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1 Introduction

Let W be a closed subspace of a separable complex Hilbert space H and let I be a finite
or countable infinite set. A (possibly finite) sequence F = {fi}i∈I in W is a frame for W if
there exist positive constants 0 < a ≤ b such that

a ‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ b ‖f‖2 for every f ∈ W .

If a = b then we say that F is a tight frame for W .

A frame F for W allows for linear (typically redundant) and stable encoding-decoding
schemes of vectors (signals) in W . Indeed, if V is a closed subspace of H such that
V ⊕ W⊥ = H (e.g. V = W) then it is possible to find frames G = {gi}i∈I for V such
that

f =
∑
i∈I

〈f, gi〉 fi , for f ∈ W .

The representation above lies within the theory of oblique duality (see [17, 18, 22, 23]). In
applied situations, it is usually desired to develop encoding-decoding schemes as above, with
some additional features. In some cases, we search for schemes with prescribed properties
(e.g., for which the sequence of norms {‖fi‖2}i∈I as well as the spectral properties of the family
F are given in advance) leading to what is known in the literature as frame design problem
(see [3, 6, 12, 14, 34, 41]). In other cases, we search for numerically robust oblique dual pairs
(F ,G) as above, leading to what is known as optimal frame designs ([5, 18, 24, 35, 39, 46]).

In their seminal work [6], Benedetto and Fickus introduced a functional defined on finite
sequences of (unit norm) vectors F = {fi}i∈In (where In = {1, . . . , n}), the so-called frame
potential, given by

FP (F) =
∑
i, j ∈In

|〈fi , fj〉| 2 . (1)
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In case dimH = d ∈ N then one of their major results shows that tight unit norm frames
can be characterized as (local) minimizers of this functional, among unit norm frames. Since
then, there has been interest in (local) minimizers of the frame potential within certain classes
of frames, since such minimizers can be considered as natural substitutes of tight frames (see
for example [13, 35]). Recently, there has been interest in the structure of minimizers of
other potentials such as the so-called mean squared error (MSE) (see [24, 36, 41] and the
references therein). Both the frame potential and the MSE are examples of the so-called
convex potentials introduced in [35]. It turns out that minimizers of these convex potentials
share the spectral and geometrical structure of minimizers of the frame potential. Now, it
is a well known fact that in case V = W then tight frames F for W - i.e. minimizers of
convex potentials - give rise to optimal (numerically robust) dual pairs (F ,G). Therefore,
it seems apparent that in the general case V ⊕W⊥ the construction of robust oblique dual
pairs (F ,G) is related with the construction of frames F which are minimizers of convex
potentials (e.g. the frame potential).

It turns out that there is a single notion that ties all the previous problems together namely,
the majorization preorder. Indeed, majorization is the key notion behind the frame design
problems (see [3, 12, 14]) through natural extensions of the Schur-Horn theorem from matrix
analysis (see [3, 9, 10, 30]). Moreover, the relation between majorization and tracial inequal-
ities with respect to convex functions allows to apply this notion in the study of convex
potentials ([5, 35, 36, 37, 39]). Unfortunately, the convex potentials considered in [35] (in
particular, the frame potential) can only be defined for finite frames. Hence, in the infinite
dimensional context we loose a tool which have proved useful as a measure of stability for
frames in finite dimensional Hilbert spaces.

In this paper we show that there are natural analogues of the convex potentials (and in
particular, of the frame potential) in the context of Bessel sequences of integer translates
E(F) of a finite family of vectors F = {fi}i∈In that lie in a finitely generated shift invariant
(FSI) subspace V of L2(Rk). We take advantage of the detailed structure of E(F) as a fibered
family over the torus Tk (see [7, 8, 42]) and the theory of range functions for shift invariant
(SI) subspaces and introduce the potential P Vϕ (E(F)) associated to a convex function ϕ and
V as an integral over Tk of the corresponding potentials on the fibers (for related approaches
to different problems in SI subspaces see [1, 27, 28]). In order to verify that our definition
is a natural extension of the convex potentials for finite frames we show that under natural
normalization conditions, a family of integer translates E(F) that is a tight frame for a FSI
subspace V is a minimizer of the convex potential associated to ϕ and V ; this is an example
of the fact that the problems considered in here as well as our approach to deal with them
are global in nature i.e., are not obtained fiber-wise.

The convex potentials in FSI subspaces raise several questions related with optimal design
problems. In particular, given FSI subspaces W , V such that V ⊕ W⊥ = L2(Rk) and a
finite family F = {fi}i∈In such that E(F) is a frame for W , we consider the problem of
designing optimal oblique duals E(G) which are translates of a family G = {gi}i∈In in V
and such that G satisfies the norm restrictions

∑
i∈In
‖gi‖2 ≥ w, for w > 0. In order to

deal with this problem we develop two new tools in the context of frames of translates.
On the one hand, we obtain what we call the fine spectral structure of shift generated
(SG) oblique dual frames of the fixed frame E(F), which is a detailed description of the
eigenvalues of the measurable field of positive operators defined on Tk corresponding to the
frame operators of SG oblique duals of E(F). As a consequence, we derive necessary and
sufficient conditions for the existence of a tight SG oblique dual E(G) of E(F). On the other
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hand, we consider the water-filling construction (both for functions in probability spaces as
well as for measurable field of positive finite-rank operators) and show that this construction
leads to optimal solutions of the oblique dual design problem; this is achieved by showing
that the water-filling constructions are optimal with respect to majorization (considered in
the general context of probability spaces) which is a result of independent interest. With
these tools we completely solve the problem of designing optimal oblique dual frames with
norm restriction mentioned before; it turns out that these optimal SG oblique duals are
more stable than the so-called canonical oblique dual. We point out that the structure of
the optimal solution is obtained in terms of a global analysis. As a byproduct we extend
the so-called Fan-Pall interlacing theorem from matrix analysis to the context of measurable
fields of positive matrices.

The paper is organized as follows. In section 2 we describe several preliminary notions
and facts from frame theory, SI subspaces, frames of translates and majorization theory in
probability spaces. In section 3 we introduce the convex potentials for frames of translates
and show that are natural extensions of the convex potentials for finite frames. In section
4 we recall several facts from the theory of oblique duality in FSI subspaces and obtain the
precise value of the aliasing norm corresponding to the consistent sampling in this setting.
Then, we describe the fine spectral structure of oblique duals of a fixed SG frame. Since this
result depends on an extension of the Fan-Pall interlacing theory, its proof is presented in an
appendix (see section 6). In section 5 we study the problem of optimal design of oblique dual
frames E(G) - of a fixed finitely SG frame E(F) - which satisfy certain norm restrictions. We
first show that the water-filling construction for positive functions in probability spaces is
optimal with respect to sub-majorization within a natural set of functions. We then construct
optimal SG oblique dual with norm restrictions and explain the relation of our construction
with a natural (non-commutative) water-filling construction for measurable field of positive
finite-rank operators. The paper ends with an appendix section in which we develop the
Fan-Pall inequalities for measurable fields of positive matrices as well as some consequences
of this result.

2 Preliminaries

In this section we recall some basic facts related with frame theory, oblique duality and
shift invariant (SI) subspaces of L2(Rk). At the end of this section we describe majorization
between functions in arbitrary probability spaces.

General Notation

Througout this work we shall use the following notation: the space of complex d×d matrices
is denoted by Md(C) and Md(C)+ the set of positive semidefinite matrices. Gl (d) is the
group of invertible elements of Md(C) and Gl (d)+ = Md(C)+ ∩ Gl (d). If T ∈ Md(C), we
denote by ‖T‖ its spectral norm, by rkT = dimR(T ) the rank of T , and by trT the trace
of T .

Given d ∈ N we denote by Id = {1, . . . , d} ⊆ N. For a vector x ∈ Rm we denote by x↓ (resp.
x↑) the rearrangement of x in decreasing (resp. increasing) order. We denote by (Rd)↓ =
{x ∈ Rd : x = x↓} the set of downwards ordered vectors, and (Rd)↑ = {x ∈ Rd : x = x↑}.

Given S ∈ Md(C)+, we write λ(S) = λ↓(S) = (λ1(S) , . . . , λd(S) ) ∈ (Rd)↓ the vector of
eigenvalues of S - counting multiplicities - arranged in decreasing order. Similarly we denote
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by λ↑(S) ∈ (Rd)↑ the reverse ordered vector of eigenvalues of S.

If W ⊆ Cd is a subspace we denote by PW ∈ Md(C)+ the orthogonal projection onto W .
Given x , y ∈ Cd we denote by x⊗ y ∈Md(C) the rank one matrix given by

x⊗ y (z) = 〈z , y〉x for every z ∈ Cd . (2)

Note that, if x 6= 0, then the projection Px
def
= Pspan{x} = ‖x‖−2 x⊗ x .

2.1 Frames for subspaces and oblique duality

In what follows H denotes a separable complex Hilbert space and I denotes a finite or
countable infinite set. Let W be a closed subspace of H: recall that a sequence F = {fi}i∈I
in W is a frame for W if there exist positive constants 0 < a ≤ b such that

a ‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ b ‖f‖2 for every f ∈ W . (3)

In general, if F satisfies the inequality to the right in Eq. (3) we say that F is a b-Bessel
sequence.

Given a Bessel sequence F = {fi}i∈I we consider its synthesis operator TF ∈ L(`2(I),H) given
by TF((ai)i∈I) =

∑
i∈I ai fi which, by hypothesis on F , is a bounded linear transformation.

We also consider T ∗F ∈ L(H, `2(I)) called the analysis operator of F , given by T ∗F(f) =
(〈f, fi〉)i∈I and the frame operator of F defined by SF = TF T

∗
F . It is straightforward to

check that
〈SFf, f〉 =

∑
i∈I

|〈f, fi〉|2 for every f ∈ H .

Hence, SF is a positive semidefinite bounded operator; moreover, a Bessel sequence F in
W is a frame for W if and only if SF is an invertible operator when restricted to W or
equivalently, if the range of TF coincides with W .

In order to describe oblique duality, we fix two closed subspaces V , W ⊆ H such that
W⊥ ⊕ V = H, that is such that W⊥ + V = H and W⊥ ∩ V = {0}. Hence, W⊥ is a common
(algebraic) complement of W and V . It is well known that in this case PW |V : V → W is a
linear bounded isomorphism so, in particular, we see that dimV = dimW as Hilbert spaces.
Moreover, the conditions W⊥ ⊕ V = H and W ⊕V⊥ = H are actually equivalent.

Fix a frame F = {fi}i∈I for W . Following [22, 23] (see also [18]), given a Bessel sequence
G = {gi}i∈I in V we say that G is a (oblique) V-dual of F if

f =
∑
i∈I

〈f, gi〉 fi for every f ∈ W .

It turns out (see [22, 23]) that if G is a V-dual of F then TF T
∗
G = PW//V⊥ , where PW//V⊥

denotes the oblique projection with range W and null space V⊥. In this case, by taking
adjoints in the previous identity we also get that TG T

∗
F = P ∗W//V⊥ = PV//W⊥ . Hence, TG is

onto V and then G is a frame for V ; moreover, we obtain the reconstruction formula

g =
∑
i∈I

〈g, fi〉 gi for every g ∈ V .

We consider the set of oblique V-duals of F given by

DV(F) = {G = {gi}i∈I is a V-dual of F} . (4)
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Remark 2.1. Let F = {fi}i∈I be a frame for W . If we set V = W then a Bessel sequence
G in W is a W-dual of F if it is a dual frame for F in W in the classical sense (see [16]) i.e.
TG T

∗
F = PW . Hence

DW(F) = D(F)
def
= {G = {gi}i∈I is a dual frame for F in W } .

Recall that there is a distinguished (classical) dual, called the canonical dual of F , denoted
F# = {f#

i }i∈I, given by f#
i = S†Ffi for i ∈ I, where S†F denotes the Moore-Penrose pseudo-

inverse of the (closed range positive semidefinite operator ) SF .

In the general context of oblique duality there also exists a distinguished V-dual for F , the
so-called canonical V-dual, which we denote by

F#
V = {f#

V, i}i∈I given by f#
V, i = PV//W⊥f

#
i for every i ∈ I ,

where F# = {f#
i }i∈I is the canonical dual of F . It turns out that the encoding-decoding

scheme based on the oblique dual pair (F ,F#
V ) has several optimality properties (see [22, 23]).

4

2.2 Shift-invariant subspaces and frames of translates

In what follows we consider L2(Rk) (with respect to Lebesgue measure) as a separable and
complex Hilbert space. Recall that a closed subspace V ⊆ L2(Rk) is shift-invariant (SI) if
f ∈ V implies T`f ∈ V for any ` ∈ Zk, where Tyf(x) = f(x− y) is the translation by y ∈ Rk.
For example, if we take a subset A ⊂ L2(Rk) then,

S(A) = span {T`f : f ∈ A, ` ∈ Zk} (5)

is a shift-invariant subspace called the SI subspace generated by A. Indeed, S(A) is the
smallest SI subspace that contains A. We say that a SI subspace V is finitely generated (FSI)
if there exists a finite set A ⊂ L2(Rk) such that V = S(A). In this case, the length of V is
the smallest cardinal #(A) such that S(A) = V .

In order to describe the fine structure of a SI subspace we consider the following represen-
tation of L2(Rk) (see [7, 8, 42] and [11] for extensions of these notions to the more general
context of actions of locally compact abelian groups). Let T = [−1/2, 1/2) endowed with the
Lebesgue measure and let L2(Tk, `2(Zk)) be the Hilbert space of square integrable `2(Zk)-
valued functions that consists of all vector valued measurable functions φ : Tk → `2(Zk) with
the norm

‖φ‖2 =

∫
Tk

‖φ(x)‖2
`2(Zk) dx <∞.

Then, Γ : L2(Rk)→ L2(Tk, `2(Zk)) defined for f ∈ L1(Rk) ∩ L2(Rk) by

Γf : Tk → `2(Zk) , Γf(x) = (f̂(x+ `))`∈Zk , (6)

extends uniquely to an isometric isomorphism between L2(Rk) and L2(Tk, `2(Zk)); here f̂
denotes the Fourier transform of f ∈ L2(Rk).

Let V ⊆ L2(Rk) be a SI subspace; for x ∈ Tk let JV(x) be the closed subspace of `2(Zk) given
by

JV(x) = {Γf(x) : f ∈ V}−‖·‖ . (7)
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Then, the function JV : Tk → { closed subspaces of `2(Zk)} is the measurable range function
associated with V . That is, if PJV (x) denotes the orthogonal projection onto JV(x) for x ∈ Tk

then for every ξ, η ∈ `2(Zk) the function x 7→ 〈PJV (x) ξ , η〉 is measurable and

V = {f ∈ L2(Rk) : Γf(x) ∈ JV(x) for a.e. x ∈ Tk}. (8)

Indeed, by [8, Prop.1.5] Eq. (8) establishes a bijection between SI subspaces of L2(Rk) and
measurable range functions.

Given SI subspaces V and W , recall that a bounded linear transformation S ∈ L(V ,W)
is shift preserving (SP) if T` S = S T` for every ` ∈ Zk. In this case, for x ∈ Tk, let
Ŝx ∈ L(JV(x), JW(x)) be the linear transformation determined by

Ŝx
(
Γf(x)

)
= Γ(Sf)(x) for f ∈ V . (9)

Then, (see [8, Prop.4.5]) the function Ŝ : Tk →
∐

x∈Tk L(JV(x), JW(x)) is weakly measurable,

i.e. for every ξ, η ∈ `2(Zk) the function x 7→ 〈Ŝx PJV (x) ξ , η〉 is measurable, and essentially

bounded; indeed ess supx∈Tk ‖Ŝx‖ = ‖S‖. Conversely, if s : Tk →
∐

x∈Tk L(JV(x), JW(x))
is weakly measurable and essentially bounded then there exists a unique bounded linear
transformation S ∈ L(V ,W) that is SP and such that Ŝ = s. For example, consider PV ∈
L(L2(Rk)) the orthogonal projection onto V ; then, PV is SP so that (PV )̂ : Tk → L(`2(Zk))
is given by (PV )̂x = PJV (x) i.e., the orthogonal projection onto JV(x), for a.e. x ∈ Tk.

The previous notions associated with SI subspaces and SP operators allow to develop a
detailed study of frames of translates. Indeed, let F = {fi}i∈I be a (possibly finite) sequence
in L2(Rk). We denote by E(F) the family of translates of F , namely E(F) = {T`fi}(`,i)∈Zk×I.
For x ∈ Tk, let ΓF(x) = {Γfi(x)}i∈I which is a (possibly finite) sequence in `2(Zk). Then
[8, 42] E(F) is a b-Bessel sequence if and only if ΓF(x) is a b-Bessel sequence for a.e. x ∈ Tk.
In this case, we consider TΓF(x) : `2(I) → `2(Zk) and SΓF(x) : `2(Zk) → `2(Zk) the synthesis
and frame operators of ΓF(x), respectively, for x ∈ Tk; it is straightforward to check that
SE(F) is a SP operator.

If F = {fi}i∈I and G = {gi}i∈I are such that E(F) and E(G) are Bessel sequences then (see
[27, 42]) the following fundamental relation holds:

(TE(G) T
∗
E(F))̂x = TΓG(x) T

∗
ΓF(x) , for a.e x ∈ Tk . (10)

Eq. (10) has several consequences; indeed, if W is a SI subspace of L2(Rk) and we assume
further that F , G ∈ Wn then:

1. For every f, g ∈ L2(Rk),

〈SE(F) f, g〉 =

∫
Tk

〈SΓF(x) Γf(x), Γg(x)〉`2(Zk) dx .

This last fact implies that (SE(F))̂x = SΓF(x) for a.e. x ∈ Tk; moreover, it also holds
that E(F) is a frame for W with frame bounds 0 < a ≤ b if and only if ΓF(x) is a
frame for JW(x) with frame bounds 0 < a ≤ b for a.e. x ∈ Tk (see [8]).

2. Since (PW )̂x = PJW (x) for a.e. x ∈ Tk then E(G) is a (classical) dual for E(F) in
W if and only if ΓG(x) is a (classical) dual for ΓF(x) in JW(x) for a.e. x ∈ Tk (see
[8, 27, 28]).
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2.3 Majorization in probability spaces

Majorization between vectors (see [4, 33]) has played a key role in frame theory. On the one
hand, majorization allows to characterize the existence of frames with prescribed properties
(see [3, 12, 14]). On the other hand, majorization is a preorder relation that implies a family
of tracial inequalities; this last fact can be used to explain the structure of minimizers of the
so-called Benedetto-Fickus frame potential ([6, 13]) as well as more general convex potentials
for finite frames (see [34, 35, 36, 37, 39]). In the next section we extend the notion of convex
potentials to the context of Bessel families of translates of finite sequences; therefore, we will
need the following general notion of majorization between functions in probability spaces.

Throughout this section the triple (X,X , µ) denotes a probability space i.e. X is a σ-
algebra of sets in X and µ is a probability measure defined on X . We shall denote by
L∞(X,µ)+ = {f ∈ L∞(X,µ) : f ≥ 0}. For f ∈ L∞(X,µ)+, the decreasing rearrangement of
f (see [33]), denoted f ∗ : [0, 1)→ R+, is given by

f ∗(s)
def
= sup {t ∈ R+ : µ{x ∈ X : f(x) > t} > s} for every s ∈ [0, 1) . (11)

Remark 2.2. We mention some elementary facts related with the decreasing rearrangement
of functions that we shall need in the sequel. Let f ∈ L∞(X,µ)+, then:

1. f ∗ is a right-continuous and non-increasing function.

2. f and f ∗ are equimeasurable i.e. for every Borel set A ⊂ R then µ(f−1(A)) =
|(f ∗)−1(A)|, where |B| denotes the Lebesgue measure of the Borel set B ⊂ R. In
turn, this implies that for every continuous ϕ : R+ → R+ then: ϕ ◦ f ∈ L∞(X,µ) iff
ϕ ◦ f ∗ ∈ L∞([0, 1]) and in this case∫

X

ϕ ◦ f dµ =

∫ 1

0

ϕ ◦ f ∗ dx .

3. If g ∈ L∞(X,µ) is such that f ≤ g then 0 ≤ f ∗ ≤ g∗; moreover, in case f ∗ = g∗ then
f = g.

4. If we consider the probability space ([0, 1],B, dt) - Borel sets in [0,1] with Lebesgue
measure - then f ∗ ∈ L∞([0, 1], dt) is such that (f ∗)∗ = f ∗.

5. If c ∈ R is such that f + c ≥ 0 then (f + c)∗ = f ∗ + c. 4

Definition 2.3. Let f, g ∈ L∞(X,µ)+ and let f ∗, g∗ denote their decreasing rearrangements.
We say that f submajorizes g (in (X,X , µ)), denoted g ≺w f , if∫ s

0

g∗(t) dt ≤
∫ s

0

f ∗(t) dt for every 0 ≤ s ≤ 1 .

If we further have that
∫ 1

0
g∗(t) dt =

∫ 1

0
f ∗(t) dt we say that f majorizes g and write g ≺ f .

4

In order to check that majorization holds between functions in probability spaces, we can
consider the so-called doubly stochastic maps. Recall that a linear operator D acting on
L∞(X,µ) is a doubly-stochastic map if D is unital, positive and trace preserving i.e.

D(1X) = 1X , D
(
L∞(X,µ)+

)
⊆ L∞(X,µ)+ and

∫
X

D(f)(x) dµ(x) =

∫
X

f(x) dµ(x)
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for every f ∈ L∞(X,µ). It is worth pointing out that D is necessarily a contractive map.

Our interest in majorization relies in its relation with integral inequalities in terms of convex
functions. The following result summarizes this relation as well as the role of the doubly
stochastic maps (see for example [15, 43]).

Theorem 2.4. Let f, g ∈ L∞(X,µ)+. Then the following conditions are equivalent:

1. g ≺ f ;

2. There is a doubly stochastic map D acting on L∞(X,µ) such that D(f) = g;

3. For every convex function ϕ : R+ → R+ we have that∫
X

ϕ(g(x)) dµ(x) ≤
∫
X

ϕ(f(x)) dµ(x) . (12)

In case we only have g ≺w f then Eq. (12) holds if we assume further that ϕ is an increasing
convex function.

Example 2.5. The operator D given by D(f) = (
∫
X
f dµ) · 1X is a doubly stochastic map.

Hence, we get the majorization relation (
∫
X
f dµ) · 1X ≺ f . Therefore, if ϕ : R+ → R+ is

any convex function and f ∈ L∞(X,µ)+ then, by Theorem 2.4, we have that

ϕ(

∫
X

f dµ) =

∫
X

ϕ((

∫
X

f dµ) · 1X(x)) dµ(x) ≤
∫
X

ϕ(f(x)) dµ(x) , (13)

which is an instance of the classical Jensen’s inequality. Using the previous facts, notice that
if c ∈ R is such that 0 ≤ c ≤

∫
X
f dµ then it is easy to see that c · 1X ≺w f . 4

The following result will play a key role in the study of the structure of minimizers of ≺w
within (appropriate) sets of functions.

Proposition 2.6 ([15]). Let f, g ∈ L∞(X,µ)+ such that g ≺w f . If there exists a non-
decreasing and strictly convex function ϕ : R+ → R+ such that∫

X

ϕ(f(x)) dµ(x) =

∫
X

ϕ(g(x)) dµ(x) then g∗ = f ∗ . �

With the notations of Example 2.5 notice that Proposition 2.6 implies (the known fact) that
if ϕ is strictly convex and such that equality holds in Jensen’s inequality Eq. (13) then
f ∗ =

∫
X
f dµ and hence f =

∫
X
f dµ.

3 Convex potentials for sequences of translates in FSI

spaces

We begin by describing the convex potentials for finite sequences of vectors with respect to
a finite dimensional subspace. We consider the sets

Conv(R+) = {ϕ : R+ → R+ , ϕ is a convex function }
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and Convs(R+) = {ϕ ∈ Conv(R+) , ϕ is strictly convex }.
Now, given ϕ ∈ Conv(R+) and a finite dimensional subspace W ⊂ H, then the convex
potential associated to (ϕ,W), denoted by PWϕ , is defined as follows: for a finite sequence
F = {fi}i∈In ∈ Wn with frame operator SF ∈ L(H)+,

PWϕ (F) = tr[ϕ(SF)PW ] (14)

where ϕ(SF) ∈ L(H)+ is obtained by functional calculus and tr(·) denotes the usual (semi-
finite) trace in L(H). Notice that by construction, PW SF = SF PW = SF : then, it is clear
that

PWϕ (F) =
∑
i∈Id

ϕ(λi(SF)) , (15)

where d = dimW and (λi(SF))i∈Id
∈ (R+)d denotes the vector of eigenvalues of the positive

operator SF |W ∈ L(W)+, counting multiplicities and arranged in non-increasing order (we
use the convention I0 = ∅). In particular, if ϕ ∈ Conv(R+) is such that ϕ(0) = 0 we get that

PWϕ (F) = tr (ϕ(SF)) = tr (ϕ(GF)) ,

where the n× n matrix GF = (〈fi, fj〉)i,j∈In is the Gramian matrix of the finite sequence F .
That is, if ϕ(0) = 0, then PWϕ = Pϕ does not depend on W . For example, in case ϕ(x) = x2,
then PWϕ (F) = Pϕ(F) coincides with the frame potential: indeed, by Eq. (1) we have that

PWϕ (F) = Pϕ(F) = tr(S2
F) = tr((T ∗F TF)2) =

∑
i, j ∈In

|〈fi , fj〉| 2 = FP (F) . (16)

For ϕ ∈ Conv(R+) and a finite dimensional subspace W ⊂ H, PWϕ (F) is a measure of the
spread of the eigenvalues of the frame operator of F = {fi}i∈In ∈ Wn. That is, (under suit-
able normalization hypothesis on F) the smaller the value PWϕ (F) is, the more concentrated
the eigenvalues of SF |W ∈ L(W)+ are. This is the main motivation for considering these
convex potentials (see [35, 36, 39, 41]).

Next we extend the notion of convex potential to the context of finitely generated shift
invariant systems in FSI subspaces.

Definition 3.1. Let W be a FSI subspace in L2(Rk), let F = {fi}i∈In ∈ Wn be such that
E(F) is a Bessel sequence and consider ϕ ∈ Conv(R+). Then the convex potential associated
to (ϕ,W) on E(F), denoted PWϕ (E(F)), is given by

PWϕ (E(F)) =

∫
Tk

P JW (x)
ϕ (ΓF(x)) dx (17)

where P
JW (x)
ϕ (ΓF(x)) = tr(ϕ(SΓF(x)) (PW )̂x) is the convex potential associated with (ϕ, JW(x))

of the sequence ΓF(x) = {Γ fi(x)}i∈In in `2(Zk), for every x ∈ Tk. 4

Next we develop some notions and tools in order to show that the right hand side in Eq.
(17) is well defined, namely that the function Tk 3 x 7→ P

JW (x)
ϕ (ΓF(x)) is integrable.

Let F = {fi}i∈In be a finite sequence in L2(Rk) such that E(F) is a Bessel sequence. Recall
that in this case SE(F) is a SP operator and that for x ∈ Tk then (SE(F))̂x = SΓF(x) ∈
L(`2(Zk))+ is a positive and finite rank operator.

The next lemma is a reformulation of a result in [42] concerning the existence of measurable
functions of eigenvalues and eigenvectors of measurable fields of positive semidefinite n× n
matrices.
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Lemma 3.2. Let W be a FSI subspace in L2(Rk) and let F = {fi}i∈In ∈ Wn be such that
E(F) is a Bessel sequence. Then, there exist:

1. a measurable function r : Tk → N≥0 and measurable vector fields vj : Tk → `2(Zk) for

j ∈ In such that r(x) ≤ n and {vj(x)}r(x)
j=1 is an orthonormal system in JW(x) for a.e.

x ∈ Tk;

2. bounded measurable functions λj : Tk → R+ for j ∈ In, such that λ1 ≥ . . . ≥ λn ,
λj(x) = 0 if j > r(x) and

(SE(F))̂x =

r(x)∑
j=1

λj(x) vj(x)⊗ vj(x) , for a.e. x ∈ Tk . (18)

If we assume further that E(F) is a frame for W then r(x) = dim JW(x) and {vj(x)}r(x)
j=1 is

an orthonormal basis (ONB) for JW(x) for a.e. x ∈ Tk.

Proof. Consider the measurable field of positive semidefinite matrices G : Tk → Mn(C)+

given by the Gramian G(x) = (〈Γfi(x),Γfj(x)〉)i,j∈In , for x ∈ Tk. Notice that G(x) is the
matrix representation of T ∗ΓF(x)TΓF(x) ∈ L(Cn)+ with respect to the canonical basis of Cn for

x ∈ Tk. In particular, if b denotes a Bessel (upper) bound of E(F) then

ess supx∈Tk‖G(x)‖ = ess supx∈Tk‖TΓF(x)T
∗
ΓF(x)‖ = ‖SE(F)‖ ≤ b ,

by the remarks at the end of Section 2.2. We set r(x) = rk(G(x)) = rk(SΓF(x)) for x ∈ Tk;
therefore r(·) : Tk → N≥0 is a measurable function such that r(x) ≤ n for x ∈ Tk. Hence, by
considering a convenient finite partition of Tk into measurable sets we can assume, without
loss of generality, that r(x) = r ∈ N for a.e. x ∈ Tk .

Using results from [42], we see that there exist measurable functions λj : Tk → R+ and
measurable vector fields uj : Tk → Cn, for j ∈ In, such that: λj(x) ≥ λj+1(x) for j ∈ In−1,
{uj(x)}j∈In is an ONB of Cn and G(x)uj(x) = λj(x)uj(x) for j ∈ In and a.e. x ∈ Tk. In
particular, the functions λj : Tk → R+ satisfy 0 ≤ λj(x) ≤ ‖G(x)‖ ≤ b for a.e. x ∈ Tk,
j ∈ In; these remarks prove item 2 above.

Take the polar decomposition TΓF(x) = U(x) |TΓF(x)|, where U(x) : Cn → JW(x) ⊂ `2(Zk) is
(the unique) partial isometry with kerU(x) = kerTΓF(x) for a.e. x ∈ Tk. Hence, in this case
U(x) = TΓF(x) (G1/2(x))† and therefore U(·) : Tk → L(Cn, `2(Zk)) is a well defined measur-
able field of partial isometries. Then, vj : Tk → `2(Zk) given by vj(x) = U(x)uj(x) ∈ JW(x)
for j ∈ In and x ∈ Tk are measurable vector fields such that {vj(x)}j∈Ir is an orthonormal
system in JW(x), for a.e. x ∈ Tk; moreover, (SE(F))̂x vj(x) = λj(x) vj(x) for j ∈ Ir and a.e.
x ∈ Tk. Since rk(SE(F))̂x = r for a.e. x ∈ Tk, then we see that Eq. (18) holds in this case.

Finally, notice that if E(F) is a frame for W then we should have that r = rk(SE(F))̂x =
dim JW(x) for a.e. x ∈ Tk which shows the last part of the statement.

Remark 3.3. Let F = {fi}i∈In be a finite sequence in L2(Rk) such that E(F) is a Bessel
sequence. In what follows we consider the function

Tk 3 x 7→ λ(SΓF(x))
def
= (λj(SΓF(x)) )j∈N ∈

(
`1

+(Zk)
)↓

(decreasing sequences) , (19)
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where λ(SΓF(x)) is the sequence of eigenvalues of the positive semidefinite finite rank operator
(SE(F))̂x = SΓF(x) ∈ L(`2(Zk)), counting multiplicities and arranged in non-increasing order.
Notice that the maps λj(x) of Lemma 3.2 are uniquely determined (a.e.) by the equation
λj(x) = λj(SΓF(x)), for j ∈ In . The last entries are λj(SΓF(x)) = 0 for j ≥ n + 1 and
x ∈ Tk. Therefore, another way to state item 2 of Lemma 3.2 is to say that the map
Tk 3 x 7→ λ(SΓF(x)) of Eq. (19) is measurable. We refer to this function as the fine spectral
structure of E(F). 4

Remark 3.4. Consider the notations from Definition 3.1. We now show that the right hand
side in Eq. (17) is well defined. Indeed, by Lemma 3.2 we get a spectral representation of
(SE(F))̂(·) as in Eq. (18) in terms of the bounded and measurable functions λj(·) : Tk → R+,
for j ∈ In. If we consider the bounded and measurable function d(x) = dim JW(x) ≥ r(x)
for x ∈ Tk then, using Eq. (15) we see that

P JW (x)
ϕ (ΓF(x)) =

∑
j∈Ir(x)

ϕ(λj(x)) + (d(x)− r(x)) ϕ(0) for a.e. x ∈ Tk .

Therefore, the non-negative function

Tk 3 x 7→ P JW (x)
ϕ (ΓF(x))

is bounded and measurable and therefore integrable on Tk. This shows that the convex
potential PWϕ (E(F)) is a well defined non-negative real number. 4

Incidentally, Remark 3.4 above shows that if ϕ(0) = 0 then the convex potential PWϕ = Pϕ
does not depend on the FSI subspace W .

Example 3.5. Let W be a FSI subspace of L2(Rk) and let F = {fi}i∈In ∈ Wn. If we set
ϕ(x) = x2 for x ∈ R+ then, the corresponding potential on E(F), that we shall denote
FP (E(F)), is given by

FP (E(F)) =

∫
Tk

tr(S2
ΓF(x)) dx =

∫
Tk

∑
i, j∈In

|〈Γfi(x),Γfj(x)〉|2 dx .

Hence, FP (E(F)) is a natural extension of the Benedetto-Fickus frame potential of Eq. (16).
4

Remark 3.6. Let W be a SI subspace of L2(Rk) and let A ∈ L(`2(Zk))+ be a positive
operator: in [21], E. Dutkay introduces the local trace function of A relative to W , denoted
τW, A : Tk → [0,∞] as follows: for x ∈ Tk,

τW, A(x) = tr(A (PW )̂x) ,

where tr(·) denotes the usual (semi-finite) trace in L(`2(Zk)). We can extend the notion of
local trace function as described above to the following setting: given T ∈ L(L2(Rk))+ a
positive and SP operator, we let the local trace function of T with respect to the SI subspace
W be given by

τW, T (x) = tr(T̂x (PW )̂x) , x ∈ Tk . (20)

Notice that if A ∈ L(`2(Zk))+ and T ∈ L(L2(Rk))+ is the unique positive and SP operator
such that T̂x = A for x ∈ Tk then

τW, A(x) = τW, T (x) , x ∈ Tk .
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If we assume further that W is a FSI subspace, we consider ϕ ∈ Conv(R+) and take F =
{fi}i∈In ∈ Wn then

PWϕ (E(F)) =

∫
Tk

τW,ϕ(SE(F))(x) dx ,

where ϕ(SE(F)) ∈ L(L2(Rk))+ is obtained by the functional calculus. Indeed, notice that in
this case ϕ(SE(F)) is a SP operator such that

[ϕ(SE(F))]̂ x = ϕ( (SE(F))̂x) = ϕ(SΓF(x)) , for a.e. x ∈ Tk . 4

Let W be a FSI subspace. In what follows we show that, under some natural restrictions,
the convex potentials PWϕ (E(F)) for finite sequences F ∈ Wn detect tight frames for W
as their minimizers (see Theorem 3.9 below). In turn, this last fact motivates the study of
the structure of minimizers of convex potentials for finitely generated sequences in L2(Rk)
(under some restrictions) since these minimizers can be considered as natural substitutes of
tight frames. In order to state the results on this matter, we introduce the following notions
and notations.

Remark 3.7. Let (X,X , µX), (Y,Y , µY ) be two measure spaces; we consider their direct
sum, denoted X

⊕
Y , given by the three-tuple (X ⊕ Y,X

⊕
Y , µX ⊕ µY ), where

1. X ⊕ Y = X
d
∪ Y (the disjoint union of the sets); we further consider the canonical

inclusions ηX : X → X ⊕ Y and ηY : Y → X ⊕ Y of X and Y into their disjoint
union; hence ηX and ηY are injective functions such that ηX(X) ∩ ηY (Y ) = ∅ and
ηX(X) ∪ ηY (Y ) = X ⊕ Y .

2. X
⊕
Y = {A⊕B = ηX(A) ∪ ηY (B) : A ∈ X , B ∈ Y};

3. µX ⊕ µY is the measure given by µX ⊕ µY (A⊕B) = µX(A) + µY (B);

Notice that using the maps ηX and ηY we can consider (as we sometimes do) X, Y ⊂ X ⊕Y
. 4

Notations 3.8. In what follows we consider:

1. A FSI subspace of L2(Rk) of length `, denoted W ;

2. F = {fi}i∈In ∈ Wn such that E(F) is a Bessel sequence;

3. d(x) = dim JW(x) ≤ `, for x ∈ Tk;

4. The Lebesgue measure on Rk; denoted | · | ; Xi = d−1(i) ⊆ Tk and pi = |Xi|, i ∈ I` .

5. We denote by CW =
∑

i∈I`
i · pi .

6. The spectrum of W is the measurable set Spec(W) =
⋃
i∈I`

Xi = {x ∈ Tk : d(x) 6= 0}.
4

Theorem 3.9 (Structure of PWϕ minimizers with norm restrictions). Consider the Notations
3.8 and assume that

∑
i∈In
‖fi‖2 = 1. If ϕ ∈ Conv(R+), then

PWϕ (E(F)) ≥ CW ϕ(C−1
W ) . (21)

Moreover, if ϕ ∈ Convs(R+) then equality holds in (21) iff E(F) is a tight frame for W i.e.

SE(F) = C−1
W PW . (22)
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Proof. Let (Xij,Xij, | · |ij) where Xij = Xi , Xij = Xi the σ-algebra of Borel sets in Xi and
| · |ij = | · |i the Lebesgue measure in Xi, for j ∈ Ii and i ∈ I`. With the notations in Remark
3.7, we consider the measure space

(X,X , µ) =
⊕
i∈I`

⊕
j∈Ii

(Xij,Xij, | · |ij) .

For i ∈ I` and j ∈ Ii we further consider the canonical inclusions ηi,j : Xi,j → X. Hence,
for every x ∈ X there exists unique i ∈ I`, j ∈ Ii and x̃ ∈ Xi,j = Xi such that ηi,j(x̃) = x.
Notice that by construction, µ(X) =

∑
i∈I`

i · pi = CW .

Let λE(F) : X → R+ be the measurable function of eigenvalues of E(F) defined as follows:
for x ∈ X, let (i , j) ∈ I` × Ii and x̃ ∈ Xi,j = Xi be (uniquely determined) such that
ηi,j(x̃) = x; in this case we set

λE(F)(x) = λj( (SE(F))̂x̃) = λj(SΓF(x̃)) ,

where λ(SΓF(x̃)) ∈
(
`1

+(Zk)
)↓

is the fine spectral structure of E(F) defined in Eq. (19). We
claim that if ϕ ∈ Conv(R+), then

PWϕ (E(F)) =

∫
X

ϕ(λE(F)(x)) dµ(x) (23)

Indeed, for Eq. (17)

PWϕ (E(F)) =

∫
Tk

P JW (x)
ϕ (ΓF(x)) dx =

∫
Spec(W)

P JW (x)
ϕ (ΓF(x)) dx ,

where P
JW (x)
ϕ (ΓF(x)) is the convex potential associated with (ϕ, JW(x)) of the finite sequence

ΓF(x) = {Γ fi(x)}i∈In in `2(Zk) as defined in Eq. (15) (notice that P
JW (x)
ϕ (ΓF(x)) = 0 for

x ∈ Tk \ Spec(W)). Therefore, if x ∈ Xi for some i ∈ I` then

P JW (x)
ϕ (ΓF(x)) =

i∑
j=1

ϕ(λj(SΓF(x))) .

For i ∈ I` we have that∫
Xi

P JW (x)
ϕ (ΓF(x)) dx =

∫
Xi

i∑
j=1

ϕ(λj(SΓF(x))) dx =

∫
⊕i

j=1Xij

ϕ(λE(F)(x)) dµ(x) .

Therefore, since Spec(W) =
⋃
i∈I`

Xi and X = ⊕i∈I`
⊕j∈Ii

Xi,j ,

PWϕ (E(F)) =
∑
i∈I`

∫
Xi

P JW (x)
ϕ (ΓF(x)) dx =

∑
i∈I`

∫
⊕i

j=1Xij

ϕ(λE(F)(x)) dµ(x) =

∫
X

ϕ(λE(F)(x)) dµ(x) ,

which proves Eq. (23). In particular, if we take ϕ(x) = x in Eq. (23) we get that∫
X

λE(F)(x) dµ(x) =

∫
Tk

tr(SΓF(x)) dx =

∫
Tk

∑
i∈In

‖Γfi(x)‖2 dx =
∑
i∈In

‖fi‖2 = 1 .
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Consider the probability measure µ̃ = C−1
W µ. Then, as in Example 2.5, we have that∫

X

λE(F)(x) dµ̃(x) = C−1
W =⇒ C−1

W · 1X ≺ λE(F) ( in (X,X , µ̃) ) . (24)

If we let ϕ ∈ Conv(R+) then, using the previous facts and Theorem 2.4, we get that

ϕ
(
C−1
W
)

=
∫
X
ϕ
(
C−1
W · 1X

)
dµ̃(x)

2.4

≤
∫
X
ϕ(λE(F)(x)) dµ̃(x)

= C−1
W
∫
X
ϕ(λE(F)(x)) dµ(x)

(23)
= C−1

W PWϕ (E(F)) ,

which proves Eq. (21). If ϕ ∈ Convs(R+) and also PWϕ (E(F)) = ϕ(C−1
W )CW , using Eq. (23)

and the majorization relation in Eq. (24), we get that∫
X

ϕ(λE(F)(x)) dµ̃(x) =

∫
X

ϕ(C−1
W ) dµ̃(x) .

Hence, by Proposition 2.6,

(λE(F))
∗ = C−1

W 1[0,1] =⇒ λi( (SE(F))̂x) = C−1
W for i ∈ Id(x) and a.e. x ∈ Tk .

Therefore, SE(F) = C−1
W PW i.e. E(F) is a tight frame for W . Conversely, notice that if

SE(F) = C−1
W PW then lower bound in Eq. (21) is attained.

Remark 3.10. Notice that Theorem 3.9 above indicates that minimizers of the convex
potentials have a nice global structure. That is, the structure of the minimizers of the convex
potentials is not obtained by glueing minimizers of the corresponding (local) convex potential
in each fiber. 4

4 Fine spectral structure of shift generated oblique du-

als in FSI subspaces

Throughout this section V , W ⊆ L2(Rk) denote FSI subspaces such that V ⊕W⊥ = L2(Rk)
and F = {fi}i∈In ∈ Wn denotes a finite sequence such that E(F) is a frame for W .

Next we recall some characterizations of the condition S⊕T ⊥ = L2(Rk) for SI subspaces and
a characterization of shift generated (SG) oblique duals of E(F); these results together with
[5] allow us to obtain the exact value of the aliasing norm corresponding to the consistent
sampling induced by the FSI subspaces V and W . In Section 4.2 we obtain a detailed
description of the fine spectral structure (i.e. eigenvalues) of the frame operators of SG
oblique V-duals of the (fixed) frame E(F) for W . We will apply these results in Section
5, where we compute SG oblique dual frames with norm restrictions that simultaneously
minimize the convex potentials P Vϕ for all ϕ ∈ Conv(R+).

4.1 SG oblique duals and aliasing in FSI subspaces

Following [27] (see also [17, 26, 28]) we consider the set of SG V-duals of E(F):

DSGV (F) = DSGV (E(F)) = {E(G) ∈ DV(E(F)) : G = {gi}i∈In ∈ Vn} . (25)
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In case V =W then we write DSG(F) = DSGW (E(F)) (which is the class of SG duals of type
I, in the terminology of [27]). Given E(G) ∈ DSGV (F) we obtain the following (structured)
reconstruction formulas: for every f ∈ W and g ∈ V ,

f =
∑

(`, i)∈Zk×In

〈f, T` gi〉 T` fi and g =
∑

(`, i)∈Zk×In

〈g, T` fi〉 T` gi .

Next we describe some results related with the general assumption for studying oblique
duality, namely V ⊕W⊥ = L2(Rk), for the FSI subspaces V and W , as well as SG oblique
duality. The next two results can be derived using combinations of results and techniques in
[2, 31, 32].

Lemma 4.1. With the previous notations and assumptions, let JV and JW denote the range
functions of the SI subspaces V and W, respectively. Then,

1. W⊥ is a SI subspace with range function JW⊥(x) = [JW(x)]⊥ for a.e. x ∈ Tk;

2. If Q = PV//W⊥ then Q is a shift preserving operator;

3. JV(x)⊕ JW(x)⊥ = `2(Zk) and Q̂x = PJV (x)//JW (x)⊥ for a.e. x ∈ Tk.

4. E(G) ∈ DSGV (F) ⇐⇒ ΓG(x) is JV(x)− dual of ΓF(x), for a.e x ∈ Tk. �

Remark 4.2. Let S and T be closed subspaces of L2(Rk). In order to characterize when the
(algebraic) sum of these subspaces is a closed subspace we recall the Dixmier angle between
S and T , denoted by [S, T ⊥]D ∈ [0, π], given by

cos[S, T ]D = sup{|〈v, w〉|, v ∈ S1, w ∈ T1} , (26)

where S1 = {f ∈ S : ‖f‖ = 1} (and similar for T1). It is well known (see [20]) that
[S, T ]D > 0 if and only if S ∩ T = {0} and S + T is a closed subspace of L2(Rk).

Assume further that S ⊕ T = L2(Rk) and let Q = PS//T be the corresponding oblique
projection. Then (see [20])

‖Q‖ =
1

sin[S, T ]D
. 4

Proposition 4.3. Let S, T ⊆ L2(Rk) be SI subspaces of L2(Rk). The following statements
are equivalent:

1. S ⊕ T ⊥ = L2(Rk);

2. JS(x)⊕ JT (x)⊥ = `2(Zk) for a.e. x ∈ Tk and ess supx∈Tk‖PJS(x)//JT (x)⊥‖ <∞;

3. JS(x)⊥ ∩ JT (x) = {0} and ess infx∈Tk [JS(x), JT (x)⊥]D > 0.

In this case we have that [S, T ⊥]D = ess infx∈Tk [JS(x), JT (x)⊥]D .

As an application of the previous results we compute the exact value of the aliasing norm
(see [22, 29]) in terms of the relative geometry of the FSI subspaces V andW . Indeed, recall
that the aliasing norm corresponding to the consistent sampling

f 7→ f̃ = PW//V⊥f , for f ∈ L2(Rk)
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denoted A(V , W), is given by

A(V , W) = sup
e∈W⊥

‖PW//V⊥e‖
‖e‖

= ‖PW//V⊥ PW⊥‖ . (27)

The aliasing norm is a measure of the incidence of W⊥ in the consistent sampling induced
by PW//V⊥ and it plays a role in applications of oblique duality.

Definition 4.4. Let S, T ⊂ L2(Rk) be closed subspaces. We define the aperture between
S and T , denoted [S, T ]a ∈ [0, π/2), as the angle given by

cos([S, T ]a) = inf
f∈T , ‖f‖=1

‖PSf‖ . 4

Remark 4.5. With the notations of Definition 4.4, we point out that the aperture [S, T ]a

coincides with the notion of angle between the subspaces S and T as defined in [47] (and
cos([S, T ]a) is also known as the infimum cosine angle from [31]). It is known that the
following relation holds (see [31, 32]):

cos([S, T ]D)2 = 1− cos([S, T ]a)2 =⇒ [S, T ]a = π/2− [S, T ⊥]D .

Hence, using the relations above and Proposition 4.3 (see also [31]) we get that if S, T ⊂
L2(Rk) are SI subspaces such that S⊥ ⊕ T = L2(Rk) then

[S, T ]a = ess supx∈Tk [JS(x), JT (x)]a < π/2 . 4

Consider again the notations of Definition 4.4 and assume further that L2(Rk) = S ⊕ T ⊥.
Then, using Remarks 4.2 and 4.5 we see that

‖PS//T ⊥‖ =
1

sin[S, T ⊥]D
=

1

cos[S, T ]a
.

From this we obtain the following upper bound for the aliasing norm (see [48])

A(S, T ⊥) ≤ ‖PS//T ⊥‖ =
1

cos[S, T ]a
.

Notice that this known bound is not sharp; indeed, if we take S = T then A(S, T ⊥) = 0
but cos[S, T ]a = 1.

Next we compute the exact value of the aliasing norm.

Proposition 4.6. With the previous notations and assumptions, the aliasing norm A(V ,W)
corresponding to the FSI oblique pair (V ,W) is given by

A(V , W) = tan([V , W ]a) .

Proof. Notice that by assumption JV(x) and JW(x) are finite dimensional subspaces of `2(Zk)
and, by Proposition 4.3, we see that JV(x)⊥ ⊕ JW(x) = `2(Zk), for a.e. x ∈ Tk. Hence, we
can apply the results from [5], and conclude that

A(JV(x), JW(x)) = ‖PJW (x)//JV (x)⊥ PJW (x)⊥‖ = tan([JV(x), JW(x)]a) , for a.e. x ∈ Tk .

Therefore, using Remark 4.5, we get that

A(V , W) = ‖PW//V⊥ PW⊥‖ = ess supx∈Tk tan([JV(x), JW(x)]a) = tan([V , W ]a) . �

Conjecture 4.7. We conjecture that Proposition 4.6 holds for the consistent sampling cor-
responding to an oblique decomposition S ⊕ T ⊥ = H in an arbitrary Hilbert space H. By
the results from [5] the conjecture holds for finite dimensional S and T . By Proposition 4.6
this conjecture holds for some infinite dimensional subspaces S and T as well. 4
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4.2 Fine spectral structure of SG oblique duals

Let E(G) ∈ DSGV (F) and let SE(G) denote the frame operator of E(G). Recall that in this
case SE(G) is a shift preserving (SP) operator such that (SE(G))̂x = SΓG(x) for a.e. x ∈ Tk

and the fine spectral structure of E(G), as defined in Eq (19), is the function Tk 3 x 7→
λ(SΓG(x)) = (λj(SΓG(x)))j∈N , the sequence of eigenvalues of the positive finite rank operator
SΓG(x), counting multiplicities and arranged in non-increasing order for a.e. x ∈ Tk.

In the next result we consider the measurable function d : Tk → {0, . . . , n} given by d(x) =
dim JW(x) = dim JV(x) for a.e. x ∈ Tk.

Lemma 4.8. Let G = {gi}i∈In ∈ Vn be such that E(G) is a frame for V. Let B ∈ L(L2(Rk))+

be a shift preserving operator such that R(B) ⊆ V. Then, there exists Z = {zi}i∈In ∈ Vn
such that B = SE(Z) and TE(G) T

∗
E(Z) = 0 if and only if rk(B̂x) ≤ n− d(x) for a.e. x ∈ Tk.

Proof. First notice that by considering a convenient finite partition of Tk into measurable
sets we can assume, without loss of generality, that d(x) = d ∈ N for a.e. x ∈ Tk . By
Lemma 3.2 there exist measurable vector fields vj : Tk → `2(Zk) for j ∈ In such that if
λ(SΓG(·)) = (λj(·))j∈N denotes the fine spectral structure of E(G) then

(SE(G))̂x =
∑
j∈Id

λj(x) vj(x)⊗ vj(x) , for a.e. x ∈ Tk . (28)

Moreover, in this case {vj(x)}j∈Id
is an ONB of JV(x) for a.e. x ∈ Tk. Assume that B ∈

L(L2(Rk))+ is a shift preserving operator such that R(B) ⊆ V and such that rk(B̂x) ≤ n− d
for a.e. x ∈ Tk. Since B̂x ∈ L(`2(Zk))+ is such that R(B̂x) ⊆ JV(x) for a.e. x ∈ Tk then,
using the measurable vector fields {vj}j∈Id

as above (indeed, the measurable field of matrix

representations [B̂x] ∈ Md(C)+ of B̂x with respect to {vj(x)}j∈Id
) we get measurable fields

wj : Tk → `2(Zk) for j ∈ Id, such that {wj(x)}j∈Id
is an ONB of JV(x) and B̂xwj(x) =

λj(B̂x)wj(x) for j ∈ Id and a.e. x ∈ Tk. In particular, we see that

B̂1/2
x =

min{d,n−d}∑
j=1

λj(B̂x)
1/2wj(x)⊗ wj(x) , for a.e. x ∈ Tk .

Let V : Tk → L(Cn, `2(Zk)) be the measurable field of partial isometries given by

V (x)uj(x) =

{
wj−d if d+ 1 ≤ j ≤ d+ min{d, n− d} ,

0 otherwise.

Hence V (x)V ∗(x) is the orthogonal projection onto span{wj(x) : j ∈ Imin{d,d−n}} and
R(V ∗(x) ) ⊆ kerV (x)⊥ ⊆ span{uj(x) : d+ 1 ≤ j ≤ n} =⇒ TΓG(x)V

∗(x) = 0 for a.e. x ∈ Tk.

For i ∈ In we set zi ∈ V determined uniquely by Γzi(x) = B̂
1/2
x V (x)ei for a.e. x ∈ Tk, where

{ei}i∈In denotes the canonical ONB of Cn. If we set Z = {zi}i∈In then TΓZ(x) = B̂
1/2
x V (x)

for a.e. x ∈ Tk; hence, using Eq. (10), we see that

(TE(G) T
∗
E(Z))̂x = TΓG(x)T

∗
ΓZ(x) = TΓG(x)V

∗(x)B̂1/2
x = 0 , for a.e. x ∈ Tk .

On the other hand, notice that

(SE(Z))̂x = SΓZ(x) = B̂1/2
x V (x)V ∗(x) B̂1/2

x = B̂x , for a.e. x ∈ Tk .
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Conversely, assume that there existsZ = {zi}i∈In ∈ Vn such thatB = SE(Z) and TE(G) T
∗
E(Z) =

0. Then, by Eq. (10), we get that 0 = TΓG(x) T
∗
ΓZ(x) and hence rk(T ∗ΓZ(x)) ≤ n− rk(TΓG(x)) =

n− d(x) for a.e. x ∈ Tk. Therefore,

rk (SE(Z))̂x = rk(SΓZ(x)) = rk(TΓZ(x)) = rk(T ∗ΓZ(x)) ≤ n− d(x) for a.e. x ∈ Tk . �

Definition 4.9. Let G = {gi}i∈In be such that E(G) is a frame for V with frame operator
A = SE(G). Recall that d(x) = dim JV(x) for x ∈ Tk. Then, we consider

UV(E(G) ) =
{
A+B : B ∈ L(L2(Rk))+ is SP, R(B) ⊂ V , rk(B̂x) ≤ n−d(x) , for a.e. x ∈ Tk

}
.

4

Proposition 4.10. Let E(F)#
V = {T` f#

V, i}(`,i)∈Zk×In
denote the canonical V-dual of F . Then,

{SE(G) : E(G) ∈ DSGV (F)} = UV(E(F)#
V ) . (29)

Proof. Let G = {gi}i∈In ∈ Vn be such that E(G) ∈ DSGV (F). Let Z = {zi}i∈In ∈ Vn be
given by zi = gi − f#

V, i for i ∈ In . Then E(Z) = {T` zi}(`, i)∈Zk×In
is a Bessel sequence in V

such that TE(G) = TE(F)#V
+ TE(Z). In this case we have that TE(Z) T

∗
E(F) = 0 and therefore

TE(Z) T
∗
E(F)#V

= 0, since R(T ∗E(F)) = R(T ∗
E(F)#V

). Thus,

SE(G) = (TE(F)#V
+ TE(Z)) (TE(F)#V

+ TE(Z))
∗ = SE(F)#V

+ SE(Z) .

We conclude that B = SE(Z) ∈ L(L2(Rk))+ is SP, R(SE(Z)) ⊂ V and, by Lemma 4.8, that
rk (SE(Z))̂x ≤ n− d(x) for a.e. x ∈ Tk.

Conversely, if S ∈ UV(E(F)#
V ) then S = SE(F)#V

+B, where B ∈ L(L2(Rk))+ is SP, R(B) ⊂ V
and rk(B̂x) ≤ n− d(x) for a.e. x ∈ X. By Lemma 4.8 we see that there exists Z = {zi}i∈In

such that TE(Z) T
∗
E(F) = 0 and B = SE(Z). If we let G = {gi}i∈In be given by gi = f#

V, i + zi
for i ∈ In, then E(G) is a Bessel sequence in V such that TE(G) = TE(F)#V

+ TE(Z). Using that

TE(Z) T
∗
E(F)#V

= 0 we conclude, as before, that

SE(G) = SE(F)#V
+ SE(Z) = SE(F)#V

+B = S �

Proposition 4.10 shows that the set of frame operators of SG V-duals of a fixed frame F
can be described in terms of the additive model UV(E(F)#

V ) introduced in Definition 4.9. It
turns out that the fine spectral structure of the elements of UV(E(F)#

V ) can be described
using a natural extension of the Fan-Pall interlacing theorem for measurable fields of positive
matrices. We develop both results in the Appendix section (see Theorems 6.3 and 6.4). As
a consequence we obtain the following

Theorem 4.11 (Fine spectral structure of V-duals). Let E(F)#
V be the canonical V-dual

frame of E(F). Denote by A = SE(F)#V
and by λ#

V, i(x) = λi(Âx), i ∈ N, x ∈ Tk. Let m

be the measurable function given by m(x) = 2d(x) − n, for x ∈ Tk. Given a measurable
function µ : Tk → (`1(N)+)↓ (decreasing sequences) described as µ = (µi)i∈N , the following
are equivalent:

1. There exists E(G) ∈ DSGV (F) such that µ(x) = λ( (SE(G))̂x) = λ(SΓG(x)) for every
x ∈ Tk.
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2. µ(x) = 0 for every x /∈ Spec(V). If x ∈ Spec(V) then µj(x) = 0 for j ≥ d(x) + 1 and

(a) in case that m(x) ≤ 0, then µi(x)>λ#
V, i(x) for i ∈ Id(x);

(b) in case that m(x) ≥ 1, then µi(x)>λ#
V, i(x) for i ∈ Id(x) and

µn−d(x)+i(x) = µd(x)−m(x)+i(x) ≤ λ#
V, i(x) for i ∈ Im(x) .

Proof. It follows from Proposition 4.10 and Theorem 6.4. �

As a consequence of the description of the fine spectral structure of V-duals of E(F) we
characterize the existence of tight V-duals of E(F) that are shift generated (compare with
[25]).

Corollary 4.12. With the notations of Theorem 4.11 then there exists a c-tight V-dual
E(G) ∈ DSGV (F) if and only if

1. A = SE(F)#V
≤ c · PV ;

2. rk((c · PV − SE(F)#V
)̂x) ≤ min{d(x), n− d(x)} for a.e. x ∈ Spec(V).

Proof. Theorem 4.11 imply that there exists a V-dual E(G) ∈ DSGV (F) such that SE(G) = c·PV
if and only if c ≥ λi(Âx) for i ∈ Id(x) and λi(Âx) = c for i ∈ Im(x) whenever m(x) =
2d(x) − n ≥ 1, for a.e. x ∈ Spec(V). These last two conditions are equivalent to the fact
that c · PV ≥ SE(F)#V

and

rk((c · PV − A)̂x) ≤ d(x)−m(x) = n− d(x) whenever m(x) ≥ 1 .

Also notice that in case m(x) ≤ 0 then n−d(x) ≥ d(x) = dim JV(x). The proof follows from
these remarks.

Remark 4.13. Consider the notations of Theorem 4.11. As a consequence of Corollary 4.12,
we get the following dichotomy related with the existence of tight oblique V-duals of E(F):

1. If n ≥ 2 d(x) for a.e. x ∈ Tk then for every c ≥ ‖SE(F)#V
‖ there exists E(G) ∈ DSGV (F)

that is a c-tight frame for V .

2. If there exists N ⊆ Tk with positive Lebesgue measure such that n < 2 d(x) for a.e.
x ∈ N and there exists a c-tight frame E(G) ∈ DSGV (F) then c = ‖SE(F)#V

‖. 4

5 Applications: optimal SG-duals with norm restric-

tions

As before, we consider two FSI subspaces V and W such that W⊥ ⊕ V = L2(Rk) and
F = {fi}i∈In ∈ Wn such that E(F) is a frame for W .

As a consequence of the description of the fine spectral structure of elements in DSGV (F),
we see that the canonical V-dual is optimal with respect to several criteria. Nevertheless,
in applied situations, the canonical dual might not be the best choice: for example, we
can be interested in duals of E(F) such that the spectrum of their frame operators are as
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concentrated as possible. Ideally, we would search for tight dual frames for E(F), although
Corollary 4.12 shows that there are restrictions for the existence of such duals.

In order to search for alternate V-duals that are spectrally more stable, we proceed as follows:
for w ≥

∑
i∈In
‖f#
V, i‖2, where E(F)#

V = {T` f#
V, i}(`, i)∈Zk×In

, we consider

DSGV , w(F) = DSGV, w(E(F))
def
=
{
E(G) ∈ DSGV (F) : G = {gi}i∈In and

∑
i∈In

‖gi‖2 ≥ w
}
.

Notice that if w >
∑

i∈In
‖f#
V, i‖2 then E(F)#

V /∈ DSGV , w(F) and therefore, it is natural to ask
whether there is an optimal dual fulfilling the previous requirements. Using the identity∑

i∈In

‖gi‖2 =

∫
Tk

∑
i∈In

‖Γgi(x)‖2 dx =

∫
Tk

tr( (SE(G))̂x) dx =

∫
Tk

∑
i∈N

µi(x) dx (30)

where λ( (SE(G))̂x) = (µi(x))i∈N for a.e. x ∈ Tk, we see that Theorem 4.11 gives a complete
solution to a frame design problem in the sense that it allows to get a complete description
of the eigenvalue lists of the frame operators of elements in DSGV , w(F). It is then natural to
seek for those oblique SG-duals E(G) ∈ DSGV , w(F) that minimize the convex potentials P Vϕ ,
for ϕ ∈ Conv(R+); in order to deal with this problem we first examine a construction known
as water-filling in terms of submajorization, in the general context of measure spaces (see
Theorem 5.5). We then apply these results together with the properties of submajorization
and results from matrix analysis to conclude that there are structural optimal duals with
norm restrictions. These optimal solutions are obtained in terms of a non-commutative
water-filling construction.

5.1 Water-filling in measure spaces

The water-filling construction goes back to the work of Shanon [45], as the solution of an
optimal spectral allocation problem (see [19]). The water-filling strategy has also been the
main tool in the design of channels with optimal capacity (see [46] and the more recent works
on iterative water-filling techniques [40, 44]).

As a first step towards an extension of this construction, we examine its scalar counter-part
in the general context of measure spaces. In the next section we show that the water-filling
technique produces optimal solutions in the general (non-commutative) context of measurable
fields of positive semidefinite matrix valued functions.

Throughout this section the triple (X,X , µ) denotes a probability space. Recall that we
denote by L∞(X,µ)+ = {f ∈ L∞(X,µ) : f ≥ 0}.

Definition 5.1 (Water-filling at level c). Let f ∈ L∞(X,µ)+. Given c ≥ ess inff ≥ 0 we
consider fc ∈ L∞(X,µ)+ given by fc = max{f, c} = f + (c − f)+, where g+ denotes the
positive part of a real function g. 4

In order to study the submajorization properties of the function fc obtained by the water-
filling construction as above, we consider the following result in which we obtain a simple
relation between the decreasing rearrangements of f and fc.

Lemma 5.2. Let f ∈ L∞(X,µ)+ and let c ≥ ess inff ≥ 0. Consider the number

s0 = µ{x ∈ X : f(x) > c} . Then f ∗c (s) =

{
f ∗(s) if 0 ≤ s < s0 ;
c if s0 ≤ s ≤ 1 .

(31)

21



Proof. Notice that by Eq. (11), for 0 ≤ s < s0 we have that

f ∗(s) = sup {t ∈ R+ : µ{x ∈ X : f(x) > t} > s}
= sup {t ∈ R+ : µ{x ∈ X : f(x) > t} > s and t ≥ c}
= sup {t ∈ R+ : µ{x ∈ X : fc(x) > t} > s and t ≥ c}
= sup {t ∈ R+ : µ{x ∈ X : fc(x) > t} > s} = f ∗c (s) .

It is straightforward to see that if s0 ≤ s ≤ 1 then f ∗c (s) = c.

In order to prove Theorem 5.5 below, we shall need an explicit statement of some re-
parametrized versions of the basics results of section 2.3:

Lemma 5.3. Let a , b ∈ R be such that a < b and let k ∈ L∞([ a , b ], ν)+ be a non-increasing
right continuous function, where ν = (b−a)−1 dt is the normalized Lebesgue measure on [a, b].
Then

1. The decreasing rearrangement k∗(t) = k
(

(b− a) t+ a
)

for every t ∈ [0 , 1).

2. Fix a constant c ∈ R. Then

(b− a) c ≤
∫ b

a

k(t) dt =⇒ (s− a) c ≤
∫ s

a

k(t) dt for every s ∈ [a , b] .

Proof. Straightforward. �

With the notations of Lemma 5.3 above, notice that item 2. is a restatement (using the
re-parametrization from item 1) of the submajorization inequalities corresponding to c ≺w k
in ([a, b], ν) whenever c ≤

∫
[a,b]

k dν (see Example 2.5).

Remark 5.4. Let f ∈ L∞(X,µ)+ and consider φ : [ess inff,∞)→ R+ given by

φ(c) =

∫
X

fc dµ =

∫
X

f(x) + (c− f(x))+ dµ(x) .

Then, it is easy to see that φ has the following properties:

1. φ(ess inff) =
∫
X
f dµ and limc→+∞ φ(c) = +∞;

2. φ is continuous and strictly increasing.

Hence, for every w ≥
∫
X
f dµ there exists a unique c(w) = c ≥ ess inff such that

φ(c(w)) = w i.e.

∫
X

fc(w) dµ = w . (32)

4

Theorem 5.5 (≺w-optimality of water-filling). Let f ∈ L∞(X,µ)+, take w ≥
∫
X
f dµ and

consider the constant c(w) = c as in Remark 5.4. Then, for every h ∈ L∞(X,µ)+,

f ≤ h and

∫
X

h dµ ≥ w =⇒ fc ≺w h .

22



Proof. Assume that f ≤ h and
∫
X
h dµ ≥ w. If we let s0 = µ{x ∈ X : f(x) > c} then, by

Lemma 5.2, we have that Eq. (31) holds. Thus, using Remark 2.2, we see that if 0 ≤ s < s0

then ∫ s

0

f ∗c (t) dt =

∫ s

0

f ∗(t) dt ≤
∫ s

0

h∗(t) dt . (33)

Fix now s0 ≤ s ≤ 1 and consider

α =

∫ s0

0

h∗(t) dt−
∫ s0

0

f ∗c (t) dt ≥ 0 and k = h∗ +
1

1− s0

α ∈ L∞([0, 1], dt)+ .

Notice that k is a non-increasing right continuous map. In this case we get that∫ 1

s0

k(t) dt =

∫ 1

s0

h∗(t) dt+ α

=

∫ 1

s0

h∗(t) dt+

(∫ s0

0

h∗(t) dt−
∫ s0

0

f ∗c (t) dt

)
≥ w − (w − (1− s0) c) = (1− s0) c .

Then, Lemma 5.3 (applied to the map k|[s0 , 1] ) implies that

(s− s0) c ≤
∫ s

s0

k(t) dt =

∫ s

s0

h∗(t) dt+
s− s0

1− s0

α for every s ∈ [s0 , 1] .

Hence, using the inequality above and Lemma 5.2, we conclude that for s0 ≤ s < 1∫ s

0

f ∗c (t) =

∫ s0

0

h∗(t) dt− α + (s− s0) c

≤
∫ s

0

h∗(t) dt+

(
s− s0

1− s0

− 1

)
α ≤

∫ s

0

h∗(t) dt .

This last fact together with Eq. (33) show that fc ≺w h.

Theorem 5.5 above implies a family of integral inequalities in terms of convex functions
involving the water-filling of a function f at level c. We will need these facts in order to
show the optimality properties of the non-commutative version of waterfilling.

Corollary 5.6. With the notations of Theorem 5.5, if ϕ ∈ Conv(R+) is non-decreasing then∫
X

ϕ ◦ h dµ ≥
∫
X

ϕ ◦ fc dµ . (34)

If there is a non-decreasing ϕ ∈ Convs(R+) such that equality holds in Eq. (34) then h = fc.

Proof. The first claim is a consequence of the submajorization relation in Theorem 5.5 and
Theorem 2.4. If we further assume that ϕ ∈ Convs(R+) is such that equality holds in Eq.
(34) then, by Proposition 2.6, we see that f ∗c = h∗. Let B = {x ∈ X : f(x) > c} so that
s0 = µ(B). Then, it is straightforward to show that

(f · 1B)∗(s) =

{
f ∗(s) if s ∈ [0, s0) ;

0 if s ∈ [s0, 1) .
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Notice that, in particular, (f · 1B)∗ = 1[0,s0) · f ∗c . On the other hand we have (h · 1B)∗ =
1[0, s0) · (h · 1B)∗. Hence, since h ≥ h · 1B ≥ f · 1B, by Remark 2.2 we have that

h∗ ≥ (h · 1B)∗ = 1[0,s0) · (h · 1B)∗ ≥ (f · 1B)∗ = 1[0,s0) · f ∗c =⇒ (h · 1B)∗ = (f · 1B)∗ .

Therefore, again by Remark 2.2, we get that h · 1B = f · 1B = fc · 1B > c · 1B, where the last
facts follow from Definition 5.1. Finally, notice that

µ(h−1({c})) = |(h∗)−1({c})| = |(f ∗c )−1({c})| = 1− µ(B) ,

which shows that h · 1X\B = c · 1X\B and hence h = fc .

5.2 Optimal SG-duals with norm restrictions: NC water-filling

In what follows we show the existence of structural optimal SG oblique duals of a fixed
frame E(F) with norm restrictions, as described at the beginning of Section 5. That is, we
explicitly construct a dual frame E(Gop) ∈ DSGV , w(F) such that for every E(G) ∈ DSGV , w(F)
then

P Vϕ (E(Gop)) ≤ P Vϕ (E(G)) ,

for every convex potential P Vϕ associated to a non-decreasing ϕ ∈ Conv(R+). Moreover,
the arguments involved in this construction show that (structural) optimal SG oblique du-
als with norm restrictions share several spectral properties. We end the section with a
non-commutative counter-part of the water-filling construction for functions, that allows to
describe the spectral structure of optimal SG oblique duals in DSGV , w(F) in some detail.

Theorem 5.7 (Optimal duals in DSGV , w(F)). Let V and W be FSI subspaces of L2(Rk) such
that W⊥ ⊕ V = L2(Rk). Let F = {fi}i∈In be such that E(F) is a frame for W and w >∑

i∈In
‖f#
V, i‖2, where E(F)#

V = {T` f#
V, i}(`, i)∈Zk×In

. Then, there exists Gop = {gop
i }i∈In ∈ Vn

such that:

1. E(Gop) ∈ DSGV , w(F) and
∑

i∈In
‖gop

i ‖2 = w.

2. For every G = {gi}i∈In such that E(G) ∈ DSGV , w(F) and every non-decreasing ϕ ∈
Conv(R+) we have that

P Vϕ (E(Gop)) ≤ P Vϕ (E(G)) .

Proof. Let d(x) = dim JV(x) = dim JW(x) for x ∈ Tk. For each i ∈ In , let Xi = d−1(i) ⊆ Tk,
pi = |Xi| (the Lebesgue measure of Xi) and ri = min{n − i, i}. Since E(F) is a frame for
W then Spec(V) = Spec(W) = ∪i∈InXi. Also, for i ∈ In and j ∈ Iri we consider the measure
space (Xij,Xij, | · |ij), where Xij = Xi, Xij = Xi denotes the σ-algebra of Borel sets in Xi

and | · |ij = | · |i denotes the Lebesgue measure in Xi. Then, using Remark 3.7, we construct
the measure space

(Y,Y , ν) =
⊕
i∈In

⊕
j∈Iri

(Xij,Yij, | · |ij).

In particular, ν(Y ) =
∑

i∈In
ri · pi. We further consider the canonical inclusion maps ηi,j :

Xi,j → Y for i ∈ In and j ∈ Iri .

Let G = {gi}i∈In be such that E(G) ∈ DSGV (F). We shall denote by A = SE(F)#V
and

S = SE(G) ∈ L(L2(Rk))+ . By Proposition 4.10, S = SE(F)#V
+ B = A + B, for some
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B ∈ L(L2(Rk))+ which is SP, R(B) ⊂ V and rk(B̂x) ≤ n− d(x) for a.e. x ∈ Tk. Let i ∈ In
and x ∈ Xi ; using Lidskii’s additive inequality (see [4]) we get that(

λi−j+1(Âx) + λj(B̂x)
)
j∈Ii
≺
(
λj( Ŝx)

)
j∈Ii

, (35)

while λj( Ŝx) = 0 for j ≥ i + 1. Notice that R(B̂x) ⊂ JV(x) and rk(B̂x) ≤ n − i. Therefore

rk(B̂x) ≤ min{n− i, i} = ri . Then, for x ∈ Xi we have that

λi−j+1( Âx) + λj(B̂x) =

{
λi−j+1(Âx) + λj(B̂x) if 1 ≤ j ≤ ri ;

λi−j+1( Âx) if ri + 1 ≤ j ≤ i .
(36)

Now, Eq. (35) together with Eq. (36) imply that, for any ϕ ∈ Conv(R+): if x ∈ Xi then

ri∑
j=1

ϕ(λi−j+1( Âx) + λj(B̂x)) +
i∑

j=ri+1

ϕ(λi−j+1( Âx) ) ≤
∑
j∈Ii

ϕ(λj(Ŝx) ) . (37)

With the previous notations, we now consider the measurable function h : Y → R+ defined
as follows: for x ∈ Y , let (i , j) ∈ In × Iri and x̃ ∈ Xi,j = Xi be (uniquely determined) such

that ηi,j(x̃) = x; in this case we set h(x) = λi−j+1( Âx̃)+λj(B̂x̃). If we let w0 =
∑

i∈In
‖f#
V, i‖2

and we assume that E(G) ∈ DSGV , w(F) then, using Eq. (30) we see that∫
Tk

tr(B̂x) dx =

∫
Tk

tr( Ŝx − Âx) dx ≥ w − w0 ≥ 0 .

Consider now the measurable function f : Y → R+ given as before by f(x) = λi−j+1( Âx̃)
for x̃ ∈ Xij = Xi , with (i , j) ∈ In × Iri such that ηi,j(x̃) = x. Arguing as in the proof of
Theorem 3.9 we get that ∫

Y

f dν =
∑
i∈In

∫
Xi

∑
j∈Iri

λi−j+1( Âx) dx . (38)

Moreover, the previous facts show that if E(G) ∈ DSGV , w(F) we have that h ≥ f and∫
Y

h(x) dν(x) =
∑
i∈In

∑
j∈Iri

∫
Xi

(λi−j+1( Âx) + λj(B̂x)) dx ≥ (w − w0) +

∫
Y

f(x) dν(x)
def
= w′ .

Let c = c(w′) be as in Remark 5.4 and consider fc as in Definition 5.1, both with respect
to the probability space (Y,Y , ν̃), where ν̃ = ν(Y )−1 ν. By Corollary 5.6 and the previous
remarks we see that if ϕ ∈ Conv(R+) is non-decreasing then∫

Y

ϕ ◦ fc dν ≤
∫
Y

ϕ ◦ h dν . (39)

For j ∈ In we consider the measurable functions ξj : Spec(V) → R+ defined as follows: for
i ∈ In and x ∈ Xi ,

ξj(x) =


fc(ηij(x)) = max{c , λi−j+1( Âx)} if 1 ≤ j ≤ ri

λi−j+1( Âx) if ri + 1 ≤ j ≤ i
0 if i+ 1 ≤ j ≤ n

, (40)
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Notice that by construction, if ϕ ∈ Conv(R+) then∫
Y

ϕ ◦ fc dν =
∑
i∈In

∫
Xi

∑
j∈Iri

ϕ(ξj(x)) dx . (41)

Using the definition of f and the properties of fc from Remark 5.4, we see that if x ∈ Xi ,
then there exist λop

1 (x) ≥ . . . ≥ λop
ri

(x) ≥ 0 such that

ξj(x) = λi−j+1( Âx) + λop
j (x) for every j ≤ ri . (42)

Let µ = (µj)j∈N : Tk → `1(N)+ such that: µj(x) = 0 for j ∈ N whenever x ∈ Tk \ Spec(V),
while for i ∈ In and x ∈ Xi then µj(x) = 0 for j ≥ i+ 1 and

(µj(x))j∈Ii
= [(ξj(x))j∈Ii

]↓ . (43)

Putting the previous remarks together we see that µ = (µj)j∈N satisfies the conditions of
item 2 in Theorem 4.11. Thus, there exists Gop = {gop

i }i∈In such that E(Gop) ∈ DSGV (F) and
λ( (SE(Gop))̂x) = (µj(x))j∈N for a.e. x ∈ Tk. In this case, if we consider Eq. (30), use Eqs.
(42), (43) and we take ϕ(x) = x in Eq. (41) we have that

∑
i∈In

‖gop
i ‖2 =

∫
Tk

∑
j∈N

µj(x) dx =
∑
i∈In

∫
Xi

∑
j∈Iri

ξj(x) +
i∑

j=ri+1

λi−j+1(Âx)

 dx

=

∫
Y

fc dν +
∑
i∈In

∫
Xi

i∑
j=ri+1

λi−j+1( Âx) dx

= (w − w0) +

∫
Tk

tr( Âx) dx = w ,

where we have also used the relation in Eq. (38) above. In particular, Gop satisfies item 1.
in the statement. Now, if E(G) ∈ DSGV , w(F), using Eqs. (37), (39), (40) and (43) then,

P Vϕ (E(G)) ≥
∫
Y

ϕ ◦ h dν +
∑
i∈In

∫
Xi

i∑
j=ri+1

ϕ ◦ λi−j+1(Âx) dx

≥
∫
Y

ϕ ◦ fc dν +
∑
i∈In

∫
Xi

i∑
j=ri+1

ϕ ◦ λi−j+1(Âx) dx = P Vϕ (E(Gop))

where we have also used Eq. (41) and the fact that λ((SE(Gop))̂x) = µ(x) for a.e. x ∈ Tk.

Corollary 5.8 (Essential uniqueness of optimal V-duals with norm restrictions). With the
notations of Theorem 5.7 ant its proof, assume that G = {gi}i∈In is such that E(G) ∈
DSGV , w(F) and that there exists a non-decreasing ϕ ∈ Convs(R+) such that

P Vϕ (E(Gop)) = P Vϕ (E(G)) . (44)

Let B ∈ L(L2(Rk))+ be SP, with R(B) ⊂ V and such that SE(G) = SE(F)#V
+ B = A + B.

Then,

1.
∑

i∈In
‖gi‖2 = w;
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2. There exist c > 0 and measurable vector fields vi : Tk → `2(Zk) for i ∈ In such that
{vi(x)}i∈Id(x)

is an ONB of JV(x) for a.e. x ∈ Spec(V),

(SE(F)#V
)̂x = Âx =

∑
i∈Id(x)

λi(Âx) vi(x)⊗ vi(x) , for a.e. x ∈ Spec(V)

and such that for a.e. x ∈ Spec(V) we have that

B̂x =

d(x)∑
i=r(x)+1

(
c− λi(Âx)

)+
vi(x)⊗ vi(x) ,

where r(x) = max{2d(x)− n, 0}, for x ∈ Tk.

The constant c (= c(w′)) > 0 does not depend on G. Moreover, in this case P Vψ (E(G)) =
P Vψ (E(Gop)) for every non-decreasing ψ ∈ Conv(R+).

Proof. We use the notions and notations from the proof of Theorem 5.7. Arguing as in the
last part of the proof of Theorem 5.7 we see that Eq. (44) implies that∫

Y

ϕ ◦ h dν̃ =

∫
Y

ϕ ◦ fc dν̃ ,

where ν̃ = ν(Y )−1 ν is the probability measure obtained by normalization of ν. By Corollary
5.6 we get that h = fc , where c = c(w′) is as in the proof of Theorem 5.7. Therefore, for
i ∈ In and x ∈ Xi, then

λi−j+1(Âx) + λj(B̂x) =

{
max{λi−j+1(Âx), c} if 1 ≤ j ≤ ri ;

λi−j+1(Âx) if ri + 1 ≤ j ≤ i .
(45)

Moreover, by Eq. (37) and the properties of h we have that

P Vϕ (E(G)) =
∑
i∈In

∫
Xi

∑
j∈Ii

ϕ(λj( (SE(G))̂x) )

≥
∫
Y

ϕ ◦ h dν +
∑
i∈In

∫
Xi

i∑
j=ri+1

ϕ ◦ λi−j+1(Âx) dx = P Vϕ (E(G)) .

Therefore, we should have equality Eq. (37) for a.e. x ∈ Xi and i ∈ In . Since ϕ is strictly
convex, then the majorization relation in Eq. (35) together with the case of equality in
Lidskii’s inequality (see the Appendix section in [38]) imply that for i ∈ In and a.e. x ∈ Xi

there exists an ONB {zj(x)}j∈Ii
of JV(x) (but not necessarily of measurable vector fields as

functions of x) such that

(SE(F)#V
)̂x =

∑
j∈Ii

λj(Âx) zj(x)⊗ zj(x) and B̂x =
∑
j∈Ii

λi−j+1(B̂x) zj(x)⊗ zj(x) . (46)

Let P ∈ L(L2(Rk))+ denote the orthogonal projection onto R = R(B), so that P is SP
and P̂x = PR(B̂x) for every x ∈ Tk. Let p : Tk → N be the measurable function given
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by p(x) = tr(P̂x) for x ∈ Tk. Then, by inspection of Eqs. (45) and (46) we see that
P SE(F)#V

= SE(F)#V
P ,

P̂x Âx P̂x + B̂x = c · P̂x , for a.e. x ∈ Tk

and, for i ∈ In and x ∈ Xi ,

(I − P )̂x Âx (I − P )̂x =

i−p(x)∑
j=1

λj(Âx) zj(x)⊗ zj(x) .

Since a+(c−a)+ = max{a, c} for a, c ≥ 0, these last facts imply the existence of measurable
vector fields vi : Tk → `2(Zk) for i ∈ In with the desired properties; indeed, the previous
identities show that we just have to consider measurable fields of eigenvectors of the operators
P SE(F)#V

P and (I − P )SE(F)#V
(I − P ), whose existence follow from Lemma 3.2.

Finally, if Gop is as in Theorem 5.7, a careful inspection of the proof of that theorem shows
that

λ( (SE(G))̂x) = λ( (SE(Gop))̂x) , for a.e. x ∈ Spec(V) ,

which implies the optimality properties of E(G) for a non-decreasing ψ ∈ Conv(R+).

Notice that with the notations of Corollary 5.8 above, we see that for a.e. x ∈ Tk then

(SE(Gop))̂x =

r(x)∑
i=1

λi(Âx) vi(x)⊗ vi(x) +

d(x)∑
i=r(x)+1

max{λi(Âx), c} vi(x)⊗ vi(x) ,

where we have used that a+ (c− a)+ = max{a, c} for a, c ≥ 0. In particular, notice that

λd(x)(SE(Gop))̂x ≥ max{c , λd(x)(Âx)}

which implies that the condition number of (SE(Gop))̂x is smaller than or equal to the condition

number of Âx = (SE(F)#V
)̂x - both acting on JV(x) - for a.e. x ∈ Tk. That is, the optimal

oblique dual E(Gop) improves the (spectral) stability of the canonical oblique dual E(F)#
V =

E(F#
V ).

The representation of (SE(Gop))̂x above motivates the following construction, which also char-
acterizes all elements of DSGV , w(F) which are minimal in the sense of Theorem 5.7.

Definition 5.9 (Non-commutative water-filling at level c in UV(E(G) ) ). Let G = {gi}i∈In

be such that E(G) is a frame for V with frame operator A = SE(G) . By Lemma 3.2 we can
consider measurable vector fields vj : Tk → `2(Zk) for j ∈ In such that

Âx =
∑
j∈Id(x)

λj(Âx) vj(x)⊗ vj(x) (47)

is a spectral representation of Âx, where {vj(x)}j∈Id(x)
is an ONB of JV(x) (here d(x) =

dim JV(x) ≤ n), for a.e. x ∈ Tk.
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Given c ≥ 0 then we define the (non-commutative) water-filling of A at level c with respect to
the representation in Eq. (47), denoted Ac ∈ UV(E(G) ), as the unique positive SP operator
such that operator R(Ac) ⊂ V and

Âc(x)
def
= (Ac)̂x =

∑
i∈Ir(x)

λi(Âx) vi(x)⊗ vi(x) +

d(x)∑
i=r(x)+1

max{λi(Âx), c} vi(x)⊗ vi(x) (48)

where r(x) = max{2d(x)− n, 0} (recall I0 = ∅) for a.e. x ∈ Tk. 4

Remark 5.10. With the notations of Definition 5.9:

1. We point out that Âc as described in Eq. (48) is a well defined measurable field of
positive semidefinite operators that is essentially bounded.

2. Notice that in the spectral representation of Âc(x) given in Eq. (48), the eigenvalues
are not necessarily arranged in non-increasing order.

3. Finally notice that Ac ∈ UV(E(G) ), since Âc(x)− Âx is a positive operator with rank
at most d(x)− r(x) ≤ n− d(x), for a.e. x ∈ Tk. 4

We end this section with the following comments: with the notions and notations of Theorem
5.7, let A = SE(F)#V

and consider measurable vector fields vi : Tk → `2(Zk), for i ∈ In, such

that
Âx =

∑
i∈Id(x)

λi(Âx) vi(x)⊗ vi(x) (49)

is a spectral representation of Âx with respect to an eigen-basis {vi(x)}i∈Id(x)
, where d(x) =

dim(JV(x)), for a.e. x ∈ Tk. Let c > 0 be such that, if Ac is the water-filling of A at level c
with respect to the representation in Eq. (49) then,∫

Tk

tr(Âc(x)) dx = w .

By construction Ac ∈ UV(E(F)#
V ) and therefore, by Proposition 4.10, there exists G0 ∈

DSGV , w(F) such that SG0 = Ac . As we have already noticed, Gop from Theorem 5.7 is con-
structed in this way; hence, in this case we have that for every non-decreasing ϕ ∈ Conv(R+),

P Vϕ (E(G0)) ≤ P Vϕ (E(G)) , for every G ∈ DSGV , w(F) .

Moreover, by Corollary 5.8, any structural optimal frame G ∈ DSGV , w(F) (i.e. such that G
is a P Vϕ -minimizer in DSGV , w(F) for every ϕ ∈ Conv(R+)) is obtained in this way. That is,
the structural optimal SG V-dual frames for E(F) with norm restrictions are exactly those
G ∈ DSGV , w(F) for which their frame operators are obtained in terms of the non-commutative
water-filling construction from Definition 5.9.

6 Appendix: spectral structure of UV(E(G) )

In what follows we consider a measure space (X,X , ρ), such that X ⊂ Tk is a Borel set, X
denotes the σ-algebra of Borel sets in X and ρ is the Lebesgue measure restricted to X .
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Proposition 6.1. Let G : X →Mn(C)+ be a bounded measurable field of positive semidef-
inite matrices with associated measurable eigenvalues λj : X → R+ for j ∈ In such that
λ1 ≥ . . . ≥ λn. Assume that the measurable functions βj : X → R+ for j ∈ In−1 satisfy the
interlacing conditions

λj(x) ≥ βj(x) ≥ λj+1(x) x-a.e. for j ∈ In−1 . (50)

Then there exists a measurable map W : X →Mn, n−1(C) such that W ∗(x)W (x) = In−1 and

λ(W ∗(x)G(x)W (x) ) = (β1(x), . . . , βn−1(x) ) , for a.e. x ∈ X . (51)

Proof. We argue by induction on n (the size of G). Notice that β1 ≥ . . . ≥ βn−1 by Eq. (50).
Using the results of [42], we can consider measurable vector fields uj : X → Cn for j ∈ In
such that {uj(x)}j∈In is an ONB of eigenvectors of G(x) for a.e. x ∈ X.

Assume first that βn−1 = λn. Set G′(x) = V (x)∗G(x)V (x) where V (x) is the n × (n − 1)
matrix whose columns are the vectors u1(x), . . . , un−1(x), for x ∈ X. Then, G′ is a bounded
measurable field of (diagonal) positive semidefinite matrices of size n − 1 with measurable
eigenvalues λj : X → R+ for j ∈ In−1. If we assume that we can find a measurable
function Z : X → Mn−1, n−2(C) such that Z∗(x)Z(x) = In−2 and λ(Z∗(x)G′(x)Z(x)) =
(β1(x), . . . , βn−2(x)) for a.e. x ∈ X, we let

W (x) =

(
Z(x) 0n−1

0tn−2 1

)
, for x ∈ X .

Then, it is easy to see that W : X → Mn,n−1(C) has the desired properties. By iterating
the previous argument and considering a convenient partition of X into measurable sets, we
can assume without loss of generality that

λj(x) > βj(x) > λj+1(x) , for a.e. x ∈ X , j ∈ In−1 .

In this case we set

γj(x) =

∏
i∈In−1

(λj(x)− βi(x))∏
k 6=j

(λj(x)− λk(x))
, for x ∈ X , j ∈ In .

The previous assumptions (strict interlacing inequalities) imply that γj(x) > 0 is defined for
a.e. x ∈ X; moreover, the functions γj : X → R+ are measurable for j ∈ In.

Set ξj = γ
1/2
j : X → R+ for j ∈ In, let v =

∑
j∈In

ξj uj : X → Cn and let P : X →Mn(C)+

given by P (x) = I − Pv(x) (the orthogonal projection onto {v(x)}⊥, notice that v(x) 6= 0
a.e.). Let px(t) ∈ R[t] denote the characteristic polynomial of P (x)G(x)P (x). Then, a well
known argument in terms of alternate tensor products (see [4]) shows that

px(t) = t
∑
j∈In

γj(x)
∏
k 6=j

(t− λk(x)) =⇒ px(λj(x)) = λj(x)
∏
i∈In−1

(λj(x)− βi(x))

for a.e. x ∈ X, j ∈ In and px(0) = 0. Therefore,

px(t) = t
∏

j∈In−1

(t− βj) and
∑
j∈In

ξ2
j (x) = 1 , for a.e. x ∈ X ,
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by comparing the leading coefficients of the two representations of the polynomial. This last
normalization condition shows, in particular, that P (x) = I−v(x)⊗v(x) for x ∈ X a.e. and
hence P is a measurable function.

Finally, let {wj : X → Cn}j∈In be a measurable ONB of eigenvectors functions for P such
that P (x)wn(x) = 0 for a.e. x ∈ X. Set W : X → Mn, n−1(C) such that W (x) is the
n×n− 1 matrix whose columns are the vectors w1(x), . . . , wn−1(x); then W is a measurable
function with the desired properties.

Lemma 6.2. Let λj : X → R+ for j ∈ In be measurable functions such that λ1 ≥ . . . ≥ λn.
Let d ∈ In−1 and let βj : X → R+ for j ∈ Id be measurable functions such that β1 ≥ . . . ≥ βd
and such that they satisfy the interlacing inequalities

λj(x) ≥ βj(x) ≥ λn−d+j(x) , for .a.e. x ∈ X , j ∈ Id . (52)

Then, there exist measurable functions γi , j : X → R+ for 0 ≤ i ≤ n − d and j ∈ In−i such
that:

1. γ0 , j = λj for j ∈ In and γn−d , j = βj for j ∈ Id;

2. For 0 ≤ i ≤ n− d then γi , j(x) ≥ γi , j+1(x) for j ∈ In−i−1, for a.e. x ∈ X;

3. For 0 ≤ i ≤ n − d − 1 then γi , j(x) ≥ γi+1 , j(x) ≥ γi , j+1(x) for j ∈ In−i−1, for a.e.
x ∈ X.

Proof. We argue by (decreasing) induction in terms of d. Notice that the statement is
trivially true if d = n − 1. Assume that the result is true for d + 1 interlacing measurable
functions for some d ∈ In−2 . Given the measurable functions βj for j ∈ Id as above, we shall
construct measurable functions αj : X → R+ for j ∈ Id+1 such that

λj ≥ αj ≥ λn−(d+1)+j for j ∈ Id+1 and αj ≥ βj ≥ αj+1 for j ∈ Id , (53)

and hence α1 ≥ . . . ≥ αd+1 . Notice that the lemma would be a consequence of this con-
struction and the inductive hypothesis (where the maps αj play the role of γn−d+1 , j for
j ∈ Id+1).

First notice that by the interlacing inequalities in Eq. (52) we have that

min{λr+1 , βr} ≥ max{βr+1 , λn−d+r} , for r ∈ Id−1 and for a.e. x ∈ X . (54)

We define αj : X → R+, for j ∈ Id+1, as follows:

αj :=

{
max{βj , λn−(d+1)+j} if 1 ≤ j ≤ d ;

min{βd , λd+1} if j = d+ 1 .
(55)

By construction the functions αj are measurable, and it is easy to check (by using Eq. (54))
that they satisfy Eq. (53).

The following result is the Fan-Pall interlacing inequalities theorem for measurable fields of
positive operators.
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Theorem 6.3. Let G : X →Mn(C)+ be a bounded measurable field of positive semidefinite
matrices with associated measurable eigenvalues λj : X → R+ for j ∈ In such that λ1 ≥
. . . ≥ λn. Let d ∈ In−1 and let βj : X → R+ for j ∈ Id be measurable functions such that
β1 ≥ . . . ≥ βd. Then the following conditionas are equivalent:

1. λj(x) ≥ βj(x) ≥ λn−d+j(x) , for a.e. x ∈ X , j ∈ Id .

2. There exists a projection valued measurable function P : X →Mn(C)+ such that

rkP (x) = d and λ(P (x)G(x)P (x)) = (β1(x), . . . , βd(x), 0n−d) , for a.e. x ∈ X .

Proof. Assume first that the functions {βj}j∈Id
satisfy the interlacing inequalities in item 1.

Let γi , j : X → R+ for 0 ≤ i ≤ n− d and j ∈ In−i be measurable functions as in By Lemma
6.2. By Proposition 6.1 there exists a measurable function W1 : X →Mn , n−1(C) such that

W1(x)∗W1(x) = In−1 and λ(W1(x)∗GW1(x)) = (γ1 , 1(x), . . . , γ1 , n−1(x)) , for a.e. x ∈ X .

Arguing as before, using Proposition 6.1 we can construct for 2 ≤ i ≤ n − d measurable
functions Wi : X →Mn−i+1 , n−i(C) such that Wi(x)∗Wi(x) = In−i for a.e. x ∈ X and

λ(Wi(x)∗ · · ·W1(x)∗G(x)W1(x) · · ·Wi(x)) = (γi , 1(x), . . . , γi , n−i(x)) , for a.e. x ∈ X .

Let W = W1 · · ·Wn−d : X →Mn , d(C) which is measurable by construction and notice that

W ∗(x)W (x) = Id and λ(W (x)∗G(x)W (x)) = (β1(x), . . . , βd(x)) , for a.e. x ∈ X .

Hence, if we set P = WW ∗ : X →Mn(C) then P is a measurable field of projections with
the desired properties.

Conversely, assume that there exists a projection valued measurable function P : X →
Mn(C)+ satisfying item 2. Then item 1 is a straightforward consequence of the so-called
Cauchy interlacing inequalities from matrix analysis (see for example [4]).

Let G = {gi}i∈In be such that E(G) is a frame for the SI subspace V , with frame operator
A = SE(G). Recall that (see Definition 4.9)

UV(E(G) ) = {A+B : B ∈ L(L2(Rk))+ is SP, R(B) ⊂ V , rk(B̂x) ≤ n−d(x) , for a.e. x ∈ Tk} .

Using the Fan-Pall inequalities for measurable fields of matrices we can now describe the fine
spectral structure of the elements in UV(E(G) )

Theorem 6.4. Let V be a SI subspace in L2(Rk) with Spec(V) ⊆ X and let G = {gi}i∈In

be such that E(G) is a frame for V with frame operator A = SE(G). Let d : X → N be the
measurable function given by d(x) = dim JV(x), for x ∈ Spec(V), and let m(·) = 2d(·) − n.
Given a measurable function µ : X → (`1

+(N)+)↓ (decreasing sequences) the following are
equivalent:

1. There exists C ∈ UV(E(G) ) such that µ(x) = λ(Âx) for a.e. x ∈ X;

2. µ(x) = 0 for every x /∈ Spec(V). If x ∈ Spec(V) then µj(x) = 0 for j ≥ d(x) + 1 and

(a) in case that m(x) ≤ 0, then µi(x)>λi(Âx) for i ∈ Id(x);
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(b) in case that m(x) ≥ 1, then µi(x)>λi(Âx) for i ∈ Id(x) and

µn−d(x)+i(x) = µd(x)−m(x)+i(x) ≤ λi(Âx) for i ∈ Im(x) .

Proof. First notice that by considering a convenient finite partition of X into measurable
sets we can assume, without loss of generality, that d(x) = d ∈ N for a.e. x ∈ Spec(V).

Let C ∈ UV(E(G) ), and assume that µ = λ(Ĉ). By hypothesis, there exists B ∈ L(L2(Rk))+

SP, with R(B) ⊂ V , rk(B̂x) ≤ n − d(x) for a.e. x ∈ Tk, such that C = A + B. By Lemma
4.8 there exists Z = {zi}i∈In ∈ Vn such that TE(G) T

∗
E(Z) = 0 and B = SE(Z). If we let

G + Z = {gi + zi}i∈In then TE(G+Z) = TE(G) + TE(Z) and

SE(G+Z) = TE(G+Z) T
∗
E(G+Z) = SE(G) + SE(Z) = A+ SE(Z) = C

with R(Ĉx) = JV(x) and dim JV(x) = d ≤ n. Then,

λj
(

(T ∗E(G+Z) TE(G+Z))̂x
)

= µj(x) for j ∈ Id and a.e. x ∈ Spec(V) .

Moreover, if we let P : Spec(V) → Mn(C)+ be the projection valued measurable function
such that P (x) is the orthogonal projection onto span {ΓG(x)} = R(T ∗ΓG(x)) then, using again
that TE(G) T

∗
E(Z) = 0 we see that

P (x) [ (T ∗E(G+Z) TE(G+Z))̂x ] P (x) = (T ∗E(G) TE(G))̂x , for a.e. x ∈ Spec(V) .

Since rk(P (x)) = d ≤ n and

λj((T
∗
E(G) TE(G))̂x) = λj((TE(G) T

∗
E(G))̂x) = λj(Âx) , for j ∈ Id and a.e. x ∈ Spec(V)

then, using Theorem 6.3 we conclude that that the Fan-Pall inequalities hold between

(µ1(x), . . . , µd(x), 0n−d) and (λ1(Âx) , . . . , λd(Âx) , 0n−d) .

A careful inspection of these inequalities for the previous vectors shows that the inequalities
in items 2.a and 2.b. above hold (according to the relation between n and d).

Conversely, let µ : Spec(V) → `1(N)+ satisfy the conditions in item 2 and let Dµ(·) :
Spec(V) → Mn(C)+ be the measurable field of positive semidefinite matrices such that
Dµ(x) is the diagonal matrix with main diagonal (µ1(x), . . . , µd(x), 0n−d) for x ∈ X. Then,
by Theorem 6.3 there exists a projection valued measurable function P : Spec(V)→Mn(C)+

such that

tr(P (x)) = d and λ(P (x) Dµ(x) P (x)) = (λ1(Âx) , . . . , λd(Âx) , 0n−d) ∈ (R+)n .

In this case we see that

λ(D1/2
µ P (x)D1/2

µ ) = (λ1(Âx) , . . . , λd(Âx) , 0n−d) ∈ (R+)n .

Let Dλ(x) be the diagonal matrix with main diagonal (λ1(Âx) , . . . , λd(Âx) , 0n−d). By
taking an appropriate measurable field of unitary matrices U(x) : Spec(V) → Mn(C) we
conclude that

Dλ(x) = U(x)∗[D1/2
µ P (x)D1/2

µ ]U(x) , for a.e. x ∈ Spec(V) . (56)
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Arguing as in the proof of Lemma 4.8 we see that there exist measurable fields of vectors
vj : Spec(V)→ `2(Zk), for j ∈ Id, such that Âx vj(x) = λj(Âx) vj(x) and B(x) = {vj(x)}i∈Id

is an ONB of JV(x) for a.e. x ∈ Spec(V). We finally consider B ∈ L(L2(Rk))+ S.P. with
R(B) ⊂ V , uniquely determined by the condition:

[B̂x]B(x) = U(x)∗[D1/2
µ (I − P (x))D1/2

µ ]U(x) , for a.e. x ∈ Spec(V) (57)

where [B̂x]B(x) stands for the matrix representation of B̂x with respect to the ONB B(x) of

JV(x); in particular, using that rk(I−P (x)) = n−d, we conclude that rk(B̂x) ≤ n−d for a.e.
x ∈ Spec(V). On the other hand, by construction of B(x), we have that [Âx]B(x) = Dλ(x):
thus, using Eqs (56) and (57) we have that

[Âx + B̂x]B(x) = [Âx]B(x) + [B̂x]B(x) = U(x)∗ Dµ U(x) , for a.e. x ∈ Spec(V) .

This last fact implies C = A + B ∈ UV(E(G) ) satisfies that λj(Ĉx) = µj(x) for j ∈ N and
a.e. x ∈ Spec(V).
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[14] P.G. Casazza, M. Leon, Existence and Construction of Finite Frames with a Given Frame Operator, International Journal
of Pure and Applied Mathematics, Vol. 63, No. 2 (2010), p. 149-158.

[15] K.M. Chong, Doubly stochastic operators and rearrangement theorems. J. Math. Anal. Appl. 56 (1976), no. 2, 309-316.

[16] O. Christensen, An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston,
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