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ABSTRACT

Two main issues regarding data quality are data contamination (outliers) and
data completion (missing data). These two problems have attracted much atten-
tion and research but surprisingly, they are seldom considered together. Popular
robust methods such as S-estimators of multivariate location and scatter offer pro-
tection against outliers but cannot deal with missing data, except for the obviously
inefficient approach of deleting all incomplete cases. We generalize the definition
of S-estimators of multivariate location and scatter to simultaneously deal with
missing data and outliers. We show that the proposed estimators are strongly
consistent under elliptical models when data are missing completely at random.
We derive an algorithm similar to the EM algorithm for computing the proposed
estimators. This algorithm is initialized by an extension for missing data of the
minimum volume ellipsoid. We asses the performance of our proposal by Monte
Carlo simulation and give some real data examples. This article has Supplemental

Material on line.

1 Introduction

There are many problems that may affect the quality of data and the performance
of an estimator. T'wo common problems are outliers and missing data. We address
these two problems simultaneously, when the goal is to estimate multivariate lo-
cation and scatter. The estimation of these parameters is a cornerstone for many
robust multivariate analysis techniques such as principal components, canonical
correlation, discriminant analysis, etc. See, for example, Salibian-Barrera et al
(2006), Taskinen et al (2006) and Croux, Filzmoser and Joossens (2008) and ref-

erences therein.



We will assume that the data are missing completely at random (MCAR), that
is, the probability that some components of a particular data point are missing
does not depend on the values of this case.

Although outliers and missing data have been individually well studied, there
are few works that address these two problems together. When there are no out-
liers, a common way to estimate multivariate location and scatter is to assume
normality and to use the EM algorithm to maximize the likelihood for the ob-
served data (see Dempster, Laird and Rubin, 1977 and Little and Rubin, 2002).
To robustly estimate these parameters in the presence of outliers and missing data,
Little and Smith (1987) proposed the ER algorithm which robustifies the EM algo-
rithm using weights that penalize outliers. The weights are applied to Mahalanobis
distances from the (possibly incomplete) data points to the current center, using
the non—missing part of each observation and the current scatter. Little (1988) ro-
bustifies the Gaussian EM-algorithm using a multivariate Student’s t-distribution
or some other heavy tail distribution. It is well known, however, that such MLE
estimators have breakdown point equal to 1/(p + 1) in the case of complete data
(see Maronna, 1976). Cheng and Victoria-Feser (2002) noticed that ER can loose
its robustness when the fraction of contamination exceeds 1/(p + 1). To remedy
this problem they proposed a procedure called ERTBS which replaces the Huber
weights in ER by weights calculated using the translated biweight score function
introduced by Rocke (1996). They also modified the way in which the weights
are applied to the data. Since their procedure critically depends on an initial es-
timator, they introduced an extended minimum covariance determinant estimator
(MCD) for missing data as a possible starting value. Unfortunately, as evidenced
by our simulation studies (see Section 7) ERTBS is not consistent for normal data

and remains sensitive to clusters of outliers. Frahma and Jaekel (2010) extended



the location and scatter M-estimators proposed by Tyler (1987) for the case of par-
tially missing observations. However, since the score function of these estimators is
monotone, their complete data breakdown point is 1/(p+1). Recently, Templ et al.
(2011) proposed a general robust imputation method to deal with large datasets
possessing outliers and missing data.

In this paper, we present two classes of robust estimators for missing data:
generalized S-estimators (GSE) and extended S-estimators (ESE). Both classes
coincide with the S-estimators introduced by Davies (1987) for complete data.
Since GSE require a robust initial estimator, we introduced the family of ESE to
serve in this capacity. Following ideas in Section 6.7.5 of Maronna, Martin and
Yohai (2006) we propose, as initial estimator, a particular case of ESE that we call
extended minimum volume ellipsoid (EMVE). This estimator generalizes the MVE
estimator introduced by Rousseeuw (1985). EMVE is computed using subsampling
followed by an appropriate concentration step as in Rousseeuw and Van Driessen
(1999).

The rest of the paper is organized as follows. In Section 2 we describe our set-
ting. In Section 3 we define GSE, discuss some of its properties (including partial
affine equivariance) and show that GSE satisfies a set of fix-point equations. In
Section 4 we show that GSE is strongly consistent for the multivariate location and
for the scatter shape component. That is, GSE converges a.s. to the scatter matrix
except for a scalar factor under general elliptical distributions. GSE can also be
scaled to be consistent for estimating the scatter size component for any particu-
lar elliptically symmetric family such as the multivariate normal family. ESE can
only be made strongly consistent for a given single family of elliptical distributions.
Fortunately this does not affect the general consistency of the scatter shape com-

ponent of the final GSE. In Section 5 we present an algorithm to compute GSE. In



Section 6 we define extended S-estimates (ESE) and the extended minimum vol-
ume ellipsoid (EMVE). In Section 7 we conduct a Monte Carlo simulation study

and some timing experiments. In Section 8 we give some real data examples.

2 Notation

Let x; = (zi1,..,Tip)’, 1 < i < n, be p-dimensional i.i.d. random vectors with

common density f belonging to the elliptical family
Fx,mg, 5g) = S|~ fol(x — mg)"5 " (x — my)), (1)

where in general | A| denotes the determinant of the squared matrix A and fo(||x||)
is a density function in RP. Notice that for each choice of fy we have a specific fam-
ily of elliptical distributions. If f; is not specified (1) gives a larger semiparametric
family. Let w; = (w1, ..., i), 1 < i < n, be independent p-dimensional vectors of
zeros and ones with common distribution G. The entries of u; indicate which coor-
dinates of x; are actually observed: z;; is observed when u;; = 1. We also assume
that u; and x; are independent (which corresponds to the MCAR assumption).
Given x = (z1,...,z,)" and u = (uy, ..., u,)’ let x be the observed part of x

and set

pw) = u;. (2)

That is, x™ is a vector of dimension p(u) formed with the available entries of
x. We assume the following identifiability condition: given 1 < j < k < p, there
exists at least one u;, 1 <14 < n, with u;; = uy, =1

Let A, = {u: (uy,...,u,)’, u; € {0,1}}, then given a p x p positive definite

matrix 3 and u €A4,, we denote by > the submatrix of 3 corresponding to the



positive entries in u. Similarly given m €RP, we denote by m(™ the corresponding
subvector of m. Finally we set £*W = 2 /|5 (W|1/p(W) and note that ‘E*(“)‘ =1.
Given a data point (x,u), a center m € RP and a p X p positive definite scatter

matrix 3, the partial square Mahalanobis distance is given by

d(x,u,m, %) = (xW-m®)" (8W) " (x®-m™®). (3)

3 Generalized S-estimators for Missing Data

3.1 Generalized S-estimators (GSE)

We begin by recalling Davies (1987) definition of S-estimator for complete data.
Suppose that n > 2p and let p: R, — R, (with Ry = [0,00)) be a non-decreasing
function such that max; p (t) = 1. Given m € RP and a p X p positive definite matrix

3 let S, (m, X) be the solution in s to the equation

() -}

( (H I >> s, n

and where X has density given by (1) with my = 0 and Xy= I,,. Usually fj is chosen

where ¢, is such that

such that fo(||x||?) is the standard multivariate normal density. The S-estimator

(i, 2, ) is then defined as

(M, 3,) = arg LJain S (m, %),
1

Sn = Sp(My, 3y), (5)
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We now generalize the definition of S-estimator for the case of incomplete data.
Let ﬁn be a p X p positive definite initial estimator for 3. Given m €RP and a

p X p positive definite matrix 3, let S¥(m, X) be the solution in s to the equation

" d(XZ(UZ), m(ui)’ 2*(“1)) 1 n
Zcp(ui)p . 1/p(w) = ich(ui)a (6)
i W 2

where ¢, is defined in (4) and p(u) in (2). We first define the multivariate location

and scatter shape component estimators (ffln, fln) as

(m,, 3,) = argmin S; (m, X). (7)

m,>
Note that 57 (m,t2) = S (m, X) for all t > 0, and therefore 3, is only determined
up to a scalar factor, that is, f]n only estimates the shape component of 3. Finally

we define the generalized S-estimator of scatter (GSE) for ¥, (shape and size) as

S, =55, (8)

where 5, satisfies the equation

X(ui)’fflglui)’iglui))> B 1

> ounp (d( :
=1

3.2 Existence of GSE

Cp(u;)Sn

Now we consider the existence of a solution <ffln, in) to the minimization problem
(7) with m ranging over R? and ¥ ranging over the set of p x p positive definite
matrices. Consider the sample (x;,u;), i = 1,2,...,n. For a given configuration
u €A, let Dy = {i:u; = u} and ny = #Dy,. Call up = (1, ..., 1) the configuration
corresponding to complete observations and let

Ko = max #{i € Dy, : c'x; = d},
ceRr(W) deR,.c#0



be the maximum number of complete points x; which lies in a p-dimensional sub-
space. Theorem 1 (proved in Section 4.2 of the Supplemental Material) gives a
sufficient condition for the existence of the GES.

Assumption A. The function p is (i) non decreasing, (ii) strictly increasing at 0,

(iii) continuous, (iv) p(0) =0 and (v) lim, o p(v) = 1.

Theorem 1 Suppose Assumption A holds. Consider a sample (x;,w;),i=1,2,..,n
such that

n
Nug > 5 + Ko- (10)

Then there exists at least one value <ff1n, f]n) minimizing S (m, X) with %, being

positive definite.

Remark 1 If the complete observations are in general position then kg = p + 1.
Condition (10) is by no means necessary for the existence of GSE. When Theorem
3 holds then GES always exists for sufficiently large n, for any missing fraction.
Moreover, the numerical results of Section 7 show that GSE is robust and efficient

in situations where ny, is much smaller than n/2.

Regarding uniqueness of GSE we notice that there are not such results for
S-estimators for complete data. However, Tatsuoka and Tyler (2000) conjecture
that the S-estimator solution is unique with probability one in the case of random
samples from a continuous distribution. We believe that this may also be the case

for the GSE.

3.3 Partial Equivariance of GSE

We use the “arithmetic rules” (i) z + NA = NA, for all x (NA means “non-
available”), (ii) x x NA = NA for all x # 0 and (iii) 0 x NA = 0. Since GSE

8



is defined using Mahalanobis distances, if A is an invertible matrix that preserves
the missingness pattern [that is, for all ¢ = 1,2,...,n, y; = Ax; + b has the same
missing pattern as x;| then m,,, = Am,, + b and flym = Af]z’nA'. Here, the z,
y subscripts indicate whether the x; or the y; data are used to compute GES. In
particular, GSE is location and scale equivariant because any invertible diagonal
matrix D preserves the missingness pattern. As another example, suppose that
Ui = Ujp = -~ Ui = 1, for all 1 < ¢ < n. Let A, be an invertible ¢ x ¢ matrix and

D,_, be a diagonal (p — ¢) x (p — ¢) matrix. Then

A, 0
0 DP—Q

A=

preserves the missingness pattern.

3.4 Scaling the Mahalanobis Distances.

The partial Mahalanobis distances in (6) are not properly scaled because they are
based on the normalized matrices ¥*. Although this causes no problem regarding
the consistency of the estimator, to achieve robustness it is necessary to re-scale

ﬁ(uz) 1/p(u;)

these distances using the “tuning constants” . To fix ideas, suppose

that m =~ my and ¥ ~ ﬁn ~ ¥, in (6). Then

d (Xl(_ui)7 m(ui), E*(uz)) d (XZ(_Ui)7 :rn(()Ui)7 E;(uz)) HY(uZ) 2

Upw) 1/p(u;)

~

Aﬁluz‘)

Uz‘) C i
Cp(u;) Cptan) | S0 B()

where Y has density fo(||y|°) and so [|Y ()

2 /Cp(u) has M-scale equal to one
for the given p function. Hence, with this scaling, large Mahalanobis distances are
downweighted and do not upset the estimator. A discussion of a possible choice for
the initial scatter estimator SAZ” and an algorithm to compute the final estimators

are given in Section 5.



3.5 GSE on Complete Data.

When the data are complete, for any ﬁn, the generalized S-estimator (r?lm f]n>

reduces to the regular S-estimator given by (5). In fact, in this case, equation (6)

becomes
Xl,m )
S | AL s
‘Q CpS
that is,
I~ [ dx;,m¥*) | 1
ﬁzp ~ |1/p _5
‘Qn CpS
Therefore

1/p

Qn S;(m, E) = Sn(m7 E*)7

‘ ~

1/p ~
where S, (m, X)) is defined in Section 2. Since the factor is constant, 3

1/ _
/ ‘E’ * minimizes Sp(m, X%) if and only if ¥ minimizes S (m, 3). In other words,

the classical and generalized S-estimators coincide in this case.

3.6 Fix-Point Estimating Equations for GSE

For u €4, (see Section 2), xW e RPW 'm € RP and a p x p positive definite matrix
Y we define X (u, x™W m, E) as the best linear predictor of X given X = x(W,
when F (X) = m and Cov (X) = X. Moreover C (u, X)) is the covariance matrix
for the prediction error X — X <u X(u) m, 2) when X has expectation m and
covariance . In particular if u has the first ¢ = p(u) entries equal to one and
the remaining entries equal to zero, we have the following simple formulas. Let

v = (v1,...,vp)€ A, such that v; = -+ = v, = 0 and vy41 = --- = v, = 1 and

10



write

m = m(U) 7 2 _ Euu 2uV
m(V) 2Vll 2\’V
Then,
(W
X (u, xW m, E) = , (11)

m(V) + ZVUEE& (X(u) — m(u))

0 0
Cu,x) = . (12)
0 2vv - EquE&Zuv

The following theorem (proved in Section 4.3 of the Supplemental Material)
gives fix-point estimating equations for the GSE estimators of location and scatter

shape component.

Theorem 2 Let i, and X, be defined by (7). Assume that p is a non-decreasing

and continuously differentiable function. Then we have

n ~
i, = S (13)
i=1 "1

and
n

S D it [wi (X; —m,) (X; — ﬁln)/ + wiwfci] 1
" Dy Wiw] , 14

~ A~

S o (uz) ~ s o o (ul) ~ ~
where X; =X (ui7X 7mn72n ) Ci =C uiyzn , W = W\ U, X, 7mn72n7 Sn )

) 7

% * (u) ~ S .
w =w (ui,xi : ,mn,En) with

[ o), mw, ) [0 [/

(u)
w(u,x",m,X, s) = p ,  (15)
( e s g
d (x(), m® n®
w* (u, xW m, E) = ( ), (16)

p(u)

11



Sn =S} (fﬁn, f]n> and f]n = §n§3n, where s, satisfies (9).

These equations show that the GSE estimators of location and scatter shape
component are a weighted mean and a weighted/corrected sample covariance ma-
trix. We will use the above fix-point equations to derive a computing algorithm in

Section 5

4 Consistency of GSE

Theorem 3 below (proved in Section 4.4 of the Supplemental Material) shows that
(m,, i]n) — (mg, tgX) a.s. for some to > 0 even if the true fy is different from
that used in (4). Therefore, GSE are strongly consistent for the scatter shape
component under the semiparametric elliptical model (1). Davies (1987) proved
similar results for S-estimators in the case of complete data. Note that for many
applications, e.g. principal component and canonical correlation analysis, only
the scatter shape component is required (see Salibian-Barrera et al. and 2006;
Taskinen et al., 2006).

Set G'(m, ¥, F,c) = Er (p(d(x,m,X) /c)) and let F™ be the marginal distri-
bution of x™ when x has distribution F. We consider the following assumptions:

Assumption B. Given 1 < j < k < p, there exists w; = (u;1, ..., u;) € A, such
that u;; = w;, = 1.

Assumption C. There exists (mg, 3) such that for any ¢ > 0 and any u € 4,,
the only minimizer of G(m™, =™ F® ¢) subject to the constraint det (E(“)) =1
is (mo™, Eg(u)).

Davies (1987) shows that if p satisfies Assumption A (in Theorem 1) and F' is
elliptical with f strictly decreasing (see equation (1)) then Assumption C holds.

12



In the case of complete data, Tatsuoka and Tyler (2000) show in Section 4 that
the consistency of S-estimators holds for a more general family of distributions.
This family includes the distribution function corresponding to x =Ay + m, y =
(y1,2, ..., yp), for iid. Student’s t-random variables yi,¥s,...,y, and invertible
matrix A. Unfortunately, we cannot prove that Assumption C holds for these
distributions. However, we believe based on Monte Carlo experiments with large
samples (not presented here) that Assumption C, and therefore the consistency of

GSE, hold for these distributions.

Theorem 3 Suppose that X1, ..,X, is a random sample from Fy, (M, in) is de-
fined by (6) and (8) with Q. — Q a.s., where g is positive definite, and assump-
tions A, B and C hold. Then, (i) m, —my a.s. (ii) f]n — 12 a.s. where ty 1s

defined by

—1
(x; —m{"Y (E((J )) (xi —mo™) 1
) = 5 Z )\ucp(u). (17)

ueAy

Z AuCuEwFO 1Y

ueAy

and (i) if Fy is N(myg, Xg) then tg = 1.

5 Computing Algorithm for GSE

In this section we describe an iterative algorithm for computing GSE based on the
fix-point estimating equations (13) and (14) in Theorem 2.

Given initial estimates (ﬁﬁ?), 21(10), §§LO)> put ﬁn = i%o) and define the sequence
(ﬁl%k), f],(f),gf@k» , k > 0, using the recursion below. A procedure to compute the

initial estimates (ffléo), f:ﬁlo), fé{no))is given in the next section.

13



Given (mn ,E%k),é{nk)) compute ( %Hl ,22’“*”,3&’“*”) as follows:

n (k)/\(k)
M+ — D i Wi (18)

D w(k)

and

/
S [ (=0 - m) (= - mw) +ulu o]

i(k+l) _
" > i w(k)w

, o (19)

where ﬁ(k) =X (u x(u‘), m! E(k)) ; Cgk) =C (u“Z(k)) , wl(k) =
(u,, ©) P S nk)) and w} = w* <ul, @) m® 50 where w and w*

are defined in (15) and (16) respectively. Set § ~(k+l = S¥(m {k+1) Z(kﬂ)) and

S = SEUSED yhere 35 s the solution to (9) with m,, = m{ Y and

(k+1 /S(k)

3, = f]%kﬂ The iteration stops when |5

1’ < ¢ for some appropriately
chosen § > 0.
Note that the recursion equations for the classical EM algorithm are obtained

from (18) and (19) setting wl(k) = w:(k) =1 for all i.

Remark 2 The recursive algorithm determined by equations (18) and (19) co-
incide, in the case of complete data, with the algorithm used to compute the S-
estimator. In such case, Maronna et al (2006) Section 6.7.5 show that the target
scale function S’ (m, X) is decreased by the recursion, that is, in the complete data
case we have

S (ﬁ\l%k+1)’§%k+l)) < s (ﬁl;k)’igc))
for all k. We couldn’t prove this property for GES. However we verified it numeri-

cally in our Monte Carlo study in Section 7.
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6 Extended S-estimators

As mentioned before, we need an initial robust estimator <mn) En0)7 520)) to com-

pute GSE. We introduce now the class of extended S-estimators (ESE) which can
be computed from scratch. The extended MVE described in Section 6.2 is a par-
ticularly robust member of this family which we use as default initial estimate in

our GSE implementation.

6.1 Definition of ESE

The Gaussian maximum likelihood estimator (r?ln,fln) for the MCAR model is

obtained as follows. Given (m, ), let s, (m, X) be the solution to

Zp w,). (20)

Now, let (i3, ) be the minimizers of s, (m, X) subject to the constraint

= d(xl(,“"), (i) 3(ui))

D

i=1

Zlog (det ( “’))) 0. (21)

Finally

3, = s,(y,, 2,)%,. (22)

Notice that (21) is a scaling constraint. It is easy to show that, for any p x p
positive definite X, there exist a > 0 such that ) log (det (aE(“i))) = 0. In fact,
it suffices to take a = exp {— " log (det (X)) /3" p(u;)} . Good references for
the Gaussian maximum likelihood estimator include Tanner (1993), Schafer (1997),
Kenward and Molenberghs (1998) and Little and Rubin (2002) among many others.

It is well known that this MLE estimator is not robust. To define a robust

alternative Danilov (2010) considers a new scale s,, (m, X) defined as the solution

15



to
di (Xi7 m(ui)ﬂ Emi))

n 1 n
> Foun) Cofu) P =3 > Gt Fp(u)- (23)
=1 =1

SCp(uy)

As in the Gaussian MLE case, the robust ESE estimator is defined as (Iﬁn, §n>
where 3, = s, (f,,,%, )2, and (i, X,,) minimizes s, (m, ) subject to (21). No-
tice that ESE can be computed directly from the data using subsampling. Danilov
(2010) showed that if p is non-decreasing, continuously differentiable and bounded,
we obtain robustness and Fisher consistency at the multivariate normal model by

taking c; and k; satisfying

1 Z 1 Z

e ((E) me5m e (6)2)

2 cj J cj
where Z has a chi-squared distribution with j degrees of freedom. Notice that when
p(d) = d we have ¢; = 2j and k; = 1 for all j and (23) reduces to (20). Unfor-

tunately, unlike for GSE, the consistency of ESE for the scatter shape component

cannot be established for general elliptical distributions.

6.2 MVE for Incomplete Data

To achieve maximum robustness - specially in the case of large p - we wish to
compute the ESE version of the minimum volume ellipsoid (EMVE) which has the
discontinuous loss function

po (t) = Ije0) (1) - (24)
To obtain the EMVE consistency correction constants k; we consider the approxi-

mating loss functions

0 t<(l—¢)
p=(t) =9 =(t+e—1) (1—e)<t<(l+e)
1 t>(1+¢)
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and calculate ¢; = lim._,o ¢ (¢), where ¢; (¢) satisfies

SHEE

where Y has a chi-squared distribution with j degrees of freedom. Moreover k; is

computed by

(26)

X%+X§+---+Xf)}
¢ (€) ’

where X7, ..., X; are i.i.d. standard normal random variables. More details on the

P 1 . P ] 2 /
kj ll_rf(l)kj (€) }L{%E {les (

derivation of the constants k; and c; are given in Section 3 of the Supplemental

Material.

6.3 Resampling Algorithm for EMVE

We take N subsamples of size ng = p/ (1 — «), where « is the fraction of missing
data (o = number of missing entries/np). As usual for algorithms based on sub-
sampling, N can be taken so that we get an outlier-free subsample with a desired
probability. The subsample size ng is taken larger than p to avoid singularity.

The following steps are performed for each subsample:
1. Compute my, the coordinate-wise median (for the given subsample).

2. Complete the subsample replacing each missing entry by the overall median

for that variable (calculated on the entire dataset).

3. Let f]o be the sample covariance of the completed subsample multiplied by a
scalar factor so that (21) holds. If 3 is singular (or very badly conditioned)

discard the subsample.

4. Compute the EMVE scale sy = sn(ﬁlo,io) defined by (23) with p(t) =
It ) (t) and set f]o = s(my, f]o)fjo.

17



5. Compute the partial squared Mahalanobis distances d; = d(x;, u;,my, f]o),

1< <n.

6. Since the p(u;) may be different for each case, we can not compare the d;
directly. Then, for comparison purposes we compute m; = Fpy,) (d;), 1 <
¢ < n, where Fj is the chi-squared distribution function with j degrees of

freedom.

7. Concentration Step: Choose 50% of the points with the smallest 7; and com-
pute (r’fll, Z~]1> as the Gaussian MLE for this half sample using the classical
EM-algorithm multiplied by a scalar factor so that (21) holds.

8. Again, compute the EMVE scale s; = s,(my, il) and put f]l = s, (my, il)il.

9. If S1 < Sp, we set (I'/I\lo, 20,50) = (I/I\ll, 21,81) .

Finally we choose as the EMVE, the pair (rYlo, 20) with smallest MVE scale

S0-

7 Monte Carlo Simulation Study

We conduct a simulation study to investigate the performance of the proposed
estimators. We consider samples of size n = 100 from uncontaminated and con-
taminated normal distributions of dimension p = 10. Since the estimators are scale
and location equivariant we assume without loss of generality that the means are
equal to zero and the variances are equal to 1. Since the model and estimators are
not affine equivariant, we consider several correlation structures by taking the off-

diagonal entries of the covariance matrix X all equal to r, with » = 0.5,0.6, ...,0.9.
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We introduce 10% point mass contaminations of different sizes, located at k Maha-
lanobis distances away from 0 (k = 1,2,...,12), in the direction of the eigenvector
of 3 associated with the smallest eigenvalue. It has been empirically observed that
this is the least favorable placement for the outliers. The percentage of missing
values is fixed at 10%. Results for other fractions of contaminations and missing
values (not reported here) present similar patterns. The number of replicates is
N = 100.

Performance Measure: The performance of a given scatter estimator f]n
is measured by E (LRT (i}n 20)) where LRT(S, £) is the likelihood radio test
distance LRT (X, %) = trace (¥X;") — log (det (£X;")) — p. This distance ap-
pears naturally in the context of the Gaussian likelihood ratio test statistic to test
the hypothesis that the population covariance matrix equals 3.

We compare the following estimators:

(a) EMVE, the extended S-estimate described in Section 6.2;

(b) GSE, the generalized S-estimate with function p(u) = pp(y/u), where
pp(u) = min(1,1 — (1 — u?)3) is the Tukey’s bisquare rho function, and using
the EMVE as initial estimator;

(c) QGSE, a fast version of GSE with the pairwise quadrant correlation as
initial estimator;

(d) ERTBS, the estimator proposed by Copt and Victoria-Feser (2003), evalu-
ated using the R-code kindly provided by the authors; and

(e) FS, the fast S-estimator proposed in Section 6.7.5 of Maronna et al. (2006).
FS was computed using the function covSest (method =bisquare) from the R-
package rrcov, evaluated on the complete data. F'S is not an estimator for incom-
plete data, however it is included for comparison purposes.

Table 1 shows the finite sample relative efficiency of the robust estimates with
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respect to the classical EM estimator based on the average LRT distances over the

Monte Carlo replicates, when there are 10% of missing data and no outliers.
TABLE 1 ABOUT HERE

We note that ERTBS and EMVE are quite inefficient while GSE and QGSE have
efficiencies close to 0.9. The average LRT distances when we have 10% of outlier

contamination of different sizes and 10% of missing data are reported on Figure 1.
FIGURE 1 ABOUT HERE

Notice the stable and good performance of GSE, comparable to FS computed
on the complete dataset. QGSE also performs pretty well, specially for small
r. EMVE is a robust and stable initial estimator responsible for the excellent
performance of GSE. However EMVE has a relatively weak performance in this
simulation due to its low efficiency.

As suggested by an anonymous referee we also investigated the possible use of
other fast initial estimators besides the quadrant correlation, such as (i) a pairwise
S-estimators applied to all pair of variables using the corresponding complete cases
and (ii) fast S-estimator with Tukey’s bisquare function applied to the completed
data after NA’s are replaced by the coordinatewise median on the available data.
Details are given in Section 1 of the Supplemental Material. Unlike GSE which
has a stable good performance for all the considered correlation structures, all the
considered fast versions worked well for some correlation structures but poorly for
others. The most stable among the fast versions is the GSE using the quadrant
correlation as initial estimator.

Finally computing times for the different estimates can be found in the Sup-

plemental Material
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8 Examples

Example 1 Boston Housing Data: Our first example uses Harrison and Ru-
binfeld (1978) “Boston Housing Dataset” dataset downloaded from the R-package
“spdep”, with 506 cases and 12 variables. The Mahalanobis distances for the com-
plete data using FS estimates as center and scatter matriz are given in Figure
2.

FIGURE 2 ABOUT HERE

There are 174 outliers accounting for 34% of the cases. The outliers correspond
mostly to cases 142-172 and 357-492 with 132 of them having variable RAD =2/.
Note that the median and mad of RAD are equal to 5 and 2.96, respectively. Dele-
tion of these outliers and re-calculation of the robust estimator and Mahalanobis
distances reveal no further outlying cases. The need for robust analysis is justified
by the fact that the MLE approach identifies only 10 outliers (cases 366, 369, 381,
399, 405, 406, 411, 415, 419 and 428) after several iterations of outliers deletion
followed by re-calculation of the mean, covariance matriz and Mahalanobis dis-
tances. We now set a randomly chosen 10% of the entries equal to NA and use
the partial Mahalanobis distances d; to identify outliers. The partial distances are
adjusted using the formula d; = F; ' (F, (d;)) where p = 12 and p; is the number
of observed variables for the i'™" case. The mazimum likelihood approach (EM al-
gorithm in this case) only finds 8 outliers (cases 366, 381, 899, 405, 406, 411, 415
and 419) after a few iterations. On the other hand, GSE identifies 169 outliers
which are a subset of the 174 outliers found in the complete case analysis. The
5 non-identified points are cases 159, 171, 392, 394 and 464. Cases 159 and 171
have a large number of missing entries (5 and 4, respectively). The number of

missing entries (per case) has mean = 1.3 and standard deviation = 1. Moreover,
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cases 392, 394 and 464 have RAD = NA while RAD = 24 in the complete data.
This may have been useful to identify these three cases as outliers in the complete
data analysis. We also conduct an experiment to illustrate the estimators ability
(or lack of ) to cope with missing data. In this experiment we do not evaluate the
robustness of the estimators but their ability to emulate their complete data values
using the incomplete data. Hence we compute the LRT distance between the scatter
matrices estimated before and after random missingness is introduced in the data.

The averages over 20 replicates are displayed in Table 2.
TABLE 2 ABOUT HERE

Not surprisingly, EM shows the best performance closely followed by GSE. The
other three robust estimators are considerably worse. The poor performance of
QGSE may be due to the fact that these data are highly correlated (the inverse
condition number for FS and MLE scatter estimates computed on complete data

are 2e-07 and 6e-08, respectively).

Example 2 Wages and Hours: In this example we have 39 cases and 9 vari-
ables. A national sample of 6000 households with earnings below $15,000 was ob-
tained in 1966. The 6000 households were divided into 39 demographic subgroups
and the averages over these groups were used to investigate the relation between
“average hours worked during the year”and “average hourly wages” adjusting for
other 7 variables. Querall, 4.8% of the data are missing and 28% of the cases have
at least one missing value. We computed GSE, ERTBS and EM for these data.

FIGURE 3 ABOUT HERE

Figure 8 shows that the three estimates roughly agree regarding the multivariate

location for the 9 variables with the exception of Race (variable number 7) where
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the ERTBS and EM estimates are somewhat larger.

FIGURE 4 ABOUT HERE

The first three panels of Figure 4 display the Chi-squared qg-plots for the adjusted
partial square Mahalanobis distances for the three estimates. The adjusted square
distances for mon-outlying cases using GSE and ERTBS follow an approximate
Chi-square distribution with 9 degrees of freedom. The EM adjusted Mahalanobis
distances do not seem to follow an approximate Chi-square distribution and do
not highlight any clear big outlier. GSE finds two big outliers - cases 4 and 5 -
and two marginal outliers. ERTBS finds two big outliers - cases 4 and 28 - and
seven marginal outliers. Notice that case 5 is not an ERTBS outlier while case
28 is not a GSE outlier. Finally, we remove the large outliers found by GSE and
ERTBS (cases 4, 5 and 28) and apply EM to the remaining data. In this case only
cases 4 and 5 are identified as outliers and the adjusted partial square Mahalanobis

distances are very similar to those produced by the original GSFE fit.

9 Supplemental Material

The Supplemental Material (available online) has four sections. Section 1 contains
simulation results (performance) for other initial estimates. Section 2 includes a
table showing the computing times for the different estimates. Section 3 derives
the consistency constants k; for defining EMVE. Finally, Section 4 gives detailed

proofs for Theorems 1, 2 and 3.
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TABLES

P Estimates
ERTBS EMVE GSE QGSE EM
0.50  0.27 029 087 088 1.00
0.60  0.24 030 0.88 091 1.00
0.70  0.29 031 088 089 1.00
0.80  0.26 0.30  0.89 089 1.00
0.90  0.25 029 087 087 1.00

0.99 0.24 0.31 0.87 0.87 1.00
Table 1. Monte Carlo Study. Gaussian LRT efficiency (relative to EM) for

some robust scatter estimates. We consider clean 10-dimensional samples of size

100 with 10% of missing values.
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Estimator Percentage of missing data

10% 20% 30%
EM 0.07(0.03) 0.15(0.06) 0.32(0.13)
GSE 0.10(0.03) 0.26(0.08) 0.56(0.15)
QGSE 1.14(0.42) 2.68(0.60) 4.73(0.88)
EMVE  1.91(0.62) 2.55(0.85) 2.96(0.96)
ERTBS  0.39(0.16) 3.58(5.3)% 25.76(11) % x

Table 2: Average effect of missing data on the estimators “intended results”
(that is those that would be obtained if the complete data were available). (*)
Average obtained from 19 replicates because ERTBS crashed in one occasion. (**)
Average obtained from 7 replicates.

FIGURES

27



rho = 0.6 rho =0.7

20

E g
T T T T T T T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
Outlier Outlier
rho =08 rho =0.9
< . 8 P
81 — GSE / — GSE ,
--- MVE )/ --- MVE /
S EREREE S , PRIIREEEE S //
QGSE 7 QGSE ,
—— ERTBS 4 —— ERTBS 7
£ / E oL ’
3 g Vi J09 /
/ /
/ 7 .
// . =7
"l =z lat e ©1 ozl Tl
==-" /‘\—__\‘_' =--" -7 \.‘.
T ~— _/4,,‘.'///\__\
- T T T T T T - T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
Outlier Outlier

Figure 1: Monte Carlo Study. We cosider samples of size 100, of 10-dimensional
observations. We plot the average LRT distances as a function of the outlier size,

for different correlation structures and 10% of missing data.
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Supplemental Material for:

Robust Estimation of Multivariate Location
and Scatter in the Presence of Missing Data

1 Discussion on Possible Initial Estimators

In Section 7 of the paper we use the so called quadrant correlation as initial
estimate to compute a fast version of GSE which we call quadrant correlation
GSE and denote by QGSE. Following the suggestion of an anonymous referee
we consider the possible use of other fast initial estimators. For that purpose,
we conduct a Monte Carlo experiment to compare the performances of the final
GSE under 10% of contamination when the initial estimators are:

(1) Quadrant correlation, already considered in Section 7 of the paper. The
final estimate in this case is called quadrant correlation GSE and denoted

QGSE.

(ii) Fast S-estimator based on Tukey’s bisquare function applied to the com-
pleted data after NA’s are replaced by coordinate-wise medians of the
available data. The final estimate in this case is called median filled GSE
and denoted GSE-MF.

(iii) Pairwise S-estimator based on Tukey’s bisquare function applied to all
pairs of variables using the complete cases for each pair. To enforce the
required positive definiteness in this case we replace the negative eigen-
values by a small positive value. The final estimate in this case is called
pairwise-S GSE and denoted GSE-PW.

(iv) EMVE, our main proposal, naturally denoted by GSE.

Note: We included EMVE for comparison purposes. Moreover, we notice that
pairwise S-estimators are not particularly fast and there are several truly fast
alternatives (see e.g. Ma and Genton, 2001; Maronna and Zamar, 2002; Serneels
et al., 2005; Khan et al., 2007). However, from the performance point of view,
we can expect that pairwise S-estimator are superior to other fast pairwise al-
ternatives (S-estimates are highly robust, affine equivariant, consistent and as-
ymptotically normal). Therefore, we used the pairwise S-estimators to represent
the performance of pairwise approaches.

Table 1 gives the maximum LRT distances to the true covariance matrices
averaged over 100 replicates (the maximum is taken over all the considered
contamination sizes). As expected, GSE has the overall best performance as we
range over different correlation settings. The other alternatives perform well in
some cases but poorly in other cases. Among them QGSE seems more stable as
we range over different correlation structures. Based on these results and the



timing results reported in the next section, we recommend the use of EMVE as
default initial estimator for GSE.

Y%missing  p Estimates

GSE GSE-PW GSE-MF QGSE

10 0.50 5.60 60.63 5.19 2.14
0.70  7.49 15.54 6.05 3.82

0.90 7.95 23.93 8.53 11.26

0.95 7.67 5.23 15.91 14.65

0.99 6.73 14.72 40.10 31.73

20 0.50 7.35 106.52 5.69 2.21
0.70  7.68 55.42 7.05 3.20

0.90 7.60 18.25 12.23 10.78

0.95 748 5.02 25.01 14.21

0.99 9.68 12.40 55.70 31.06

Table 1: Maximum average LRT performance under 10% of contamination
(averages taken over 100 replicates) for the final GSE estimate using our de-
fault initial estimator EMVE and other robust covariance estimates as initial
estimates.

2 Timing Experiment

Here we report the mean time needed to compute GSE and ERTBS under
normal samples of size n = 250, using an R code in a PC computer with an Intel
Core 15-540M Processor, 2.53 GHz. We averaged over 90 realizations to include
different correlation setups: 30 cases with low correlation, 30 with medium
correlation and 30 with high correlation. We considered different dimensions,
correlation structures and fractions of

Y%miss. Estimates
GSE QGSE ERTBS
p=10 p=20 p=10 p=20 p=10
10 5.35 11.01 1.05 3.53 3.08 (89)
20 5.37 12.83 1.55 3.56 13.34 (78)
30 573 1408 298 522 23.63 (72)
40 6.16 15.17 5.19 14.86  46.12 (49)
50 6.69 16.09 4.89 12.85 52.47 (2)
60 770 1742 541 1357  NaN (0)
70 8.12 22.53 6.02 14.96 NaN (0)

Table 2. Average computing time - in seconds - evaluated using the com-
mand system.time in R (“User Time”), for normal samples of size 250.

As expected, the computing time increases with the dimension and percent-
age of missing data. The results in Table 2 were obtained with the R command



system.time (“User Time”) for p = 10 and 20. We were not able to evaluate
ERTBS in the case of p = 20 because the program repeatedly crashed (itself
and R) for percentage of missing larger than 10. ERTBS also often crashed
when p = 10. The number in brackets in the ERTBS column give the number
of successful evaluations of the estimates for the given sampling situations.

3 Derivation of the Consistency Constants k; for
EMVE.

It is immediate that

¢; = lim ¢; (¢) = Median (V)

e—0

where Y has chi-squared distribution with j degrees of freedom. It can also be
shown that
XP+ X34+ +X2
kj:hr%E{Xfp;< L2 2
E—> Cj

Moreover, since

0 t<(l-¢
= (l-eg)<t<(l+e)
0 t>1+¢

we have
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where Y; has chi-square distribution with j degrees of freedom. We also have

1
g (e) = EE {Yilo (14e) ) (Vi) }

1 1 d ([0 G
zgmd—s /0 txt exp (—t/2) dt

_ 1 (14/2) _
= Wcj exp (—¢;/2).

e=0

4 Proof of Theorems

4.1 Some Lemmas Needed to Prove the Theorems

Notation. In what follows x and m are random vectors of dimension p, X
belongs to RE*?, the set of p x p positive definite matrices. Moreover, ||x|| and
[|X]| will denote the Ly norm of the vector x and of the matrix 3 respectively.
Given myeRP, 3y € RE*? and ¢ > 0, S(myg, Xy,¢) is defined by

S(mo. Sg.c) = {(m, %) : lm —mg|| < &, ||~ Dyl| < .

Given X € RE*P, its eigenvalues are denoted by A1 (X) < Xa(E) < ... < Ap(X).
Given a distribution function F on RP and a Borel set ¢ C RP we denote by
Pr(A) the probability of the set A under F' and by Er(g(x)) the expectation
of g(x) when x has distribution F. Finally, given a set A, we denote by A® its
complement.

Lemma 1 Suppose that Pr(x'c+d =0) <t <1 for allc#0 and d € R.
Then
(i) There exists 61 > 0 such that

inf P(|X/C+d|>(51)>1—t+(51.
llel|=1,de R

(ii) Suppose that X1, ..., X, be i.i.d. observations with distribution F. Then there
exists 01 such that
n

1
lim, .., inf =) I(xlc+d>8)>1—t+6 as.
llel|=1,deR N £

Proof
(i) Let K be so that

Pr(|[x1]| = K1) <t —0.1 2)



and let K = K7 4+ 0.1. Then for all ¢ with ||c|| =1 and d > K
{Ixic +d| > 0.1} > {[|x[| <k}
and then
e P(|xic+d| > 0.1) > P(|[x]| < k,)
>1—-t+0.1.
On the other hand according to the first part of the proof of Lemma Al1.4 in

the Supplementary Material of Marazzi, Vilar and Yohai (2009), there exists dg
such that

inf P(|X;C+d|>5o)>17t+50.
lle||=1,d>K

Then, part (i) follows taking §; = min(do,0.1).
(ii) Let Ky and K as in part (i). We have

n

1
inf I(xic+d| >0.1 inf  I(xjc+d|>0.1
llel|= 1wbkvz§: ( | )2 71§;Hw:Lw>K ( | )

S SEY
i=1

then from (2) and the Law of Large Numbers (LLN) we get

m,_, inf I(|xjc+d|>01)>1—-t+0.1 as.. 3
T [lel|= 1|d|>K1’LZ | | ) ( )
Lemma A1.4 in the Supplemental Material of Marazzi et al. (2009) implies that
there exists dg such that

n

I(|xjc+d| > dy) >1—t+dp as.. (4)
-1

inf L
[lel|= 1d|<Kn

Then from (3) and (4) part (ii) follows taking §; = min(do, 1).

Lemma 2 Suppose that Pr(xX'c +d =0) <t for allc#0 and d € R, and p
satisfies Assumption A.
(i) Then there exists d3 > 0 such that
inf E ~—m) = (x— > 1 —t+ 0.
) ey B (PO~ BT (e —m)) 21—t 45
(ii) Suppose that X1, ..., X, be i.i.d. observations with distribution F. Then there
exists 0o such that

lim,, .o (D é?f,mem n Zp X7 x —m)) 21—t + 62 as..



Proof (i) Let X € RE™P, with eigenvalues A\1(X) < ... < A,(X) and corre-
sponding orthonormal eigenvectors uy, ..., u,. Then

Then for any m € RP and ¥ € RE*? we have

Pl plx— m)' = o m) > p (557 ) Pl ) = )

2p<Ali;)> (1—t+6).

We can choose § so that
p(67/8) (L —t+081) > (L—t+61/2) (6)
and put d2 = min(d, d1/2). Then

inf E —m)¥ N (x — >1—t+ 0,
M ey P (Pl =) BT~ m)) 2 :

and this proves part (i).
(ii) Let 41 as in Lemma 1, then for any m € RP and ¥ € RE*? (5) implies

53 (- = ) 2 0

Take d2 = min(d, 61/2) where § is as in (6). Then part (ii) follows from Lemma

1 (ii).

n

b S 1~ ) 2 0

=1

Lemma 3 Suppose that Pr(x'c+d = 0) < t, for all c#£0 and d € R, and
let p satisfying Assumption A. Let X1,...,x, be i.i.d. random wvariables with
distribution F'. Then there exists 3 > 0 such that

lim 1(xi — m)) >1—t+63 a.s..

(7)

’I’LHOO

(2)>1/53 \E\ 1,meRP N Zp

Proof. If |X| = 1 we have

(0(2) > 1/83} © {/\ (2) < 64/ 1>}.

Then (7) follows from Lemma 2 (ii) taking d3 = 55;;—1).



Lemma 4 Given K1 >0 and n > 0, then
(i) There exists Ko > 0 such that

inf E x—m)/S x—m)) > 1 — 1.
Ap(B)<Ky,||m]|> K2 F (p( ) ( )) = Ui

(i) Suppose that Xi,...,X, are i.i.d. random wvariables with distribution F.
Then, given K1 > 0, there exists Ko > 0 such that

: . IR P
lim, inf — X;—m)X (x;,—m))>1-—1n as.
T (S <Kflmll> K 1 Zl p (o —m) B )z1-m

Proof. (i) We have

!

— m]|? I <K,/2)K
) S ) > g I (X S Ky /2Ky

inf
Ap(E)SKlvl\mH>K2( T |Im[|>K> K N 2K,
(8)
Let K3 be such that P(||x|| < K,/2) > 1 — (/2) and such that p(K5/2K;) >
1 —t where (1 —t)(1 — (n/2)) > 1 —n. Then from (8) we get

p((x - m)'S " (x - m))) > p(K/2K)) Py (|[x]] < Ko/2)

> (1=t)(1—-n/2)
>1—-n.

F inf
Ap(B)<Ky,|[m||>K

(ii) Follows immediately from (i) and the LLN.

The following Lemma is proved in Muler and Yohai (2002).

Lemma 5 Suppose that the function h(z,0) is defined in a subset of C = Cy X
Cy, where C; C R" and Cy C R* is compact. Assume that h is continuos in 6
and that Ep(h(x,0)) > a for all 0 € Cy. If X1, ...,Xy,, s a random sample from
F then

1 n
li inf —» h(x;,0 ...
im, 912071; (xi,0) > a a.s

Lemma 6 Suppose that (mg, Xq) is the unique minimum of
Er (p((x — m)' S (x — m)))

subject to |E| = 1 is. Let « = E (p((x — mg)'Eo(x —my))). Assume that p
satisfies Assumption A and

Pr(c’x+d=0)<1-aq, 9)



forallc #0 in RP and d € R. Let X1, ...,X, be a random sample of F, then
(i) Given € > 0, there exists 6 > 0 such that

1 n i — /271 i —
lim, inf — <(X m) (x m)> >a+d a.s..
(m,2)eS (mo, 20.)CN{|B[=1} N 1+9

(i) Given € > 0 and n > 0 there exists § > 0 such that

1 & (x; —m) T~ (x; — m)
li inf — >a-— 8.

(#3) For any § > 0

. 1 n (Xi — mo)/Eo_l(xi — 1’1’10)
lim — < .8..
nLH;onZizlp( oo

Proof. (i) Since for all m €RP and € RY” we have

B (p <(Xi —m)'EQ_l(Xi - m))) - a

Lemmas 2 (ii), 3 and 4 (ii) applied to p(u/2) and (9) imply that it is possible
to find a compact set D C RP x Rﬁxx’ and §; > 0 such that

1« ((x,- ~m)'Z(x; —m

inf 1
(m,E)eS(mmEol,Ial)CﬂDC-ﬂ{|2|:1} n ;p 2

Y(m, X,6) = E (p (X )R x m))) ;

lim,_,

)> > a+01 a.s..

(10)
Let
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then, by the Dominated Convergence Theorem (DCT) ~(m, X, ) is continuous
in m, X and §. Moreover
v(m,X,0) > a (11)

for all (m,X) € E,S where E is the closure of S(mg, Zo,¢) NDN{|Z| = 1}.
We will show that there exists d, > 0 such that
7(m72762) > Cl—‘r(;g (12)

for all (m,X) € E. Suppose that (12) does not hold. Then, there exists a
sequence (M, Xp,0,) with (m,,2,) € E, 6, — 0 and limy(m,,X,,d,) <
a + 6. Since E is compact, without loss of generality we can suppose that
(M, Byp) — (m*,X*) € E. Therefore

’-)/(m*’ E*’ O) S a7



contradicting (11). Applying Lemma 5 to
x—m)X ! (x - m))

we have

1 n i — /271 i —
(m,£)€S(mo,Bo.£)*NDN{|B|=1} 1 = 1+ 99

(13)
Then, part (i) follows from (10) and (13) taking § = min(1, d1, da).
(ii) By part (i), it will be enough to show that there exists 6 > 0 such that

lim inf Ly (x; —m)' 57 (x; — m) > a—n a.s
i i — —n a.s..
"% (m,X)eS (Mg, Z0,e)N{|S|=1} N — P 1+4 1

(14)
The set D = S(mg, Xo,¢) N {|X| = 1} is compact and vy(m, X,0) > a — n for
all (m,¥) € D. Then, by an argument similar to the one used to prove (12),
it can be shown that there exist d; > 0 such that v(m, X, d1) > a — 7 for all
(m,X) € D. Put now

x —m)'EZ"(x — m)
144 )

Bm, %) =p (

Then applying Lemma 5 to h we obtain (14) with 6 = 4.
(iii) This part of the lemma follows from the fact that for any ¢ > 0 we have
that ~(mo, Xo,d) < a and the LLN.

We introduce the following notation. Let u = (u1, ..., up) €4,, ¢ = p(u), A
be a ¢ x ¢ matrix and 1 < hy < --- < hy < psuch that up, =1,1 <4 < gq. Then
we denote by Ay the p x p matrix such that

_J A i a=hi,B=h;
(A(“))ij - { 0 if otherwise

In other words we expanded the ¢ X g matrix A to a pXx p matrix A ) completing
with zeros the rows and columns corresponding to w; = 0. Similarly, given
u=(u,...,up) €Ay, ¢ =p(u), z € R and 1 < hy < --- < hy < p such that
up;, = 1,1 <4 < g, we define the expanded vector z(,) € RP with zeros in the
places where u; =0, 1 <17 < p.

The following lemma is required for the proof of Theorem 2

Lemma 7 Let X be a pXxp positive definite matriz, m € R? andu €A,. More-
over, letX (u, x(W m, E) , and C (u,X) be as defined in equations (11) and (12)
of the paper respectively. Then
(a) £ {(2(11))*1}( B=3-C@¥),
u

(b)) 2 {(2(“))_1} w (x—m) =% (u,x", m,%) —m.



Proof: For simplicity we can assume without loss of generality that the
missingness pattern u is such that the first ¢ components are observed and the
last (p — ¢) components are missing. Using equation (12) of the paper we can
write

-1 3 3 -l 0 3 3
(u) _ uu uv uu uu uv
sy -8 2 )0 0 ) (5 =)

- Yuu Yav
N 2vu 2vuzl_ullEJUV
=X-C(u,X),

and (a) is proved.
Note that

-1 o0 3 3
E(u)) :| > = ( uu ) ( uu uv )
{( w 0 0 Sva  Sey
(1 EZwZw
L0 0 '
Then. using equation (11) of the paper we can write
-1 / / I 2712
—m) (u) - (w) _ ™ _m™) uu<~uv
e [(59) ] (< ) (7
!/ !/
«ﬂ®m®>(ﬂ®mw>g¢gw>

(w)

proving (b).

4.2 Proof of Theorem 1 in the Paper (Existence of GSE)
Consider a sequence (m;, ¥;) with m; € R? and ¥; € RE*? so that

n— o0 m,>
Without loss of generality we can assume that A,(3,) = 1 and that X, — X
where X is positive semidefinite. We will show that 3 is nonsingular.
Take R
tn > cp|Qn|YP sup S7(m;, 3;) < oo.
jz1

Then, applying Lemma 2 (i) to the empirical distribution of x;, i € Dy, we can
find &5 such that

10
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) (x;, —m) 27! (x; — m) K
f L C > 1-——). (1
,\1(2)<1£sl2,mem Z P < tn = T (15)

n
1€Dy, up

We will show that A (3;) > do, where §p = 557(1/1)) for all j. Suppose that this

does not hold for jo. Then, A\;(%}) < 527 /P yse=D/P — 5, Therefore using
(15) we get

S

i Jo Jjo Jo

l -1
(X(ui) _ m(}“i)) (E’f(ui)) (XEUi) _ m(‘llz:))

C. .
2 o Sz (m, %)c

p(u;

19, |1/p(u)

" () = miw) (2 0) T () i)
= inf E :Cp(uz)P - S 1/
A1(X)<éo,meRP P Sn(m,E)cp(uz)mn\ /p(us)
I _
_ 1 (x —
> ¢, inf Do <(X’ m) s m))
M () <82, meRr Lo tn
ug

).

Ko

> Ny Cp(l —
0 N,

Then since ¢, is increasing with k, according to the definition of S (m;, 3;) we
get

1 n
Ny Cp(1 — Ko /M) < 5;%(“”

<%
- 2
and then n,, < (n/2) + kycontradicting the assumption of the Theorem. Then
)\1(20) 2 50.
Now we will prove that m,, is bounded. Note that since )q(Ej) >y and
Ap(Xj) =1 we have \,(27) < 1/)\817_1)/1) = K. Then, applying Lemma 4 (i)
to the empirical distribution of x;, ¢ € Dy, we can find K5 such that

inf S o ((Xi ) 2 (x; m)> > 6. (16)

A1 (X)) <6 >K t,
1(2) <l ][22, S5 n

We will show that ||m;|| < K for all j. Suppose that this does not hold for jo,
then, A (2)) < 527 /P j5e=D/P _ 5, Therefore using (16) we get

11



S (G WO MR
i=1

) o |2, [1/P(10)

7

(x“‘” m ui)) ()~ (ng - m(ui))

inf =
,\1(2)<50 ||m||>K2 (0, 5) a2, | 1/P(00)

(xz m)' £ (x, - m))

Cp inf
/\1(2)<527||m||>K2 .
> 0.6n4,¢p

and then

1
0.6ny,cp < §Znucp(u)
u
<M
-2
and this is absurd. Then ||m;|| < K for all j and this implies that there exists

a subsequence of m; converging to mg. Using the continuity of S;; we obtain
that S (mo, o) = infy, » S (m, ).

4.3 Proof of Theorem 2 in the Paper (Fix Point Estimat-
ing Equations)

The unscaled generalized S-estimator can be seen as an M-estimator if we fix
the scale s at §,,. Let hand side G(m, X), be defined by

d(x") m) ) |z<ui>|1/1)<w>

1/p(us)

E) = Zcp(ui)p (17)
i=1

§ncp(ui) ‘ﬁg)‘ll)

Then, the unscaled generalized S-estimator (ffln, En) minimizes G(m, ) with

respect to m and X. Therefore,

0 0
87111G<1'r17 2) mzr?ln,z:in = ()7 8726:(1117 E)’ =0. (18)

m:rﬁn,E:fJn
To simplify the notations we set

(u;) |1/p(ui)
1/p(u:)

A, ), 500) [

g’!lcp(ui) ‘ﬁ%‘h)

12



and Q;=Q;(Mh,, T,,).
Consider the derivative of G with respect to m. Using

0
v (x—v) W(x—v)=—2W((x—vV)

(see expression (78) from Petersen and Pedersen, 2008) we obtain

fch(m)p (@ )M

Om

0

m=m,,,X= > ‘m:fﬁn,E:En
1/p(u;)

n

‘i(ui)

8d(XEm), m(“")7 E(ui))
1/p(u;) om

=3 e (@)
=1

Qui)

n m=m, ,2=3,

éncp(ui)
n ‘ $2(ui)

1/p(u;)
= ; Zp' (@z> nil/p(ui) [(f}%“z))l (Xgui) _ ﬁ\ln(ui)):| =0. (19)

[ ‘ﬁgluz) (u;)

This yields the following equation

Sou(500) ] =0 (20

where

=w (ui,XEui),IYln,in)

and w is defined in equation (15) of the paper. Pre-multiplying both sides of
(20) by 3, and using Lemma 7 (b), we get

§ wz X mn 207

~ ~ u) ~ -— . .
where X; =X (ui7 xl(- ),mn,En) .Finally we can write

a  2im Wi
" D wi
proving equation (13) of the paper.
We now consider the derivative with respect to 3. Using that

8aW 1b —1

ab (W)~

13



(see expression (55) from Petersen and Pedersen, 2008) and

Olog |W| 1

Wl
W = W)
we obtain
) = ~\ 0Qi(m,X)
G(HLE)’ =) pu)l (Qi) —s—
0% m=m,,X=% ; plw) ( ) 0% m:ﬁin,E:in
cp(u,-)p/ (Qz) Gd( (uz m(ul)’Z(ul)) i(m) 1/p(u;)
/\(u7) 1/1’7(“17) 62 ~ ’ n ’
m=m,, X=X,

=1 8nCp(u,)

9 |Z(“ )|1/P (u;)

(™ i, 0, D) x

m=m, =3,

(@) e m - m | (B)

(ui)
s | (300) ]

0 0005)
p(u;)
= w*(u7 XEUi)a I/r\l’ru in)

Lyw
Sn

i=1

(u;)

207

(us)
where

wi:

and w* is defined in equation (16) of the paper. Note that w} can be thought
of as a secondary weight for the i*" case. Equivalently, we can write

Sl oo 5
- gwiw;‘ [(i;“i))l} . (21)

(us)
Pre and post multiplying both sides of (21) by f]n and using Lemma 7 we get

sz X; —my,) —mn wa [~ —CZ},

where C; = C (ui,in) or equivalently

(u;)

5 _ iz [wi (R —my) (% - )" + wiw; Ci]
n =

proving equation (14) of the paper.
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4.4 Proof of Theorem 3 in the Paper (Consistency of GSE)

(i) Let A, = {u: (u1,...,up)’, u; € {0,1}} and for any u €4,, let Ay, = P(u; =
u) andA;:{ueAp:)\u>0}. For u € A} let Dpu={i:u;=u,1<i<n}
We start showing that

mM™, @) - (m{™, 2:™) as.. (22)
for all u € A;.
Define
minueA; AuCu
Y= 5w N
2 ZueA; AuCu
then ’Y
&IeliAn* AuCu — Z AuCu > 5 (23)
P ucAy
Define sg by

-1
(x; — m(()u))/ (23(“)) (x; — moe™)

50Cp(u))

1
=3 D Nty (24)

ucAx

Z AuCuEp

ucAy
and a, by

—1
(x(u) _ mO)/ (28(“)) (X(u) _ mO)

50Cu |Q(<)u) |1/p(w)

ay = Ep P

Note that according to (24) we have

1
Z AuCulu = 3 Z AuCu- (25)
ucAx ucA

Since A}, is finite and Assumption C holds, applying part (i) of Lemma 6 to the
function p (v/ (socp(u)\ﬂéu)|1/p)) we can find 6; such that for all u € A} we

have

liim inf Vn,u > ay + 517 (26)
{(m,=):(m,B=0)gs(ml £ ) }

where

v 1 <(XEU) — m(“))/ (E*(“))_l (Xgu) — m(“))>
nu — 14 .
" i€Dpu (1+ 51)50%(%) |Q(()u) ‘1/”

15



Then, using part (ii) of Lemma 6 we can find d; < 0; such that for all u € A3
we have

(W) _ @y () (W) )
im o 1 Z p((xz m™)" ( ) (" —m )) (27)

meRP,BERYT Thu (1 + 82)s0ca |25 /200

> Gy — 617Cp(u)>\u- (28)

1€Dn u

Take any ug € Aj. We will prove that (@) Sry o () 2210y Let
€ >0 and

My = {(m, ) ¢ (m), 200 ¢ $(mf), 25 0)}.

Since || — Q] as. for any u € A,, using (25),(26), (27), (23) and the
fact that d» < d;we obtain

| R (3 =) (27 0) 7" (3 — (e
o o B, 2 re? (1+ 62/2) 0y [/t

| | (™) — o)) (3e000) 7 (5") — ()
2 Aug Cp(up) My, o (mé%feM” T iEDZn:,UO (1+ 62)80013(110)|Qéu0)|l/p(uo)

(x - m(u))' (2+00) 7" (x) — m®)

ueA;—uo i€Dm (1 + 62)50Cp(u | G |1/P(0)

2 )\uocp(uo) (auo + 51) + Z Aucp(u) (au - 51'ch(u))\u)

ucA,—ug

v

Z au/\ucp(u) + 61 /\uocp(uo) -7 Z Cp(u)>\u)

ucAy ucAy

o
= Z au)\uCp(u) + 177

ucAy

1 51")/
2 2 My

ucAy

Then

lim, inf Sr(m,3) > so + ] (29)
{(mp:):(m(uo),z*<uo>)¢S(mg“0),zg<“0>,s)} 2

Applying part (iii) of Lemma 6 to the function p (v/ (socp(u)|ﬂéu)|1/p)> we

16



obtain

; u; *(u, -1 u; u;
o) ey (55) ™ ) e

(2 K2

SR
nlggo n ; Cp(ui)P QU |1/p(u)

(50 + 52/2)cp(ui)

1

A (u)y/ 2*(11) - o (u)
§ : 1 (x¢; — mo™) ( 0 (x; — mo™)
< AuCp(u) lim — E p .
ue4; " ep, (50+ 02/ 4)cp (| QL [1/P(0)

< Z )\ucp(u)au,

ueA;

and therefore,

5
lim S*(mg, 2g) < so + 52 (30)

n—oo

Using (29) and (30) we obtain (22). Then, Assumption B implies that m,, —mq
a.s. proving (i)
(i) Put i) = 1/|SW[1/p@) and ¢ = 1/|2{M|1/P(W . Then (22) implies

B (;Séu)Z(()u) a.s.
and putting né“) = dn(l“) / ¢gu) we get
7]7(1“)’23%“) — Z(()u)a.s..
We will show that for all u; € A7 and uy € A; we have

p) pluz) 1 g

Take 4 such that ui; = 1 and j such that ug; = 1. By Assumption B there exists
ug such that ug; = 1 and us; = 1. Put 3,, = (0,,,55) and Xg = (00,45). Then

u)~
7} I)Un,.ii — 00,5 a.8.,

ag)~
025055 — 00,45 as.,

ug)~
)G i — 00,1 as.,

(uz)= y
Np " On,jj — 00,55 @8-

Then 772“1)/77,(1“3) — la.s. and 77%“2)/77,(1“3) — 1 a.s., and this implies 777(1“1)/77&“2) -
1 a.s. Then, if we take a fixed ug € A3, for all u € A we have 7]7(1“")27(1“) N 28“)
a.s.. Since Assumption B is satisfied, this implies

(s, — 5 as.. (31)

We will show now that f]n — tgXg a.s.. The scale s, is defined by

17



!y~ -1
() =) (Se0) (M @)

1 ( i i
=3 cptanp = 57 2 Sl
=1

SnCp(u;)

Put ¥, = f]n/n,(:l‘)) and &, = ’s\n/m(LuO). Then we can write

(X,(Ui) _ fflglui))/ (z(uz'))*l (X('Ui) _ r?l%“i))

n i 1 n
; Cp(u;)P n Z = m ; Cp(u;)>

tncp(ui)

or equivalently

1 (- ﬁlg;l))’ (=) - (™=@t
D Ao D P T =5 D Anulow)-
ucAs Y i€Dn .y nCp(u)) ucA;
(32)
Note that (31) implies
lim ¥, =% as..

n—oo

In order to prove (ii) it is enough to show that

lim %, — to a.s., (33)

n—oo

where t( is defined in equation (17) of the paper.
Using Lemma A3.1 of the Supplemental Material of Marazzi et al. (2009)
we have that for any € > 0 and u € Aj

!, —1
L (G (5) i)
lim —
Jim o= > e

(to +€)cpu))

i€Dy

) (5) )

(to + S)Cp(u) )

18



and putting in left hand side of (32) ,, = to + ¢ we get

i 3 [ (57) ()

(tO + s)cp(u)

uEA;; ieDn,u

e (5 (¢ i)

(to + E)Cp(u)

(o) (5) " (¢t

toCp(u)

This shows that Efn < tp+e€ a.s. Similarly it can be proved that lim,, .. tAn >
to — € a.s. This proves (33) and therefore

lim &, = lim 5,5, = lim %, lim %, =t

n—oo n—oo n—oo n—oo

proving (ii).
(iii) In the case that the x;’s have normal distribution, we have

) () (e i)
P =5

p(u)

N =

and therefore

4 -1
Z M FEp (X( )_m(()U)) (2(()“)) (X( )_mE)U)> :% Z /\ucp(u)

@
ueA: p(u) ueA:

proving that tg = 1.
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