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Introduction

Let k be a field and A an associative k-algebra with 1. An extension E/A of A is a differential
operator ring on A if there exist a Lie k-algebra g and a k-vector space embedding x — X, of g into E,
such that for all x, y € g and a € A, the following conditions hold:

a — ax = a*, where a — a* is a derivation,

y—YXx=I[x,ylg + f(x,y), where [—,—]g4 is the bracket of g and f:g x g — A is a k-bilinear
map,

(3) for a given basis (x;)ic; of g, the algebra E is a free left A-module with the standard monomials
in the x;'s as a basis.
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This general construction was introduced in [Ch] and [Mc-R]. Several particular cases of this type
of extensions have been considered previously in the literature. For instance:

- when g is a one-dimensional vector space and f is the trivial cocycle, E is the Ore extension
Alx, 8], where §(a) = a*,

- when A =k, we obtain the algebras studied by Sridharan in [S], which are the quasi-commutative
algebras E, whose associated graded algebra is a symmetric algebra,

- McConnell [Mc, §2] studies this type of extensions under the hypothesis that A is commutative
and (x,a) — a* is an action, and Borho et al. [B-G-R, Theorem 4.2] consider the case in which the
cocycle is trivial.

Blattner et al. [B-C-M] and Doi and Takeuchi [D-T] independently begun the study of the crossed
products A#¢H of a k-algebra A by a Hopf k-algebra H, and in [M] it was proved that the differential
operator rings on A are the crossed products of A by enveloping algebras of Lie algebras.

In [G-G1] the authors obtained complexes, simpler than the canonical ones, which compute the
Hochschild homology and cohomology of a differential operator ring E with coefficients in an E-
bimodule M. In this paper we continue this investigation by studying the Hochschild cohomology
ring of E and the cap product

Hp(E, M) x HHY(E) — Hp—q(E,M) (q<p),

in terms of the above mentioned complexes. Moreover we generalize the results of [G-G1] by con-
sidering the (co)homology of E relative to a subalgebra K of A which is stable under the action of g
(which we also call the Hochschild (co)homology of the K-algebra E). We also seize the opportunity
to fix some minor mistakes and to simplify some proofs in [G-G1].

The paper is organized as follows: In Section 1 we obtain a projective resolution (X,, d,) of the E-
bimodule E, relative to the family of all epimorphisms of E-bimodules which split as (E, K)-bimodule
maps. In Section 2 we determine and study comparison maps between (X,,d,) and the normalized
Hochschild resolution (E ®k E®k ® E, bl,) of E, relative to K. In Sections 3 and 4 we apply the above
results in order to obtain complexes (XX (M), d,) and (X} (M), d*), simpler than the canonical ones,
giving the Hochschild homology and cohomology of the K-algebra E with coefficients in an E-bi-
module M, respectively. The main results are Theorems 3.4 and 4.4, in which we obtain morphisms

X5 (E) ® X% (E) = X5(E) and XXM ® X% (E) - XKm),

inducing the cup and cap product, respectively. Finally in Section 5 we obtain further simplifications,
assuming that A is a symmetric algebra.

1. Preliminaries

Let k be a field. In this paper all the algebras are over k. Let A be an algebra and H a Hopf algebra.
We are going to use the Sweedler notation A(h) = )" h" ®h'® for the comultiplication A of H.

A weak action of H on A is a k-bilinear map (h,a) — a", from H x A to A, such that
(1) (ab)h — Z(h) ah(1)bh(2)'

(2) 1" =€),

(3) al =a,

for he H, a,b € A. By an action of H on A we mean a weak action such that

(al)h —d" forallh,IcH, acA.
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Let A be an algebra and let H be a Hopf algebra acting weakly on A. Given a k-linear map f : H ®y
H — A we let A#;H denote the algebra (which is not necessarily associative nor with multiplicative
unit) whose underlying vector space is A ®, H and whose multiplication is given by

(Cl Rk h)(b Rk l) — Z abh(l)f(h(z), l(l)) k h(3)l(2),
(IO)

for all a,b € A, h,I € H. The element a®h of A#¢H will usually be written a#h. The algebra A#H is
called a crossed product if it is associative with 1#1 as identity element. In [B-C-M] it was proved that
this happens if and only if the map f and the weak action of H on A satisfy the following conditions:

(1) (Normality of f) for all h € H we have f(h,1)= f(1,h) =€(h)14,
(2) (Cocycle condition) for all h,I,m € H we have

) £, mD) £ (1 (@@ = S F (D, 1D) F(hP1, m),
(hy () (m) WL

(3) (Twisted module condition) for all h,l € H and a € A we have

Z (al(l))h“)f(h(Z)’ @) = Z F(nO, l(”)ah(z”(z).

WIO) (D

We assume from now on that H is the enveloping algebra U(g) of a Lie algebra g. In this case,
item (1) of the definition of weak action implies that

(ab)* = a*b + ab®

for each x € g and a, b € A. So, a weak action determines a k-linear map

d:g9— Deri(A)

by §(x)(a) = a*. Moreover if (h,a) — a" is an action, then § is a homomorphism of Lie algebras.

Conversely, given a k-linear map §:g — Dery(A), there exists a (generally non-unique) weak action
of U(g) on A such that §(x)(a) = a*. When § is a homomorphism of Lie algebras, there is a unique
action of U(g) on A such that §(x)(a) = a*. For a proof of the previous results we refer to [B-C-M]. It
is immediate to prove that each normal cocycle

f:U(@ U@ — A

is convolution invertible. For a proof see [G-G1, Remark 1.1].

Next we recall some results and notations from [G-G1] that we will need later. Let K be a subal-
gebra of A which is stable under the weak action of g (that is A*¥ € K for all A € K and x € g) and let
E = A#7U(g) be a crossed product. We are going to modify the sign of some boundary maps in order
to obtain simpler expressions for the comparison maps.

To begin, we fix some notations:

(1) The unadorned tensor product ® means the tensor product ® over K.
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(2) For B=A or B=E and each r e N, we write B = B/K,

B'=B®---®B (rtimes) and B'=B®---®B (r times).

Moreover, for b € B we also let b denote the class of b in B.
(3) For each Lie algebra g and s € N, we write g™ =g A --- A g (s times).
(4) Throughout this paper we will write aq, for a1 ® --- ® a, € A" and Xy for x; A--- AXs € g"%.
(5) Foraj;; and 0 <i < j<r, we write a;; =0; ® --- ®a;.
(6) For X15 and 1 <i<'s, we Write Xj;s =X1 A--- AXj A -+ A Xs.
(7) For x15s and 1 <i < j <s, we Write Xqjjs =X1 A== AXj A= AXjA - AXs.

Let A(g) be the exterior algebra generated by the k-vector space g and let A(g)#U(g) be the

smash product obtained by using the action of U(g) over A(g), determined by XX = X, x]g. We
define Y, as the algebra

E® (A@#U(9) = (A#,U(9) ® (A(@)#U(9)),

endowed with the gradation, obtained giving degree O to the elements

@) @ (1#1),  yy:=(1#0) @ (1#1) and py:= (1#1) @ (1#x),

and degree 1 to the elements ey := (1#1) ® (x#1). If we identify each a € A with (a#1) ® (1#1), then
Y. is the extension of A, generated by the elements yy and py of degree 0, and ey, of the degree 1,
subject to the relations

Vixex = Yx+ V. YxYx=Ya¥x + Yy, + F V. y) = F(v.Y),

Pax+x = APx + Px/, PxZy = YxPx

e)»X-‘r-X’ :)\.6x+eX/, ex’)’x:J’XexU
X
yxa=a" + ayy, Px' Px = PxPx’ +p[X/aX]g’
Pxa = apx, ex' Px = Px€x + €[x' x4
— 2 =
exa = aey, ey =0,

where A €k, x' and x in g and [—,—]g denotes the Lie bracket in g. Note that E is a subalgebra of Y,
via the embedding that takes a € A to a and 1#x to y, for all x € g. This gives rise to a structure of
left E-module on Y,. For all x € g, let zy = yx + px. Since

Zix+x =AZx + 2y,
Zxa = a* + azy,
ZyZyx = ZxZy + Z|x x|y + f(x/, X) - f(X, X/),

there is also an algebra map from E to Y, that takes a € A to a and 1#x to z, for all x € g. This map
is also an embedding, since it is a section, with a left inverse given by the algebra map from Y, to E,
that takes a to a, yx to 1#x, px to 0 and ey to O.
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Remark 1.1. The complex Y, is slightly different from the similar complex introduced in [G-G1]. How-
ever we will obtain in Theorem 1.8 the same projective resolution of E as the one obtained in [G-G1].
We have two reasons to justify the present definition of Y,. On one hand, it allows us to give a very
simple proof of the following theorem (corresponding to [G-G1, Theorem 3.1.1]) and, on the other
hand, it allows us to obtain a better contracting homotopy of the resolution that appears in Theo-
rem 1.7. For instance the new contracting homotopy will be left E-linear.

Remark 1.2. In a first version of this paper we fixed in the following theorem a mistake at the be-
ginning of Section 3.1 of [G-G1]. The error was that the weak action of g on A ® A(g) was poorly
defined. Using the notation of that paper it was

@ee)t=ad"%e+a®e,

but should have been

(a ® e)u — Zaﬂ'(u(l)) Q eﬂ(u(Z)).
()

In the current version this weak action does not appear.

Let (gi)ie; be a basis of g with indexes running on an ordered set I. For each i € I let us write
Vi =Yg, Zi '=2Zg, €j :=€g and p; := pg,.

Theorem 1.3. Each Y is a free left E-module with basis

p.mle(.sl---pmleél [1>20,i1<---<ij€el, m;j >0, §;€{0,1}
v Tiq i mj—|—8j>0, o1+---+6=s '

Proof. It is sufficient to see that

Smigst | S 1>20,i1<---<ijel, mj >0, 6; €{0,1}
Piy €y Pi & mj+8;>0,8 ++§=s ’

where p; := 1#x; and e; := x;#1, is a basis of A(g)#U(g) as a k-vector space, which follows easily
from the fact that

Xjy Ao AXje (J1<---<J1€D)
is a basis of g”* and, by the Poincaré-Birkhoff-Witt theorem,

1mq -XT.nI

i oox (1200 <o <ijel, mj>0)

is a basis of U(g). O

Remark 1.4. A similar, but more involved argument, shows that each Y, is a free right E-module with
the same basis. We will not use this result.

Remark 1.5. The following result improves [G-G1, Theorem 3.1.3] in the sense that in the current
version we obtain that the complex introduced there is contractible as a complex of (A, E)-bimodules
and not only as a complex of k-modules.
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Theorem 1.6. Let ji : Yo — E be the algebra map defined by fi(a) = afora € A and i(y;) = fi(z;) = 1#g; for
i € I. There is a unique derivation 9, : Y, — Y,_1 such that d(e;) = p; for i € I. Moreover, the chain complex
of E-bimodules

I 01 d2 d3 04 s J6
E Yo Y1 Y, Y3 Y4 Ys

is contractible as a complex of (E, A)-bimodules. A chain contracting homotopy

oy ' E— Yo, Ys— Yeiq1 (s=0)

s+1

is given by

o 1) =1,

8 1 1 .
o~ ( my 31 m (51) (_1)510:?1 111 : plrlnl]l lll 11 plTl €i lfSl =
pl] i1 '011 [l .
0 ifé=1,

where we assume thatii <--- <1,81+---+ & =sand m; + §; > 0.

Proof. A direct computation shows that

froo ' (=) =1.
o lofi(l)=0"11)=1and doo~1(1) =3(0) =

my_ . . .
If x= x/,olml,where m; > 0 and x’:,ol.r:” ---pi[j11 with iy < --- <}, then

o lofix)=0""'(0)=0 and doo ') =0d(Xp]" e;) =x.

s 3 m, $
Let x = x/,olm’ ’wherem1-|—51>0ar1dx—,0,”111 Ly ,0,,111 ,,11]

8=s>0.If =0, then

withi; <---<ijand 81 +---+

o tod(x) =01 (B(x)p") = (1) a(X)p" ey

doo ') =((—1)Xp]" ey) = (—1)°(x) p]" i, +x,

l
and if §; =1, then
_ _ 1
o lod(x)=0 1(8(x’),057’e,-, + (=1 1x/,031’Jr ) =X,
doo 1 (x) =3(0) =
The result follows immediately. O

For each s > 0 we consider E ® g’ as a right K-module via (¢ ® X)A = cA ® X. For r,s > 0, let
Xrs = (EQk ¢"%) ® A" ® E. The groups X;s are E-bimodules in an obvious way. Let us consider the
diagram of E-bimodules and E-bimodule maps
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03
0 0
12%] d12 dzz
Ys X02 Xig =— -
02
0 0
M1 d11 d21
Y1 Xo1 X1 <=— -
0
0 0
Mo le dZO
Yo Xoo Xi0<=— "

where [ty : Xox — Y4 and dg* : Xsx = Xs—1.4, are defined by:

M1 R X1s ® 1) =ey, - - -ex,,
d°(1 @ x1s ®a ®@1) = (—1)%a; Q X1s @ ay @ 1

r—1

+Y (DT @ xis®ario1 ® ity @iy, ® 1
i=1

+ (_1)r+s Rk Xis ® a1 r—1Qar.

Each horizontal complex in this diagram is contractible as a complex of (E, K)-bimodules. A chain
contracting homotopy is the family

ops:Ys = Xos,  OPqsiXes— Xpp1s (r>0),
of (E, K)-bimodule maps, defined by

0
0" (ex, ©rCxeZxg g ceZy,) = Zaj ® X1s ® 1#wj,
J

where Zj aj#w;j = (1#xs11) - - - (1#xy), and
0 _ r+s+1
o (1 ®kXis@air @ arp1#w) =(—1) Rk X1s a1 r+1 @ 1#w  (r=0).
(In order to prove that the ¢®’s are right K-linear it is necessary to use that K is stable under the

action of g.) Moreover, each X, is a projective E-bimodule relative to the family of all epimorphisms
of E-bimodules which split as (E, K)-bimodule maps. We define E-bimodule maps

dys: Xrs > Xrqi—15-1 (r>0and 1<I<s)

recursively by:

—0%090u(y) ifl=1andr =0,
1 —o0%0dl od(y) ifl=1andr >0,
¥ =1 -y 6%d-iodi(y) ifl>1andr=0,

— Yo ododi(y) ifl>1andr>0,

where y=1®; Xis ®a;r ® 1.
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Theorem 1.7. The complex

i dq dy ds ds ds de
E Xo X1 X2 X3 X4 Xs (1)

where

N
ZA@N =1, Xp= P Xs and do= ) > d.

r+s=n r+s=n |=0
r+I1>0

is a projective resolution of the E-bimodule E, relative to the family of all epimorphisms of E-bimodules which
split as (E, K)-bimodule maps. Moreover an explicit contracting homotopy

Go:E— Xo,  Gnt1:Xn— Xnp1 (10)

of (1), as a complex of (E, K)-bimodules, is given by

n+1 n n-—r
go=000! and & ——Zorl ol —I—ZZO’I
0=0 00, n+1 = l.n—14+1°9%n41© Mn r+l+1,n—1—r
1=0 r=0 =0

where

I . [ .
Ul,s—l . YS — Xl,sfl and 0r+l+1,5—l . er — Xr+l+],$7l (O < l < S, r > 0)

are recursively defined by
-1
ol= —Zo*oodl_] oo,
j=0

Proof. It follows from [G-G2, Corollary A.2]. O

The boundary maps of the projective resolution of E that we just found are defined recursively.
Next we give closed formulas for them.

Theorem 1.8. For x;, Xj € g, we put f,-j = f(xi,xj) — f(xj, x;). We have:

N
' @xis®@ar @)=Y (=) #x @ Xyps ®ay, @1
i=1

N
+ ) (=D @k Xy ® a1y @ 14
i=1

s

+ Y D Xy a1 ®a) @api1,®1
1&71%r

+ Z (_1)i+j®k[xi»xj]g/\xlfjs®alr®1,
1<i<j<s
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CA@xis@ar@= Y (DM g x5 @a® fij@apr®1
1<i<j<s
0<h<r
andd' =0 foralll > 3.

Proof. The proof of [G-G1, Theorem 3.3] works in our more general context. O

2. The comparison maps
In this section we introduce and study comparison maps between (X, d,) and the canonical nor-

malized Hochschild resolution (E ® E* ® E, bl,) of the K-algebra E. It is well known that there are
morphisms of E-bimodule complexes

0s: (Xs,ds) > (EQE*QE,b,) and 9.:(EQE*QE,b,)— (X« dy),

such that 8y = 99 = idggr and that these morphisms are inverse of each other up to homotopy. They
can be recursively defined by 6y = 9 = idggr and

01 QX5 ®@a1r® 1) =(=D"0od(1 & X1s®ar®1) ®1

and

P1®cin®1) =000 (1®cn®1),

forn>1, where r+s=n and ¢;, =¢1 @ --- ® ¢, € E". The following result was established without
proof in [G-G1].

Proposition 2.1. We have:

01 Xxis®ar®l) = Z Sg(T) ® (1#xr(1) @ -+ @ 1#xy(5)) xa1r ® 1,

1eS;
where &; is the symmetric group in s elements and * denotes the shuffle product, which is defined by
B1® @ Bs) * (Bsp1 ® - ® ) = > 58(0)Bs(1) ® & o (n)-

o €{(s,n—s)—shuffles}

Proof. We proceed by induction on n =r +s. The case n =0 is obvious. Suppose that r +s=n and
the result is valid for 6,_1. By the recursive definition of #, Theorem 1.8, and the inductive hypothesis
we obtain that:

01kXis®a;r®1) =(—-1D)"00d(1kx1sQa;, 1) ®1
=(—1)"0o(d’+d' +d*)(1 & X5 ®ar ® 1) @1
=0(1RX1sQa1r-1Qar) ®1
S
+ 9(2(—1)i+n Qk X175 ® A1r @ 1#Xi) 1.
i=1

The desired result follows now using again the inductive hypothesis. O
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Lemma 2.2. Let (g;)ic] be the basis of g considered in Theorem 1.3. As in that theorem, let us write e; = ey, for
each i € I. The following facts hold:

an+1 oop=0foralln>
o ((E I RA"® K#U(g)) =0forall0<I<s.
o (e,l ---ej,)=0forall0 <I<n.
o ((E®kg“)®Ar®A)_0forallO<l<s
Yo (A @ gA“ ® A) =0.
Assume thatiq < --- < iy. Then,

— —

(1
(2
(3
(4
(5) o
(6
n ‘ s )
o o1 ®kgiy A Agiy @ 1#8i,,,) = { et T l.nH'
0 otherwise.

Proof. (1) An inductive argument shows that there are maps (which are left E-linear and right K-
linear)

l.
Vrs - Xra1,s = Xrgls—I»

— 50 | o0 0540 — ‘o impli Vool —
such that Gr+l+1 51 =04 111.5_1° Vrs ©Ops. Because of 0~ oo™ =0, this implies that o oo' =0, for all
I,I' > 0. Thus,
n+1
= = _ 11 0 -1 _
Ony100n = 0 o0 ‘ofhoo o0 ou=0,
=0

where the last equality holds because ;too®=id and 6 loo ™! =0.

(2) Since 0! =0%0y! 00 for I > 0, we can assume that I = 0. In this case the assertion follows
immediately from the definition of o'©.

(3) By the definition of 0° and Theorem 1.8,

aoodloao(ei1 ---e,'n):O'Oodl(1 ki AN N8, ®1)=0

and

0% d?000Ge;, ---e;,)=00d*(1 @k g, A---A g, ®1)=0
Item (3) follows now easily by induction on I, since, by the recursive definition of ! and Theorem 1.8,

1

ocl=—-0%d'o0?”

and o'=-0%d'oo!™ ' —6%d?00!2 forl >2

(4) It is similar to the proof of item (3).
(5) Since eja=ae; foralliel and a € A,

o lou(a®kgiy A Agi,®d)=0""(ae;, ---e,,a) =0""(ade;, ---e;,) =0,

n

where the last equality follows from the definition of o ~!
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(6) We have

o o1 @k giy Ao A giy ® 1#gi,..) =0 !(e;, S €inZin, )
:()'741 (eil oo .e,'n(y,-nH +’Oiﬂ+l))

~1 1
=0 (Yip €ip---€ip) + 0 (8i; - €iPipq),

where z;,.,, yi,,, and pj,, are as in Theorem 1.3. So, in order to finish the proof it suffices to note
that o ~1(y;,.,ei, ---ei,) =0 and

" s .
[Vl ifin <inen,
o} (ell"'elnplnﬂ)_ 0 otherwise

which follows immediately from
€i; Pin1 = Pinss €i; T+ e[xij,x,.nﬂ]g for all j such thati; > ip41,

and the definition of 0. O
Theorem 2.3. Let (g;)ic; be the basis of g considered in Theorem 1.3. Assume that €1, =¢1 @ --- @ ¢y € E™ is

a simple tensor withc; e AU{1#g;: iel}forall je{1,...,n}. Ifthereexist 0 <s<nandiy <--- <iginl,
such that cj = 1#g;; for 1 < j<sandcj € A fors < j<n, then

P1Rcn®1)=1Q g, AN &g, @Cs+1.n R 1.
Otherwise, (1 ® ¢1, ® 1) =0.

Proof. For all n > 0 we define P, by c1, € P, if there are i1 < --- <i; in I such that ¢; = l#gij for
j<sand cje A for j>s. We now proceed by induction on n. The case n =0 is immediate. Assume
that the result is valid for 9,. By item (1) of Lemma 2.2 and the recursive definition of ,, we have

Got(ch, ®1)=F 0T 0B ob'(cp, ®1) =0,

and so

d1®cn1®1)=(=1)""17o00(1®c1 1)

Assume that c; € AU {1#g;: iel} for all je{1,...,n41}. In order to finish the proof it suffices to
show that:

- If ¢1,n4+1 ¢ Pny1, then 0 09 (1 ® €1,n41) =0.
- If cipp1 = 1#gi, ® - @ 1#gj; ® As41,n+1 € Ppy1, then

For(1®cint) =" ®pgi, A A g, @asr1n1 ® 1.

If ¢1p ¢ Py, then 9(1 ® €1 n+1) = 0 by the inductive hypothesis. It remains to consider the case
C1n € P,,. We divide this into three subcases.
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(1) If c1p = 1#gi, @ -+~ ® 1#gi, @ as11,n and Cp41 =ap41 € A, then

000 (1®Cin1) =01k &iy A+ A iy @ As1,n4+1)
=021 ®k iy A+ A &i, @ As41.04+1)
= (D" @ g, A A g, ®asr1nr1 D1,
by the inductive hypothesis, items (4) and (5) of Lemma 2.2, and the definitions of & and o°.
(2) If c1p = 1#gj, @ - @ 1#gj, ® as11,n With s <n and ¢y = 1#g;,,,, then
00(1®C1nt1) =0 (1 Qk &iy A+ A 8iy Qas1,n @ 1#gi,,,) =0,
by the inductive hypothesis, the definition of ¢ and item (2) of Lemma 2.2.

(3) If c1p = 1#g;, ® --- ® 1#g;, and ¢y 1 = 1#g;,,,, then

000(1®¢C1nt1) =0(1 Rk 8iy A+ A 8i, @ 1#gi, )
=00 op(1®kgi, A~ Agi, ® 1#gi,.1)
_ { (D" @k giy A+ A iy ®1 if €1 g1 € Py,
0 otherwise,

by the inductive hypothesis, items (2), (3) and (6) of Lemma 2.2, and the definitions of & and 0°. O
3. The Hochschild cohomology

Let E = A#;U(g) and let M be an E-bimodule. In this section we obtain a cochain complex

(Yﬁ(M),a*), simpler than the canonical one, giving the Hochschild cohomology of the K-algebra E
with coefficients in M. When K =k our result reduces to the one obtained in [G-G1, Section 5]. Then,
we obtain an expression that gives the cup product of the Hochschild cohomology of E in terms of
(Y}(E), d*). As usual, given c € E and m € M, we let [m, c] denote the commutator mc — cm.

3.1. The complex (X% (M), d*)
For r,s >0, let
X (M) =Homge (A" ® g™, M),

where A" ®y g”* is considered as a K-bimodule via the canonical actions on A". We define the mor-
phism

drs: XS My > X (M) (with 0 <1< min(2,s) and r +1 > 0)
by:

aO(‘P)(alr ®k X15) = a1 (A2r Qk X1s)
r—1 '
+ ) (—D'p@1,i-1 ® 4iiy1 ® ai1,r Ok Xis)
i=1

+ (_1)r§0(al,r—l Qk X15)ar,
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N
di ()@ @k X15) = Y _ (1) [p(@1r @k Xyz5), TH#xi]
i=1

+ Z (D™ (a1h1 ® ) @ any1.r B Xiis)

1<h<r

+ ) DT (ary ® [xi, Xj1g A Xaijs)
1<i<j<s

and

h@)@r@cxi) = Y. (DM@ ® fij ® anirr @ Xiijo),

1<i<j<s
0<hgr

where fij = f(xi,x;) — f(xj,X;). Recall that X,s = (E ® ¢"¥) ® A" ® E. Applying the functor

Homge (—, M) to the complex (X,,d,) of Theorem 1.7, and using Theorem 1.8 and the identifications
vy X (M) — Homge (X;s, M), given by

Y (@) (A ®x1s®a;r ®1) = (=1)"p(@1r ® X15),
we obtain the complex

71 72 3 74 75

X% (M) —>x1 (1\/1)—>x2 (M) —>x3(1\/1)—>x4(1v1)

where
min(s,2)
XkM)y= € XgM) and d"= ) Z drs.
r+s=n r+s=n [=0
r+I>0

Note that if f(g ®y g) C K, then the cochain complex (X (M), d*) is the total complex of the double
complex (X** (M), d**, d**).

Theorem 3.1. The Hochschild cohomology Hy (E, M), of the K-algebra E with coefficients in M, is the coho-
mology of(X (M), d*).

Proof. It is an immediate consequence of the above discussion. O

3.2. The comparison maps

The maps 6, and ¥, introduced in Section 2, induce quasi-isomorphisms
0* : (Homge (E*, M), b*) — (X5 (M), d*)
and
7% (X5 (M), d*) — (Homge (E*, M), b*)

which are inverse of each other up to homotopy.
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Proposition 3.2. We have

AW @1 @k X1) = Y (=) sg(Y (1#xer) ® -~ ® THxe(s) * arr).

185
Proof. This follows immediately from Proposition 2.1. O

In the sequel we consider that Y}S C Y?f ’ in the canonical way.

Theorem 3.3. Let (g;)ic; be the basis of g considered in Theorem 1.3 and let ¢ € )_(75 Assume that €1 r4s =
€1® -+ @ Crys € E' is a simple tensor with cj € AU {1#gi: i eI} forall je{1,...,r+s}.Ifcj = 1#gi,
withiy <---<iginlfor1<j<sandcje Afors < j<r-+s,then

(@) (C1,r46) = (=D Q(Cs41,r15 Bk &iy A+ A &)
Otherwise, ¥ (¢) (€1 r4s5) = 0.
Proof. This follows immediately from Theorem 2.3. O
As usual, in the following subsection we will write HH} (E) instead of H (E, E).
3.3. The cup product
Recall that the cup product of HH} (E) is given in terms of (Homge (E*, E), b*), by
(¥ — ¥) €1 min) = ¥ (€m) V' €ns+1min),

where 1 € Homge (E™, E) and v’/ € Homge (E™, E). In this subsection we compute the cup product of
HH} (E) in terms of the small complex (X} (E), d*). Given

@ e XI(E) and ¢ € XL (E)
we define g e ¢’ € X;;rr/’HS,(E) by

(pe@)@pr @xis) = > sglj19)9@ir X} )¢ @1 Rk Xy,

ISjr<-<js<s”

where

sg(ji1s) = (= 1)+ Lum1Gu—t),
— r//:r+r/ and 5/,254—5/,
- 1<l <--- <ly <s” denote the set defined by

{j],...,js}U{ll,...,lsf}Z{1,...,5”},

= Xji, =Xj; Ao AXjoand Xp , =X A AKX

1

Theorem 3.4. The cup product of HH}, (E) is induced by the operation e in the complex (Y; (E), d*).
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Proof. Let ¢ € X'¥(E) and ¢’ € Y;és/(E). Let r” and s” be natural numbers satisfying r”’ +s" =r+1" +
s+ s’ and let a;,» Qi X157 € Xr’f,s//. Let (gj)ic; be the basis of g considered in Theorem 1.3. Clearly we
can assume that there exist i; <--- <ig in [ such that x; =g;; forall 1< j < s”. By Proposition 3.2,

6(9(p) — 7(¢')) @1 kX157 = (9(9) — 9 (¢'))(T)

where

T= ) (-1 sg(m)((1#2:01) ® -+ ® (I#xr () xAgpr.

‘L’GGS//

In order to finish the proof it suffices to note that by Theorem 3.3, this is zero if r” #r + 1’ and this
is (pe)@y Qxqs) if r"'=r+1. O

4. The Hochschild homology

Let E = A#7U(g) and let M be an E-bimodule. In this section we obtain a chain complex

(Xf (M), d,), simpler than the canonical one, giving the Hochschild homology of the K-algebra E
with coefficients in M. When K =k our result reduces to the one obtained in [G-G1, Section 4].
Then, we obtain an expression that gives the cap product of Hf(E, M) in terms of (X% (E),d*) and

(Xf(E, M), d,). As in the previous section [m,c] denotes the commutator mc — cm of m € M and
ceE.

4.1. The complex (XX (M), d,)

Forr,s >0, let

M® AT
[M® A", K]

NS

XK M) = ®g",

where [M ® Zr,_K ] is the k-vector space generated by the commutators [m ® air, A], with A € K and
mEa;reM®A". We let m® ajr denote the class of m®ay in M ® A"/[M ® A", K]. We define the
morphism

ds: XK M) — XK, (M) (with0 <I<min(2,s)andr+1>0)
by:
d® (M ® arr @ X15) = Ma1 ® azr Rk Xi1s
r—1

+ Z(—l)im ®a1,i—1 @ aidit1 @ Ajt2,r Ok X1s + (=1)'arm @ a1 r—1 Bk Xis,
i=1

N
d'(Mm®arr x X1s) = Z(—1)'+r[(1#xi), m| ® a1, Qx Xijs
i=1

S
+ > (D"'ma -1 ®a; ®api1, Sk Xijs

i=1
1<h<r

i
+ Y DM m@ar @ X xjlg AXipgs
1<i<j<s
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and

Cmeay xis)= Y (D' mea; fii ® a1, ®r Xaijs,

1<i<j<s
0<h<r

where fl-j = f(xi, xj) — f(xj, x;). Recall that X;s = (E ® g"*) ® AT ®E and let E¢ be enveloping algebra

of E. By tensoring on the left Xs over E® with M, and using Theorem 1.8 and the identifications
Vis : XK (M) — M ®ge X;s, given by

y(m@ay @ Xis) = (—1)"m Qe (1 @k X1s @a ® 1),

we obtain the complex

vK di vK dz vK ds vK dg vK ds
XO(M) -~ X1 M) <— XZ(M) -~ X3(M) - X4(M) -~

where
min(s,2)
XyM)y= P XKM) and dp= > > di.
r4+s=n r+s=n =0
r+I>0

Note that if f(g ®, g) C K, then the chain complex ()_(f(M),c_i*) is the total complex of the double
complex (XX (M),d°,,dl,).

Theorem 4.1. The Hochschild homology HX (E, M), of the K -algebra E with coefficients in M, is the homology
of (XX (M), d.).

Proof. It is an immediate consequence of the above discussion. O

4.2. The comparison maps

The maps 6, and ¥, introduced in Section 2, induce quasi-isomorphisms

_ - M® E*

Oy : XK M ,d —> (—_, >
and

_ M Q E* —K _

V| ————,bs ) = (X; (M), d

which are inverse one of each other up to homotopy.

Proposition 4.2. We have

6(M @ arr R Xis) = Z (=" sg(r)m @ (1#x7(1) @ - - - @ 1#x1(5)) * A1y

IAGH

Proof. This follows immediately from Proposition 2.1. O
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Theorem 4.3. Let (g;)ic; be the basis of g considered in Theorem 1.3. Assume that ¢jp =1 ® - ® ¢y € EM is
a simple tensor withcj e AU{1#g;: iel} forall je{1,...,n}.Ifthereexist0 <s<nandiy <--- <isinl,
such that cj =14#g;; for 1 < j<sandcj € A fors < j<n, then

FMCin) = (=1’ " IM@Csy10 @k Giy A+ A 8y
Otherwise, 9 (m ® ¢1) = 0.
Proof. This follows immediately from Theorem 2.3. O

4.3. The cap product

Recall that the cap product
Hy (E. M) x HH} (E) > Hy_(E,M) (q<p)

is defined in terms of ([Mﬂil@%f;(] ,b,) and (Homge (E*, E), b*), by

m ®c1p ~ Ip :mw(C]q) ®cq—|—],p’

where 1/ € Homge (EY, E). In this subsection we compute the cap product in terms of the small com-
plexes (XX (M), d,) and (X% (E),d*). Given

m®ar, QXis € XK(M) and ¢ e _fés/(E) withr >r ands > ¢/,

we define (m®@ai, Qk Xi5) e @' € XX (M) by

r—r’,

, .
M@ay X e @' = > sg(jis)m@' @y X)) @y 1, QX
1<t <<y <s

where

= sg(jrg) = (— 1)+ i G,
- 1<l <--- <ls_g <s denote the set defined by

{jl’""js/}U{l]’""lS—S/}:{l,...,S}’
- Xjo = Xj /\-../\st/ and xll,s—s’ =X, A AKX

s—s' "

Theorem 4.4. In terms of the complexes (Yf(M), d,) and (Y}‘((E), d*), the cap product

HY (E, M) x HH} (E) > HY_,(E, M)

is induced by e.
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Proof. Let m ® aj, ® X15 € XK (M) and ¢’ € Y;és/(E). Let (gi)ic; be the basis of g considered in Theo-
rem 1.3. Clearly we can assume that there exist i1 <--- <is in I such that x; = g;; for all 1 <j<s.
By Proposition 4.2,

(O @ay @ xis) ~ 7 (¢')) = (T ~B(¢))),
where

T= ) (—1)"sg(0)((1#x51) ® - ® (1#X5(5))) * a1y

0eS;
Hence, by Theorem 3.3, if ' > r or s’ > s, then
T an @uxis) ~ (@) =0,
and, if ' <r and s’ <s, then

5(5(777 ® air ® Xi5) ™ E((O/)) = Z E(mgo/(aw ®k leS’) ® Tl/z,sfs/)’

1 <]1 <--~<j5/ SS
where

T = >, D™ Esgm((#n,,) @ - @ (1#x, ) *ari1r.
€6

s—s’

In order to finish the proof it suffices to apply Theorem 4.3. O

5. The (co)homology of S(V)# ;U (g)

In this section we obtain complexes (Z.(M),8,) and (Z*(M), §*), simpler than (X% (M), d*) and
(Yff (M), d,) respectively, giving the Hochschild homology of the K-algebra E := A# fU(g) with coef-
ficients in an E-bimodule M, when

- K=k and A is a symmetric algebra S(V),
- v¥ekeV forallveV and x € g,
- f(x1,x%) ek V for all x1,x; €g.

Then, we obtain an expression that gives the cup product of HHy (E) in terms of (Z*(E), 8*), and we

obtain an expression that gives the cap product of HX(E, M) in terms of (Z,(M), 8,) and (Z*(E), §*).
Forr,s>0,let Z,s =E® g™ ® V" ® E. The groups Z,s are E-bimodules in an obvious way. Let

81 Zrs— Zryio1501 (0<I<min(2,s)andr+1>0)
be the E-bimodule morphisms defined by
r .
A @x1s@vir @1 =) (=D (Vi ®@Xis®Vyjr ® 1 — 1@ X15 ® Vyjr ® Vi),
i=1

s
8! 1®xsQvir®1)= Z(_l)i+1#xi X1 QVir ®1
i=1

S
+ ) (=D @ Xq55 @ Vi, ® 1
i=1
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N
+ D D' @K ®Vipo1 AV AVpyr @1

i=1
1<h<r

+ Y DM QX xjlg AXys @V @ 1

1<i<j<s
and
PAx; Qv @D = Y (DT Rx;;e fijAvi®l,
1<i<j<s
where

- Vy=VpA---ANV|
)_(,' 3 Xi . Xi Xj Xi
- v) is the V-component of v}’ (that is v}’ € V and v}’ — v}’ €k),

- fij = fv(Xi,xj) — fv(xj,x;) in which fy(xi,x;) and fv(xj,x;) are the V-components of f(x;,x;)
and f(xj, x;), respectively.

Theorem 5.1. The complex

I 81 8 83 84 Js 6
E Zo Z1 Z> Z3 Z4 Zs R
where
min(s,2)
AN =1, Zi=@ Zs and 8= > > 4.
r+s=n r+s=n |=0
r+I>0

is a projective resolution of the E-bimodule E. Moreover, the family of maps

Iy:Z,— X,

given by

FrA@xis@vir@)= ) sg0)@Xis®@Vem ®  ®Ver @1,

oeS;

defines a morphism of E-bimodule complexes from (Z,, §4) to (X, d,).

Proof. It is clear that each Z, is a projective E-bimodule and a direct computation shows that I is
a morphism of complexes. Let

G'cGlccicGic... and FOCF!cCFicFlc...

be the filtrations of (Z,,§,) and (X, d,), defined by

GL: @ Zrs and F,"l: @ Xrs,

r+s=n r+s=n
s<i s<i
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respectively. In order to see that Iy is a quasi-isomorphism it is sufficient to show that it induces a
quasi-isomorphism between the graded complexes associated with the filtrations introduced above.
In other words, the maps

F*S . (Z*Ss 825) — (X*Sa dgg) (S 2 0)7

defined by

ra®x;sQvrel) = Z SE(O)RX1s Vo) Q- Vo) ® 1,

UGGr

are quasi-isomorphisms, which follows easily from Proposition 2.1. O

5.1. Hochschild cohomology

Let M be an E-bimodule. For r, s > 0, let

Z" (M) = Homy (V" ® g"*, M).

We define the morphism
§1S: ZM sl My — Z™ (M) (with 0 <1< min(2,s) and r +1> 0)

by:

So(@)(Vir ®X15) = » (1) [vi, (Vg3 ® X15)].
i=1

51@) (Vi @ x15) = Y (=D [pW1r ® X4j5), 1Hxi]
i=1

+ Z (—1)i+r§0("1,h—1 A V’,f A Vi1 r @ Xyjs)

i=1
1<h<r

+ Z (=D (vir ® [xi, Xj1g A X1755)
1<i<j<s

and

82(0) (Vir @ Xy5) = Z (_1)i+j(p(}ij/\vlr ® X7 js)-

1<i<j<s

Applying the functor Homge (—, M) to the complex (Z, éx), and using Theorem 5.1 and the identifi-
cations £ : Z"(M) — Homge (Zs, M), given by

E@ARX1s@Vir®1) = (D" (Vi ®Xis),

we obtain the complex
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51 2 <3 <4 SS

where
min(s,2)
M= z¥m) and = > > 5
r4s=n r+s=n |=0

r+I>0

Note that if f(g ® g) €k, then the cochain complex (Z*(M), §*) is the total complex of the double
complex (Z**(M), 5", 67%).

Theorem 5.2. The Hochschild cohomology H*(E, M), of E with coefficients in M, is the cohomology of
(Z*(M), 5%).

The map Iy :(Zy, 8¢) — (X4, d,) induces a quasi-isomorphism
r'*: (XM, dy) — (Z*(M), §%).
Proposition 5.3. We have

T (@)(Vir ® X15) = Z SgO)P(Vo1) ® -+ ® Vo (r) @ Xis).

GEGr
Proof. This follows immediately from Theorem 5.1. O

5.2. The cup product

In this subsection we compute the cup product of HH*(E) in terms of the complex (Z*(E), §%).
Given ¢ € Z"*(E) and ¢’ € Z"* (E), we define ¢ x ¢’ € Z'"-STS (E) by

(p*d) Vi @xig) = Y sglitr. j19)$ Vi, ®Xj, )PV, ®X,,),

1<ip<<ir <1’
1<j1 << js<s”

where

sg(itr, j15) = (— 1) Zumr =+ Xam Gu=w),
-r"=r+r ands" =s+7,
- 1< hy <--- <hp <r” denote the set defined by

{i],...,ir}U{h1,...,hr/}={1,...,1‘”},

- 1<l <--- <lyg <s” denote the set defined by

{j1,...,jS}U{h,...,ls/}:{1,...,5//},

= Vi, =Viy A= AVjand Vp , = Vp A--- AVy,,
- Xji, =Xj; Ao AXjgand Xp , =X A AX.
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Theorem 5.4. The cup product of HH* (E) is induced by the operation  in the complex (Z*(E), §*).

Proof. By Theorem 3.4 it suffices to prove that

F(peg)=T(p)*T(¢)
for all ¢ € X;*(E) and ¢’ € Y,C/SI(E). Let ¢ = I'(¢) and ¢’ = I"'(¢’). On one hand
(p*¢) Vi @x15) = Y

1<iy <o <ip <"
1< << js<S”

Sg(ilr, le)(b(Vhr b2 xj13)¢/(vh1r/ b2 xlls/)

. . /
= > sl J15) 8T B Wiy, ® X))@ (W, ®Xiy,),
1<ip<<ip <1’
1< 1 < <js<s”
1€6r,veG,

where

Viran = Vi ®-® Vi and vhv(]r’) = Vhya) Q- ® th(r/)'

On the other hand

T'(peg) (Vi @Xqgr) = Z sg(0) (@ e @) (Vo) ® - ® Vo) @ Xis)

UEGr//

= E 58(0) sg(Jis) P (Vo (1r) @ X1 )9 (Vo (r41,r7) @ X1,,),
1<j1<<js<s”
O'EGr//

where

Vo(ir) = Vo (1) ® - @ Vo(r) and Vor+1,r") = Vor+1) @ - & Vo).

Now, formula (2) follows immediately from these facts. O

5.3. Hochschild homology

Let M be an E-bimodule. For r, s > 0, let

Zis(M) =M@ VN ® g"s.

We define the morphisms

8l Zrs(M) = Zr1—151(M)  (0<I<min(2,s)andr +1> 0)
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i
$om@vir ®x15) =Y _(—=1)'[m, vil @ Vi @ Xis,
i=1

N
Sl m@viy ®@X15) = Y _ (=) [1#xi, m] @ Vir ® Xz
i=1

N
i+r Xi
+ Y (DT M@Vipo1 A VY AV ® Xqj
i=1
1<h<r

+ Y DT Mm@V, @ [x, xj1g AXiijs
1<i<j<s

and

Fmevy®xi)= Y. (~DHm® fij Avir @ x5
1<i<j<s

By tensoring on the left the complex (Z, 8,) over E® with M, and using Theorem 5.1 and the identi-
fications & : Zys(M) — M ®ge Zys, given by

EM® Vi ®@X15) = (=D "m®p (1@X15®V1r ® 1),
we obtain the complex

_ 81 _ 8 83 _ 84  _ S5
ZoM) =— Z1(M) =— ZoM) =— Zs(M) =—— Z4M) =— >

where
min(s,2)
ZuM)= P Zs(M) and 5= > > &
r+s=n r+s=n 1=0
r+1>0

Note that if f(g ® g) C k, then the chain complex (Z.(M), 8,) is the total complex of the double
complex (Z (M), 82, , 5]

s O )+
Theorem 5.5. The Hochschild homology H..(E, M), of E with coefficients in M, is the homology of (Z (M), 8+).
Proof. It is an immediate consequence of the above discussion. O
The map Iy :(Z4, dx) — (X4, d,) induces a quasi-isomorphism
Ty (Zo(M), 8,) > (XE(M), dy).

Proposition 5.6. We have

T(m®vy @Xgs) = Z SEOMOOVe1) ® -+ ® Vo (r) D Xis.

O'GGT

Proof. This follows immediately from Theorem 5.1. O
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5.4. The cap product

In this subsection we compute the cap product
Hp(E, M) x HHY(E) — Hp_q(E, M) (q < p),
in terms of the complexes (Z.(M), 8,) and (Z*(E), §*). Given

mQVvis ® Xis € Zrs(M) and defr/s/(E) withr >r"ands > ¢/,

we define (M @ vi; @ X15) x ¢’ € Z;_r s_s (M) by

/ . . /
(M Vir ®Xis) ' = E sg(iyr, J1s)me (Viy, ®Xj, ) @Vh, ,  ®Xy o .,
1<i1<-~<ir/<r
1<j1<<jy<s

where

- sl i) = (1) S e G+ D G,
- 1<hy <--- <hy_p <r denote the set defined by

{il,---7ir/}U{h1,---,hr—r/}:{L---,r},

- 1<l <+ <l;_¢ <s denote the set defined by

{1, .-, jgtU{lh, ..., g} =1{1,...,s},

= Vi, =Vip A AV and vy =V
- les, :le AREE /\st, and xll,s—s/ =X]

/\.../\Vhr
A AX

1

0

1 s—s'"

Theorem 5.7. The cap product
Hp(E, M) x HHY(E) — Hp_q(E,M) (@< p)
is induced by *, in terms of the complexes (Z.(M), 8,.) and (Z*(E), §%).
Proof. By Theorem 4.4 it suffices to prove that
FMmeviy @xis) e @ =T (M Vi @Xi5) * ['(¢'))

for all m®@ vy ® X1s € Zrs(M) and ¢’ € Y,Z/S'(E). Let ¢’ = I'(¢’). On one hand

Fmevy @Xis) e ¢ = Z s8(0) sg(j1.5)MP' (Vo (1) ® Xj,,) @ Vo (11,1 ® XY, o>
1< j1 <<y <s
oeS,
where

Vor)y = Vo) ® - @ Vo) and Vorry1r) =Vor+1) @ @ Vo).
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On the other hand

(M Vir @ Xis) * ¢’ = Z sg(ir, jls’)m¢/(vilr/ ®Xj, ) ®Vh, . OX

where v;_ ar

1<iy<<ipy <r
1< i< <]y <s

. . /
= Y sg@sgli, j1)me' Vi, ®Xjy) @ Ve, O, .
1<i1 <~~~<ir/ <T
1<j1 <<y <
€6y

= Vigay ® - @ Vi Formula (3) follows immediately. O
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