Confluence and combinatorics in finitely generated unital lattice-ordered abelian groups

Manuela Busaniche, Leonardo Cabrer and Daniele Mundici
Communicated by Manfred Droste

Abstract. A unital ℓ -group (G, u) is an abelian group G equipped with a translation-invariant lattice-order and a distinguished element u, called order-unit, whose positive integer multiples eventually dominate each element of G. It is shown that, for direct systems \mathcal{S} and \mathcal{T} of finitely presented unital ℓ -groups, confluence is a necessary condition for $\lim \mathcal{S} \cong \lim \mathcal{T}$. (Sufficiency is an easy byproduct of a general result). When (G, u) is finitely generated we equip it with a sequence $W_{(G,u)} = (W_0, W_1, \ldots)$ of weighted abstract simplicial complexes, where W_{t+1} is obtained from W_t either by the classical Alexander binary stellar operation, or by deleting a maximal simplex of W_t . We show that the map $(G, u) \mapsto W_{(G,u)}$ has an inverse. A confluence criterion is given to recognize when two sequences arise from isomorphic unital ℓ -groups.

Keywords. Lattice-ordered abelian group, rational polyhedron, order-unit, confluence, direct system, confluent direct system, simplicial complex, abstract simplicial complex, weighted abstract simplicial complex, stellar subdivision, Alexander starring, regular fan, De Concini–Procesi theorem, piecewise linear function, Elliott classification, AF C^* -algebra.

2010 Mathematics Subject Classification. Primary: 06F20, 52B11; secondary: 52B20, 57Q15, 46L05.

1 Introduction

This paper deals with an abelian group G equipped with a translation-invariant lattice-order and a distinguished *order-unit* u, i.e., an element whose positive integer multiples eventually dominate each element of G. For brevity, (G, u) will be called a *unital* ℓ -group. We refer to [5, 15] for background. Morphisms in the category of unital ℓ -groups are known as *unital* ℓ -homomorphisms: they preserve the lattice, the group structure and map order-units into order-units. Whenever the context is clear, we will write for short "isomorphism" instead of "unital ℓ -isomorphism".

Since a categorical equivalence Γ exists between unital ℓ -groups and the equational class of MV-algebras (see [20]) one can naturally define free unital ℓ -groups

(Theorem 2.1), as well as finitely presented unital ℓ -groups. The latter are defined as usual as the quotients of free finitely generated unital ℓ -groups modulo a finitely generated congruence. Then every finitely generated unital ℓ -group is the direct limit (= filtered colimit, in categorical language) of a countable direct system of finitely presented unital ℓ -groups with surjective connecting unital ℓ -homomorphisms. And conversely, the direct limit of any such sequence is a finitely generated unital ℓ -group.

Two sequences of unital ℓ -groups

$$(G_0, u_0) \rightarrow (G_1, u_1) \rightarrow \cdots$$
 and $(H_0, v_0) \rightarrow (H_1, v_1) \rightarrow \cdots$ (1.1)

are said to be *confluent* if there are indices $i(1) < j(1) < i(2) < j(2) < \cdots$ and surjective unital ℓ -homomorphisms

such that the composite map $g_{j(k)} \circ f_{i(k)}$ coincides with the map $(G_{i(k)}, u_{i(k)}) \twoheadrightarrow (G_{i(k+1)}, u_{i(k+1)})$ and conversely, $f_{i(k+1)} \circ g_{j(k)}$ coincides with $(H_{j(k)}, v_{j(k)}) \twoheadrightarrow (H_{j(k+1)}, v_{j(k+1)})$ in (1.1). Then by a standard argument [12, 2, VIII, 4.13–4.15], the confluence of the two sequences above is *sufficient* for their direct limits to be isomorphic. While in general categories confluence is not a necessary condition for direct limits to be isomorphic, in Theorems 3.1 and 3.3 it is proved that direct systems of unital ℓ -groups and unital ℓ -homomorphisms with isomorphic limits are necessarily confluent.

We next deal with finitely generated unital ℓ -groups. In Section 4 we recall the definition of a weighted abstract simplicial complex, i.e., an (always finite) abstract simplicial complex K enriched with a weight function from the set of vertices of K into $\{1,2,3,\ldots\}$. Using Alexander stellar operations we introduce suitable sequences of weighted abstract simplicial complexes, called *stellar sequences*. In Section 5 we construct a map assigning to each stellar sequence a unital ℓ -group, and in Theorem 5.1 we prove that, up to isomorphism, every finitely generated unital ℓ -group arises from some stellar sequence. In Corollary 5.4 a necessary and sufficient condition is given to recognize when two stellar sequences yield isomorphic unital ℓ -groups.

2 Unital ℓ-groups, polyhedra and regular complexes

Lattice-ordered abelian groups with order-unit

A *lattice-ordered abelian group* (ℓ -group) is a structure $(G, +, -, 0, \vee, \wedge)$ such that (G, +, -, 0) is an abelian group, (G, \vee, \wedge) is a lattice, and $x + (y \vee z) =$

 $(x+y) \lor (x+z)$ for all $x,y,z \in G$. An *order-unit* in G ("unité forte" in [5]) is an element $u \in G$ having the property that for every $g \in G$ there is $0 \le n \in \mathbb{Z}$ such that $g \le nu$. A *unital* ℓ -group (G,u) is an ℓ -group G with a distinguished order-unit u.

By an ℓ -ideal I of (G, u) we mean the kernel of a unital ℓ -homomorphism. Any such I determines the (quotient) unital ℓ -homomorphism $(G, u) \to (G, u)/I$ in the usual way [5, 15].

We let $\mathcal{M}([0,1]^n)$ denote the unital ℓ -group of piecewise linear continuous functions $f:[0,1]^n \to \mathbb{R}$ such that each piece of f has integer coefficients, with the constant function 1 as a distinguished order-unit. The number of pieces is always finite; "linear" is to be understood in the affine sense.

More generally, for any nonempty subset $X \subseteq [0,1]^n$ we denote by $\mathcal{M}(X)$ the unital ℓ -group of restrictions to X of the functions in $\mathcal{M}([0,1]^n)$, with the constant function 1 as the order-unit. For every $f \in \mathcal{M}(X)$ we let $\mathcal{Z}(f) = f^{-1}(0)$. For every ℓ -ideal I of $\mathcal{M}(X)$ we let $\mathcal{Z}(I) = \{Y \subseteq X \mid \exists g \in I \text{ with } Y = \mathcal{Z}(g)\}$.

The coordinate functions $\pi_i: [0,1]^n \to \mathbb{R}$ $(i=1,\ldots,n)$, together with the unit 1, generate the unital ℓ -group $\mathcal{M}([0,1]^n)$. They are said to be a *free generating* set of $\mathcal{M}([0,1]^n)$ because they have the following universal property:

Theorem 2.1 ([20, 4.16]). Let $\{g_1, \ldots, g_n\} \subseteq [0, u]$ be a set of generators of a unital ℓ -group (G, u). Then the map $\pi_i \mapsto g_i$ can be uniquely extended to a unital ℓ -homomorphism of $\mathcal{M}([0, 1]^n)$ onto (G, u).

Corollary 2.2. Up to isomorphism, every finitely generated unital ℓ -group has the form $\mathcal{M}([0,1]^n)/I$ for some $n=1,2,\ldots$ and ℓ -ideal I of $\mathcal{M}([0,1]^n)$.

Rational polyhedra, complexes and regularity

Following [25, p. 4], by a *polyhedron* $P \subseteq \mathbb{R}^n$ we mean a finite union of convex hulls of finite sets of points in \mathbb{R}^n . A *rational polyhedron* is a finite union of convex hulls of finite sets of rational points in \mathbb{R}^n , $n = 1, 2, \ldots$. An example of a rational polyhedron $P \subseteq [0, 1]^n$ is given by the zeroset $\mathcal{Z}(f)$ of any $f \in \mathcal{M}([0, 1]^n)$. In Propositions 2.4 and 2.6 below we will see that this is the most general possible example.

As an immediate consequence of the definitions we have

Lemma 2.3. If $\mathcal{P} = P_1 \supseteq P_2 \supseteq P_3 \supseteq \cdots$ is a sequence of nonempty rational polyhedra in the n-cube, then the set

$$\langle \mathcal{P} \rangle = \{ f \in \mathcal{M}([0,1]^n) \mid \mathcal{Z}(f) \supseteq P_i \text{ for some } i = 1, 2, \ldots \}$$

is an ℓ -ideal of $\mathcal{M}([0,1]^n)$.

For any rational point $y \in \mathbb{R}^n$ we denote by $\operatorname{den}(y)$ the least common denominator of the coordinates of y. The integer vector $\tilde{y} = \operatorname{den}(y)(y,1) \in \mathbb{Z}^{n+1}$ is called the *homogeneous correspondent* of y. For every rational m-simplex $T = \operatorname{conv}(v_0, \ldots, v_m) \subseteq \mathbb{R}^n$, we will use the notation

$$T^{\uparrow} = \mathbb{R}_{\geq 0} \, \tilde{v}_0 + \dots + \mathbb{R}_{\geq 0} \, \tilde{v}_m$$

for the positive span of $\tilde{v}_0, \dots, \tilde{v}_m$ in \mathbb{R}^{n+1} .

We refer to [14] for background on simplicial complexes. Unless otherwise specified, every complex $\mathcal K$ in this paper will be simplicial, and the adjective "simplicial" will be omitted. For every complex $\mathcal K$, its $support |\mathcal K|$ is the pointset union of all simplexes of $\mathcal K$. We say that the complex $\mathcal K$ is rational if all simplexes of $\mathcal K$ are rational: in this case, the set

$$\mathcal{K}^{\uparrow} = \{ T^{\uparrow} \mid T \in \mathcal{K} \}$$

is known as a simplicial fan [14].

A rational *m*-simplex $T = \text{conv}(v_0, \dots, v_m) \subseteq \mathbb{R}^n$ is *regular* if $\{\tilde{v}_0, \dots, \tilde{v}_m\}$ is part of a basis in the free abelian group \mathbb{Z}^{n+1} . A rational complex Δ is said to be *regular* if every simplex $T \in \Delta$ is regular. In other words, the fan Δ^{\uparrow} is regular [14, V, §4].

For later use we recall here some results about regular complexes and rational polyhedra. For the proofs we refer to [18] and [22], where regular complexes are called "unimodular triangulations".

Proposition 2.4 ([18, 5.1]). A set $X \subseteq [0, 1]^n$ coincides with the support of some regular complex Δ iff X = Z(f) for some $f \in \mathcal{M}([0, 1]^n)$.

Proposition 2.5 ([18, 5.2]). A unital ℓ -group (G, u) is finitely presented iff there exists a rational polyhedron $P \in [0, 1]^n$ such that $(G, u) \cong \mathcal{M}(P)$ for some $n \in \{1, 2, \ldots\}$.

Proposition 2.6 ([22, p. 539]). Any rational polyhedron $P \subseteq [0, 1]^n$ is the support of some regular complex Δ .

Subdivision, blow-up, Farey mediant

Given complexes \mathcal{K} and \mathcal{H} with $|\mathcal{K}| = |\mathcal{H}|$ we say that \mathcal{H} is a *subdivision* of \mathcal{K} if every simplex of \mathcal{H} is contained in a simplex of \mathcal{K} . For any point $p \in |\mathcal{K}| \subseteq \mathbb{R}^n$, the *blow-up* $\mathcal{K}_{(p)}$ of \mathcal{K} at p is the subdivision of \mathcal{K} given by replacing every simplex $T \in \mathcal{K}$ that contains p by the set of all simplexes of the form $conv(F \cup \{p\})$, where F is any face of T that does not contain p (see [14, III, 2.1] or [26, p. 376]).

For any regular 1-simplex $E = \text{conv}(v_0, v_1) \subseteq \mathbb{R}^n$, the *Farey mediant* of E is the rational point v of E whose homogeneous correspondent \tilde{v} coincides with $\tilde{v}_0 + \tilde{v}_1$. If E belongs to a regular complex Δ and v is the Farey mediant of E, then the blow-up $\Delta_{(v)}$, called *binary Farey blow-up*, is a regular complex.

Proposition 2.7. Suppose we are given rational polyhedra $Q \subseteq P \subseteq [0, 1]^n$ and a regular complex Δ with support P. Then there is a subdivision Δ^{\natural} of Δ obtained by binary Farey blow-ups such that $Q = \bigcup \{T \in \Delta^{\natural} \mid T \subseteq Q\}$.

Proof. We closely follow the argument of the proof in [22, p. 539]. Let us write $Q = T_1 \cup \cdots \cup T_t$ for suitable rational simplexes. Let $\mathcal{H} = \{H_1, \ldots, H_h\}$ be a set of rational half-spaces in \mathbb{R}^n such that every T_j is the intersection of half-spaces of \mathcal{H} . Using the De Concini–Procesi theorem [14, p. 252], we obtain a sequence of regular complexes $\Delta = \Delta_0, \Delta_1, \ldots, \Delta_r$ where each Δ_{k+1} is obtained by blowing-up Δ_k at the Farey mediant of some 1-simplex of Δ_k , and for each $i = 1, \ldots, h$, the convex polyhedron $H_i \cap [0, 1]^n$ is a union of simplexes of Δ_r . It follows that each simplex T_1, \ldots, T_t is a union of simplexes of Δ_r . Now $\Delta^{\natural} = \Delta_r$ yields the desired subdivision of Δ .

The following proposition states that every ℓ -ideal I of $\mathcal{M}(P)$ is uniquely determined by the zerosets of all functions in I:

Proposition 2.8. Suppose that $P \subseteq [0,1]^n$ is a rational polyhedron and I is an ℓ -ideal of $\mathfrak{M}(P)$. Then for every $f \in \mathfrak{M}(P)$ we have $f \in I$ iff $\mathcal{Z}(f) \supseteq \mathcal{Z}(g)$ for some $g \in I$.

Proof. For the nontrivial direction, suppose $\mathbb{Z}(f) \supseteq \mathbb{Z}(g)$ and without loss of generality, $g \ge 0$, and $f \ge 0$. We must find $0 \le m \in \mathbb{Z}$ such that $mg \ge f$. By Proposition 2.6, P is the support of some regular complex Λ . By suitably subdividing Λ , we obtain a rational (simplicial but not necessarily regular) complex Λ with $|\Lambda| = P$ such that over every $T \in \Lambda$ both f and g are linear. Let $\{v_1, \ldots, v_s\}$ be the vertices of Λ . For each $i = 1, \ldots, s$, since $f(v_i) \ne 0$ implies $g(v_i) \ne 0$, there exists an integer $m_i > 0$ such that $m_i g(v_i) \ge f(v_i)$. Letting $m = \max(m_1, \ldots, m_s)$, the desired result follows from the linearity of f and g over each simplex of Λ .

Proposition 2.9. Let I be an ℓ -ideal of $\mathfrak{M}([0,1]^m)$ and $P \in \mathcal{Z}(I)$. Let further

- (i) $I \upharpoonright P = \{ f \upharpoonright P \mid f \in I \},$
- (ii) $Z(I)_{\cap P} = \{X \cap P \mid X \in Z(I)\},\$
- (iii) $Z(I)_{\subseteq P} = \{X \in Z(I) \mid X \subseteq P\}.$

Then $Z(I \upharpoonright P) = Z(I)_{\cap P} = Z(I)_{\subseteq P}$.

Proof. $[Z(I)_{\cap P} \subseteq Z(I)_{\subseteq P}]$: Let $X \in Z(I)_{\cap P}$. By definition of $Z(I)_{\cap P}$, there exists $f \in I$ such that $X = Z(f) \cap P$. Combining Propositions 2.4 and 2.6 there exists $g \in \mathcal{M}([0,1]^m)$ such that P = Z(g). Since $P \in Z(I)$, $g \in I$ by Proposition 2.8. Therefore, $|f| + |g| \in I$ and $X = Z(f) \cap P = Z(|f|) \cap Z(|g|) = Z(|f| + |g|) \in Z(I)_{\subseteq P}$.

The inclusions $[Z(I)_{\subseteq P} \subseteq Z(I)_{\cap P}]$, $[Z(I \upharpoonright P) \subseteq Z(I)_{\cap P}]$, and $[Z(I)_{\cap P} \subseteq Z(I \upharpoonright P)]$ immediately follow by definition.

3 Z-homeomorphism of rational polyhedra

Given rational polyhedra $P \subseteq \mathbb{R}^m$ and $Q \subseteq \mathbb{R}^n$, a piecewise linear homeomorphism η of P onto Q is said to be a \mathbb{Z} -homeomorphism, in symbols, $\eta: P \cong_{\mathbb{Z}} Q$, if all linear pieces of η and η^{-1} have integer coefficients.

The following first main result of this paper highlights the mutual relations between \mathbb{Z} -homeomorphisms of polyhedra and isomorphisms of finitely generated unital ℓ -groups, as represented by Corollary 2.2:

Theorem 3.1. For any ℓ -ideals I of $\mathfrak{M}([0,1]^m)$ and J of $\mathfrak{M}([0,1]^n)$ the following conditions are equivalent:

- (i) $\mathcal{M}([0,1]^m)/I \cong \mathcal{M}([0,1]^n)/J$.
- (ii) For some $P \in \mathcal{Z}(I)$, $Q \in \mathcal{Z}(J)$ and \mathbb{Z} -homeomorphism η of P onto Q, the map $X \mapsto \eta(X)$ sends $\mathcal{Z}(I)_{\cap P}$ one-one onto $\mathcal{Z}(J)_{\cap Q}$.

Proof. (i) \Rightarrow (ii) Let $\iota: \mathcal{M}([0,1]^m)/I \cong \mathcal{M}([0,1]^n)/J$, and $\epsilon = \iota^{-1}$. Let id_m denote the identity (π_1,\ldots,π_m) over the m-cube, and id_n the identity over the n-cube. Each element $\pi_i/I \in \mathcal{M}([0,1]^m)/I$ is sent by ι to some element a_i/J of $\mathcal{M}([0,1]^n)/J$. Writing $[0,1] \ni ((a_i/J) \vee 0) \wedge 1 = ((a_i \vee 0) \wedge 1)/J$, and replacing, if necessary, a_i by $(a_i \vee 0) \wedge 1$, it is no loss of generality to assume that a_i belongs to the unit interval of $\mathcal{M}([0,1]^n)$, i.e., the range of a_i is contained in the unit interval [0,1]. Thus for a suitable m-tuple $a=(a_1,\ldots,a_m)$ of functions $a_i \in \mathcal{M}([0,1]^n)$ we have $a:[0,1]^n \to [0,1]^m$. Symmetrically, for some $b=(b_1,\ldots,b_n):[0,1]^m \to [0,1]^n$, $b_i \in \mathcal{M}([0,1]^m)$, we can write

$$\iota: \mathrm{id}_m / I \mapsto a / J \quad \text{and} \quad \epsilon: \mathrm{id}_n / J \mapsto b / I.$$
 (3.1)

For any $f \in \mathcal{M}([0,1]^m)$ and $g \in \mathcal{M}([0,1]^n)$, arguing by induction on the number of operations in f and g in the light of Theorem 2.1, we get the following generalization of (3.1):

$$\iota: f/I \mapsto (f \circ a)/J \quad \text{and} \quad \epsilon: g/J \mapsto (g \circ b)/I.$$
 (3.2)

It follows that

$$\frac{f}{I} = (\epsilon \circ \iota) \frac{f}{I} = \epsilon \left(\iota \left(\frac{f}{I} \right) \right) = \epsilon \left(\frac{f \circ a}{J} \right) = \frac{f \circ a \circ b}{I}.$$

By definition of the congruence induced by I, for each $i=1,\ldots,m$ the function $|\pi_i-a_i\circ b|=|\pi_i-\pi_i\circ a\circ b|$ belongs to I. Here, as usual, $|\cdot|$ denotes absolute value. It follows that the function $e=\sum_{i=1}^m |\pi_i-a_i\circ b|$ belongs to I, and its zeroset Z(e) belongs to Z(I). The set P=Z(e) satisfies the identity $P=\{x\in[0,1]^m\mid (a\circ b)(x)=x\}$. One similarly notes that the set $Q=\{y\in[0,1]^n\mid (b\circ a)(y)=y\}$ belongs to Z(J). By construction, the restriction of b to P provides a \mathbb{Z} -homeomorphism η of P onto Q, whose inverse θ is the restriction of a to Q. In symbols,

$$b \upharpoonright P = \eta: P \cong_{\mathbb{Z}} Q, \quad a \upharpoonright Q = \theta: Q \cong_{\mathbb{Z}} P. \tag{3.3}$$

Suppose $X \in \mathcal{Z}(I)_{\cap P}$, with the intent of proving $\eta(X) \in \mathcal{Z}(J)_{\cap Q}$. By Proposition 2.9, we can write $X = \mathcal{Z}(k \upharpoonright P)$ for some $k \in I$. By (3.2), the composite function $k \circ a$ belongs to J. Thus $\eta(X) = \eta(\mathcal{Z}(k \upharpoonright P)) = \mathcal{Z}((k \upharpoonright P) \circ \theta) = \mathcal{Z}(k \circ a \upharpoonright Q) = Q \cap \mathcal{Z}(k \circ a) \in \mathcal{Z}(J)_{\cap Q}$. Reversing the roles of η and θ we have the required one-one correspondence $X \mapsto \eta(X)$ between $\mathcal{Z}(I)_{\cap P}$ and $\mathcal{Z}(J)_{\cap Q}$.

(ii) \Rightarrow (i) Let I_P (resp., let J_Q) be the ℓ -ideal of $\mathfrak{M}([0,1]^m)$ (resp., of $\mathfrak{M}([0,1]^n)$) given by all functions identically vanishing over P (resp., over Q). By [18, 5.2], we have isomorphisms

$$\alpha: \mathcal{M}(P) \cong \mathcal{M}([0,1]^m)/I_P \quad \text{with} \quad \alpha(I \upharpoonright P) = I/I_P$$
 (3.4)

and

$$\beta: \mathcal{M}(Q) \cong \mathcal{M}([0,1]^n)/J_Q \quad \text{with} \quad \beta(J \upharpoonright Q) = J/J_Q.$$
 (3.5)

As a particular case of a general algebraic result (sometimes called "the second isomorphism theorem"), the map $\frac{f/I_P}{I/I_P} \mapsto \frac{f}{I}$ is an isomorphism of $\frac{\mathcal{M}([0,1]^m)/I_P}{I/I_P}$ onto $\frac{\mathcal{M}([0,1]^m)}{I}$. From (3.4)–(3.5) we have isomorphisms

$$\frac{\mathcal{M}([0,1]^m)}{I} \cong \frac{\mathcal{M}([0,1]^m)/I_P}{I/I_P} \cong \frac{\mathcal{M}(P)}{I \upharpoonright P}$$
(3.6)

and

$$\frac{\mathcal{M}([0,1]^n)}{J} \cong \frac{\mathcal{M}([0,1]^n)/J_Q}{J/J_Q} \cong \frac{\mathcal{M}(Q)}{J \upharpoonright Q}.$$
(3.7)

Letting $\theta = \eta^{-1}$, we have $\theta: Q \cong_{\mathbb{Z}} P$ and the map $\lambda: k \mapsto k \circ \theta$ is an isomorphism of $\mathcal{M}(P)$ onto $\mathcal{M}(Q)$. Further, the map $Y \mapsto \theta(Y)$ sends $\mathcal{Z}(J)_{\cap Q} = \mathcal{Z}(J \upharpoonright Q)$ one-one onto $\mathcal{Z}(I)_{\cap P} = \mathcal{Z}(I \upharpoonright P)$.

Claim. The restriction of λ to the ℓ -ideal $I \upharpoonright P$ of $\mathfrak{M}(P)$ maps $I \upharpoonright P$ one-one onto $J \upharpoonright Q$. Thus the map

 $\frac{k}{I \upharpoonright P} \mapsto \frac{\lambda(k)}{\lambda(I \upharpoonright P)}$

defines an isomorphism of $\mathfrak{M}(P)/(I \upharpoonright P)$ onto $\mathfrak{M}(Q)/(J \upharpoonright Q)$.

By Proposition 2.9, for each $l \in \mathcal{M}(P)$ if $l \in I \upharpoonright P$, then $\mathcal{Z}(l) \in \mathcal{Z}(I \upharpoonright P) = \mathcal{Z}(I)_{\cap P}$. Thus by definition of λ , $\mathcal{Z}(\lambda(l)) = \mathcal{Z}(l \circ \theta) = \eta(\mathcal{Z}(l)) \in \mathcal{Z}(J)_{\cap Q}$. By Proposition 2.8, $\lambda(l) \in J \upharpoonright Q$. Reversing the roles of λ and λ^{-1} , our claim is settled.

Combining (3.6)–(3.7) and our claim above we have isomorphisms

$$\frac{\mathcal{M}([0,1]^m)}{I} \cong \frac{\mathcal{M}(P)}{I \upharpoonright P} \cong \frac{\mathcal{M}(Q)}{J \upharpoonright O} \cong \frac{\mathcal{M}([0,1]^n)}{J},$$

as required to conclude the proof.

Using Theorem 3.1, in Theorem 3.3 below we will show that confluence is a necessary condition for two direct systems of finitely presented unital ℓ -groups to have isomorphic direct limits. For the proof we prepare

Corollary 3.2. Let $P \subseteq [0,1]^m$ and $Q \subseteq [0,1]^n$ be rational polyhedra.

- (i) $\mathcal{M}(P) \cong \mathcal{M}(Q)$ if and only if $P \cong_{\mathbb{Z}} Q$.
- (ii) If η is a \mathbb{Z} -homeomorphism of Q onto some rational polyhedron $R \subseteq P$, the map $f \mapsto f \circ \eta$ is a unital ℓ -homomorphism of $\mathcal{M}(P)$ onto $\mathcal{M}(Q)$.
- (iii) For every unital ℓ -homomorphism h of $\mathfrak{M}(P)$ onto $\mathfrak{M}(Q)$ there exists a unique \mathbb{Z} -homeomorphism θ of Q onto some rational polyhedron $R \subseteq P$ such that $h(f) = f \circ \theta$ for each $f \in \mathfrak{M}(P)$.

Proof. (i) Let $I_P = \{ f \in \mathcal{M}([0,1]^m) \mid \mathcal{Z}(f) \supseteq P \}$ and $J_Q = \{ g \in \mathcal{M}([0,1]^n) \mid \mathcal{Z}(g) \supseteq Q \}$. By [18, 5.2], the maps α : $f \upharpoonright P \mapsto f/I_P$ and β : $g \upharpoonright Q \mapsto g/J_Q$ are isomorphisms of $\mathcal{M}(P)$ onto $\mathcal{M}([0,1]^m)/I_P$ and of $\mathcal{M}(Q)$ onto $\mathcal{M}([0,1]^n)/J_Q$, respectively. An application of Theorem 3.1 now settles (i).

(ii) By (i), $\mathcal{M}(R) \cong \mathcal{M}(Q)$. Let us define now the map $\iota: \mathcal{M}(R) \to \mathcal{M}(Q)$ by

$$\iota : f \mapsto f \circ \eta.$$

Then the proof of Theorem 3.1 shows that ι is an isomorphism of $\mathcal{M}(R)$ onto $\mathcal{M}(Q)$. The map $\lambda: g \mapsto g \upharpoonright R$ is an ℓ -homomorphism of $\mathcal{M}(P)$ onto $\mathcal{M}(R)$. Thus

$$\iota \circ \lambda(f) = (f \upharpoonright R) \circ \eta = f \circ \eta$$

for each $f \in \mathcal{M}(P)$, and the map $f \mapsto f \circ \eta$ is a unital ℓ -homomorphism of $\mathcal{M}(P)$ onto $\mathcal{M}(Q)$.

(iii) With reference to (i), let the unital ℓ -homomorphism h' of $\mathcal{M}([0,1]^m)$ onto $\mathcal{M}([0,1]^n)/J_Q$ be defined by $h'(f)=\beta(h(f \upharpoonright P))$. Letting I denote the kernel of h', it follows that $I_P\subseteq I$ and the map $\iota\colon f/I\mapsto h'(f)$ is an isomorphism of $\mathcal{M}([0,1]^m)/I$ onto $\mathcal{M}([0,1]^n)/J_Q$. By Theorem 3.1, there exist $S\in \mathcal{Z}(I)$, $T\in \mathcal{Z}(J_Q)$ and a \mathbb{Z} -homeomorphism η of S onto T such that the map $X\mapsto \eta(X)$ sends $\mathcal{Z}(I)_{\cap S}$ one-one onto $\mathcal{Z}(J_Q)_{\cap T}$. By definition of J_Q and Proposition 2.6, Q is the smallest element of $\mathcal{Z}(I)_{\cap S}$. In the proof of Theorem 3.1, a map $a\colon [0,1]^n\to [0,1]^m$ is introduced having the property that $\iota(f/I)=(f\circ a)/J_Q$ and $\eta^{-1}=a\upharpoonright T$ for each $f\in \mathcal{M}([0,1]^m)$. Since $Q\subseteq T$, for each $f\in \mathcal{M}([0,1]^m)$ we can write

$$h(f \upharpoonright P) = \beta^{-1}(h'(f)) = \beta^{-1}(\iota(f/I)) = \beta^{-1}((f \circ a)/J_Q) = (f \circ a) \upharpoonright Q$$
$$= f \circ (\eta^{-1} \upharpoonright Q).$$

Let us define $\theta = \eta^{-1} \upharpoonright Q$. Then $\theta \colon Q \cong_{\mathbb{Z}} R$, $R \subseteq P \cap S \subseteq P$ and $h(f \upharpoonright P) = f \circ \theta$. Finally, the uniqueness of θ follows from the separation property [20, 4.17], stating that for any two distinct points $x, y \in P$ there is $f \in \mathcal{M}(P)$ with f(x) = 0 and f(y) > 0.

Theorem 3.3. Given direct systems \mathcal{S} and \mathcal{T} of finitely presented unital ℓ -groups with surjective connecting unital ℓ -homomorphisms

$$\mathcal{S} = (G_0, u_0) \stackrel{f_1}{\twoheadrightarrow} (G_1, u_1) \stackrel{f_2}{\twoheadrightarrow} (G_2, u_2) \cdots,$$

$$\mathcal{T} = (H_0, v_0) \stackrel{g_1}{\twoheadrightarrow} (H_1, v_1) \stackrel{g_2}{\twoheadrightarrow} (H_2, v_2) \cdots,$$

let (G, u) and (H, v) denote their respective direct limits. Then the following conditions are equivalent:

- (i) $(G, u) \cong (H, v)$.
- (ii) 8 and T are confluent.

Proof. (ii) \Rightarrow (i) was dealt with in the Introduction. For the converse implication, Proposition 2.5 yields rational polyhedra P_0, P_1, \ldots such that $\mathcal{M}(P_i) \cong (G_i, u_i)$ for each $i = 0, 1, 2, \ldots$. Let $\theta_i : P_i \cong_{\mathbb{Z}} \theta_i(P_i) \subseteq P_{i-1}$ be the \mathbb{Z} -homeomorphism associated to each f_i , as given by Corollary 3.2. Let the sequence \mathcal{P} be defined by

$$\mathcal{P} = P_0' \supseteq P_1' \supseteq P_2' \supseteq \cdots$$

where $P_0' = P_0 \subseteq [0, 1]^m$ and $P_i' = \theta_1 \circ \cdots \circ \theta_i(P_i)$ for each $i = 1, 2, \dots$. Once more from Corollary 3.2 we get

$$(G_i, u_i) \cong \mathcal{M}(P_i) \cong \mathcal{M}(P_i'). \tag{3.8}$$

It follows that $(G, u) \cong \mathcal{M}([0, 1]^m) / \langle \mathcal{P} \rangle$. Applying the same construction to \mathcal{T} we obtain a sequence

$$[0,1]^n \supseteq Q_0 \stackrel{\eta_1}{\leftarrow} Q_1 \stackrel{\eta_2}{\leftarrow} Q_2 \stackrel{\eta_3}{\leftarrow} \cdots$$

where for each i, $(H_i, v_i) \cong \mathcal{M}(Q_i)$ and η_i is a \mathbb{Z} -homeomorphism of Q_i onto $\eta_i(Q_i) \subseteq Q_{i-1}$. Let $\mathcal{Q} = Q_0' \supseteq Q_1' \supseteq Q_2' \supseteq \cdots$, where $Q_0' = Q_0$ and $Q_i' = \eta_1 \circ \cdots \circ \eta_i(Q_i)$ for each $i = 1, 2, \ldots$. It follows that

$$(H_i, v_i) \cong \mathcal{M}(Q_i) \cong \mathcal{M}(Q_i')$$
 and $(H, v) \cong \mathcal{M}([0, 1]^n) / \langle Q \rangle$. (3.9)

By hypothesis, $\mathcal{M}([0,1]^m)/\langle \mathcal{P} \rangle \cong (G,u) \cong (H,v) \cong \mathcal{M}([0,1]^n)/\langle \mathcal{Q} \rangle$. By Theorem 3.1, there exist $P \in \langle \mathcal{P} \rangle$, $Q \in \langle \mathcal{Q} \rangle$ and a \mathbb{Z} -homeomorphism $\phi \colon P \cong_{\mathbb{Z}} Q$ sending $\mathcal{Z}(\langle \mathcal{P} \rangle)_{\cap P}$ one-one onto $\mathcal{Z}(\langle \mathcal{Q} \rangle)_{\cap Q}$. By definition of $\langle \mathcal{P} \rangle$ and $\langle \mathcal{Q} \rangle$, there exist P'_k and Q'_l such that $P'_k \subseteq P$ and $Q'_l \subseteq Q$. Thus, for each $i \geq k$ there exists i' such that $\phi^{-1}(Q'_{i'}) \subseteq P'_i$. Reversing the roles of ϕ and ϕ^{-1} it follows that for each $j \geq l$ there exists j' such that $\phi(P'_{j'}) \subseteq Q'_j$. Summing up, there are indices $i(1) < j(1) < i(2) < j(2) < \cdots$ such that $\phi(P'_{i(k)}) \subseteq Q'_{j(k)}$ and $\phi^{-1}(Q'_{j(k)}) \subseteq P'_{i(k+1)}$ for each $k = 1, 2, \ldots$ The desired result now follows from (3.8) and (3.9), in view of Corollary 3.2.

4 Weighted abstract simplicial complexes

Let us recall that a (finite) abstract simplicial complex is a pair $H = (\mathcal{V}, \Sigma)$ where \mathcal{V} is a finite nonempty set, whose elements are called the *vertices* of H, and Σ is a collection of subsets of \mathcal{V} whose union is \mathcal{V} , and with the property that every subset of an element of Σ is again an element of Σ . Following Alexander [2, p. 298], given a two-element set $\{v, w\} \in \Sigma$ and $a \notin \mathcal{V}$ we define the *binary subdivision* $(\{v, w\}, a)$ of H as the abstract simplicial complex $(\{v, w\}, a)H$ obtained by adding a to the vertex set, and replacing every set $\{v, w, u_1, \ldots, u_t\} \in \Sigma$ by the two sets $\{v, a, u_1, \ldots, u_t\}$ and $\{a, w, u_1, \ldots, u_t\}$ and their subsets. A weighted abstract simplicial complex is a triple $W = (\mathcal{V}, \Sigma, \omega)$ where (\mathcal{V}, Σ) is an abstract simplicial complex and ω is a map of \mathcal{V} into the set $\{1, 2, 3, \ldots\}$. For $\{v, w\} \in \Sigma$ and $a \notin \mathcal{V}$, the binary subdivision $(\{v, w\}, a)W$ is the abstract simplicial complex $(\{v, w\}, a)(\mathcal{V}, \Sigma)$ equipped with the weight function $\widetilde{\omega}: \mathcal{V} \cup \{a\} \rightarrow \{1, 2, 3, \ldots\}$ given by $\widetilde{\omega}(a) = \omega(v) + \omega(w)$ and $\widetilde{\omega}(u) = \omega(u)$ for all $u \in \mathcal{V}$.

For every regular complex Λ , the *skeleton* of Λ is the weighted abstract simplicial complex $W_{\Lambda} = (\mathcal{V}, \Sigma, \omega)$ given by the following stipulations:

- (i) \mathcal{V} = vertices of Λ .
- (ii) For every vertex v of Λ , $\omega(v) = \text{den}(v)$.
- (iii) For every subset $W = \{w_1, \dots, w_k\}$ of $\mathcal{V}, W \in \Sigma$ iff $\operatorname{conv}(w_1, \dots, w_k) \in \Lambda$.

Given two weighted abstract simplicial complexes $W = (\mathcal{V}, \Sigma, \omega)$ and $W' = (\mathcal{V}', \Sigma', \omega')$ we write

$$\gamma: W \cong W'$$
,

and we say that γ is a *combinatorial isomorphism* between W and W', if γ is a one-one map from V onto V' such that $\omega'(\gamma(v)) = \omega(v)$ for all $v \in V$, and $\{w_1, \ldots, w_k\} \in \Sigma$ iff $\{\gamma(w_1), \ldots, \gamma(w_k)\} \in \Sigma'$ for each subset $\{w_1, \ldots, w_k\}$ of V.

Definition 4.1. Let W be a weighted abstract simplicial complex and ∇ a regular complex. Then a ∇ -realization of W is a combinatorial isomorphism ι between W and the skeleton W_{∇} of ∇ . We write $\iota: W \to \nabla$ to mean that ι is a ∇ -realization of W.

For any regular complex Λ , the identity function over the set of vertices of Λ is a Λ -realization of W_{Λ} , called the *trivial realization of the skeleton* W_{Λ} .

Symmetrically, let $W = (\mathcal{V}, \Sigma, \omega)$ be a weighted abstract simplicial complex with vertex set $\mathcal{V} = \{v_1, \dots, v_n\}$. For e_1, \dots, e_n the standard basis vectors of \mathbb{R}^n , let Δ_W be the complex whose vertices are

$$v_1' = e_1/\omega(v_1), \ldots, v_n' = e_n/\omega(v_n),$$

and whose k-simplexes (k = 0, ..., n) are given by

$$\operatorname{conv}(v'_{i(0)}, \dots, v'_{i(k)}) \in \Delta_W \quad \text{iff} \quad \{v_{i(0)}, \dots, v_{i(k)}\} \in \Sigma.$$

Note that Δ_W is a regular complex and $|\Delta_W| \subseteq [0, 1]^n$. The function

$$\tilde{\iota}: v_i \in \mathcal{V} \mapsto v_i' \in [0, 1]^n$$
 (4.1)

is a Δ_W -realization of W, called the *canonical realization* of W. The dependence on the order in which the elements $\{v_1, \ldots, v_n\}$ are listed, is tacitly understood.

For later purposes, we record here the following trivial property of linear \mathbb{Z} -homeomorphisms.

Lemma 4.2. Let $T = \text{conv}(v_0, \dots, v_k) \subseteq \mathbb{R}^m$ and $U = \text{conv}(w_0, \dots, w_k) \subseteq \mathbb{R}^n$ be regular k-simplexes. If $\text{den}(v_i) = \text{den}(w_i)$ for all $i = 0, \dots, k$, then there is precisely one linear \mathbb{Z} -homeomorphism η_T of T onto U such that $\eta_T(v_i) = w_i$ for all i.

Lemma 4.3. Let Λ and ∇ be regular complexes, with $|\Lambda| \subseteq \mathbb{R}^m$ and $|\nabla| \subseteq \mathbb{R}^n$. We then have:

- (i) If $\theta: W_{\Lambda} \cong W_{\nabla}$ is a combinatorial isomorphism between the skeletons of Λ and ∇ , then there is a \mathbb{Z} -homeomorphism η_{θ} of $|\Lambda|$ onto $|\nabla|$ such that $\eta_{\theta}(v) = \theta(v)$ for each vertex v of Λ , and η_{θ} is linear over each simplex of Λ .
- (ii) Letting $\nabla = \Delta_{W_{\Lambda}}$, it follows that the combinatorial isomorphism $\tilde{\iota}$ of (4.1) between W_{Λ} and W_{∇} uniquely extends to a \mathbb{Z} -homeomorphism $\eta_{\tilde{\iota}}$ of $|\Lambda|$ onto $|\nabla|$ such that $\eta_{\tilde{\iota}}$ is linear over each simplex of Λ .

Stellar transformations

Let $W = (\mathcal{V}, \Sigma, \omega)$ and W' be two weighted abstract simplicial complexes. A map $\flat : W \to W'$ is called a *stellar transformation* if \flat is either a deletion of a maximal set of Σ , or a binary subdivision, or else \flat is the identity map.

A sequence $W = (W_0, W_1, ...)$ of weighted abstract simplicial complexes is *stellar* if W_{j+1} is obtained from W_j by a stellar transformation.

Recalling Definition 4.1 we have

Lemma 4.4. Let $W = (\mathcal{V}, \Sigma, \omega)$ and $W' = (\mathcal{V}', \Sigma', \omega')$ be two weighted abstract simplicial complexes, Δ a regular complex, and ι a Δ -realization of W, $\iota: W \to \Delta$. Suppose that $\flat: W \to W'$ is a stellar transformation.

- (i) In case \flat deletes a maximal set $M \in \Sigma$, let $\flat(\iota): \Delta \to \Delta'$ delete from Δ the corresponding maximal simplex $conv(\iota(M))$. Then the map $\iota' = \iota \upharpoonright \mathcal{V}'$ is a Δ' -realization of W'.
- (ii) In case \flat is the binary subdivision $W' = (\{a,b\}c)W$ at some two-element set $E = \{a,b\} \in \Sigma$, and $c \notin V$, let e be the Farey mediant of the 1-simplex conv($\iota(E)$). Let $\flat(\iota)$ be the Farey blow-up $\Delta' = \Delta_{(e)}$ of Δ at e. Then the map $\iota' = \iota \cup \{(c,e)\}$ is a Δ' -realization of W'.

Further, we have a commutative diagram

$$\begin{array}{ccc} W & \stackrel{\flat}{\longrightarrow} & W' \\ \downarrow^{\iota} & & \downarrow^{\iota'} \\ \Delta & \stackrel{\flat(\iota)}{\longrightarrow} & \Delta'. \end{array}$$

We say that $\flat(\iota)$ is the Δ -transformation of \flat . (It is tacitly understood that if \flat is the identity map, then $\flat(\iota): \Delta \to \Delta'$ is the identity function.)

5 Construction of the map $W \mapsto \mathcal{G}(W)$

In this section we will construct a map $W \mapsto \mathcal{G}(W)$, from stellar sequences to unital ℓ -groups and prove that the map is onto all finitely generated unital ℓ -groups.

Main construction

Let $W = W_0, W_1,...$ be a stellar sequence. For each j = 0, 1,... let \flat_j be the corresponding stellar transformation sending W_j to W_{j+1} . For some $n \ge 1$ and regular complex Δ_0 in the n-cube let ι_0 be a Δ_0 -realization of W_0 . Then Lemma 4.4 yields a commutative diagram

The sequence of supports $|\Delta_0| \supseteq |\Delta_1| \supseteq \cdots$ is called the Δ_0 -orbit of W and is denoted $\mathcal{O}(W, \Delta_0)$ (the role of ι_0 being tacitly understood). As in Lemma 2.3, the filtering set $\mathcal{O}(W, \Delta_0)$ determines the ℓ -ideal $J(W, \Delta_0) = \langle \mathcal{O}(W, \Delta_0) \rangle$ of $\mathcal{M}([0, 1]^n)$, as well as the unital ℓ -group $\mathcal{G}(W, \Delta_0) = \mathcal{M}([0, 1]^n) / J(W, \Delta_0)$. In the particular case when ι_0 is the canonical realization of W_0 we write $\mathcal{O}(W)$, J(W), $\mathcal{G}(W)$ instead of $\mathcal{O}(W, \Delta_{W_0})$, $J(W, \Delta_{W_0})$, $\mathcal{G}(W, \Delta_{W_0})$.

Theorem 5.1. For every finitely generated unital ℓ -group (G, u) there is a stellar sequence W such that $\mathcal{G}(W) \cong (G, u)$.

As a preliminary step for the proof we need the following immediate consequence of the definitions:

Lemma 5.2. For any weighted abstract simplicial complex W and regular complexes ∇ and Δ , let ι be a ∇ -realization of W, and ϵ a Δ -realization of W. Let $\eta_{\gamma}: |\nabla| \to |\Delta|$ be the \mathbb{Z} -homeomorphism of Lemma 4.3 corresponding to the combinatorial isomorphism $\gamma = \epsilon \circ \iota^{-1}$. Suppose the stellar transformation \flat transforms W into W'. Let the commutative diagram

$$\begin{array}{cccc}
\Delta & \xrightarrow{\flat(\epsilon)} & \Delta' \\
\uparrow^{\epsilon} & & \uparrow^{\epsilon'} \\
W & \xrightarrow{\flat} & W' \\
\downarrow^{\iota} & & \downarrow^{\iota'} \\
\nabla & \xrightarrow{\flat(\iota)} & \nabla'
\end{array} \tag{5.2}$$

be as in Lemma 4.4. Let further $\gamma' = \epsilon' \circ \iota'^{-1}$, and $\eta_{\gamma'}$ be the \mathbb{Z} -homeomorphism of $|\nabla'|$ onto $|\Delta'|$ given by Lemma 4.3. Then $\eta_{\gamma} \lceil |\nabla'| = \eta_{\gamma'}$, whence in particular $\eta_{\gamma'}$ is linear over each simplex of $|\nabla'|$.

We next prove

Lemma 5.3. Let $W = W_0, W_1, ...$ be a stellar sequence. Let ϵ_0 be a Δ_0 -realization of W_0 and ι_0 be a ∇_0 -realization of W_0 . Then $\mathcal{G}(W, \Delta_0) \cong \mathcal{G}(W, \nabla_0)$.

Proof. Let us write for short $I = \mathcal{J}(W, \Delta_0)$, $J = \mathcal{J}(W, \nabla_0)$. By definition of realization, there is a combinatorial isomorphism ξ of W_{Δ_0} onto W_{∇_0} . By Lemma 4.3 (i), ξ can be extended to a \mathbb{Z} -homeomorphism η of $|\Delta_0|$ onto $|\nabla_0|$, which is linear over each simplex of Δ_0 . Lemma 5.2 now yields \mathbb{Z} -homeomorphisms

$$\eta_i = \eta \upharpoonright |\Delta_i| : |\Delta_i| \cong_{\mathbb{Z}} |\nabla_i|, \quad i = 0, 1, 2, \dots,$$

with $\eta \upharpoonright |\Delta_i|$ linear on every simplex of Δ_i . In other words, we have a commutative diagram

$$|\Delta_{0}| \stackrel{i_{1}}{\longleftrightarrow} |\Delta_{1}| \stackrel{i_{2}}{\longleftrightarrow} |\Delta_{2}| \dots$$

$$\eta_{0} \downarrow \uparrow \eta_{0}^{-1} \quad \eta_{1} \downarrow \uparrow \eta_{1}^{-1} \quad \eta_{2} \downarrow \uparrow \eta_{2}^{-1}$$

$$|\nabla_{0}| \stackrel{j_{1}}{\longleftrightarrow} |\nabla_{1}| \stackrel{j_{2}}{\longleftrightarrow} |\nabla_{2}| \dots$$

where, for each $k = 1, 2, ..., i_k : |\Delta_k| \hookrightarrow |\Delta_{k-1}|$ and $j_k : |\nabla_k| \hookrightarrow |\nabla_{k-1}|$ are the inclusion maps. Corollary 3.2 ensures that the following diagram is commutative:

$$\mathcal{M}(|\Delta_{0}|) \stackrel{g_{1}}{\twoheadrightarrow} \mathcal{M}(|\Delta_{1}|) \stackrel{g_{2}}{\twoheadrightarrow} \mathcal{M}(|\Delta_{2}|) \dots \\
\alpha_{0}^{-1} \downarrow \uparrow \alpha_{0} \qquad \alpha_{1}^{-1} \downarrow \uparrow \alpha_{1} \qquad \alpha_{2}^{-1} \downarrow \uparrow \alpha_{2} \\
\mathcal{M}(|\nabla_{0}|) \stackrel{h_{1}}{\twoheadrightarrow} \mathcal{M}(|\nabla_{1}|) \stackrel{h_{2}}{\twoheadrightarrow} \mathcal{M}(|\nabla_{2}|) \dots$$
(5.3)

Here $g_k \colon \mathcal{M}(|\Delta_{k-1}|) \twoheadrightarrow \mathcal{M}(|\Delta_k|)$ (resp., $h_k \colon \mathcal{M}(|\nabla_{k-1}|) \twoheadrightarrow \mathcal{M}(|\nabla_k|)$) are defined by $g_k(f) = f \upharpoonright |\Delta_k|$ (resp., $h_k(f) = f \upharpoonright |\nabla_k|$), and $\alpha_k \colon \mathcal{M}(|\Delta_k|) \cong \mathcal{M}(|\nabla_k|)$ are the isomorphisms defined by $\alpha_k(f) = f \circ \eta_k = f \circ \eta \upharpoonright |\Delta_k|$.

To conclude the proof we observe that $\mathcal{G}(W, |\Delta_0|)$ and $\mathcal{G}(W, |\nabla_0|)$ respectively are the direct limits of the direct systems

$$\mathcal{M}(|\Delta_0|) \xrightarrow{g_1} \mathcal{M}(|\Delta_1|) \xrightarrow{g_2} \mathcal{M}(|\Delta_2|) \dots$$

and

$$\mathcal{M}(|\nabla_0|) \xrightarrow{h_1} \mathcal{M}(|\nabla_1|) \xrightarrow{h_2} \mathcal{M}(|\nabla_2|) \dots$$

From (5.3) it follows that $\mathscr{G}(W, |\Delta_0|) \cong \mathscr{G}(W, |\nabla_0|)$, and the proof is complete.

Proof of Theorem 5.1. By Corollary 2.2, there exists an integer n > 0 such that (G, u) is isomorphic to $\mathcal{M}([0, 1]^n)/I$ for some ℓ -ideal I of $\mathcal{M}([0, 1]^n)$. We list the elements of I in a sequence f_0, f_1, \ldots Let $P_i = \bigcap_{j=0}^{i} \mathcal{Z}(f_i)$, for each $i = 0, 1, 2, \ldots$

Since $Z(f_i) \in Z(I)$ and Z(I) is closed under finite intersections, P_i belongs to Z(I). Moreover, for each $f \in I$ there is j = 0, 1, 2, ... such that $P_j \subseteq Z(f)$. Thus,

$$\langle \{P_0, P_1, \ldots \} \rangle = I. \tag{5.4}$$

By Proposition 2.6, P_0 is the support of a regular complex Δ_0 . Proposition 2.7 yields a finite sequence of regular complexes $\Delta_{0,0}, \Delta_{0,1}, \ldots, \Delta_{0,k_0}$ having the following properties:

- (i) $\Delta_{0,0} = \Delta_0$;
- (ii) for each $t = 1, 2, ..., \Delta_{0,t}$ is obtained by blowing-up $\Delta_{0,t-1}$ at the Farey mediant of some 1-simplex $E \in \Delta_{0,t-1}$;
- (iii) P_1 is a union of simplexes of Δ_{0,k_0} .

Let the sequence of regular complexes $\Delta_{0,k_0}, \Delta_{0,k_0+1}, \ldots, \Delta_{0,r_0}$ be obtained by the following procedure: for each i>0, delete in Δ_{0,k_0+i-1} a maximal simplex T which is not contained in P_1 ; denote by Δ_{0,k_0+i} the resulting complex; stop when no such T exists. Then the sequence of skeletons $W_{\Delta_{0,0}}, \ldots, W_{\Delta_{0,k_0}}, \ldots, W_{\Delta_{0,r_0}}$ is a finite initial segment of a stellar sequence and $|\Delta_{0,r_0}|=P_1$. Let us write $\Delta_{1,0}$ instead of Δ_{0,r_0} . Proceeding inductively, we obtain a sequence $\mathcal S$ of regular complexes

$$\mathcal{S} = \Delta_{0,0}, \ldots, \Delta_{1,0}, \ldots, \Delta_{2,0}, \ldots, \Delta_{j,0}, \ldots$$

such that $P_j = |\Delta_{j,0}|$ for each $j = 0, 1, 2, \dots$

To conclude the proof, let W be the stellar sequence given by the skeletons of the regular complexes in \mathcal{S} . Let ρ be the trivial Δ_0 -realization of the skeleton W_{Δ_0} of Δ_0 . Recalling (5.4) we get

$$J(W, \Delta_0) = \langle \mathcal{O}(W, \Delta_{0,0}) \rangle$$

= $\langle \{ |\Delta_{0,0}|, \dots, |\Delta_{1,0}|, \dots, \} \rangle = \langle \{P_0, P_1, \dots \} \rangle = I.$

An application of Lemma 5.3 yields

$$\mathcal{G}(\mathcal{W}) \cong \mathcal{G}(\mathcal{W}, \Delta_0) = \mathcal{M}([0, 1]^n) / \mathcal{I}(\mathcal{W}, \Delta_0) = \mathcal{M}([0, 1]^n) / I \cong (G, u),$$

which concludes the proof of Theorem 5.1.

The following is an immediate consequence of Theorem 3.3:

Corollary 5.4. For any two stellar sequences W and \bar{W} let us write $\mathcal{O}(W) = |\Delta_0| \supseteq |\Delta_1| \supseteq \cdots$, and $\mathcal{O}(\bar{W}) = |\bar{\Delta_0}| \supseteq |\bar{\Delta_1}| \supseteq \cdots$. Then the following conditions are equivalent:

- (i) $\mathcal{G}(W) \cong \mathcal{G}(\bar{W})$.
- (ii) For some integer $i \geq 0$ there is a \mathbb{Z} -homeomorphism η of $|\Delta_i|$ such that $\langle \{\eta(|\Delta_i|), \eta(|\Delta_{i+1}|), \ldots \} \rangle = \langle \mathcal{O}(\bar{W}) \rangle$.

6 Concluding remarks

6.1 Relations with Beynon's work

In his Ph.D. thesis, [4, Lemma 1, pp. 173–174], Beynon proves that confluence is a necessary condition for the isomorphism of the direct limit of two sequences of finitely presented ℓ -groups. From the 20 lines of his self-contained proof we have been unable to extract any simplifying argument for our Theorems 3.1–3.3. This should come as no surprise: the proofs of several results in the theory of finitely presented ℓ -groups need not have an analog for finitely presented unital ℓ -groups—and vice-versa. Here are some typical examples:

- By Baker–Beynon duality theory, finitely generated projective ℓ -groups are the same as finitely presented ℓ -groups. As shown in [8], finitely generated projective unital ℓ -groups are a tiny fragment of finitely presented ones.
- Baker–Beynon duality also yields a correspondence between abstract simplicial complexes A and finitely presented ℓ -groups G, such that G is isomorphic to G' iff A and A' are connected by a path of Alexander stellar moves. This follows from the main result of Alexander's classical paper [2]. Stellar moves are a generalization of the binary subdivisions considered in this paper, and their inverses. By contrast, the results of this paper yield, as a particular case, a correspondence between finitely presented unital ℓ -groups (G, u) and weighted abstract simplicial complexes W, in such a way that (G, u) is isomorphic to (G', u') iff the regular fans corresponding to W and W' are connected by a path of regular blow-ups and blow-downs. This follows from the proof of the weak Oda conjecture by Włodarczyk–Morelli, [26, 19].
- As proved in [22], every finitely presented unital ℓ -group has a faithful invariant positive unital homomorphism into \mathbb{R} , but no finitely presented ℓ -group G has a faithful invariant positive homomorphism into \mathbb{R} , unless G is a finite product of integers with the product ordering.

• The isomorphism problem of finitely presented ℓ -groups is undecidable. The (un)decidability of the isomorphism problem for finitely presented unital ℓ -groups is open. As shown in [1] for finitely presented unital ℓ -groups with one-dimensional maximal spectral space, weighted abstract simplicial complexes and their connectability may be a key tool to settle this problem (also see [23]).

6.2 Relations with Elliott classification

Up to isomorphism, every stellar sequence W determines a unique AF C*-algebra $A = A_W$ via the map

$$\mathcal{W}\mapsto\mathcal{G}(\mathcal{W})\mapsto K_0^{-1}(\mathcal{G}(\mathcal{W})),$$

where $K_0(A)$ is the unital dimension group of A, [16]. Combining Elliott classification [13, 16] with Theorem 5.1, it follows that the range of the map $W \mapsto A_W$ coincides (up to isomorphism) with the class of unital AF C*-algebras A whose dimension group $K_0(A)$ is lattice-ordered and finitely generated. Various important AF C*-algebras existing in the literature belong to this class, including the Behnke–Leptin algebra with a two-point dual [3], the Effros–Shen algebras [11], and various algebras considered in [9] and [24], the universal AF C*algebra \mathfrak{M}_1 of [21] (= the algebra \mathfrak{A} of [6], see [23]). Corollary 5.4 provides a simple criterion to recognize when two stellar sequences W and W' determine isomorphic AF C*-algebras A_W and $A_{W'}$. This criterion is a simplification of the equivalence criterion for Bratteli diagrams, [7, 2.7]. The proof of Theorem 5.1 crucially uses Proposition 2.7, which is an affine variant of the De Concini–Procesi theorem on the elimination of points of indeterminacy in toric varieties.

Acknowledgments. We are very grateful to the referee for his careful reading of an earlier version of this paper, for his illuminating remarks, and for drawing our attention to references [1], [4] and [12]. Now he might be considered as a fourth co-author of this paper.

Bibliography

- [1] S. Aguzzoli and V. Marra, Finitely presented MV-algebras with finite automorphism group, to appear in *J. Logic Comput*. Advance Access published on November 14, 2008; doi:10.1093/logcom/exn080.
- [2] J. W. Alexander, The combinatorial theory of complexes, *Ann. Math.* **31** (1930), 292–320.
- [3] H. Behncke and H. Leptin, C*-algebras with a two-point dual, *J. Func. Anal.* 10 (1972), 330–335.

- [4] W. M. Beynon, Geometric aspects of the theory of partially ordered systems, Ph. D. Thesis, Department of Mathematics, King's College, The University of London, 1973.
- [5] A. Bigard, K. Keimel and S. Wolfenstein, *Groupes et Anneaux Réticulés*, Lecture Notes in Mathematics 608, Springer-Verlag, Berlin, 1971.
- [6] F. Boca, An AF algebra associated with the Farey tessellation, Canad. J. Math 60 (2008), 975–1000.
- [7] O. Bratteli, Inductive limits of finite-dimensional C*-algebras, *Trans. Amer. Math. Soc.* **171** (1972), 195–234.
- [8] L. M. Cabrer and D. Mundici, Projective MV-algebras and rational polyhedra, *Alg. Univ.* **62** (2009), 63–74, Special issue in memoriam P. Conrad, edited by J. Martínez.
- [9] R. Cignoli, G. A. Elliott and D. Mundici, Reconstructing C*-algebras from their Murray von Neumann orders, Adv. Math. 101 (1993), 166–179.
- [10] R. Cignoli and D. Mundici, An invitation to Chang's MV-algebras, in: Advances in Algebra and Model Theory, pp. 171–197, edited by M. Droste and R. Göbel, Gordon and Breach Publishing Group, Reading, UK, 1997.
- [11] E. G. Effros and C. L. Shen, Approximately finite C*-algebras and continued fractions, *Indiana J. Math.* 29 (1980), 191–204.
- [12] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, NJ, 1952.
- [13] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, *J. Algebra* **38** (1976), 29–44.
- [14] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, New York, 1996.
- [15] A. M. W. Glass and W. C. Holland, *Lattice-ordered Groups*, Kluwer Academic Publishers, 1989.
- [16] K. R. Goodearl, Notes on real and complex C*-algebras, Math. Series 5, Birkäuser-Verlag, Boston, Inc. Shiva, 1982.
- [17] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, Second edition, North-Holland, Amsterdam, 1987.
- [18] V. Marra and D. Mundici, The Lebesgue state of a unital abelian lattice-ordered group, *J. Group Theory* **10** (2007), 655–684.
- [19] R. Morelli, The birational geometry of toric varieties, *J. Alg. Geom.* **5** (1996), 751–782.
- [20] D. Mundici, Interpretation of AF C^* -algebras in Łukasiewicz sentential calculus, *J. Func. Anal.* **65** (1986), 15–63.

- [21] D. Mundici, Farey stellar subdivisions, ultrasimplicial groups, and K_0 of AF C^* -algebras, Adv. Math. **68** (1988), 23–39.
- [22] D. Mundici, The Haar theorem for lattice-ordered abelian groups with order-unit, Discrete Contin. Dyn. Syst. 21 (2008), 537–549.
- [23] D. Mundici, Recognizing the Farey-Stern-Brocot AF algebra, *Rendiconti Lincei Mat. Appl.* **20** (2009), 327–338.
- [24] D. Mundici and C. Tsinakis, Gödel incompleteness in AF C*-algebras, Forum Math. 20 (2008), 1071–1084.
- [25] J. R. Stallings, *Lectures on Polyhedral Topology*, Tata Institute of Fundamental Research, Mumbay, 1967.
- [26] J. Włodarczyk, Decompositions of birational toric maps in blow-ups and blow-downs, *Trans. Amer. Math. Soc.* 349 (1997), 373–411.

Received August 19, 2009; revised February 19, 2010.

Author information

Manuela Busaniche, Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN-Santa Fe, Argentina.

E-mail: manuelabusaniche@yahoo.com.ar

Leonardo Cabrer, CONICET, Dep. de Matemáticas – Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399 – Tandil (7000), Argentina.

E-mail: lcabrer@exa.unicen.edu.ar

Daniele Mundici, Dipartimento di Matematica "Ulisse Dini", Università degli Studi di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy.

E-mail: mundici@math.unifi.it