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Abstract. This paper presents a new methodology to calculate eddy current losses and Lorentz forces in foil winding trans-
formers. This methodology is based on the equivalent winding current distribution in the foil winding and the iron core obtained
by means of the Semianalytic Integral Method (SAIM) [1]. The main advantage of the calculation technique presented in this
paper is that it is based on mathematical expressions which are compact and easy to evaluate, thus achieving a considerable
reduction in the overall time required to determine the design parameters of the transformer. The results obtained from the
proposed formulation have been compared to those obtained using the finite element method (FEM) using as a case study a
10 MVA transformer and an excellent agreement between both techniques has been obtained.
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1. Introduction

The precise calculation of transformer parameters is of great importance in the design stage for both
rated and transient operating conditions. Among the most relevant parameters are the short circuit
impedance [2,3], eddy current losses in the windings [4] and Lorentz forces in the windings in short
circuit conditions [5].

There are several alternatives for the design of low voltage windings for high currents, for exam-
ple, helical coils, layer windings made of arrangements of rectangular conductors connected in parallel
and also windings made of continuously transposed conductor CTC [6]. In recent years the use of foil
conductor has received great attention from manufacturers because of its large cross section, ease of
manufacturing and its low cost compared to other conductors.

An adequate prediction of the spatial distribution of winding losses is of great importance, since it
is the basis for the determination of hot spots that can produce dangerous temperatures in the interturn
insulation. These temperatures can cause insulation damage and short circuits between turns, which will
reduce the life of the transformer [7,8].
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As is well known, foil windings are usually used for inner windings, thereby the prediction of the
spatial distribution of Lorentz forces enables the calculation of mechanical stresses and allows taking
measures to avoid permanent deformations of these coils due to short circuits, such as buckling [9].

In the case of external windings, the spatial distribution of Lorentz forces determines the maximum
radial stresses in the conductors, making it possible their proper sizing to prevent stresses which could
permanently deform them [10].

One of the particular aspects of transformers designed with foil windings is that there is a very sensitive
trade-off between the accuracy of the calculation and the simulation time [1,4]. If sufficiently reliable
results are required, numerical methods such as the finite element method (FEM) should be used, which
require rather long calculation times for this type of transformers [11].

On the other hand, if quick results are required, analytical methods can be used at the risk of sacrificing
the accuracy of the solution [12]. The problem of the trade-off between accuracy and computational
speed has been addressed in [1], where a hybrid approach between analytical and numerical techniques
is proposed, providing results in a very short calculation time and keeping the accuracy required for
transformer design purposes.

Reference [1] presents the methodology for determining the surface current distribution for the equiv-
alent models of the core and windings of the transformer. The present article deals in detail with the
formulation required to determine the power losses and the Lorentz forces in the foil winding from the
solution of the current surface distribution of each element of the equivalent transformer model obtained
by means of the Semianalytic Integral Method.

Since the formulations presented here are an application of the Semianalytic Integral Method, the
details that may be necessary to fully understand them can be found in [1].

2. Proposed model

This section describes the conventions related to mathematical notation, physical laws and gives a
description of the equivalent magnetic model of the transformer to be used.

2.1. Lorentz forces

Lorentz equation states that if a surface current density K is subjected to the magnetic field intensity
H, then it will experience an electrodynamic force F according to Eq. (1)
ﬁ:Frf+F22:uo/Kxﬁds’ (1)
where 11 is the magnetic permeability of vacuum and S’ the surface along which the current density K
flows. It should be noted that the magnitudes in Eq. (1) are instantaneous values, and further expressions

are required to consider the sinusoidal nature of the vector fields. Additionally, since both the magnetic
field strength and the surface current density are assumed to be sinusoidal, the cross product between

=(DC
them yields a Lorentz force having a unidirectional component F (P and also a double frequency

. . —(AC . . .
sinusoidal component F ( ). The corresponding equations are given below

IZ‘(AC) ,u20 K x Hds' (2)
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~(DC
F( ) _ Ho
2 Jy
Once the values of both components have been obtained, the forces in the time domain can be deter-
mined as follows

Re (K X ﬁ) ds’ 3)

F, (1) = F(PO) 4 ’EﬁAC)‘ - COS [2wt + arg (EgAC))} 4)
F,(t)= FgDC) + EEAC)‘ - COoS [2wt + arg (EEAC))} )

where w = 27 f is the rated angular frequency.
2.2. Power losses

The power losses in a conductor are

1 —
P=— [ J-Jdv (6)
20 v
where o is the material conductivity and ,z is the current density [13]. Furthermore, the thin-sheet ap-
proximation allows modeling solid conductors by means of surface current distributions insofar as its
thickness d is much less than the penetration depth ¢ of the magnetic field, and this condition is met for
foil conductor coils. The thin-sheet approximation states that

J=_K (7
The substitution of Eq. (7) into Eq. (6) yields
1 = =%
= —— K-K dv 8
20d? /V’ e ©

A detailed description of the thin-sheet approximation can be found in [14].
2.3. Equivalent magnetic model of the transformer

An equivalent magnetic model of the transformer based on an arrangement of surface current elements
is proposed in [1]. This arrangement can be seen in Fig. 1.

As shown in Fig. 1, the yokes of the core have been represented by disk shaped elements, while the
elements belonging to the leg of the core and the windings have been represented by cylindrical elements.
The thickness of all elements of the model is infinitesimal. It should be noted that each element has an
X in its central part, which represents a field evaluation point. Each field point has an associated index,
which is the index of the element to which it belongs, so that the field point P([f;; is located in the central
part of the j-th element.

The transformer model has a total amount of n elements, of which m = m. + m, initially have
unknown current densities. The core has been modeled using m. elements while the foil winding using
m. s elements. The methodology for determining the current densities of the m elements associated with
the core and the foil conductor winding has been presented in [1] in detail, so that it will be assumed that
the current densities of the equivalent model elements have been previously calculated. In particular, the
current density of the elements belonging to the foil conductor winding is

B = kg ©)
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Fig. 1. Axisymmetric equivalent magnetic model of the transformer.

where j =m.+1---m, KEZ] is the surface current density distribution of the j-th element and (2) is the
unit vector in the azimuthal direction.

Another characteristic of SAIM is that the current density is assumed to vary linearly between the
ends of the elements, that is

kil _ gl
bl _ 292 2ol (D] L]

where K[ﬂ and Kg% are the current densities at the bottom and the top of the cylindrical element re-
spectively. Additionally, 7’ is the axial coordinate of an arbitrary point on the surface of the cylindrical
element so that z[lj l<z< z[2j | where z[lj Vis the axial coordinate of the bottom end and Z[Qj Vis the axial
coordinate of the top end of the j-th element. It should be noted that the current densities Kgl and Kgg
of all elements are assumed to be known.

The reason for choosing a linear current distribution is because this choice has shown a reasonable
balance between the complexity of the mathematical expressions and the accuracy in solving the whole
transformer model. Although it is theoretically possible to model the field produced by higher order
elements (i.e. quadratic or cubic), these choices considerably increase the complexity of the analytical

mathematical expressions of the elements [1].
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3. Solution methodology

This section presents the methodology to determine the magnetic field strength in each field point
of the equivalent transformer model. The mathematical expressions to determine the power losses and
Lorentz forces in the foil conductor winding will be introduced later.

3.1. Magnetic field strength calculation at the evaluation points

It is evident from Eq. (1) that in addition to the surface current distribution K it is also necessary to
know the distribution of the magnetic field strength H in order to determine Lorentz forces. As men-
tioned, the surface current distribution is known, however it is necessary to propose an efficient method-
ology to calculate the magnetic field strength at the points of interest. According to the above, this
section will be dedicated to derive the necessary formulation to determine the magnetic field strength at
the selected field points of the equivalent transformer model.

The equivalent transformer model of Fig. 1 defines s = m + ny, + nep field points, of which nyy,
field points have been placed in the high voltage winding, while n.; field points are located on the
outer boundary of the model. According to [1] and the equations proposed in [15-17], it is possible
to determine the interaction matrices which contain the geometry dependent factors. These geometry
dependent factors represent the magnetic effect (geometric part) of each element on each field point.
The structure of these matrices is presented below

) iy st s

KV =1 oo (n
s,1] ;]s,1 s,n) 5 [s,n
g A,

() LSRRty iy el

KW=1: - (12)
s,1] 1[s,1 s,n] 4 [s,n
],

Each of the rows of these matrices is associated with a field point, while the columns are associated
with field sources. Note also that there are two columns for each element, because there are two geometry
dependent factors per element, since the field strength produced by the i-th element on the j-th field point
is
5,1

H'" = HMp + H'z (13)

where
) — KK + kK
1 — WKL) + K

fori =1---nand j = 1---s. More details on the definition of the geometry dependent factors can be
found in [1]. A vector containing all surface current densities of the model can be defined as follows:

5
(kn)
K,

KM _

(14)

2nx1
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where Kg‘k) is a subvector with the current densities of the elements belonging to the core and the foil
conductor winding, while Kgm) contains the current densities of the high voltage winding. Note that

K((;) is a column vector of 2n rows because each element is characterized by two values of surface
current density. The magnetic field strength at each field point can be determined directly by means of
the following matrix products

R) _ . (R) e (®)
HY =k - K (15)
HY =k . K (16)

where H&N) and HEN) are column vectors of s rows with the following structure

! i
B = g B = gl a7
[s] .[s}
_HT 4 sx1 _HZ dsx1

where gli ] and ﬂ[zj] are the magnetic field strengths components in radial and axial direction due to the
contributions of all elements at the field point j, j = 1---s. According to the above, the magnetic field
strength at the field point j can be written as
87 = Hilr 4 5Oz (18)
Expanding the intensity of radial and axial field in its real and imaginary parts, the above expression
can be rewritten as follows:

—

bl _ (Hgaem] +i. Hgmm]) P (ng)m 4 Hgmw]) 5 (19)

IS~

where j is the imaginary unit and the superscripts (Re) and (Im) denote the real and imaginary part
respectively. It should be noted that it is also possible to determine the magnetic field strength at each
field point by superimposing the individual contributions of each of the elements, however, this method
turns out to be inefficient and generally it is not recommended when n and s are large.

On the other hand, the calculation by matrix product as proposed in Eqs (15) and (16) is very efficient
computationally, insofar as specialized tools like Matlab, Octave, Scilab or libraries as Lapack are used,
since these tools use optimized routines to reduce the computational complexity of matrix products
compared to the calculation term by term. Furthermore, these specialized routines currently provide
support for multithreaded processing, which further increases the evaluation speed.

3.2. Expressions for calculating Lorentz forces in the foil conductor winding

As shown in Fig. 1, the equivalent model of the foil conductor winding is an arrangement of cylindrical
elements of infinitesimal thickness. Since this arrangement is magnetically equivalent to solid conductor
turns [1], Lorentz forces acting on these elements are also equivalent to the forces that would act on
the real winding of solid conductors. To determine Lorentz forces on the elements belonging to the foil
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conductor winding, the definitions in Eqgs (2) and (3) will be used. The differential surface in cylindrical
coordinates is ds’ = r’d¢’dz’. Using the surface integrals explicitly for an arbitrary cylindrical element
(20)

indexed as j, the following expresswns are obtained
« B dgdz,
2

2w o

/ / & i
[5]

] y ém*) dqb’dz/

(DO 114] 27
F( )l _ por / / Re (K
z&j] 0
m. The term /U] corresponds to the radius of the element j, i.e., the average radius
f .

paou] uor’m

where j = m.+1-- i ¢
of the foil conductor turn [1]. It should be noted that 7’1/ does not depend on ¢’ or 2, that is why it has
been extracted from the integral. Lorentz forces can be written in vector form as follows
E(AC)[J] F’S‘AC)[ ] F(AC)[]]Z (22)
F’(DC’)U] _ F$DC)[J]f n FgDC)[j]A (23)
(24)
(25)

bl 4. FACH)L]

FUAOL] — FACRG) | j . pACm)L]

where,
(21), and after performing the vector product and the analytical integration with respect to ¢’ and 2/, the
(26)

FAC)] — plACr)

—~

ﬁ

(Eqs (9) and (19) respectively) into Eqs (20) and

~~

N

Substituting the generic expressions of K and H
following solutions for the AC double frequency components are obtained
ZU]) .

FACRIL] — _NOT%M (W — 2L
m (1m)[j] (m) (4] ] (g Rl (Re)[j]
{Ho )[a]( 4 kG a) _Hga)[ﬂ( G0 4 kU a)}
m)|J Ko™ j j j
F£A01 il — TT’[J] (Z[gﬂ _ Z[lﬁ]) . 27)
{H(Re)[j] ( (Im)[]] +K(Im)[]]) +H(Im)[j] ( ( )[ ] _|_K‘(];§’)[J])}
FACRIL] = %T’[J] (W' — by (28)
m)[5] ( g(m)] (1m)[j] e KR (Re)[j]
{Ho )il (K¢1 Iy kG a) H(R)[a]( Iy kG a)}
FgACIm)[j] — _%Mﬂ (Z[Qj] _ Z[lj]) ) (29)
{H(Re)[j] ( gl +K(Im)[J]) +H(Im)[j] ( KRl +K(Re)b])}
The corresponding equations for the unidirectional components (DC) are as follows
ok (30)

FPOU] — %rm (25— 2k
{ Hm] ( (1m)[5] + Kg;)b]) + HgRe)[j] ( (Re)[4] " K(Re)m>}
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Fig. 2. Segmentation of the foil conductor turn.
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FPO] = _%rm (5 Y. (31)
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The total forces acting on the whole foil conductor winding can be determined by means of the fol-
lowing expressions
m
—(DC ~(DC)[j
F( H_ Z F( )l (32)
j=m.+1

m

E(ACf): Z F(AC)[j] (33)

Jj=mc+1
Once the DC and double frequency AC Lorentz force components have been calculated, it is possible
to determine the forces on each element as a function of time using Eqs (4) and (5).

3.3. Expressions for the power losses in the foil conductor winding

Equation (8) is used to determine the power losses of the winding. Because the current density in the
foil conductor winding has significant variations along the axial dimension, a subdivision of each coil in
axial sections as shown in Fig. 2 is proposed. It can be seen that the sections have been defined so that
the coordinates of the bottom and top ends of each element match the coordinates of adjacent elements.

Similarly, an index is defined for each section, so that it also matches the index of the respective
element. According to the above, and considering the integral of Eq. (8) explicitly for an arbitrary section
J, the following expression is obtained.

]

[ ] 1 %2 2 r[zj] / _'[.ﬂ _'[j]* / / /
Pl = — | o <Lf K )dr d¢'dz, (34)
zlj 0 rlJ
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Substituting Eq. (10) into Eq. (9) and then K il into Eq. (34), performing the scalar product, integrating
analytically and evaluating at the limits of integration, the following expression is obtained for the power
losses of the j-th turn section

G _ Y (L2 _ 2 D2 L )l 2 m)l
" (&) - ) (42 - 2) | (Kg‘lW+Kg1>[ﬂ]2+1<§,‘;)[ﬂ]2+K(‘2>W+)

6420 KO 4 gOmbelml

- 35
#1 $2

where r;"' and r[Qj I are the inner and outer radii of the j-th turn segment respectively. Therefore, the
total power losses of the whole foil conductor winding, termed P(/), is given as the superposition of the

effects of all its segments, so that

pl) — Z pll (36)

j=me+

[4]
1

4. Results and validation
4.1. Description of the case study

In order to validate the formulations proposed in this work, the calculation of Lorentz forces and power
losses of a 10 MVA transformer with a foil conductor low voltage winding and a high-voltage winding
made of several layers of paper-insulated solid rectangular conductor has been performed. The detailed
construction data of the case study transformer, the amount of elements used to model the core, the
foil conductor winding and the high voltage winding can be found in Table 1 of [1]. The methodology
proposed in [1] has been used to obtain the current distribution of each element, which is necessary for
the calculation of power losses and Lorentz forces. The radial and axial components of the magnetic
field strength of each field point has been determined using Eqs (15) and (16).

4.2. Lorentz forces

From the surface current densities of each element and the magnetic field strength of each field point,
the components of Lorentz forces have been computed using Eq. (26) through Eq. (31). Then, they have
been transformed into the time domain by Eqs (4) and (5). Because the Lorentz force varies both spatially
and temporally, a specific time was selected to calculate the force. The selected time was ¢ = 8.33 ms,
time at which the double frequency component of the Lorentz force has its maximum. To calculate the
forces it was assumed that the peak value of the phase current of the windings is equal to the peak value
of the asymmetric short-circuit current which was determined as described in [18] from the reactive and
resistive short circuit impedance values of the case study transformer.

Figure 3 shows the distribution of axial Lorentz forces. As it can be seen, the representation has been
done as force density, i.e., force per unit area N/m?. In this case the surface is the cross section of the
specific turn section being analyzed (see Fig. 2). The reason for this is that the magnitude and direction
of the force vary according to the analyzed turn sector. Figure 3 shows significant variations of the force
at coil ends.

The distribution of axial forces of Fig. 3 shows that the contribution of the central part of the winding
is practically zero, while compressive forces exist at the ends of the turns closest to the core leg, i.e.,
there are forces in the +Z direction at the bottom end, and forces in the —Z direction at the top end.
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Fig. 3. Spatial distribution of axial Lorentz forces in the foil conductor winding.
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Fig. 4. Spatial distribution of radial Lorentz forces in the foil conductor winding.

This is due to the important radial field component at the first winding turns. Figure 4 depicts the spatial
distribution of radial forces in the foil conductor winding.

The forces are predominantly compressive (—# direction). The maximum radial force contribution
is located in the middle of the turns nearest to the leakage duct (duct between windings), however it
should be noted that the maximum cumulative force occurs in the first coils closer to the core due to the
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Fig. 5. Power loss density in the foil conductor winding.
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Fig. 6. Power losses in the normal conductor winding.

superposition of the interactions from the other turns of the winding. It can also be seen in Fig. 4 that

the forces at the ends of the turns closest to the leakage duct are very small compared to the ones at the

center.
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Table 1
Summary of total power losses of the windings
Method P (w) PM (w)
FEM 6118.2 7083.7
SAIM 6141.0 7172.1
Table 2
Relation of calculation times reported by FEM and SAIM
Parameter FEM SAIM Ratio FEM/SAIM
Total number of elements 112 827 1370 82.36
Const. Discrt. Assemb. Solv. Eq. (s) 112.17 10.05 11.16
Calculation of par. of interest (s) 67.94 5.30 12.82
Total t. (s) 180.11 15.35 11.74
Table 3
Comparison between short-circuit forces computed with FEM and SAIM for ¢ = 8.33 ms
Element FEM FEM SAIM SAIM Rel. Err.  Rel. Err.
description F. (kN) F,. (kN) F. (kN) F. (kN) F, (%) F,. (%)
1st Turn LV —2.360 —3.299 —-2.373 —3.310 0.57 0.35
6th Turn LV —2.074 —60.834 —2.086 —60.750 0.57 —-0.14
11th Turn LV —1.430 —122.292 —1439 —121.960 0.66 —0.27
16th Turn LV —0.726  —188.675 —0.732 —188.243 0.84 —-0.23
21th Turn LV —0.206 —264.559 —0.208 —265.655 0.87 0.41
26th Turn LV —0.088  —354.937 —0.089 —354.177 0.63 —0.21
Ist Layer HV —1.653 937.728 —1.663 938.328 0.65 0.06
4th Layer HV —3.134 677.181 —3.158 679.991 0.78 0.42
7th Layer HV —4.504 374.405 —4.537 375.180 0.72 0.21
10th Layer HV =~ —5.672 25258 —5.706 25.317 0.60 0.24

A comparison between the numerical values of radial and axial forces computed with FEM and SAIM
is presented in the Table 3. Notice in Table 3 that /st Turn LV is the closest turn to the core, whereas the
Ist Layer HV is the closest layer to the main oil duct. The relative errors for F, and F;. are reported in
last two columns of Table 3 showing an excellent agreement between FEM and SAIM.

4.3. Power losses

From the current density distribution of the surface current elements it is possible to determine the
power losses at each section of a given turn by applying Eq. (35). Similarly to the case of Lorentz forces
calculation, it is more appropriate to represent the power losses in the form of volume density in W/m?3.
In this case, the power losses of each section has been divided by its volume. Figure 5 shows the spatial
distribution of power losses in the foil conductor winding.

There is a significant increase of the loss density at the turn ends nearest to the core yokes (in the order
of 2 MW/m?), which could represent overheating points due to high concentration of losses. Further-
more, foil conductor windings are built on a Transformerboard formwork, so there is no adequate oil
flow for these coils which are closest to the core, and this can be inconvenient for cooling these critical
points.

Table 1 summarizes the results of total losses in the high and low voltage windings obtained using
the proposed formulation compared with a simulation using the finite element method FEM. Details
about the simulation using finite element based software Infolytica Magnet are presented in [1]. There
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is an excellent agreement between the values of total power losses of the windings calculated using the
proposed formulation (SAIM) and the ones obtained using FEM.

Because the magnetic field strength at each field point is available, it is easy to determine the additional
losses factor for each turn of high voltage winding according to the formulations proposed in [6,10].
Figure 6 shows the calculation results of power losses in watts for each of the turns of the high voltage
winding. It should be noted that the maximum loss value is located at coil ends of the most central layers,
since the radial magnetic flux is high in this region, having a normal incidence to the conductors which
increases the additional losses. An excellent agreement between the results of FEM and SAIM can be
appreciated.

4.4. Calculation times used by FEM and SAIM

Table 2 presents a relation of the computational performances of FEM (using Infolytica Magnet)
and SAIM. As shown in the first row, FEM required nearly 80 times more elements than SAIM. The
second row of the table presents the computing time needed for geometry construction, discretization,
assembling and solving the equation system. The third row shows the time used on finding the parameters
of interest (Lorentz forces and Losses), and the last row presents the total simulation time. The details
related with the FEM simulation using Magnet can be found in [1].

5. Conclusion

A new and fast methodology for the determination of power losses and Lorentz forces in transformers
with foil conductor windings have been presented in this paper. The authors have developed new math-
ematical expressions for this purpose on the basis of the Semianalytic Integral Method (SAIM), which
are compact and numerically easy to evaluate, thereby increasing the overall performance of SAIM.

A real transformer was used as case study to validate the methodology. The results obtained by apply-
ing the proposed methodology were compared with those obtained using FEM, whereupon an excellent
agreement has been achieved.

The inclusion of the proposed expressions has extended SAIM to the calculation of Lorentz forces,
which is an important improvement, as this contribution now allows SAIM to calculate the spatial dis-
tribution of both power losses and Lorentz forces in all elements in reduced computation times, which
enhances the overall efficiency in the process of optimizing the design of foil winding transformers.

As a corollary, the application of SAIM to foil windings has revealed results that are consistent with
those found in the literature [19] in the sense that this kind of winding gives rise to axial forces which
are much lower in magnitude than the radial ones.
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