be sensitive to inliers, this feature corresponds to the behavior
near y0 = 0 of the EIF of both robust procedures. To give more insight on the behavior with respect to inliers, Fig. 2 gives
the surface plots constructed when considering a grid of values (x0, y0) taking values on a equidistant grid on each axis of
size 40 × 200 on [0.25, 0.75] × [−5, 5]. These plots confirm that the robust estimators may be sensitive to inliers even if
their effect remains bounded. Besides, the wiggly surface obtained for the σ̂MSD,n near y0 = 0 suggests that abrupt changes
may arise when using this estimator.

4. Asymptotic behavior of the localM-estimates of the scale function

In this section, we derive consistency and asymptotic normality of the estimators defined in Section 2 at any distribution
G from the gross-error neighborhood Pε(F0), under mild conditions.
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Fig. 1. Empirical influence function of σ̂ (x)when x = 0.5.

If I is an interval of R, let CL(I) be the set of bounded and Lipschitz continuous functions f : I → R and denote by
‖f ‖L = min {k : |f (x)− f (y)| ≤ k|x− y|,∀x, y ∈ I}. In order to establish the strong consistency of

{
σ̂M ,n(x)

}
n≥1, we will

need the following assumptions:

H1. The score function χ is continuous, even, bounded, strictly increasing on the set Cχ = {x : χ(x) < ‖χ‖∞} with
χ(0) = 0. Without loss of generality, we assume that ‖χ‖∞ = 1.

H2. The design points {xi}ni=1 satisfy limn→∞Mn = 0, whereMn = max1≤i≤n−1 (xi+1 − xi).
H3. The regression function g : [0, 1] −→ R is continuous.
H4. The scale function σ : [0, 1] → R+ is continuous.
H5. The weights

{
wn,i(x)

}n−1
i=1 are such that

(i) limn→∞
∑n−1
i=1 wn,i(x) = 1.

(ii) There existsM > 0 such that
∑n−1
i=1 |wn,i(x)| ≤ M , for all n ≥ 2.

(iii) limn→∞
∑n−1
i=1 |wn,i(x)|I{|xi−x|≥a} = 0, for any a > 0.

(iv) limn→∞wn log n = 0, wherewn = max1≤i≤n−1
∣∣wn,i(x)∣∣.

Remark 4.1. AssumptionsH2,H3 andH5 are standard conditions in nonparametric estimation. They have been considered,
for instance, by Georgiev (1989) to derive the strong consistency of regression estimators. In particular, H5 is fulfilled for
the weight functions described in Section 2 if K has bounded support and the bandwidth sequence is such that hn → 0
and nhn/ log(n) → ∞ and max (xi+1 − xi) ≤ ∆/n. On the other hand, H5(ii) allows for kernels taking negative values,
such as high order kernels or kernels modified to overcome boundary effects (see, for instance, Gasser and Müller, 1984).
Assumption H4 is a smoothness requirement on the scale function needed to guarantee consistency at any x ∈ (0, 1).

Theorem 4.1. Under H1–H5, given x ∈ (0, 1), the local M-estimators are strongly consistent to S(Gx) defined in (5),
i.e., σ̂M ,n(x)

a.s.
−→ S(Gx).
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Fig. 2. Empirical influence function of σ̂ (x)when x = 0.5.

To derive the asymptotic distribution of the proposed local M-estimators, we will need some additional assumptions.
From now on, we will denote by cn =

∑n−1
i=1 w

2
n,i(x).

H6. g ∈ CL([0, 1]).
H7. Mn = max1≤i≤n−1(xi+1 − xi) = O(n−1).
H8. χ is twice continuously differentiable and the functions χ1(u) = uχ ′(u) and χ2(u) = u2χ ′′(u) are bounded.
H9. The scale function σ : [0, 1] → R+ satisfies (i) or (ii) where

(i) σ ∈ CL([0, 1]).
(ii) σ is continuous and limn→∞ c

−1/2
n

∑n−1
i=1

∣∣wn,i(x)∣∣ |σ(xi+1)− σ(xi)| = 0.
H10. Letwn = max1≤i≤n−1 |wn,i(x)|.

(i) limn→∞ c
−1/2
n wn = 0

(ii) limn→∞ c
−1/2
n

(∑n−1
i=1 wn,i(x)− 1

)
= 0.

H11. The score function χ is such that ν(α1, α2) = E
∣∣χ ′(α1U1 + α2U2)U2∣∣ < ∞, for any α1 6= 0, α2 6= 0, where {Ui}i=1,2

are i.i.d, U1 ∼ G.
H12. For any x ∈ (0, 1), the following conditions hold

(i) limn→∞ c
−1/2
n

∑n−1
i=1 wn,i(x)(σ (xi)− σ(x)) = β1

(ii) limn→∞ c
−1/2
n

∑n−1
i=1

∣∣wn,i(x)∣∣ (σ (xi)− σ(x))2 = 0.
Remark 4.2. It is worth noticing thatH7,H9(i) andH10(i) entailH9(ii) which is neededwhen no differentiability conditions
on σ are required. Moreover, H10(i) is needed to guarantee that the order of convergence is c−1/2n while H12(i) deals with
the asymptotic bias. Note that since

ν(α1, α2) ≤ ‖χ
′
‖∞

[
2c
|α1|
+ E

(
|U2|I|α1U1+α2U2|≤c I|α1U1|>2c I|α2U2|>c

]]
<∞, (6)

if χ ′(u) = 0 for |u| > c , χ ′ is bounded and

E
[
|U2|I|α1U1+α2U2|≤c I|α1U1|>2c I|α2U2|>c

]
<∞, (7)
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is fulfilled for any α1, α2, then H11 holds. Besides, the bound given in (6) and the fact that χ ′ is continuous entail that
sup(α1,α2)∈K1×K2

ν(α1, α2) <∞, for any compact setKi ⊂ R− {0}. Note that the Beaton–Tukey family of score functions
clearly satisfies the required conditions. Moreover, (7) is not as restrictive as it may seem, as it is fulfilled, for instance, when
Ui has Cauchy distribution.

Theorem 4.2. Let x ∈ (0, 1) be fixed and let cn =
∑n−1
i=1 w

2
n,i(x). Assume that β > 0 and vi > 0, i = 1, 2 where

β = lim
n→∞

c−1n
n−2∑
i=1

wn,i+1(x)wn,i(x)

v1 = v1(Gx) = var
[
χ

(
σ(x)U∗1
aS(Gx)

)]
+ 2βcov

[
χ

(
σ(x)U∗1
aS(Gx)

)
, χ

(
σ(x)U∗3
aS(Gx)

)]
v2 = v2(Gx) = E

[
χ ′
(
σ(x)U∗1
aS(Gx)

)(
σ(x)U∗1
a(S(Gx))2

)]
,

with U∗1 = U2 − U1, U
∗

3 = U4 − U3 and {Ui}i≥1 are i.i.d. random variables with distribution G. Let v = v(Gx) = v1/v
2
2 . If, in

addition,H1 and H5–H12 hold, we have that

c−1/2n

(
σ̂M ,n(x)− S(Gx)

) D
−→ N

(
S(Gx)β1
σ(x)

, v

)
where β1 is given in H12.

Remark 4.3. (a) Note that the asymptotic bias depends onχ only through the functional S(Gx). Hence, at the central model,
i.e., when G = F0, the asymptotic bias is independent of the score function and, consequently, the asymptotic behavior
of the sequence ofM-estimates depends on χ only through its asymptotic variance.

(b) It is worth noticing that we do not obtain the usual expression for the asymptotic variance of the scale M-estimator
based on independent observations. This fact can be explained by the intrinsic one-dependence, due to the responses
differences appearing in each term of the estimator’s definition, that leads to the second term in v1.

5. Concluding remarks

Robust estimation of the scale function, σ(x), is an important problem in any nonparametric regression analysis. In this
paper, for heteroscedasticmodels, we introduced a robust estimator for the scale function based on localM-scale estimators.
These estimators are a robust version of the very well-known family of regression-free estimators based on responses
differences (see, among others, Hall et al., 1990; Levine, 2003). They can also be seen as an extension to heteroscedastic
models of the robust globalM-scale estimators introduced for homoscedastic nonparametric regressionmodels by Ghement
et al. (2008). Under mild regularity conditions, the localM-estimators turn is consistent and asymptotically normal.
As wementioned in Section 2, robustness of the estimators can be considered in the sense of weak continuity of the scale

functional. However, the determination of the breakdown point and influence function of local M-estimators of the scale
function deserves a careful investigation as future work.
AsGiloni and Simonoff (2005) indicate,when estimating the regression function, one possible approach to the breakdown

point problem is to consider a conditional concept in the sense that, unlike for parametric models, the breakdown value
changes depending on the evaluation point x. Although the simulation results suggest that the localM-estimator based on
the Beaton–Tukey score function is more resistant than the local median of the squared differences, there still exists a need
to define a local version of asymptotic breakdownpoint for scale functions, taking into account both implosion and explosion
of the estimators.
Besides, when using kernel weights, the influence function of the estimator may be investigated by defining a smoothed

influence function through a smoothed functional related to the kernel scale estimators as it was done for nonparametric
regression by Aït Sahalia (1995) and Tamine (2002). However, unlike the notion of asymptotic breakdown point, a finite
sample version of the influence function following the ideas of Tukey (1977) may be more adequate. Following the ideas of
Manchester (1996) who introduced a graphical method to display sensitivity of a scatter plot smoother, we have defined an
empirical influence function that takes into account the effect of both inliers and outliers on the scale estimator function.
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Appendix

For the sake of simplicity, we will begin by fixing some notation. For any i = 1, . . . , n− 1, let

Y ∗i = Yi+1 − Yi, U∗i = Ui+1 − Ui and Ũi = σ(xi+1)Ui+1 − σ(xi)Ui. (A.1)

Proof of Theorem 4.1. Fix x ∈ (0, 1) and consider the conditional empirical distribution functions Fn(y) =∑n−1
i=1 wn,i(x)I(−∞,y](Y

∗

i ) and F̃n(y) =
∑n−1
i=1 wn,i(x)I(−∞,y](Ũi), where, to avoid burden notation, we have omitted the

dependence on x. Let π stand for the Prohorov distance. Note that H1 entails that the functional S is weakly continuous
and so, consistency will follow if

π(Fn,Gx)
a.s.
−→ 0. (A.2)

To derive (A.2), it is enough to show that

π(Fn, F̃n)
a.s.
−→ 0 (A.3)

π(̃Fn,Gx)
a.s.
−→ 0 (A.4)

hold. Standard arguments allow to show that (A.3) holds (for details see Boente et al., 2009). To obtain (A.4), it will be enough
to prove that for any f ∈ CL(R)

Sn =
n−1∑
i=1

wn,i(x)f (Ũi)− E

[
n−1∑
i=1

wn,i(x)f
(
Ũi
)] a.s.
−→ 0, (A.5)

and

lim
n→∞

E

[
n−1∑
i=1

wn,i(x)f
(
Ũi
)]
=

∫
f dGx = E

[
f
(
σ(x)U∗1

)]
(A.6)

hold.
Let us begin by obtaining (A.5).Write Sn = S1,n+S2,n, where Sj,n =

∑
i∈Ij,n

wn,i(x)Zi with I1,n = {1 < i ≤ n−1 : i is even}
and I2,n = {1 < i ≤ n− 1 : i is odd }. Letwn = max1≤i≤n−1

∣∣wn,i(x)∣∣. Applying the Hoeffding’s inequality (Bosq, 1996, page
22) to each term Sj,n we get

P(|Sn| > 2ε) ≤ P(|S1,n| > ε)+ P(|S2,n| > ε) ≤ 4 exp
(
−

ε2

2‖f ‖2
∞
Mwn

)
which together with H5(iv) implies (A.5).
Finally, to derive (A.6), note that

E

[
n−1∑
i=1

wn,i(x)f (Ũi)

]
− Ef (σ (x)U∗1 ) =

n−1∑
i=1

wn,i(x)E
[
f (Ũi)− f (σ (x)U∗1 )

]
+

(
n−1∑
i=1

wn,i(x)− 1

)
E
[
f (σ (x)U∗1 )

]
.

By H5(i), the second term on the right hand side converges to zero. Straightforward calculations, using H2 and H5(ii) and
(iii), establish that the first term also converges to zero (for details, see Boente et al., 2009). �

To derive the asymptotic distribution of the local scaleM-estimators, we will need the following Lemma. For any s > 0
and x ∈ (0, 1), define

λn,b(s, x) =
n−1∑
i=1

wn,i(x)χ
(
Y ∗i
as

)
− b,

λ∗n,b(s, x) =
n−1∑
i=1

wn,i(x)χ
(
σ(x)U∗i
as

)
− b,

λ1,n(s, x) =
n−1∑
i=1

wn,i(x)χ ′
(
σ(x)U∗i
as

)(
U∗i
as

)
(σ (xi)− σ(x)) ,

where Y ∗i and U
∗

i , 1 ≤ i ≤ n− 1 are as in (A.1).
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Lemma A.2. Under the assumptions H1, H5(ii), H6–H10(i), H11 and H12, we have that

c−1/2n λn,b(s, x) = c−1/2n λ∗n,b(s, x)+ c
−1/2
n λ1,n(s, x)+ op(1) (A.7)

c−1/2n λ1,n(s, x) = β1E
[
χ ′
(
σ(x)U∗1
as

)(
U∗1
as

)]
+ op(1). (A.8)

Proof. To show (A.7) it is enough to prove that

c−1/2n λn,b(s, x) = c−1/2n λ̃n,b(s, x)+ op(1) (A.9)

c−1/2n λ̃n,b(s, x) = c−1/2n λ∗n,b(s, x)+ c
−1/2
n λ1,n(s, x)+ op(1), (A.10)

where λ̃n,b(s, x) =
∑n−1
i=1 wn,i(x)χ

(
Ũi/(as)

)
− b and Ũi is defined in (A.1).

Using H6, H8 and H5(ii), we get easily that∣∣c−1/2n λn,b(s, x)− c−1/2n λ̃n,b(s, x)
∣∣ ≤ (as)−1 ‖g‖L ‖χ‖L (nMn)c−1/2n wn

withMn andwn givenH2 andH5, respectively. Thus, (A.9) follows fromH7 andH10(i).Write λ̃n,b(s, x) = Hn+Tn+λ∗n,b(s, x),
where

Hn = c−1/2n

n−1∑
i=1

wn,i(x)
[
χ

(
σ(xi+1)Ui+1 − σ(xi)Ui

as

)
− χ

(
σ(xi)U∗i
as

)]

Tn = c−1/2n

n−1∑
i=1

wn,i(x)
[
χ

(
σ(xi)U∗i
as

)
− χ

(
σ(x)U∗i
as

)]
.

Then, (A.10) will follow if we prove that Hn = op(1) and Tn = c
−1/2
n λ1,n(s, x)+ op(1). Using H5(ii), H9 and H11 and the fact

that σ is continuous and strictly positive on the interval [0, 1], we get that

E |Hn| ≤ (as)−1 sup
(α1,α2)∈K1×K2

ν(α1, α2)c−1/2n

n−1∑
i=1

∣∣wn,i(x)∣∣ |σ(xi+1)− σ(xi)|
whereKj ⊂ R−{0}, j = 1, 2, are compact sets and ν is given inH11. AssumptionsH7,H9 andH10(i) imply that E |Hn| → 0.
On the other hand, the fact that Tn = c

−1/2
n λ1,n(s, x)+op(1) follows using a second order Taylor’s expansion and assumptions

H8 and H12(ii).
We now prove (A.8). Let Zi = χ ′

(
σ(x)U∗i (as)

−1
)
U∗i (as)

−1 and write c−1/2n λ1,n(s, x) = An + Bn with

An = c−1/2n

n−1∑
i=1

wn,i(x)E(Zi) (σ (xi)− σ(x)) , Bn = c−1/2n

n−1∑
i=1

wn,i(x)(Zi − E(Zi)) (σ (xi)− σ(x)) .

Since, E(Zi) = E(Z1), from H12(i) we obtain easily that An → β1E(Z1). Besides, H10(i) and H12 imply that var [Bn] → 0
and so, Bn

p
−→ 0, concluding the proof. �

Proof of Theorem 4.2. Fix x ∈ (0, 1) and let Sx = S(Gx). Noting that the local M-estimator σ̂M ,n(x) satisfies
λn,b

(
σ̂M ,n(x), x

)
= 0, a Taylor’s expansion of order one yields 0 = λn,b(σ̂M ,n(x), x) = λn,b(Sx, x) +

(
σ̂M ,n(x)− Sx

)
λ′n,b(σ̂0,n, x), with σ̂0,n an intermediate value between Sx and σ̂M ,n(x) and λ′n,b(s, x) = ∂λn,b(s, x)/∂s = −s−1

∑n−1
i=1

wn,i(x)χ ′
(
Y ∗i (as)

−1
)
Y ∗i (as)

−1. Hence, c−1/2n
(
σ̂M ,n(x)− Sx

)
= −c−1/2n λn,b(Sx, x)/λ′n,b(σ̂0,n, x) and, in consequence, it is

enough to show that

c−1/2n λn,b(Sx, x)
D
−→ N (Sxv2β1/σ(x), v1) (A.11)

−λ′n,b(σ̂0,n, x)
p
−→ v2. (A.12)

Lemma A.2 implies that c−1/2n λn,b(Sx, x) = c−1/2n λ∗n,b(Sx, x) + c
−1/2
n λ1,n(Sx, x) + op(1). Note that c

−1/2
n λ1,n(Sx, x)

p
−→

β1E
[
χ ′
(
σ(x)U∗1 (aSx)

−1
)
U∗1 (aSx)

−1
]
= Sx v2β1/σ(x) and that

c−1/2n λ∗n,b(Sx, x) = V
1/2
n

n−1∑
i=1

an,iξi + bc−1/2n

(
n−1∑
i=1

wn,i(x)− 1

)
= B1,n + B2,n
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with an,i = V
−1/2
n c−1/2n wn,i(x), ξi = χ(σ(x)U∗i / (aSx)) − b and Vn = var

[∑n−1
i=1 c

−1/2
n wn,i(x)ξi

]
. Thus, using that H10(ii)

implies that B2,n → 0, to derive (A.11) it is enough to show that

Vn → v1 (A.13)
n−1∑
i=1

an,iξi
D
−→ N(0, 1). (A.14)

Using that c−1n
∑n−2
i=1 wn,i(x)wn,i+1(x)→ β , (A.13) follows from the fact that

Vn = var
[
χ

(
σ(x)U∗1
aSx

)]
+ 2cov

[
χ

(
σ(x)U∗1
aSx

)
, χ

(
σ(x)U∗2
aSx

)]
c−1n

n−2∑
i=1

wn,i(x)wn,i+1(x).

On the other hand, from Theorem 2.2 in Pelligrad and Utev (1997) we obtain easily (A.14) (see details in Boente et al.,
2009), while (A.12) can be derived using a Taylor’s expansion and similar arguments to those considered to prove (A.2) in
Theorem 4.1. �
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