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The dynamic stability behavior of thin-walled rotating composite beams is studied by means of the finite
element method. The analysis is based on Bolotin’s work on parametric instability for an axial periodic
load. The influence of fiber orientation and rotating speeds on the natural frequencies and the unstable
regions is studied for symmetrically balanced laminates. The regions of instability are obtained and
expressed in non-dimensional terms. The “modal interchange” phenomenon arising in rotating beams is
described. The dynamic stability problem is formulated by means of linearizing a geometrically nonlinear
total Lagrangian finite element with seven degrees of freedom per node. This finite element formulation
is based on a thin-walled beam theory that takes into account several non-classical effects such as
anisotropy, shear flexibility and warping inhibition.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

In the study of the dynamic behavior of structures, the charac-
terization of the stability of motion plays a crucial role. With the
recent technological advances in composite materials, the use of
composite structures in the design of mechanical systems has been
increasing fast during the last years. Due to their outstanding
engineering properties, such as high strength/stiffness to weight
ratios and favorable fatigue characteristics, thin-walled beams
made of composite materials are widely used in the design of
aircraft wings, helicopter rotor blades, wind turbine blades and the
like. The structural configuration possibilities provided by fiber
reinforced composite materials are vital to enhance the dynamic
behavior of rotating beams operating in complex environmental
conditions. As a result of the mentioned advances in composite
materials, the structural design concepts have changed substan-
tially. Thus, a complete understanding of the behavior of structures
that work under dynamical load conditions is essential.

The problem of dynamic instability of elastic structural elements,
such as rods, beams and columns, induced by parametric excitation
has been addressed by many researchers. Early work on this subject
was reported by Evan-Iwanowski (1965) and Nayfeh and Mook
(1979). Bolotin (1964) provided an extensive introduction to
the analysis of dynamic stability problems of various structural
elements.
917, Buenos Aires C1033AAJ,
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Solving the parametric vibration problem of a beam subjected to
a compressive dynamic force leads to the well-knownMathieu-Hill
equation (Bolotin, 1964; Evan-Iwanowski, 1965). Nayfeh and Mook
(1979) used a perturbation method to solve this equation, in order
to analyze the behavior of an elastic system under parametric
excitation, establishing a criterion to obtain the transition curves by
determining the characteristic exponents in the solution.

In relation to thin-walled beams, Goldenblat (1947) investigated
the problem of the stability of a compressed thin-walled rod pre-
senting symmetry about one axis. The problem was reduced to
a system of two differential equations. Tso (1968) studied the
problem of longitudinal-torsional stability, while Mettler (1962)
and Ghobarah and Tso (1972) analyzed the problem of bending-
torsional stability of thin-walled beams. Bolotin (1953, 1964) and
Popelar (1972) discussed the dynamic stability of thin-walled
beams; typical I and H sections were considered. Hasan and Barr
(1974) evaluated regions of instability of thin-walled beams of
equal angle-section, considering axial and transverse excitation in
a cantilever beam. Also, Gürgöze (1985) studied the effect of pre-
twist in the dynamic stability behavior of beams subjected to axial
pulsating loads.

The effect of rotation on the dynamic stability behavior of beams
was first analyzed by Abbas (1986). He toke into account the effect
of rotary inertia and shear deformation on the stability dynamic
response of the beam. Also, Chen and Peng (1995) studied the
stability behavior of a rotating blade subjected to axial load. Sakar
and Sabuncu (2003) studied the coupling effects in the dynamic
stability of rotating asymmetric cross-section blades. In relation to
composite materials, Chen and Peng (1998) investigated the
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Fig. 1. Beam deformation schematic.

C.M. Saravia et al. / European Journal of Mechanics A/Solids 30 (2011) 432e441 433
dynamic stability of rotating composite shafts under axial periodic
loads.

Although a number of authors have investigated the problem of
dynamic stability of beams, a few works were focused on rotating
thin-walled beams. In spite of the practical interest and future
potential of the thin-walled composite beam structures, particu-
larly in the context of aerospace and mechanical applications, the
main body of the available investigations has been devoted to study
the dynamic stability of isotropic beams. To our knowledge, no
work has been done about composite rotating thin-walled beams.
This problem is addressed in this paper.

The influence of rotation in the dynamic stability behavior of
composite thin-walled beams subjected to axial periodic excitation
is investigated. In order to determine the instability regions, the
Bolotin’s method is employed. The effect of the rotational speed
and the static load parameter on the unstable regions is analyzed
for different laminate stacking sequences. The modal interchange
phenomenon arising when considering rotation stiffening effects is
studied as well.

A geometrically nonlinear total Lagrangian finite element with
linear interpolation and seven degrees of freedom is formulated.
The numerical formulation of the dynamic stability problem is
obtained by linearizing the proposed nonlinear finite element. The
elementmatrices are obtained from a thin-walled beam theory that
assumes a linear displacement field and a nonlinear strain field
(Cortínez and Piovan, 2002) and considers shear and warping
deformations and rotary inertia effects. This formulation is easily
extendable to a full nonlinear thin-walled beams theory developed
from the proposition of full nonlinear displacement field (Machado
and Cortínez, 2005, 2007).
Fig. 2. Curvilinear transformation schematic.
2. Kinematics

2.1. Displacement field

The present structural model is based on the following
assumptions:

(1) The cross-section contour is rigid in its own plane.
(2) The warping distribution is assumed to be given by the Saint-

Venant function for isotropic beams.
(3) Shell force and moment resultants corresponding to the

circumferential stress sss and the force resultant corresponding
to gxs are neglected.

(4) The curvature at any point of the shell is neglected.
(5) Twisting linear curvature of the shell is expressed according to

the classical plate theory.
(6) The laminate stacking sequence is assumed to be symmetric

and balanced, or especially orthotropic (Barbero, 1999).

Consider two states of the beam, an undeformed reference state
and a deformed state as shown in Fig. 1.

The displacement of any point in the deformed beam measured
with respect to the undeformed reference state can be expressed in
a global coordinate system (x, y, z) in terms of three components. A
second coordinate system (X, Y, Z), where X is a running length
coordinate along the reference line of the beam, is fixed to the beam
cross-section. For convenience, we choose the reference line to be
the locus of cross-sectional inertia centroids. The origin of (X, Y, Z)
(O) is located on the reference line of the beam and is called: pole
(Librescu, 2006). The cross-section of the beam is arbitrary and
initially located perpendicular to reference line of the beam.

The kinematic behavior of the 3D beam is represented by the
superposition of twomovements; a translation u of the pole O (also
the origin of (X, Y, Z)) measured with respect to the reference state
and a rigid rotation of the cross-section about the pole (see Fig. 2).

Thus, the resulting displacements of a point P in the cross-
sectionwill be the sum of the displacement u ¼ ðu; v;wÞ generated
by the translation of the pole plus the additional displacements
generated by the rotation of the cross-section about the pole (see
Fig. 2). Thus, when the cross-section rotates about the pole the
coordinate system (X, Y, Z) transforms to (X0, Y0, Z0). Also, an extra
displacement in the longitudinal direction caused by warping is
considered.

The geometry of the cross-section of the beam is defined in
a curvilinear coordinate system (n,s) as:

Yðs;nÞ ¼ YmðsÞ � n
dZm
ds

; Yðs;nÞ ¼ ZmðsÞ þ n
dYm
ds

; (1)

where the subscript m denotes a mid-surface variable.
Introducing variables for the rotations of the cross-section about

the pole and the warping displacements along the reference axis of
the beam, the displacement in the curvilinear system takes the
form:

uxðx; s;nÞ ¼ u� qzy� qyz ¼ u� qz
�
Y � ndZds

�
� qy

�
Z� ndYds

�
þ Fj

uyðx; s;nÞ ¼ v� qxz ¼ v� qx
�
Z� ndYds

�
uzðx; s;nÞ ¼ wþ qxy ¼ w� qx

�
Y � ndZds

� ð2Þ

where qx;qy;qz and q represent rotations about the X, Y and Z axes
and warping.
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The warping function F of the thin-walled cross-section may be
defined as:

Fðs;nÞ ¼ FPðsÞ þ FSðs;nÞ (3)

where FP(s) and FS(s) are the contour warping function and the
thickness warping function, respectively. They are defined in the
form (Cortínez and Piovan, 2002; Piovan and Cortínez, 2005):

FP ¼ 1
S

ZS
0

0@Zs

s0

ðrðsÞ �JðsÞÞds
1Ads�

Zs

s0

ðrðsÞ �JðsÞÞds

FSðs;nÞ ¼ �n lðsÞ;

(4)

where s is a dummy variable, and:

rðsÞ ¼ �ZðsÞdY
ds

þ YðsÞdZ
ds

lðsÞ ¼ YðsÞdY
ds

þ ZðsÞdZ
ds

(5)

r(s) represents the perpendicular distance from the shear center
(SC) to the tangent at any point of the mid-surface contour, and l(s)
represents the perpendicular distance from the shear center (SC) to
the normal at any point of the mid-surface contour, as shown in
Fig. 2.

In the Eq. (4)J is the shear strain at themiddle line, obtained by
means of the Saint-Venant theory of pure torsion for isotropic
beams, and normalized with respect to df=dx. For the case of open
sections J ¼ 0.

3. Stress and strain fields

3.1. Strain field

The displacements with respect to the curvilinear system (x, s, n)
are obtained by means of the following expressions:

U ¼ uxðx; s;nÞ
V ¼ uyðx; s;nÞdYds þ uzðx; s;nÞdZds
W ¼ �uyðx; s;nÞdZds þ uzðx; s;nÞdYds

(6)

The three non-zero components 3xx, 3xs, 3xn of the Green’s strain
tensor are given by:

3xx ¼ vU
vx

þ 1
2

"�
vU
vx

�2
þ
�
vV
vx

�2
þ
�
vW
vx

�2
#

3xs ¼ 1
2

"
vU
vs

þ vV
vx

þ vU
vx

vU
vs

þ vV
vx

vV
vs

þ vW
vx

vW
vs

#

3xn ¼ 1
2

"
vU
vn

þ vW
vx

þ vU
vx

vU
vn

þ vV
vx

vV
vn

þ vW
vx

vW
vn

#
(7)

Substituting Eq. (2) first into Eq. (6), the resulting expression into
Eq. (7) and employing the relations expressed in Eq. (1) and Eqs.
(3e5) (after simplifying some higher order terms) the components
of the strain tensor are expressed in the following form:

3xx ¼ 3xx þ nkxx

3xs ¼ 23xs ¼ gxs þ nkxs

3xn ¼ 23xn ¼ gxn

(8)

Where
3xx ¼ u0 � Yq0z � Zq0y þ FPj
0 þ 1

2
v02 þw02 þ 1

2
q02x Y2 þ Z2
� � � �
kxx ¼ dZ

ds
q0z �

dY
ds

q0y � lj0 � rq02x

gxs ¼ dY
ds

ðv0 � qzÞ þ dZ
ds

�
w0 � qy

�þ ðr �JÞ�j0 � qx
�þJj0

kxs ¼ �2j0

gxn ¼ dZ
ds

ðv0 � qzÞ þ dY
ds

�
w0 � qy

�þ l
�
j0 � qx

�
ð9Þ

The prime symbol denotes derivation with respect to the longi-
tudinal coordinate. Keeping from the above equations only the
nonlinear terms corresponding to the axial-bending and axial-
torsion couplingswe can express theGreen-Lagrange Strain invector
form is:

eRðx; sÞ ¼ ½3xx;gxs;gxn; 8xn; 8xn�T (10)

In the derivation of the finite element matrices we split in two
parts the deformation field obtained below by separating the
geometric parameters related to the cross-section from Eqs. (9).
Thus we can express the strain field in matrix form as:26666664
3xx

gxs
gxn
8xn

8xn

37777775 ¼

26666664
1 0 0 �Z �Y 0 0 Fp Y2 þ Z2

0 Y 0 Z0 0 0 J r �J 0 0
0 �Z0 Y 0 0 0 0 l 0 0
0 0 0 �Y 0 Z0 0 0 �l �2r
0 0 0 0 0 �2 0 0 0

37777775

�

26666666666666666664

u0 þ 1
2

�
v02 þw02�

v0 � qz

w0 � qy

q0y
q0z
q0x

q0x � j

j0

1
2q

02
x

37777777777777777775

ð11Þ

This is:
eRðx; sÞ ¼ SðsÞeGðxÞ (12)

where 3G is the generalized strain vector, a function of the longi-
tudinal coordinate of the beam, and S is the cross-sectional matrix
3.2. Stresses

The shell stress resultants are defined in terms of constitutive
equations of symmetrically balanced laminates (Barbero, 1999) as:266664
Nxx
Nxs
Nxn
Mxx
Mxs

377775 ¼

266664
C11 0 0 0 0
0 C22 0 0 0
0 0 C33 0 0
0 0 0 C44 0
0 0 0 0 C55

377775
266664
3xx
gxs
gxn
8xx
8xs

377775 (13)

We can express the above relation in matrix form as:

NS ¼ CeR (14)

where C is the composite shell constitutive tensor. A deep
assessment of the influence of different beam constitutive
modeling methods for thin-walled beams was done by Volovoi
et al. (2001).
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4. Variational formulation

To derive the equilibrium equations of the problem at hand we
make use of the principle of d’Alembert (Meirovitch, 1997).
Including the d’Alembert forces and ignoring material damping
forces the principle of virtual work for dynamical systems takes the
form:

dP ¼ dV � dPext þ dK ¼ 0 (15)

where dV is the variation of the strain energy, dPext is the virtual
work of the external forces and dK is the virtual work of the inertia
forces.
4.1. Virtual strain energy

Replacing Eq. (12) into Eq. (14) we can express the virtual strain
energy as (Washizu, 1968):

dV ¼
Z
A

deR
T NS dA ¼

Z
A

deTR ðC SðsÞ eGðxÞÞ dA (16)

Therefore:

dV ¼
Z
A

ðS deGÞTC SeG dA ¼
Z
A

deG
TSTC SeG dA (17)

We define now the following cross-sectional matrix:

Ds ¼ STC S (18)

Replacing Eq. (17) into Eq. (16) and separating the integral we
have:

dV ¼
Z
L

deG
T
�Z

S

Ds ds
�
eG dx ¼

Z
L

deG
TD eG dx (19)

being:

D ¼
Z
s

STC S ds (20)
Fig. 3. Rotating beam.
4.2. d’Alembert forces virtual work

The d’Alembert forces virtual work expression is:

dK ¼
Z
V

r0dR
T €RdV (21)

In which R is the position vector of any point in the beam, let’s
note that R is a function of both the geometry and the instanta-
neous displacement field. In order to simplify the derivation of €Rwe
express the displacement field (Eq. (2) as) as:

U ¼ SMUG (22)

where the matrix of generalized displacements UG is defined as:

UG ¼ �
uðx; tÞ; vðx; tÞ;wðx; tÞ; qxðx; tÞ; qyðx; tÞ; qzðx; tÞ;jðx; tÞ

	T
(23)

and the cross-sectional matrix is:

SM ¼
241 0 0 0 �Zðn; sÞ �Yðn; sÞ Fðn; sÞ
0 1 0 �Zðn; sÞ 0 0 0
0 0 1 Yðn; sÞ 0 0 0

35 (24)
The instantaneous position vector of a point in the deformed
configuration can be written as:

R ¼ R0 þ SMUG (25)

where R0 is the point of the beam in the undeformed configuration,
this is:

R0 ¼ ½X Y Z�T (26)

Before proceedingwith the formulation of the d’Alembert forces
we will introduce the spinor of the angular velocity vector in order
to replace the standard cross product for an equivalent matrix
product. Being the angular velocity vector:

u ¼ �
ux;uy;uz

�
; (27)

its spinor is the following anti-symmetric matrix:

U ¼
24 0 �uz uy

uz 0 �ux
�uy ux 0

35 (28)

Now, for the general case of a structural element that is rotating
in space (see Fig. 3) we can write the absolute velocity and accel-
eration of a point of the beam as:

_R ¼ Vðx;n; s; tÞ ¼ V01 þ VR þUðR0 þ SMUGÞ (29)

€R ¼ aðx;n; s; tÞ ¼ UðUðR0 þ SMUGÞÞ þ aR þ 2UVR (30)
where VR represents the relative velocity, aR the relative acceler-
ation and u the angular velocity vector, readily:

VR ¼ SMVG (31)

aR ¼ SMaG (32)

The generalized velocities and accelerations are defined as:

VG ¼
h
_uðx;tÞ; _vðx; tÞ; _wðx;tÞ; _qxðx; tÞ; _qyðx;tÞ; _qzðx; tÞ; _jðx; tÞ

iT
(33)

aG ¼
h
€uðx; tÞ; €vðx; tÞ; €wðx; tÞ; €qxðx; tÞ; €qyðx; tÞ; €qzðx; tÞ; €jðx; tÞ

iT
(34)

For simplicity, we will consider the velocity of the origin of the
rotating coordinate system, namely V01, to be zero
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On the other hand, the variation of the position vector is:

dR ¼ dðR0 þ SMUGÞ ¼ SMdUG (35)

Replacing Eqs. (31) and (32) into Eq. (30), using Eq. (35) and
recalling the expression of the virtual work of the inertia forces in
Eq. (21) we have:

dK ¼
Z
V

r0½UðUðR0 þ SMUGÞÞ þ SMaG þ 2UðSMVGÞ�TSMdUGdV

(36)Reordering and grouping terms we have:

dK ¼ r0


 Z
V

UUR0dV þ
Z
V

UUSMUGdV þ
Z
V

2UðSMVGÞdV

þ
Z
V

SMaGdV
�T

SMdUG ð37Þ

4.3. Virtual work of the external forces

The virtual work of external forces can be expressed as:

dPext ¼ dUT
GFE (38)

where FE is a column vector that represents the external forces.

5. Finite element formulation

5.1. Tangent stiffness

Introducing the finite element discretization we can map the
generalized strains in generalized nodal displacements. The finite
element approximation is (Felippa, 1999; Zienkiewicz and Taylor,
2000):

UG ¼ H bU (39)

Being; H a matrix of linear shape functions, B the dis-
placementedeformation matrix according to the Green’s strain
tensor, bX the nodal coordinates and bU the nodal displacements, we
can express the generalized strains matrix eG as:

eG ¼ BbU (40)

Introducing Eq. (40) in the virtual strain energy expression (Eq.
(19)) we obtain:

dV ¼
Z
L

�
dðBbU Þ

�T
D
�
BbU�

dx

¼
Z
L

dbUT�
BTDB

�bUdxþ
Z
L

bUT
dBTNBdx (41)

where we have implicitly defined the beam forces vector as:

NB ¼ DBbU ¼ DeG (42)

NB ¼ �
Nx;Qy;Qz;My;Mz; Tsv; Tw;B;W

	T (43)
To get a closed form expression for the last term of Eq. (39) it is
convenient to pass to indicial notation, reverting to matrix notation
later upon “index contraction”. This is:
Z
L

bUT
dBTNBdx ¼ uj

Z
L

vBki
vuj

duj NBkdx (44)

whence:

KGij ¼
Z
L

vBki
vuj

NBkdx (45)

Equation (39) can now be rewritten as:

dV ¼ dbUT
KM

bU þ dbUT
KG

bU ¼ dbUT ðKM þ KGÞbU (46)

KM and KG being the material and geometric stiffness matrices,
which are nonlinear functions of the nodal displacements. The term
between parentheses is the already known tangent stiffnessmatrix,
readily:

KT ¼ KM þ KG (47)
5.2. Dynamic matrices

Introducing the finite element approximation in Eqs. (26), (33)
and (34):

R0 ¼ H bX ; VG ¼ N bV ; aG ¼ Nba (48)

bU ; bV and ba being the nodal displacements, velocities and acceler-
ations respectively. N is the inertia shape functions matrix. We can
write the expression (37) as:

dK ¼ r0


 Z
U
�
U
�
H bX��

dV þ
Z
V

UðUðSMUGÞÞdV

þ
Z
V

2U
�
SMN bV�

dV þ
Z
V

SMNbadV�SMNdbU (49)

Using Eq. (23) we have:

dK ¼ r0


 Z
V

UUH bXdV þ
Z
V

UUSMN bUdV þ
Z
V

2USMN bVdV

þ
Z
V

SMNbadV�TSMNdbU
(50)

Reordering terms we can express Eq. (50) as:

dK ¼ r0


 Z
V

bXT
HTUUdV þ

Z
V

bUT
NTSTMUUdV

þ
Z
V

bVT
NTSTM2UdV þ

Z
V

baT
NTSTMdV

�
SMNdbU (51)

Finally:

dK ¼ r0


 Z
V

bXT
HTUUSMNdV þ

Z
V

bUT
NTSTMUUSMNdV

þ
Z
V

bVT
NTSTM2USMNdV þ

Z
V

baT
NTSTMSMNdV

�
dbU (52)

Since the nodal values are not a function of the longitudinal
coordinate, the last expression can be rewritten for an element as:
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dKe ¼
�
FC

bX þ KR
bU þ CC

bV þMba�dbU (53)

It must be noted that FC is the centrifugal load vector, KR is the
rotation stiffness matrix, CC is the Coriolis matrix and M is the
consistent mass matrix:

FC ¼ r0

Z
Ve

HTUUSMNdVe

KR ¼ r0

Z
Ve

NTSTMUUSMNdVe

CC ¼ r0

Z
V

NTSTM2USMNdV

M ¼ r0

Z
V

NTSTMSMNdV

(54)

The centrifugal load vector can be treated as an external load.
6. Dynamic stability

6.1. Equations of motion

Introducing the finite element version of Eq. (37) and Eqs. (44)
and (53) in Eq. (15), assuming conservative loading and using the
arbitrariness condition of the virtual magnitudes, as well as
the satisfaction of the boundary conditions, we can formulate the
equations of motion in matrix form as:

ðKM þ KG þ KRÞbU þ CC
bV þMba ¼ �FC þ FE (55)

Ignoring Coriolis forces the equations of motion reduce to:

ðKM þ KG þ KRÞbU þMba ¼ �FC þ FE (56)

Although the vector of centrifugal loads FC is obtained from the
d’Alembert forces it can be thought as an external static force
(function of the longitudinal coordinate), for that reason it has been
written in the right hand side of the equation above. Although
defined positive for simplicity, it’s very important to note that the
rotation stiffness matrix actually plays the role of a negative stiff-
ness. The negative sign in the diagonal terms of KR appears from
the spinor product UU, the same occurs with the centrifugal load
vector.

In this paper the dynamic stability of a beam subjected to axial
loads is studied. Since for the analyzed beam the axial natural
frequencies are very high comparedwith those exited parametrically
we will neglect the axial inertia forces when calculating the axial
beam force. Thus, the resultant axial beam force equals to the axial
external load.

We will consider the problem to be an initial stress problem.
Following the steps of Section 5.1 for the derivation of the
geometric stiffness matrix we found that it is possible to express
the geometric stiffness matrix as:

KG ¼ T KU
G (57)

where T is the axial beam force at the element centroids and KU
G is

a unit geometrical stiffness matrix. For a seven DOF per node
element with linear shape functions KU

G yields:
60 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 �1 0 0 0 0 07
KU
G ¼

2
6666666666666666666666666664

0 0 1 0 0 0 0 0 0 �1 0 0 0 0
0 0 0 Io 0 0 0 0 0 0 �Io 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 �1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 �Io 0 0 0 0 0 0 Io 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

3
7777777777777777777777777775

ð58Þ

Where Io is the polar moment of inertia divided by the area,
that is:

Io ¼

Z
A

�
Y2 þ Z2

�
dA

A
(59)

6.2. Dynamic stability

We derive in this section the equation of motion of a rotating
cantilever beam subjected to an axial excitation of the form:

PðtÞ ¼ Ps þ PdcosðqtÞ (60)

where q is the excitation frequency, Ps ¼ aPcr and Pd ¼ bPcr, a is
the static load factor, b is the dynamic load factor and Pcr is the
critical load of the beam.

Since both external forces acting on the beam are longitudinal
and having in mind Eq. (60) and Eq. (57), we write the equations of
motion (Eq. 56) as:

ðKM þ KR þ ðNR � PðtÞÞKU
G ÞbU þMba ¼ 0 (61)bi being the versor representing the axial degree of freedom. NR

represents the axial force in the element caused by the rotation. For
a finite element of constant cross-sectional area, and xc being the
element centroid coordinate (measured from the origin of the axis
of rotation), we have:

NR ¼ rAejuj21
2

�
L2e � x2c

�
(62)

Here the axis of rotation intersects the beam’s reference line.
When the beam is excited in the axial (longitudinal) direction,

and the interaction of this movement with the other motions is
studied, the coupling of these various motions depends on the
symmetry of the cross-section.

6.3. Principal parametric resonance

In the classification of parametric resonance, if q is the excitation
frequency and u1 the natural frequency of the ith mode, parametric
resonance of “first kind” is said to occur when q=2u1y
1=r; r ¼ 1;2., while parametric resonance of the “second kind” is
said to occur when q=ðuj � ujÞy1=r; r ¼ 1;2. ðksjÞ. In both
cases the situationwhere r¼ 1 is generally the only one of practical
importance. Usually the parametric resonance of the first kind is
termed “parametric resonance”, whereas the secondkind is referred
as “combination resonance”, because it involves two different



Table 1
Natural frequencies (Hz). Abaqus vs. present theory.

Model validation

Laminate Abaqus Present theory

uS uD ua
D uS uD ua

D

{0,0,0,0} 7.17 14.16 10.40 7.32 14.48 10.54
13.50 18.60 15.89 13.56 18.77 15.92
31.79 37.21 36.62 32.16 35.59 34.71
34.32 53.49 46.24 37.04 55.58 48.27
62.60 71.85 67.52 63.53 74.02 69.29

{0,90,90,0} 5.42 11.08 8.27 5.47 11.59 8.40
10.22 17.69 16.35 10.24 18.13 16.37
28.56 36.87 36.76 30.08 35.48 34.91
31.87 48.83 44.85 32.03 51.18 45.81
52.55 62.29 61.19 53.12 65.18 61.53

{45,�45,�45,45} 2.54 6.92 5.15 2.48 7.26 5.23
4.77 17.34 16.78 4.69 17.41 16.72

15.94 44.36 41.78 15.44 44.54 41.58
29.54 46.73 44.61 29.03 48.06 45.59
44.79 79.32 76.16 42.91 80.57 76.84

Table 2
Natural frequencies and critical loads.

Bisymmetric box beam e Elements¼ 50.

Laminate PSCR (N) PDCR (N) uS uD ua
D Mode

{0,0,0,0} 2.1359� 107 2.1711� 107 25.93 26.16 19.42 Flap 1
45.67 45.68 42.64 Lag 1
65.20 65.27 63.76 Tors 1

101.00 101.36 91.53 Flap 2
163.71 163.91 158.23 Lag 2

{0,90,90,0} 1.2441� 107 1.2792� 107 20.39 20.69 15.20 Flap 1
36.88 36.89 34.41 Lag 1
64.74 64.81 63.92 Tors 1
89.76 90.15 83.43 Flap2

147.96 148.16 144.38 Lag 2

{45,�45,�45,45} 2.6825� 106 3.0330� 106 9.87 10.52 7.60 Flap 1
18.64 18.69 17.27 Lag 1
60.54 61.11 58.20 Flap 2

110.91 111.16 109.268 Lag 2
164.13 164.38 164.29 Axial 1
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frequencies. In this paper the study is only concentrated in the case
of parametric resonance.

The process of finding the boundaries of the regions of insta-
bility consist on the determination of the conditions under which
the differential equation of the system, namely Eq. (35), has peri-
odic solutions with period 2p=q and 4p=q. For the principal region,
which is a half subharmonic, one looks for a solution with a period
which is twice the forcing frequency: i.e., 4p=6. The condition for
the existence of solutions can be expressed in the following infinite
determinant form (Bolotin, 1964):26666664
KþðP�PdÞKU

G �1
4q

2M �1
2PdK

U
G 0 .

KþPKU
G �9

4q
2M � 1

24PdK
U
G .

SYM KþPKU
G �25

4 q
2M .

. . . .

37777775
¼ 0

(63)Where:

P ¼ ðNR � PsÞ (64)

K ¼ KM þ KR (65)
Fig. 4. First mode shape e Shell model (Abaqus) vs. present beam model (Matlab).
The boundaries of the instability regions lying near q ¼ 2u1 can
be determinedwith sufficient accuracy considering the first leading
diagonal term (Bolotin, 1964):

jKM þ KR þ ðNR � Ps � PdÞ KU
G � 1

4
q2Mj ¼ 0 (66)

To scale the results of Eq. (64) with the corresponding
frequencies and critical loads it’s necessary to solve additionally
three eigen problems; the problem of free vibration of an unloaded
rotating beam:

jKM þ KR � u2Mj ¼ 0; (67)

the problem of free vibration of a beam loaded by a constant
longitudinal force

jKM þ KR þ ðNR � Ps � PdÞKU
G � u2Mj ¼ 0; (68)

And finally, the buckling problem:

jKM þ KR þ ðNR � Ps � PdÞKU
G j ¼ 0 (69)
7. Applications and numerical results

We are mainly interested in the effects of the angular velocity
and the laminate stacking sequence on the natural frequencies of
the beam and its instability regions. We will base the numerical
implementation on a bisymmetric closed cross-section, consid-
ering different laminate schemes. The analyzed material is
graphite-epoxy (AS4/3501) whose properties are E1¼144 GPa,
E2¼ 9.65 GPa, G12¼ 4.14 GPa, G13¼ 4.14 GPa, G23¼ 3.45 GPa,
n12¼ 0.3, n13¼ 0.3, n23¼ 0.5, r¼ 1389 kg/m3.
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Fig. 5. Modal interchange for a {0/0/0/0} laminate.
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Fig. 6. Modal interchange for a {0/90/90/0} laminate.
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Fig. 8. Instability regions for a {0/0/0/0} laminate.
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In all the results presented below, the value of the static load
parameter is adopted a¼ 0.5, and the excitation frequency q is
scaled with the lowest frequency value of parametric resonance
(that is the double of the fundamental natural frequency, that is:
2u1). It’s worth to note that for all cases studied in this paper the
angular velocity has only one component, that is u ¼ uyj

�.

7.1. Beam model validation

In order to validate the beam finite element we compare natural
frequencies of a rotating preloaded beam using the present theory
vs. a 3D shell model in Abaqus. To compare both formulations we
use a graphite-epoxy (AS4/3501) box beam, its geometric proper-
ties are: length L¼ 10 m, height h¼ 0.7 m, width b¼ 0.3 m and
thickness e¼ 0.05 m. The beam is rotating at 1000 rpm and is
preloaded with half the first critical buckling load.

The Abaqus model was studied through a multistep analysis
using the geometrical nonlinear flag to carry the strain and stress
states through subsequent steps. The beam was discretized using
1800 four-noded shell elements (S4) and the rotation effects were
added to the model through the *CENTRIF load label. The natural
frequencies were extracted with the *SUBSPACE eigensolver.

Table 1 shows the comparison in natural frequencies in Hz for
different load cases, uS anduD represent the natural frequencies of
the beam without rotation and a beam rotating at 1000 rpm,
respectively. Finally, ua

D represents the natural frequency consid-
ering both the rotation effects and the static load. The imple-
mentation of the beam model was done in Matlab and, for a better
visualization; the whole cross-section movement was rendered.

It is observed that the natural frequencies obtained with the
present beam model have a good correlation with that obtained
with 3D shell model. As expected, the frequencies increasewith the
angular velocity and decrease with the compressive load. It’s
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Fig. 7. Modal crossing for a {45/�45/�45/45} laminate.
important to note that to avoid possible confusions generated by
the inversion in the mode ordering, a description of the corre-
spondingmodeswas not added toTable 1. This phenomenonwill be
described in detail in the next sections. The maximum differences
between the two models are observed for superior modes, these
differences are never higher that 5%. Considering the latter, we can
state that the present model is validated. The analysis of the vari-
ation of the natural frequencies with the rotational speed and the
preload is essential to characterize the dynamic instability behavior
of the beam.

Fig. 4 shows a comparison of the first mode of vibration between
the 3D shell and the present beam model.
7.2. Natural frequencies and modal interchange

Westudy in this sectiona cantileverbeamwithabisymmetric box
cross-section whose geometric properties are: L¼ 5 m, h¼ 0.7 m,
b¼ 0.3 m, e¼ 0.05 m. Note that because of the cross-section
symmetry themotion equations are uncoupled. Therefore, there are
threemainmodes of vibration: flapping, lagging and torsional. Table
2 shows the natural frequencies and critical loads of the beam for
different load cases, PSCR represents the critical load of the beam
without considering the rotation effects and PDCR is the critical load of
the beam considering the rotation effects, both units being Newtons.
As in theprevious case,uS anduD represent thenatural frequenciesof
the beamwithout rotation and a beam rotating at 200 rpm, respec-
tively. Finally, ua

D represents the natural frequency considering the
rotation effects (200 rpm) and the static load.

The critical load observed in Table 2 corresponds to a flexural
mode in the y direction. It can be seen that the effect of rotation
increases the buckling load, specially for the most flexible laminate
({45,�45,�45,45}). A similar behavior is observed for the natural
frequencies of an unloaded beam. The longitudinal lamination
sequence, namely {0,0,0,0}, gives the highest frequencies for both
the static and the rotating beam. Conversely, the laminate
{45,�45,�45,45} presents the lowest frequency values. As expected,
the effect of the static load (a ¼ 0:5) reduces the natural frequency
of a rotating beam. However, this effect depends on the beam
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Fig. 9. Instability regions for a {0/90/90/0} laminate.
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vibration mode, i.e., the natural frequency reduction is larger in the
first mode (Flapping 1, 26% reduction). This effect keeps almost
constant for the different laminates.

In order to analyze the modal behavior of the rotating beamwe
plot the first seven natural frequencies of an unloaded beam vs. the
angular velocity. Figs. 5e7 show the results for the {0,0,0,0},
{45,�45,�45,45} and {0,90,90,0} laminates respectively.

As it can be observed, the curves show that the natural
frequencies increase with the angular frequency. This increase
depends not only on the mode but also on the laminate stacking
sequence. It was found that there are critical angular velocities for
which a modal interchange phenomenon can exist. As it can be
seen from Fig. 5, in the laminate {0/0/0/0} the first flapping and first
lagging modes cross each other at about 2300 rpm. This modal
interchange of the first modes is generated because the first lagging
mode is practically not affected by the rotational speed. This lack of
sensitivity of the first laggingmode to the angular velocity variation
is observed for all the laminates studied in this paper.

In the case of the laminate {0/90/90/0}, the dynamic behavior of
the first modes is similar to the previous laminate. The frequency
curves show that the rotation stiffening effect is more significant in
the flapping modes. This causes two modal interchanges; the first
flapping with the first lagging modes at 1800 rpm and the third
flapping and second torsional modes at about 700 rpm.

The modal interchange phenomenon is more evident for the
laminate {45/�45/�45/45}. In this case the torsional mode has
a high frequency and the first axial mode appears before. Also,
both modes are not strongly affected by the rotation, and thus, two
additional modal interchanges appear. At about 1000 rpm the first
flapping mode crosses over the first lagging mode. Also, since the
third flapping mode is strongly affected by the rotation, it crosses
the first axial mode at 50 rpm and the first torsional mode at about
1450 rpm. By coincidence, the first axial and the third flapping
modes have almost the same frequency for the beam without
rotation.

7.3. Instability regions

In this section we study the behavior of the instability regions
for different laminate sequences. Figs. 8e10 show the instability
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Fig. 11. Instability regions for a {0/0/0/0} laminate.
regions for three laminates: {0/0/0/0}, {45/�45/�45/45} and {0/90/
90/0}, and for a rotational speed of 200 rpm. It is observed that the
widest regions of instability correspond to parametrically excited
flapping modes. Remember that q is the excitation frequency, a is
the static load factor and b is the dynamic load factor, see Eq. (60).

The region corresponding to parametrically excited torsional
modes is more distant from the main region in the case of the
laminate {0,90,90,0}, in comparison with the laminate {0,0,0,0} (see
Fig. 9). For the laminate {45,�45,�45,45} the torsional mode is
stiffer than the second lagging mode, for that reason it wasn’t
showed in Fig. 10.

To show the effect of the rotational speed on the instability
boundaries we compare the instability regions of a beam without
rotation with a beam rotating at 1000 rpm (see Figs. 11e13). The
stability region corresponding to the rotating beam is plotted in
dotted-dashed line while the no rotation case is plotted in solid
line. For clearness, we have not scaled the forcing frequency. Fig. 11
shows the evolution of the instability regions for the case of
a laminate {0/0/0/0}. It’s observed that the effect of rotation not only
moves the regions but also makes it wider.

We previously stated that an increase in the angular velocity of
the beam leads to an increase in the natural frequencies of the
beam. In contrast to what could be expected, not all regions move
to the right when increasing the rotational speed. For the particular
case of the {0/0/0/0} and {0/90/90/0} laminates, the region corre-
sponding to the first lagging mode moves to the left. This occurs
because the angular velocity influences the critical buckling load
but not the first lagging mode natural frequency.

The laminate {0/90/90/0} shows a very similar instability
behavior to that of the previous laminate, see Fig. 12. It is important
to note that for these two laminates the ordering of parametrically
excited regions is the same to that obtained in the case of an
angular velocity of 200 rpm (Table 2).

In the case of a laminate {45/�45/�45/45} (Fig. 13), the angular
velocity effect strongly increases the unstable regions size. More-
over, for the first two regions the influence of this effect provokes
the regions to cross each other. This effect is observed because for
the angular speed for which the dash-dotted regions where plotted
(1000 rpm) amodal interchange between the first flapping and first
lagging mode has just occurred.
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Fig. 13. Instability regions for a {45/�45/�45/45} laminate.
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8. Conclusions

In this paper the dynamic stability of a rotating beam was
studied and a finite element was specially formulated for that
purpose. As a distinct aspect, the beam formulation incorporates in
a full form the effect of shear deformation, warping inhibition and
rotary inertia. The instability behavior of a cantilever beam sub-
jected to axial load was obtained by means of the Bolotin’s method.
The dynamic stability problem was formulated by means of line-
arization of a geometrically nonlinear Total Lagrangian finite
element that takes into account the rotation effects.

The numerical results show that the natural frequencies depend
highly on the rotational speed. Also, the influence of this effect
depends on the laminate stacking sequence analyzed. For example,
the stiffening effect of the angular velocity is larger for the laminate
{45,�45,�45,45}. On the other hand, for some laminations and at
different angular velocities of the beam a modal interchange
phenomenon can appear. This phenomenon is more frequently
observed for the first flapping and lagging modes, mainly because
the first lagging mode is almost independent of the rotation speed.

The unstable regions shift to the right when increasing the
angular velocity and the size of these regions is also influenced by
the angular velocity. Also, the unstable boundaries are affected by
the variation of the orientation angle of the laminate fibers.

For the box cross-section analyzed the widest regions of insta-
bility correspond to parametrically excited flapping modes. In
contrast, the smallest regions correspond to parametrically excited
torsional modes.
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