WEAK SOLUTIONS AND REGULARITY OF THE INTERFACE IN AN
INHOMOGENEOUS FREE BOUNDARY PROBLEM FOR THE
p(z)-LAPLACIAN

CLAUDIA LEDERMAN AND NOEMI WOLANSKI

ABSTRACT. In this paper we study a one phase free boundary problem for the p(z)-Laplacian with
non-zero right hand side. We prove that the free boundary of a weak solution is a C** surface in
a neighborhood of every “flat” free boundary point. We also obtain further regularity results on
the free boundary, under further regularity assumptions on the data. We apply these results to
limit functions of an inhomogeneous singular perturbation problem for the p(z)-Laplacian that we
studied in [25].

1. INTRODUCTION

In this paper we study the following inhomogeneous free boundary problem for the p(x)-Laplacian:
u > 0 and

. Appyu = div(|Vu(z)P@=2Vu) = f in {u > 0}
(P(f:p, 7)) {up: 0, |Vu| = \(x) on &{u > 0}.

The p(x)-Laplacian serves as a model for a stationary non-newtonian fluid with properties de-
pending on the point in the region where it moves. For example, such a situation corresponds to
an electrorheological fluid. These are fluids such that their properties depend on the magnitude of
the electric field applied to it. In some cases, fluid and Maxwell’s equations become uncoupled and
a single equation for the p(z)-Laplacian appears (see [33]).

The free boundary problem P(f,p, \*) appears, for instance, in the limit of a singular perturba-
tion problem that may model high activation energy deflagration flames in a fluid with electromag-
netic sensitivity (see [25]). When p(x) = 2 (in which case the p(z)-Laplacian coincides with the
Laplacian) this singular perturbation problem was introduced by Zeldovich and Frank-Kamenetski
in order to model these kind of flames in [37]. In this latter case, the right hand side f may come
from nonlocal effects as well as from external sources (see [23]).

The free boundary problem considered in this paper also appears in an inhomogeneous min-
imization problem that we study in [26] where we prove that minimizers are weak solutions to

P(f,p,\).

In the present article we prove that the free boundary 0{u > 0} —with u a weak solution of
P(f,p, \*)— is a smooth hypersurface in a neighborhood of every “flat” free boundary point.
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perturbation, inhomogeneous problem.
2010 Mathematics Subject Classification. 35R35, 35B65, 35J60, 35J70.
Supported by the Argentine Council of Research CONICET under the project PIP625, Res. 960/12, UBACYT
20020100100496 and ANPCyT PICT 2012-0153.
1



2 CLAUDIA LEDERMAN AND NOEMI WOLANSKI

The notion of weak solution used in this paper is such that it also includes the limits of the sin-
gular perturbation problem described above, that we studied in [25], under suitable nondegeneracy
conditions.

More precisely, in the present work we prove that the free boundary of a weak solution to
P(f,p, \*) (see Definition 2.2) is a Ch* surface near flat free boundary points (Theorems 4.1, 4.2
and 4.3). As a consequence we get that the free boundary is C%* in a neighborhood of every point
in the reduced free boundary (Theorem 4.4). We also obtain further regularity results on the free
boundary, under further regularity assumptions on the data (Corollary 4.1).

In the particular situation of the minimization problem mentioned above, we prove in [26] that
the set of singular free boundary points has null #~~!-measure.

The basic ideas we follow in this paper to prove the regularity of the free boundary of a weak
solution were introduced by Alt and Caffarelli in the seminal paper [1], where the case of distri-
butional weak solutions of P(f,p, \*) with p(x) = 2 and f = 0 was studied. The treatment of
a quasilinear equation was first done in [2] for the uniformly elliptic case. Then, the p-Laplacian
(p(z) = p) was treated in [8]. The main difference being that a control of |Vu| from below close to
the free boundary is needed in order to be able to work with linear equations with the ideas of [2].
Both [2] and [8] deal with minimizers that are weak solutions in the stronger sense of [1]. A notion
of weak solution similar to the one in the present paper was first considered in [29]. The case of a
variable power p(x) was considered in [16] still for minimizers and in the homogeneous case f = 0.
The linear inhomogeneous case was treated in [18] and [21] for minimizers.

We point out that the regularity of the free boundary for the inhomogeneous problem f % 0 had
not been obtained even in the case of p(z) = p.

For other references related to the free boundary problem under consideration in this paper we
would like to refer the reader to [3], [4], [5], [9], [10], [11], [27], [28], [30], [31], [32], [34], [35] and
the references therein. This list is by no means exhaustive.

An outline of the paper is as follows: in Section 2 we define the notion of weak solution to the
free boundary problem P(f,p, \*) and we derive some properties of weak solutions. In Section 3
we study the behavior of weak solutions to the free boundary problem P(f,p, A\*) near “flat” free
boundary points. In Section 4 we study the regularity of the free boundary for weak solutions to
the free boundary problem P(f,p, A*). In Section 5 we present an application of these results to
limit functions of the singular perturbation problem that we studied in [25]. Our results apply to
limit functions satisfying suitable conditions that are fulfilled, for instance, under the situation we
considered in [26].

1.1. Preliminaries on Lebesgue and Sobolev spaces with variable exponent. Let p: Q —
[1,00) be a measurable bounded function, called a variable exponent on € and denote ppax =
esssup p(z) and pupin = essinf p(z). We define the variable exponent Lebesgue space LP()(Q) to
consist of all measurable functions u : @ — R for which the modular g,.y(u) = [, lu(z)|P®) dz is
finite. We define the Luxemburg norm on this space by

lull 0y = Nullpy = 0F{A > 0 09 (u/A) < 1.

This norm makes LP() () a Banach space.
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There holds the following relation between g,.)(u) and [Jul| ()

win { ([ fup@ ) " ([ 1 dz) "} < oo
§max{(/g|u|p(”") dx)l/pmin, (/Q|u|p(x) daz)l/pmax}.

Moreover, the dual of LP() () is LP'()(Q) with % + ﬁ =1

Let WHP()(Q) denote the space of measurable functions u such that u and the distributional
derivative Vu are in LP()(Q). The norm

ullip0) = lullpe) + 1Vulllpe
makes W1P() a Banach space.

The space Wol’p(')(Q) is defined as the closure of the C$°(2) in WP (Q).
For more about these spaces, see [12, 20] and the references therein.

1.2. Preliminaries on solutions to p(z)-Laplacian. Let p(x) be as above and let g € L*>(Q).
We say that u is a solution to
Apyu=g(r) in Q

if w € WHP0)(Q) and, for every ¢ € Wol’p(')(Q), there holds that
/Q Vu(z)|PD 2V - Vo dr = — /Q vg(x)de.
Under the assumptions of the present paper (see 1.3 below) it follows from [36] that u € LS ().
For any z € Q, £, € RY fixed we have the following inequalities
[ = &P < O(InlP =2y — [EP72¢) (n — €) if p(x) > 2,
=62 (nl+ 1) < =2 — PO 26 - ©) i pla) <2

These inequalities imply that the function A(x,&) = |£[P®)=2¢ is strictly monotone. Then, the
comparison principle for the p(z)-Laplacian holds since it follows from the monotonicity of A(z,§).

1.3. Assumptions. Throughout the paper we let Q C RY be a domain.

Assumptions on p(x). We assume that the function p(z) verifies
(1.1) 1 < pmin < p(2) < Prmax < 00, x € Q.
Unless otherwise stated, we assume that p(z) is Lipschitz continuous in €. In some results we
assume further that p € WhH*(Q) N W24(Q).
Assumptions on \*(z). We assume that the function A\* is continuous in {2 and verifies
(1.2) 0 < Amin < A () < Apax < 00, x € Q.

In our main results A*(x) is Holder continuous in .

Assumptions on f(z). We assume that f € L*(Q). In some results we assume further that
fewhi(Q).
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1.4. Notation.

e N  spatial dimension

e QNJ{u>0} free boundary

e |S| N-dimensional Lebesgue measure of the set S
e HN=1 (N — 1)-dimensional Hausdorff measure

e B.(z9) open ball of radius r and center xg

e B, open ball of radius r and center 0

e Bf =B, N{zx >0}, B, =B,N{zy <0}

e B!(rg) open ball of radius r and center zo in RV ™!
e B/ open ball of radius r and center 0 in RV !

* Jo, 00 = TBta0) S o) 40
® tFaBr(:Bo) u = m faBr(wo) Ud?“N—l

® X characteristic function of the set S

e vt = max(u,0), v~ = max(—u,0)

e (¢,n) and £-n  both denote scalar product in RY

2. WEAK SOLUTIONS TO THE FREE BOUNDARY PROBLEM P(f,p, \*)

In this section we define the notion of weak solution to the free boundary problem P(f,p, \*).

We also derive some properties of the weak solutions to problem P(f,p, A*), which will be used
in the next sections, where a theory for the regularity of the free boundary for weak solutions will
be developed.

In all the results of this section p(x) will be a Lipschitz continuous function.

We first need

Definition 2.1. Let u be a continuous and nonnegative function in a domain Q c RY. We say
that v is the exterior unit normal to the free boundary QN o{u > 0} at a point g € 2N d{u > 0}
in the measure theoretic sense, if v € RY| |v| =1 and

1

(21) }}L% TW /Br(xo) |X{u>0} - X{z/ (w—zo,l/)<0}| dx = 0.

Then we have

Definition 2.2. Let Q € RY be a domain. Let p be a measurable function in Q with 1 < pmin <
P() < Pmax < 00, A* continuous in Q with 0 < Apin < AN (2) < Apax < 00 and f € L>®(Q2). We
call u a weak solution of P(f,p, \*) in Q if
(1) w is continuous and nonnegative in Q, v € WP()(Q) and Apyu = fin QN {u>0}.
(2) For D CC Q there are constants ¢min = ¢min(D), Cimax = Cmax(D), 10 = 10(D), 0 < ¢min <
Chax, 70 > 0, such that for balls B,(z) C D with 2 € 9{u > 0} and 0 <r <1y

1
Cmin S — Sup u S Cmax-
T B.(z)

(3) For HN=1 a.e. xg € Oreq{u > 0} (this is, for HV~l-almost every point zg € 2N d{u > 0}
such that Q N d{u > 0} has an exterior unit normal v(zg) in the measure theoretic sense)
u has the asymptotic development

(2.2) u(w) = N (20) (@ — w0, (o)™ + ol | — o).
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(4) For every zp € QN o{u > 0},
lim sup [Vu(z)| < A*(z0).

T—x()

u(z)>0
If there is a ball B C {u = 0} touching QN d{u > 0} at x¢ then,
1 —— >\ .
1211)511011) dist(z, B) — (z0)
u(z)>0
Definition 2.3. Let v be a continuous nonnegative function in a domain Q@ C RY. We say that

v is nondegenerate at a point g € QN {v = 0} if there exist ¢ > 0, 7o > 0 such that one of the
following conditions holds:

(2.3) ][ vdr > cr  for 0 <r <y,
By (zo)
(2.4) ][ vdr > cr  for 0 <r <7y,
OBr(z0)
(2.5) sup v>cr for 0 <r <7y.
By (x0)

We say that v is uniformly nondegenerate on a set I' C 2 N {v = 0} in the sense of (2.3) (resp.
(2.4), (2.5)) if the constants ¢ and 7o in (2.3) (resp. (2.4), (2.5)) can be taken independent of the
point xg € I'.

Remark 2.1. Assume that v > 0 is locally Lipschitz continuous in a domain Q C RN, v €
WhPH)(Q) with Ap)v > fXqusoy, where f € L2(2), 1 < pmin < p() < pmax < o0 and p(z) is
Lipschitz continuous. Then the three concepts of nondegeneracy in Definition 2.3 are equivalent
(for the idea of the proof, see Remark 3.1 in [22], where the case p(z) =2 and f = 0 is treated).

We will now derive some properties of the weak solutions.

Lemma 2.1. If u satisfies the hypothesis (1) of Definition 2.2 then A = Ay := Apyu — fX{u>0} 18
a nonnegative Radon measure with support on QN o{u > 0}.

Proof. The proof follows as in the case p(z) = 2, that was done in [24], Lemma 2.1. O

Proposition 2.1. Assume that u satisfies hypothesis (1) of Definition 2.2. Assume moreover that
u € L*(Q), |Vp|lre < L and there exist constants Cy > 0, 79 > 0 such that if x € QN O{u > 0},
B.(z) C Q and r < 7, then

sup u < Cyr.

Br(a)
Then, u is locally Lipschitz. Moreover, for any D CC §2 the Lipschitz constant of u in D can be
estimated by a constant C depending only on N, pmin, Pmax, L, dist(D, 9Q), [[ul| Loy, |z (0), Co
and 7.

Proof. We will find a constant C' such that |Vu| < C in D N {u > 0}. Let r = dist(D,99) and

y € DN {u > 0} such that dist(y,0{u > 0}) < min{%o,%l,l}. Let z € 0{u > 0} such that

r = dist(y,0{u > 0}) = |z — y|. Then B,(y) C Ba,(Z) and thus,

1 1
—sup u < — sup u < 2Cy.

" B,y " Bar(z)
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We will show that there exists C' such that

~ 1 ‘
|vu(y)| S C(l —l— (7 sup u)pmax/pmln).
" Br(y)
In fact, let v(z) = fu(y + rz). Then, |[v||f=(p,) < 2Co and Apyv = f in By, with p(z) =
p(y +r2), f(z) = rf(y+rz). There holds that pmin < P(2) < pmax; IVPllLe < L and || f]|zoe(p,) <

[ fll Lo (); if 0 < 7 < 1. By the local results in [14] it follows that v € C’ﬁ)’?(Bl) and then, there
exists € > 0 such that |[Vvl|ca(p, ,) < C1. Therefore, if z € By 3(0)

[Vo(0)] < Cy + |[Vo(2)],
and thus, if x € B, 2(y),
[Vu(y)| < G + [Vu(z)|.
If |[Vu(y)| <1, the desired bound follows. If [Vu(y)| > 1, we get
Vu(y)[Pin < [Vu(y)"® < Cy(1+ [Vu(z) ™).
Integrating for = € B, /5(y), we obtain

Vau(y) P < Cy <1 +][ \Vu(q:)|p(r)).
Br/2(y)

Applying Cacciopoli type inequality (see [14], Lemma 3.1, (3.5)) we have, for some constants Cy
and Ry that, if r < Ry and w :JCBT(y) u(x),

[Vu(y)Pn < Cy(1+ ][BT@ (W>p<x>)

2 max
< (Cy (2 + (; ;:1(5) u)p >

This gives the result in case dist(y, 0{u > 0}) < Ry, with R; = min{Ry, %0, &, 1}. If, on the other
hand, dist(y, 0{u > 0}) > Ry, the local results of [14] give

[Vu(y)| < C,
for a constant C depending on N, Pmin, Pmaxs L lull oo ()5 1floe ()5 BR1. We thus obtain the desired
estimate. O

Lemma 2.2. Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. For D CC §) there

are constants 0 < émin < Cmax and 7o > 0 such that for balls B,(x) C D with x € d{u > 0} and
0<r<ry

1 ~
(2.6) Coin < ][ udr < Chpax.
T J Br(z)
Proof. The result follows from Proposition 2.1, Lemma 2.1 and Remark 2.1. O

Lemma 2.3. Assume that u satisfies hypotheses (1) and (2) of Definition 2.2.

Then, for any domain D CC ) there exist constants ¢ and 7o > 0, with 0 < ¢ < 1, depending on
[[Vull LoDy, 1flloe(D) 705 Pmins Pmax, |[VDPl|Leo(py and cmin, such that for every B, C D, centered
at the free boundary with 0 < r < 7o we have

|B, N {u > 0} >
| Br | -
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Proof. We first notice that, by Proposition 2.1 and Lemma 2.2, u is locally Lipschitz and (2.6) holds.
Let By(zo) C D with 29 € 9{u > 0}. We observe that u(z) < r||Vul|pe(p) in {u > 0} N By (20).
Therefore, for 0 < r < 7y
1 B N 0
o< 1w < |V ey PO 2 O
r Br(mO

| B (o))

O

Remark 2.2. Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. It follows from
Lemma 2.3 that the free boundary has Lebesgue measure zero.

Lemma 2.4. Assume that u satisfies hypotheses (1) and (2) of Definition 2.2.

Then for any domain D CC € there exist constants ¢,C and 7y depending on N, Pmin, Pmax;
[IVpllLee(pys I fllee(py, [IVUllLoo(D)s Cmin, Cmax and o such that, for every B, C D centered at
the free boundary, with r < 7o, we have

crN_lg/ d\ < CorNL

Here A = A\, is as in Lemma 2.1.

Proof. Let £ € C§°(2), € > 0. Then,

/gd/\: —/]Vu|p(x)2Vu-V§dx—/ f€da.
Q {u>0}

Approximating xp, from below by a sequence {&,} in C§°(f2) such that 0 < &, <1, &, = 11in
B,_1 and |V§,| < Cnn and using that u is locally Lipschitz, we have that

—/|Vu\p(x)_2Vu-V§ndx—/

f&nda < Con| B, \ B, 1|+ ||f|| (0| B|
{u>0} "

S Cer_17

if r <1, with Cp = Co(pmam HVUHLOO(D)aN) and O = Cl(pmaxa ||VUHL°°(D)7N7 HfHLOO(D))

Then, as
/ End)\ — dA,
Q B,
the bound from above holds.

Let us now prove the bound from below. Arguing by contradiction we assume that there exists
a sequence of functions wy satisfying hypotheses (1) and (2) of Definition 2.2 with power pg(x)
and right hand side fi (), With pumin < pe(%) < Pmaxs |[VPrlle(p)y < L1, [[frllpee(p) < L2 and
[IVug||pe(p) < Lo, and balls By, (z1) C D, with @3, € 0{ug, > 0} and rj, — 0 with \g = Ap yup —

JeX{u, >0y satisfying that I (k) d\p < epri V1 with e — 0. Let vy (z) = we@EtTe?) - Ag the V.8
Tk

Tk

are uniformly Lipschitz in B1(0) and vx(0) = 0, we can assume that vy — vo uniformly in B .
We can also assume that x;, — z¢ € D.

We have v, > 0 and Ay, v = fi in B1(0) N {vp > 0}, with pp(x) = pr(ap + rex), fu(z) =
rifr(zr + rrx). We can assume that prp — pp € R uniformly on compact subsets of B1(0).

We claim that Vv — Vug a.e. in Byjp. In fact, on one hand, by the interior Holder gradient
estimates, we have that Vv — Vg uniformly on compact subsets of {vg > 0}.

On the other hand, if B,(Z) C {vo = 0} N By/2(0), then B, 5(z) N d{vy > 0} =  for large k
by the nondegeneracy. So, either B, /5(Z) C {vx = 0} for a subsequence, or else vy > 0 in B, /5(%)
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for large k. In any case, Vur — Vg uniformly in B, /4(3?). Now observing that, with the same
argument used in Remark 2.2, we get that |B;/5(0) N d{vg > 0}| = 0, the claim follows.
Then, for all £ € C§°(B/2), £ >0,

—/ |Vuo|PO 2V - VE = lim (—/ |Wk|ﬁk(m>—2wk-vg—/ fkfX{vk>0})-
Bi2 k—roo B2 B2

On the other hand, denoting ¢(y) = £(£="£), we have

Tk
o _ 1
—/ | V[P @) 2VUk-V§—/ Fe€X{u>0y = rN—l/ pdAr < |1@llLe(B,, s (@0))ck = O-
By /9 By /9 k r1,/2(Tk)

Therefore Ay,vp = 0 in By /. But vg > 0 and v (0) = 0, so that by the Harnack inequality we have
Vo = 0 in BI/Z'
On the other hand, 0 € 9{vx > 0}, and by the nondegeneracy, we have

/ v > ¢ > 0.
Bya

Thus,

/ v9g>c>0
Bija

which is a contradiction. O

The next result gives a representation formula for weak solutions. We will denote by HY 1| 9{u >
0} the measure HY ! restricted to the set d{u > 0}.

Theorem 2.1. Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. Then,
1) HN=YD N o{u > 0}) < oo, for every D CC Q.
2) There exist a borelian function g, defined on N O{u > 0} such that

Ap(z)u — fX{u>0} = qq HNilta{u > 0}.
3) For every D CC Q there exist C > 0,¢ > 0 and r1 > 0 such that
erN L < WV Y B, (z0) N O{u > 0}) < OrV 1

for balls By(xg) C D with xo € DN O{u > 0} and 0 < r <71 and, in addition,
4)c<q,<C in DNno{u>0}.

Proof. The result follows as Theorem 4.5 in [1]. O

Remark 2.3. Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. It follows from
Theorem 2.1 that the set Q@ N {u > 0} has finite perimeter locally in Q (see [15] 4.5.11). That
is, pu = —VX{u>0} 18 a Borel measure, and the total variation |u,| is a Radon measure. In this
situation, we define the reduced boundary as in [15], 4.5.5. (see also [13]) by, Orea{u > 0} := {x €
QN o{u > 0}/|vy(x)| = 1}, where v, () is the unit vector with

(2.7) /B " IX{u>0} = X{y/(y—awa(z)<0}] = o(r™)

for » — 0, if such a vector exists, and 1,(x) = 0 otherwise. By the results in [15] Theorem 4.5.6,
we have

piy = Ve HY 7Y Opea{u > 0}.
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We also have the following result on blow up sequences

Lemma 2.5. Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. Let B, (x1) C £ be
a sequence of balls with py, — 0, x, — x¢ € Q and u(xg) = 0. Let us consider the blow-up sequence
with respect to By, (vr). That is,

1
ug(x) == Eu(xk + pr).

Then, there exists a blow-up limit ug : RY — R such that, for a subsequence,
(1) up — up in CE(RY) for every 0 < a < 1,

)
2) O{ur > 0} — 0{up > 0} locally in Hausdorff distance,
3) Vuyr — Vugy uniformly on compact subsets of {ug > 0},
4) Vuy, — Vug a.e. in RV,
5) If i, € 0{u > 0}, then 0 € O{ug > 0},
) A
)

6) Ap(ze)uo =0 in {ug > 0},

(
(
(
(
(
(

7) wg is Lipschitz continuous and satisfies property (2) of Definition 2.2 in RN with the same
constants as u in a ball By, (xo) CC § .

Proof. The proof follows with similar ideas to those in [1], 4.7 and [2], pp. 19-20. We here use
that A, yux = fr in {ux > 0}, where pp(z) = p(zr + prz) and fi(x) = prf(or + prv) satisfy
pr — p(x0) and f, — 0 uniformly on compact sets of RY. This implies that Vuy, are uniformly
Holder continuous on compact subsets of {ug > 0}. (Notice that some of these arguments were
already employed in the proof of Lemma 2.4). O

We will next prove an identification result for the function g, given in Theorem 2.1, which holds
at points zp € Ored{u > 0} that are Lebesgue points of the function ¢, and are such that

. N=19{u > 0} N B(zo,7))
(2.8) 11Hrlj(l)lp H 1 (B (0. 1))

(Here B'(xg,7) = {z' ¢ RN=1/|2'| < r}).

Notice that under our assumptions, H¥ ~! — a.e. point in 0,cq{u > 0} satisfies (2.8) (see Theorem
4.5.6(2) in [15]).

Lemma 2. 6 Assume that u satisfies hypotheses (1), (2) and (3) of Definition 2.2. Then, q,(xo) =
A (20)P@OL for HN-1 ge. 2 € Drea{u > 0}.

Proof. If u satisfies (3) of Definition 2.2, take xg € Oreq{u > 0} such that
u(x) = A"(zo)(x — 2o, v(20))” + ol|x — xol),
where v(z¢) is the exterior unit normal at zp in the measure theoretic sense. We assume v(zg) = ey.

Take pr — 0 and ug(z) = piku(aso + prx). If £ € C§°(2) we have

- / |Vul[P® =2V - VE de — / fédx = / Qu(@)EdHN 1,
{u>0} {u>0} o{u>0}

<1
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and if we replace § by &k(z) = pp€(*20) with £ € C§°(Bg), k = ko and we change variables, we
obtain

_/ ’vuk‘pk(x)—2vuk . V£ dx _/ fkf dr = / Qu(xo + Pkﬁ)fd’HN_l,
{uk>0} {Uk>0} B{uk>0}

where pi(z) = p(xo + prx) and fr(z) = prf(xo + prr). From Lemma 2.5, it follows that, for a
subsequence, u — ug uniformly on compact sets of RV, with ug(xz) = A*(z¢)zy and moreover,
| Vg [PE@) =2V, — |Vug[P~2Vug ae. in RN, with py = p(20). Thus,

- / |V [PE®) 2Ty, - VE do — / fe&dr — — Vo [Po~2Vug - VE da.
{uk>0} {uk>0} {JJN<0}

We now let
¢(x) = min (2(1 —|zn]) T, 1)7’](561, iy TN—1),
for x| < 1 and £ = 0 otherwise, where n € C§°(B}.), (where B, is a ball (N — 1) dimensional with
radius r) and n > 0. Then, if z( is a Lebesgue point of ¢, satisfying (2.8), we proceed as in [1],
p-121 and we get

(2.9) / g (20 + pra)E AHN 1 = qu(a0) / a1
O{ur>0} {zn=0}

As Vug = —=\*(70)eNX{zy<0}, it follows that

N(zo)~t [ €(a’,0)dHN T = qu(zo) [ &(a',0)dHN T
B By

Thus, we deduce that for H¥~1-almost every point zg € Orea{u > 0}, qu(xo) = )\*(aro)p(xo)_l. O

3. FLAT FREE BOUNDARY POINTS

In this section we study the behavior of weak solutions to the free boundary problem P(f,p, \*)
near “flat” free boundary points.

Throughout the section we assume, unless otherwise stated, that f is bounded, p(z) is Lipschitz
continuous and A*(x) is Holder continuous.

As in previous papers, we start by defining the flatness classes.

Definition 3.1. Let 0 < 01,02 < 1, 7 > 0. We say that u belongs to the class F(o1,09;7) in
B,(x0) in direction v with power p(x), slope \*(x) and right hand side f(x) if v is a weak solution
to the free boundary problem P(f,p, \*) in B,(x¢), o € 0{u > 0} and

(1) u(x) =0if <£L' - x07y> Z o1p, T € Bp(x())a

(2) w(z) > —X*(20) ((x — o, v) + 02p) if (x — @0, ) < —02p, © € By(20),

(3) |Vu| < X (zo)(1 4+ 7) in By(xo).

After a rotation and a translation we may assume that zo = 0 and v = ey. We will not explicitly
mention the direction of flatness when v = ep.
We may further reduce the analysis to the unit ball by the following transformations:

(3.1) a<x>=“(gx), ple)=plpr),  N(x)=N(ox).  Fla) = pf(pe).

Then, if u € F(01,02;7) in B, with power p, slope \* and right hand side f, there holds that
u € F(o1,09;7) in By with power p, slope A* and right hand side f.
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Observe that, if 1 < pmin < (%) < Pmax < 00, 0 < Apin < A*(2) < Apax < 00, p € Lip with
|Vp| < L1, \* € C* with [N]cer(p,) < C* and f € L>*(B,) with |f| < L, there holds that p, A*
and f are in similar spaces in By and 1 < ppin < p(2) < Pmax < 00, 0 < Amin < A (2) < Apax < 00,
V| < Lip, |f| < Lap and [M]car 5,y < C*p*.

The first lemma states that, if u vanishes for xy > o, there holds that, in a smaller ball, u is
above a hyperplane for zy < —e¢.

Lemma 3.1. Let p € Lip(By), \* € C¥(By), f € L®(By) with |Vp| < Lip, |f| < Lap,
[)\*]Ca*(Bl) < C*p®" and C*p*" < X (0)o. Let u € F(o,1;0) in By with power p, slope \* and rhs

Let 0 < e <1/2 and % < R < 1. There exists og = oo(e, N, R, Pmin, Pmaxs Amin, Amax, L1, L2, C*)
such that if o < o¢ there holds that u € F(o/R,¢e;0) in Br with the same power, slope and rhs.

Proof. We follow the construction of [2] with the variation of [8]. In this paper, we consider an
arbitrary R instead of R = 1/2 in order to pursue the argument in the next steps.

Let R = R+ (1 — R)/4. As in these papers, we will prove that, for every 0 < r < (1 — R)/8
there exists o9 = 0¢(r, R, Pmin, Pmax, Amin, Amax; L1, L2, C*) such that for o < oy,

(1-R)
B

Then, integrating along vertical lines a distance at most R’ and using that |Vu| < A\*(0)(1+0), we
get

(3.2) u(§) > A(0)[-&n —4r] for & € OBpr with &y < —

wE, v +a) > u(€) = A (0)(1 + o)
> A(0)[ - (v + @) — 4r — R'o]
> X(0)[ — (én + ) —€R]
if 0 <o <R, r=min{Z 28} and 0 < min{RR—fl,ao}.
This implies that, for |z| < R, zxy < —Re,
u(z) > —X*(0)(zn + Re).
So that u € F(o/R,e;0) in Bg with power p, slope A* and rhs f, and the lemma will be proved.
(1-R)
8

In order to prove (3.2), we will show that, once we fix 0 < r < there exists x > 0 such
that, for every ¢ € 0Bpr with &n < —(1 — R)/4, there exists z¢ € 0B, (£) such that

(3.3) u(zg) > =A(0)(1 — Ko)xe -
Then, by using again that |[Vu| < A*(0)(1 + o),
u(§) = u(ze) = A" (0)(1 + o)r = A(0)[=(1 — Ko)aey — (1 +0)r]
> N(0)[—&v —r — ko —2r] > A*(0)[—&n — 47]

if o < I, that is, we get (3.2).

The existence of a point x¢ satisfying (3.3) is done by assuming that such a point does not
exist and getting a contradiction if  is large depending on r, R and the constants in the structure
conditions. The inequality that will allow to get this contradiction will be achieved if ¢ is small

depending on the same parameters. Such inequality comes from the construction of two barriers
in the following way:
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Let n € C§°(Bj) given by

9y[? .
o = {ev(—2m) I <,
0 if [yl > 3.

Let s > 0 be maximal such that
Bin{u>0}CcD:={zx€By:any<o—sn)}

Then, as 0 € 9{u > 0} there holds that s < o.
First, we let v € WhPO) (D \ B,(€)) be the solution to

Apzyv = —Lop in D\ B,(§),
(3.4) v=20 on 0DN By,

v=A*0)(1+0)(c —2xnN) on 90D\ By,

v=-X(0)(1-kro)xn on 9B (§).

Since the boundary datum coincides with \*(0)(140)(c —an — sn(z")) on dD, it has an extension
¢ € Whe(D \ B,(£)) and therefore the solution v exists by a minimization argument in ¢ +
1p(- =T
Wo (D B, (0)).
As we are assuming that (3.3) does not hold for any ¢ € 0B,(§) and, since v = 0if x € 0DN By

and |[Vu| < A*(0)(1 4 o), there holds that u < v on 9(D \ B,(£)). Now, recalling Lemma 2.1, we
get Ayt > fxqus0y = —Lap, then comparison of weak sub- and super-solutions gives

u<wv in D\ B.(§).

Now, let z € dDN{u > 0} N{|2'| < 1/3}. Then, there exists a ball B contained in {u = 0} such
that z € 9B. By the definition of weak solution and, since \*(2) > A\*(0)—C*p" [2|*” > X*(0)(1—0),
we deduce that

\ ) . u(z)
(3.5) AT(0)(1—0) <A(2) < hr%sgfdist(x,B) < |Vu(2)].

We will get a contradiction once we find a barrier from above for v in the form w = v1 — koo
with |Vui| < A*(0)(1 + Cs0), |Vua| > eA*(0) > 0, v1 > 0, v2 > 0 close to z and v; = va = 0 on
0D N By close to z. In fact, if such a barrier w exists, by (3.5) there holds that

A(0)(1 — o) < |Vu(z)| < [Vw(z)| = [Voi(2)] — ko|[Vug(2)] < X*(0)[1 4+ Cs0 — cko]

and this is a contradiction if x is large depending only on C3 and c¢. Since the constants C'5 and ¢
will depend only on 7, R, pmin, Pmaxs Amin, Amax, L1, L2 and C*, the lemma will be proved.
As in [8] and [16], the idea of the construction of v; and wve is that they will be such that
w = v1 — kovy will satisfy
A*(0)
2

if o is small depending on those constants. Then,

Ap(x)w = ‘vw‘p(x)—2 [Z bij (x)wrir]' + Z bj (x)wﬁfj:|
ij J

(3.6)

< |Vaw| < 2X3%(0)
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Wg; We ; and b] — pxj log |Vw| There holds that

with bi; = d;5 + (p(z) — Q)W

(37) /81|I/|2 < Zbijy’il/j < ﬁ2|V|2 Yv € RN
ij
with 81 = min{1, pmin— 1}, B2 = max{1, pmax— 1} and, with A = max{|log Apin|, | 10g Amax|} +1og 2,
b= (bla'” 7bN)7
AL M pax
(3.8) b < ALip < %a = Cyo,

: c* : _ ALidmax
if o S p— with C() = 57*

Thus, the idea is to construct v in such a way that

2
2X(0) < [Vur] < 5X0)

and

A
Tu < —-S71Ly g‘j"a =—-Mo in D,

with S = min{()‘mT‘“)pmi“*Q, (A“‘T‘“)pm‘“ﬂ, (2Amax )P0 =2 (2 A\ pax )Pmax =2} for any operator
T = bij(2)0na; + > bj(2)0a
] J

with {b;;} satisfying (3.7) with £ = min{1, pmin — 1}, B2 = max{l, pmax — 1} and {b;} satisfying
|b| < Coo
with Cj the constant in (3.8).
Then, v9 will be a function satisfying
Tva >0 in D)\ B.(¢)
for any such an operator 7 with
0 < eA*(0) < [Vug| < CA*(0)

for some constants ¢, C' depending only on R,r. Here D is a smooth domain contained in D and
containing D \ B(_p)/10(0B] x {0}). In this way, once we fix £ > 0 there holds that w satisfies
(3.6) if o is small and therefore,

Apyw < —Lop = Appyv  in D\ B,(¢).

p(z)

The functions v; and vg are also constructed in such a way that w > v on 8(5 \ B; (5))
As in the previously cited papers, we let

di(z) = —zy + 0 —sn(z’) and wvi(x) = )\*(O)ﬂ(l — e*‘“dl(’”)) in D
K1
with g1 = Cio and 73 = 1 + Cy0. Then, |[Voi| < A*(0)(1 + Co)(1 + Ceo) with C depending
only on 7 (in particular, |Vui| < A*(0)(1 + C30) with C3 depending only on Cy and 7). Moreover,
Dxixjvl = A*(O)’yle_p‘ldl [D:ci:cjdl — Nldlxidlxj] . Thus,

TU1 < 'Yle_'uldl [Nz)\max/B2HD277”L°°U - Aminﬁlﬂl + )\maxCO(l + CBU)U]

[2N?AmaxB2 | D1l Loe + AAmaxCo — € 2CiAminB1]0
—Mo

IAIA
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if 0 <o(Cy,Ca,C3) and C1 > C1(Amin, Amax, 51, B2, Co, M). C1 is fixed from now on.
On the other hand,

N | W

(3.9) gx*(m <A (0)(1 + Coo)eC17149) < |Tuy| < A*(0)(1 4 Cs0) < =X*(0)

ifo< U(Cl, Cs, 03).
The constant Cy (and therefore also C3) will be fixed now in order to guaranty that w > v on
the boundary of D\ B,(§).

First, on 0D N By we have v; = 0.

Observe that

v1(x) > A*(0)(1 + Ca0)e 2“17d; > A*(0)(1 + % Ydi > X*(0)(1 + 40)d;

if Cg Z 8 and o S 0(01702).
Now, on 0D \ B; we consider two cases:
(a) |2/| > 3. Then, n(z’) =0 and d; = 0 — 2. Thus,

vi(z) > A(0)(1 4 0)(o — zN).

(b) 2’| < . Then, |zy| > \/>and
vi(z) > A*(0)(1 +40) (0 — zy — sn(z'))
> A(0)(1+0)(o —an) + A (0)[3(c —zn) — (1 + 40)]o
> A (0)(1+0)(o —zn) + A (0)[V6 — (1 +40)]o
>AN(0)(1+0)(oc—znN)
if Cy > 8, 0 <0o(C1,Cy) and V6 — (14 40) > 0.
Finally, if z € 0B, (&) and, since r < (1;1%)’ there holds that xxy < 0, so that
vi(z) > X*(0)(1 + 40) (0 — xn — sn(z'))
=X(0)[—2n + (1 4+ 40)(0 — sn(2')) — dozy]
> —\"(0)zn.

Therefore, we can fix Co = & for our consﬁruction of vy.
Now, we construct vy in D \ B,(§) with D as described above. We take dy such that

dy € CH(D\ By(€)), dy=00n0D, 0<dy<1in D)\ B.(€)
and, moreover
0<é¢<|Vdy| <C in D\ B(

with C, é depending only on r, R.
Then, we take

va(x) = A*(0) 22 (er2R(®) — 1),

12
First, we fix po. Then, 75 is fixed so that ve < @)\* (0), that is,
(1-R) e

RETTE (e —1)
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Thus, there exist constants depending only on ¢, C, w2, R such that
0 < eA*(0) < [Vug| < CA(0).
Now, we fix i so that Tvy > 0 in D\ B,(£) for any operator T as above.
There holds
T2 > Y2 [t2AminF18° — BoAmax||D?da|| e — CCooAmax] >0
if po > o (Amins Amaxs 51, B2, & C, Cp). (Recall that & and C' depend only on 7, R).

Now, in order to finish our proof we need to see that w = v — kowvy > v in D \ B,(§). For this
purpose, it only remains to show that the inequality holds on 0B, (£), that is, we have to prove
that

w(z) =vi(x) — kova(x) > =A*(0)(1 — ko)xy on OB.(§).

Recall that vy < (1;81%))\*(0). Thus,

1—
w(z) = vi(z) — kove(xz) > A (0)(—xn — ( S k) ko) > =X (0)(1 — ko)xn
since zy < —@ for x € 0B,(§).
And we get a contradiction as discussed above. O

The following lemma gives a control of the gradient of u from below on compact sets of B .

Lemma 3.2. Let p, \*, f,p,u as in Lemma 3.1. For every e,d > 0, % < R < 1, there exists og
depending on €, N, 8, R, Pmin, Pmaxs Amin, Amax, L1, L2, C* such that, if o < og there holds that

IVu| > M (0)(1—8) in Brpnizy < —¢).

Proof. The proof is entirely similar to the one of Lemma 6.6 in [8]. Let R < R’ < 1. Asin [8] we use
a contradiction argument. In our case by Lemma 3.1, we have that the functions wu € F(%, 1; %)
in B satisfy

Apk(x)uk =fi in KcCC B];J’
if k is large depending on K. Here |fi| < Lopg, 1 < pmin < pr() < Pmax < 00, |Vpr| < Lipk
and C*p,®" < %(0). Thus, by the regularity estimates in [14], for a subsequence, Vuy converges
uniformly on compact subsets of Bp,. And the proof follows as in [8]. O

Now we can prove one of the main results that states that, flatness to the right (u vanishing for
xn > o) implies flatness to the left in a smaller ball.

Proposition 3.1. Let p,\*, f,p,u as in Lemma 3.1. Let 1/2 < R < 1. There exist
gy = UO(N7 R7pmin7pma)(; >\min7 )\maX; Ll; L27 C*), CO = C()(N, Rvpminvpma)u )\mim Amax; L17 L27 C*>
such that, if o < oq there holds that u € F(o/R,Cyo;0) in Br with the same power, slope and rhs.
Proof. The proof follows as the one of Theorem 6.3 in [8]. We let R = R+ (1 — R)/4 and
R" =R+ (1—R)/2. In our case, since |Vu| > )‘*2(0) in Bgr N{zy < —(1— R)/8} if o is small and
|[Vu| < 2X*(0), there holds that u satisfies

Tu=|Vul> @ f(z) in Br/N{zy <—(1—-R)/8}

for an operator as the one considered in Lemma 3.1.
Then, as in [8] (see also [2]) we take

w(z) = A (0)(1 +0)(0 —zn) — u(z)
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that satisfies

(1-R)
g )

and, using that w > 0in By N{zy < o}, taking £ € 0Br N{zy < —(1 — R)/4}, applying Harnack
inequality in B(;_gy/s(§) and using that the right hand side is bounded by Co for a constant C
depending Ol’lly on R, Pmin, Pmax, >\min7 )\maXu le L2 and C* we get, as in [2’ 8]7

w(€) < CA*(0)o.
Then, the proof follows as in [8]. O

Tw = —XN0)(1+0)by — |[Vu> P@ f(z) in BpsN{zy < —

Finally, we can improve on the control of the gradient.

Lemma 3.3. Let p, \*, f,p,u as in Lemma 3.1. For every 1/2 < R < 1,0 < § < 1 there exists
osr and Cs g depending also on N, Pmin, Pmaxs Amins Amax, L1, L2, C* such that, if o < os g there
holds that

[Vu[ 2 A*(0)(1 =6) in BrN{zn < —Cspro}.

Proof. Tt follows exactly as the proof of Theorem 6.4 in [8].

Observe that the scalings py.(x) = pr(yk + 2diz), Ai(x) = N (ye + 2dix) and fi(z) = 2dk fi(yr +
2djx) satisfy the same structure conditions as the functions py, A} and fi that are independent of
k in the contradiction argument. O

Now, in order to improve the flatness in some possibly new direction we perform a non-homoge-
neous blow up.

Lemma 3.4. Let uy, € F(oy,0k;7,) in B1 with power py, slope A}, and rhs fi, such that 1 < pmin <
Pk(%) < Pmax < 00, 0 < Amin < A7) < Amax < 00, |Vpk| < Lipk, |fil < Lopk, Noer < C*pf
with C*p¢" < A5 (0)7, o — 0 and ;—% — 0 as k — oo.
For y € By, let
Ff(y) = sup{h / (y,oxh) € 0{uy > 0}},
F (y) == 1inf{h / (y,o1h) € O{uy > 0}}.
Then, for a subsequence,

(1) F(y) := limsup F}" (z) = lirzn_)iglf F7(2) for every y € By.
hso0 k—o0

Moreover, F;” — F, F,_ — F uniformly, F is continuous, F(0) =0 and |F| < 1.

(2) F is subharmonic.

Proof. (1) is proved exactly as in Lemma 7.3 in [1].

In order to prove (2), we take g a harmonic function in a neighborhood of Bl (yp) CC Bj with
g > F on 0B.(yo) and g(yo) < F(yo) and get a contradiction. We define the sets Z;(¢), Z_(¢)
and Zp(¢) as in the previous papers. That is,

Z:=B(y) xR,  Zy(¢):={(y;h) € Z/h > ¢(y)}

and corresponding definitions for Z_(¢), Zo(o).
Observe that we may assume that HY 1 (Zy(okg) N 0{ur, > 0}) = 0. If not, we replace g by
g + ¢o for some small enough constant cg.
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In fact, let ¢; > 0 small such that g(yo) < g(vo) + ¢ < F(yo) for 0 < ¢ < ¢;. Since by Theorem
2.1 HN=Y(D N o{uy > 0}) < oo for every D CC By, we see that
{(y,h) € Z [ org(y) < h <or(g(y) + c1)} NO{u > 0} =0,

which implies that [;* Hy(c)dc = 0, for Hy(c) = HN "1 (Zo(or(g + ¢)) N O{u, > 0}). Then, we
can take ¢y € (0,c1) such that Hg(co) = 0 for every k, and now replacing g by g + ¢y we have
HNY(Zo(okg) N O{ur > 0}) = 0.

In the following we denote Z = Z (01g) and similarly Z_ and Zj.

Now, by using the representation formula (Theorem 2.1) and proceeding as in [1], Lemma 7.5,

we get
/ Vg, [PE@) 20y, - v dHN T = / Qu, AHY 1+ / fr dx.
{ur>0}NZo H{up>0tNZ4 {ur>0}NZ¢

Since gy, > 0 and gy, (z) = )\,*;(x)pk(m)_l HNVL —a.e. on Opeq{ur > 0},
Gy, AHN T 2/ ApPel g N—1
8red{uk>0}mZ+

(3‘10) /8{uk>0}r‘1Z+
* +_ * T
> min { (A (0)(1 = C™o2)"* ™ (A(0)(1 = €)% T P (Breafur > 0} 11 Z4)

where C** = £~ pz = supp, px and p, = infp, pi. Recall that p: —pr < Lipg.

On the Otht)a\lrrn ilnland,
(3.11) /{ o fidx > —Lopg|{ur, > 0} N Z4|.
Finally, k ’
/ |V, [PH @20y, - v dHN
(3.12) {ur>0}NZo

< max { (AFO) 1+ 7)), () (1 + 7)™~ Y ({ur > 0} 1 25).

From now on, in order to simplify the computations, we assume that A;(0) > 1. The final result
will be the same if not.
By (3.10), (3.11) and (3.12),

AL (0)PE 11— O™ pf PR HN T (Byea{ug, > 0} N Z4)
< Lopy|{ur, > 0} N Zy| + AL(0)PE (1 + )P I HN T (fuy, > 0} N Zp).

Therefore,
HN (8red{uk > 0} N Z+)
" +_ 1+ 7 pp—1 _
(3.13) SNO T ([ gm) 1T (> 010 2)
: k
Lopy,

+ - {Uk > 0} N Z+ .
NP1 g i1 |

Now, we use the excess area formula Lemma 7.5 in [1] (with Ey = {ug > 0} U Z_) that states
that, since F(yo) > g(yo),

(3.14) HN " (Orea B N Z) > HN N (Zo) + cof
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for k large.
Therefore, since there holds ZNJE), = (Z4 No{w, > 0}) U (ZoN{ux = 0}) and (3.14), we obtain

HY "N Z4 M Opea{u > 0}) > HYH(Z N OweaBr) — HN 1 (Zo N {uy = 0})
(3.15) > HN(Z0) + cof — HNH(Zo N {ug = 0})
= HN! (Zo N {ur > 0}) + coi.
From here, using the facts that

1+ 7

+
Np(oyre P (=T 1 <q (16 +03)
k 1—0**pg* S Co\Te T+ Pk

and
Lapy
= * +_
N0 (L = Gty
together with [{ux > 0} N Zy| < |B1| < O, HVN"1({ur > 0} N Zy) < HV1(Zy) < C, (3.13) and
(3.15), we get

< Clpkﬁv

CO']% < CC[)(Tk + pg*) + CCrp, < Co(mi + p%*).
This is a contradiction to our assumptions that C*p2" < A;(0)7 and % — 0. O
k

The following lemma was proved in [2] with ¢ = 1. The result is obtained by rescaling the h
variable.

Lemma 3.5. Let w(y, h) be such that
(a) SN wy,y, + cwpn = 0 in By N {h < 0} with ¢ > 0.
(b) w(y,h) — g in L* as h /0.
(c) g is subharmonic and continuous in By, g(0) = 0.
(d) w(0,h) < Ch].
(e) w>—-C.
Then, there exists Cy depending only on C, N and c such that, for every y € B1/2,

/2 q
— g(z dHN72) dr < O,.
/0 72 (][aB;(y) ( ) ) 0

Lemma 3.6. Let ug,pk, A, fx, P, 0k as in Lemma 3.4. Let F+,Fk_ and F as in that lemma.
There exists C = C(N, Pmin, Pmax; Mmin, Amax) Such that, if yo € 31/2,

1/4 4
(3.16) / = (][ (F — F(y)) d’HN”) dr < C.
o T 0B].(yo)

Proof. The proof follows the lines of the previously cited papers. The idea is that the function
2(F(y0 + %y) — F(yo)) will take the place of the function g in Lemma 3.5.

We write down the proof for the reader’s convenience since we cannot assume that A;(0) = 1
and we have a right hand side in the equation that was not present in the previous papers. We let
Yo € 31/2 and consider the functions tx(y, h) = 2uy(yo + 3y, ok Fyf (yo) + 3h) in By. From the fact
that uy € F(ok,0k; ) in By we deduce that ay € F(4ak, 4op; k) in By.

In fact, we denote (2, 2n) = (yo + 3y, 0% F; (yo) + 3h) and recall that |[F;| < 1. Then we have
for y € By, h > 4oy, that zy > o, (yo) + 204 > oy, 1mply1ng that ag(y,h) = 0.

Then, we have
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On the other hand, for y € B}, h < —40}, we have zy < O'kF]:_(yo) — 201, < —op. This implies
that ay(y, h) = 2uk(2’, 2n) > —2X5(0)[zn + o] > =X (0)[h + 4oy].

Finally, we see that [V (y, k)| = |Vur(yo+ 3y, ok Fy (yo) +5h)| < A;(0)(1+7%) and we conclude
that u; € F(40’k,40'k;7'k) in Bj.

Observe that by this change of variables the function Fj' (y) has been replaced by 2(F;" (yo +
3Y) — B (o))

Thus, from now on we may assume that uy € F(4oy,40k; 1) in By and yo = 0. Let
ug(y, h) + A5(0)h

o '
Then, given 0 < 6 < %, we take k > ks so that A} (0)/2 < [Vug| < 2X5(0) in Bi_s N {h < —Csoy}
with Cj the constant in Lemma 3.3 with R =1 — . We have
(3.17)
b

Tow = S W (@) wkas, + 3 W@y, = N az(0) + 25
ij J

Wk (ya h) =

LIVur*P* in By_sN{h < —Csop}.

Ok Ok
Here bfj(x) = 0i; + (pr(z) — 2)% and bf(m) = Dky,; 10g|Vug|. Therefore, Tx is a uniformly
elliptic operator with ellipticity and bounds of the coefficients independent of k. Namely, they
satisfy (3.7) and

6% < Copr
(see (3.8)).
On the other hand, the right hand side satisfies
b]]g\/ * fk 2 Pk
(3.18) —A(0) + = |Vug| P < Kp— — 0 as k— oo.
Ok Ok Ok

We will divide the proof into several steps.
(i) We prove that there exists a constant C' > 0 such that Hwk”LOO(B y < C.

In fact, recall that uy € F (4o, 40k;7%) in By so ug(0,0) = 0 and |V11Lk| < A5(0)(1 + 7). On the
other hand, there holds that ug(y, h) = 0 if h > 40y. Therefore,
uk(y, h) < AL(0)(1 + 7%)(4ox, — h)

so that, if —K < h <0,
wi(y, ) < ANE(0)(1 + 74) — /\,’;(O);—kh <C.
k

On the other hand, if h < —4oy, since uy € F(4oy,40k; 1) in By, by (2) in Definition 3.1,
uk(y: h) + A (0)h - AL(0)(h + doy) — AL (0)h

W (y7 h) =

— —4X5(0).

Ok Ok
Finally, if —40, < h <0,
~A0)(1 + 7k)(4og — h) — AL (0)R
O

= —AN(0)(1+7) +
> —C.

AL(0)(2 + 7)

Ok

(ii) Uniform bounds of first and second order derivatives.
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Recall that wy, satisfies (3.17) that is uniformly elliptic with ellipticity constants and bounds of
the coefficients independent of k in By_s N {h < —Cjs01}. By step (i) we then have

(319) ” ’u)kHCl,a(K) <Ck V KcCcC Bl_
and, for every 1 < g < oo,
(3.20) I ’wksz,q(;C) <Cx V KcCcCBj.

Hence, for a subsequence that we still call wy, there exists w € C® N W24 such that wy, — w
in C1(K) and weakly in W24(K) for every K CC By .

(iii) Determining the equation satisfied by w.
Let ¢;j = 05 + (po — 2)0;n;n where prin < Po < Pmax is the uniform limit of the sequence of

functions py (for a subsequence). Then, bf’j — ¢;; uniformly on compact subsets of B; . In fact, by
the uniform estimates of the gradient of w; we have that

(3:21) [Vui(y, ) + X;O)en| = |V (un(y, b) + Xo(0)h)] < Cron
if k> kx and K CC By .
Let A\ = limg_00 A;(0) (for a subsequence). Then, by (3.21) Vu, — —Ajen uniformly on
compact subsets of B . Since A\j > Apin > 0, there holds that
\Vuk\Q
uniformly on compact subsets of B;. And we have proved the convergence.
On the other hand, \bé“(a:)\ < Cyoy. Therefore, by passing to the limit in (3.17) we get

(3.22) Y cijwee; =0 in By

ij

— 52‘]\1(5]']\[

(iv) Bounds of w.
Recalling that [Vug| < AL(0)(1 + 7%), we get

AL(0)(1 + 71) — A (0) Tk
(3.23) S0k ) 2 - MO
Thus, for A < 0,
(3.24) we(0,1) < A0) K| =0 as k — oo

Ok
Passing to the limit, we find that

w(0,h) <0 for h<O.
(v) Let us see that w(y, h) — A\jF(y) as h — 07, uniformly in B} ; for every 0 < § < 1.
First, as in [2, 8], we can prove that
(3.25) wi(y, oxh) — A;F(y) — 0 uniformly in  Bj_5 x [-K, —2Cy]

for every K > 2C5 and every 0 < § < 1. We omit this proof, that relies heavily on Proposition 3.1
(see [2] for the proof).

In order to get the result, following the ideas in [2, 8], we construct a barrier. First, for 6 > 0
we let Q5 a smooth domain such that

Bl ,s CQs C B_;.
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For £ > 0 small, we let g. € C*(99s) such that ||ge||cs(s0,) < C with C independent of € and § and

MNF —2e < g < XNF —¢ in 0Qs NOB;_45 N {h =0}
ge < NGF —¢ in 9Qs N{h =0}
ge <w—c¢ in 9Qs N {h < 0}.

Then, we let ¢. the solution to
ZZ] cij¢5xixj =1 in Q(;
Ge = ge on 08

with ¢;; as in (3.22).
On one hand, if k > k(¢,6),

e <wp on 005 N{h < —2Cs0y}.
On the other hand, since ||¢EHCQ(Q—5) < C, there holds that, for K > 2Cy5 and k > k(e, d, K),
¢e <wp on QsN{h=—-Koy}.
Recall that, by Lemma 3.3, we have

in Bi_snN{h < —-Csop}
and there holds (3.17) and (3.18). Therefore,

1
Trw < KO— < B in Q5N {h < —de}
Ok

if k> k.
Let us see that

1
(3.26) T > 3 in Qsn{h<—Koy}

if K is large independently of € and k is large independently of € and K. In fact, for z € Q,
The =D Cijbepia; + Y (05(®) = cij) begya, + Z b (2) ey,
ij ij
> 1= |D%ellee Y IIbf; — cijllze — ||bk”L°°||v¢e||L°°~
(]
On one hand, ||V*|z~ < Coor — 0 as k — oo. On the other hand, by elliptic estimates up to
the boundary {h = —Koy}, since we have proved that |wy| < C,

IV (ur, + A (0)A) | oo (h<—K o)) = TV W] Loo (fh<—Kop})
1. pr/ok + 1 < 2C
(K — Cs)or, — K —Cs

in QsN{h<—Koy}.

5(0) in that set and py(x) — po — 0 uniformly in By,

C
Hbf] CijllLoo (Binfh<—Kaoy}) < i C+0k(1)-

We conclude, by taking K large enough independent of k and ¢ and then, k large, that (3.26)
holds.
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Therefore, ¢. < wy, in Q5N {h < —Koy}. By letting k — oo we find that ¢. < w in Q5N {h < 0}
and then, by letting h — 07,
liminfw(y,h) > lim ¢.(y,h) > \F(y) —2¢ for y & Bj_ss.
h—0~ h—0—

In order to get a bound from above, we recall (3.23) and get,
wi(y, h) —wi(y, —Koy) < —C&|h| it h<—-Koy.
Ok

On the other hand, wg(y, —Ko) — A{F(y) uniformly in B]_ ;. Hence, if & is large, and (y, h) €
Bl_—6 N {h < —K(Tk},
wi(y, h) < AGF(y) + 22
and we deduce that, for (y,h) € By_,
wly, h) < NF(y) + 2.

Therefore,

limsupw(y, h) < AGF(y) +2¢  uniformly in  Bj_j.
h—0~
Since e is arbitrary, we conclude that, for every 0 < § < 1,

hlim w(y,h) = \;F(y) uniformly for y € B]_s5.
-0~

(vi) Final step.
We apply Lemma 3.5 to the function w and recall that when writing w(y,0) in the original
variables we get 2(F(y0 + %y) — F(yo)). So, the result is proved. O

Corollary 3.1. Let ug,pk, Ay, fr, pk,0r and F as in Lemma 3.4. There exists a constant C' =
C(N, pmin;s Pmaxs Amin, Amax) and, for every 0 < 6 < 1 there exist cg = co(IN, Pmin, Pmax> Amins Amax; 0),
a ball B! and ¢ € RN~ such that

0
co<r<0, [([<C Fly)<l-y+gr forly <r
Proof. The result is a consequence of Lemma 3.6 and the proof follows as Lemmas 7.7 and 7.8 in
[1]. O
Now, we apply the corollary to a weak flat solution u if ¢ is small enough.

Lemma 3.7. Letp € Lip(B,), \* € C¥ (B,), f € L®(B,) such that 1 < pmin < p(T) < Pmax < 00,
0 < Amin < A() < Amax < 00 with [Vp| < Ly, |f| < Lz and [N]ga=(g ) < C*. Let 0 < 6 < 1.
There exists o9 = 0g(6, N, Pmin, Pmax, Amin,s Amax, L1, L2, C*) such that, if

u € F(o,0;7) in B, in direction v
with power p, slope X* and rhs f and, if C*p®" < X*(0)7, 0 < 0g and T < ogo? there holds that
u € F(fo,1;7) in By in direction U
with the same power, slope and rhs and
cop < p < 0p, v —v| < Co.
Here cy and C are the constants in Corollary 3.1.

Proof. Tt follows as Lemma 7.9 in [1] by applying Corollary 3.1 to ux(z) = %kuk(pkm). O
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Now, in order to improve on the gradient in the flatness class, we find an equation to which
v = |Vu| is a subsolution.

Lemma 3.8. Let p € WH(Q) N W24(Q) with 1 < pmin < p() < Pmax < 00 in Q and f €
L®(Q) N Wh4(Q) for some q > 1.
Let u such that Apyu = f and 0 < ¢ < |Vu| < C in Q. There exist D = {Dy;}, B = {b;} and

G such that

BIE® < Dyj(x)&g; < BHEP for every E RN, z € Q,

ij

|Bllre) <C 1, NGy < C
with B = B(pminapmaXaCa C) > 0, C = é(pminapmaXaC, C, ||f||L°°(Q)ﬁW17(I(Q)7 ||pHW1,<>°(Q)nW2,q(Q))
such that v = |Vu| satisfies

(3.27) divDVv+ B -Vv > G
weakly in €.

Proof. We start with some notation. For z € Q, & € RN, we let A(z,£) = |£[P(®)2¢. First
we observe that, by the arguments in Theorem 3.2 in [7], u € VVlif (©) and then, by using the

nondivergence form of the equation, we deduce that u € Wli(f(ﬂ) for every 1 <t < oo (see Lemma
9.16 in [17]).
Then, taking n € C§°(Q2), letting 7, as test function and integrating by parts, we get

0A
ij

where a;;(z,§) = %(%Q‘

Observe that (3.28) actually holds for any n € Wol’p(x)(Q).
Then, we take 7 = ug, ¥ with 0 <1 € C§°(Q2) arbitrary. Hence, by using the ellipticity of a;;
and after summation on k, we get

0A4;
[ rau s [ 5vuve) = zkj [ Gt Va0

ox
04;
+ Z 9 (@, Vu)ug, Vg, + Z agj Z Ugy Uz sy, Vs -
ik g i.j K
Now, we denote D = (D;;) with D;; = [Vu|a;j, we use that vy, = >, ux"“é]:'bxk and we integrate by

parts the second terms on the left and right hand sides. In fact, since

0A;
oxy.

(z,Vu) = |Vu|p(‘”)_2 log |Vulug,pa, ,

we get

d [8AZ»

x)— 2
dx; LOxy (l‘,Vu)] - |Vu|p( ) 2(10g |Vu|) Ug; Pz Px;
(3:29) + | VulP@ 2 log |Vu| tg,prye; + [VulP® 2 log |Vu| ug,z,pa,

+ (p(@) = 2)|Vu" ™= log | Vulug, o, va, + [Vul!'D g, pa, vs,,
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so we obtain

_ / (Vf,Vuyh > / (DVv, V) + ) / gf; (2, Vi)t g, 1
i,k

0A,; 0A;
(3.30) _%:/di[ax (fc,VU)}uka—%;/ o, (Lo VUi,

k k

= /(DVU,V¢> - Z/ dii [gf}: (a:,Vu)}uka.
ik

Then, by replacing (3.29) in (3.30), it follows

- [(9£.900 2 [OV0.vu) [ [ (10g]Vul)* (Va, V)

— [ IV 210 [Vl 3ty — [ 1902 og [Vul(Va, V) Auss
ik

— / <\Vu|p(‘”)*3 [(p(:c) —2)log |Vu| + 1] (Vu,Vp) Vu, Vfu>¢.

Ug,

Finally, since |Vu|P(*)~2 <Au +(p(x) —2) 32, WZ‘?uxﬂj + log |Vu|(Vu, Vp)) = f,
= [ 19U 10 |V (V. V) s = — [ 1o [Vul(Va, Vi)
—i—/((p(m) — 2)|Vul[P® =3 log |Vu|(Vu, Vp)Vu,Vfu>¢

+/|Vu|p(””)_2(log\Vu|)2<Vu, Vp)2ip.
Hence, v satisfies (3.27) with

)1 (p(z) — 2)
Dij = [VulP™ = (5;; + W“m%)»
B = |VulP®~3(Vu, Vp) Vu,
G = (Vf,Vu) — flog|Vul(Vu, Vp) — [Vul"™) 2 1og [Vu| > tatay Drya;-
ik
]

Remark 3.1. A similar lemma to Lemma 3.8, valid for the case f = 0, was established in reference
[6] (Lemma 2.2).

Now, we get an estimate on |Vu| close to the free boundary.

Lemma 3.9. Let p and f as in Lemma 3.8 with ¢ > max{l, N/2} and \* € C* (Q) with 0 <
Amin < A*(2) < Amax < 00 i Q and [X]gax () < C*. Let u be a weak solution to P(f,p,A\") in Q
and let zg € QN O{u > 0} with Byg(xo) C Q, R < 1. Assume that, for every r < R,

u € F(o,1;00) in By(xo) in some direction vy,

with power p, slope X\* and rhs f, with o < 1/2.
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Then, for every x1 in By(xo),

-
R
for some constants C and 0 < v < 1 depending only on N, pmin, Pmax, Amins | fl| L0 (B (20)nW e (Bar(wo))
[Pl w100 (By g (20) W2 (Byg(z0))s &5 C* @ and ||Vl Loo(Byp(wo))-
Proof. We let 0 < Ry < R, £ > 0 and define

)\’Q‘RO: sup  A*(z),

Baprg(20)

Ue(z) = (|Vu| = Mo, —¢) ™.

(3.31) \vu|gA*(x1)+O( )7 in By(z1) if r<R,

Let 0 < r < Ry. Since for every & € Bag, (o) N 0{u > 0}
limsup |Vu| < X*(z),

u(x)>0

then the function U, vanishes in a neighborhood of Ba,(x¢) N 0{u > 0}.
We have |Vu| > Apin in {U: > 0} and moreover, arguing as in Lemma 3.8 we see that u €
W2 ( By, (x9) N {U: > 0}) for every 1 <t < co. Thus, by Lemma 3.8, U, is a solution to

divDVU. + B -VU, > G
in {U. > 0} N Bay(xg) for some functions D = {D;;}, B = {b;} and G such that

BIEP <> Dij(w)&&; < B for every £ € RN, x € Bag(w),

(3.32) ij
Bl e ((v.>010Bar(zo) < C 5 NGl Laqu.>03nBag(z0)) < C
with B = B(pminapma)(a Amin, HVUHLOO(BQR(J?O)))7 c = O(pminapmaX7 Amins ||vu||L°°(BQR(a:0))a

1f 1| oo (B2 (o)) Wb (Bag (20)) 1PIW o0 (Bor (wo)) w24 (Bar(@0)))-
Therefore, if G and B are the extensions by 0 of G and B respectively from {U, > 0} N Ba,(xg) to

Bay(z0) and D is an extension of D that preserves the uniform ellipticity with the same constants,
there holds that U, satisfies

(3.33) divDVU, + B-VU, > G
in B, (z0) (see, for instance, Lemma 2.1 in [24]).
Let now he(r) = supp, (5 Ue and V' = he(2r) — U.. Then,
divDVV + B-VV < -G in  Ba(20).
Moreover, V' > 0 in Ba,(z9). By the weak Harnack inequality (see [17]),

inf V472N G . Zc][ v
S Gl La(Bar (o)) B a(e0)

with ¢ = ¢(N, B, | Bll oo (Byp(xo)) 9)-
Now, since by the flatness condition, u (and therefore U,) vanishes in the ball Bi—o (zo+£%ru;)
2
for some direction v;, there holds that V = h.(2r) in Bi—o (20 + 1$%rv,) and therefore,
2
1-— O')N

he(2r) = he(r) + 2" V0 > o(—;

he(2r) > ¢ he(2r)



26 CLAUDIA LEDERMAN AND NOEMI WOLANSKI

since o < 1/2, with ¢ = &N, j3, ||§\|LW(BQR(IO)),q) < 1 and C the constant in (3.32). We pass to
the limit as ¢ — 0 and we conclude that

(3.34) h(r) < (1 —e)h(2r) +r*NaC,

if r < Ro with h(r) = supp, (4, (|Vu| — A§R0)+. Since 2 — N/q > 0, there exist 5 € (0,1), C > 0
) and C such that

depending only on N, q, ¢, ||Vul| e (B, 5 (a0
~ S 5
< O( 5V
hs) < C(g35)
if s <2Ry. This implies
(3.35) sup [Vu| < sup N(x) + (%),
BQT((EQ) BQRQ(IEQ) RO

if r < Ry < R, and the Holder continuity of \*(z) gives, for z1 € Bag, (o),
(3.36) sup  A*(z) < A*(21) + C*(4Rp)™ .
BaRrg(0)
We now take r < R, Ry = r'/2R'/? and z; € B,(z() and obtain, from (3.35) and (3.36),

sup [Vul < sup |Vul < X(a) +C (1)
By (z1) Bay (o) R

for v = min{%*, %} and C depending only on C', C*, 4 and a*, which proves (3.31) and completes
the proof. ]

Let us show that a point x( in the reduced free boundary of a weak solution is always under the
assumptions of Lemma 3.9.

Lemma 3.10. Let p € Lip(2) with 1 < pmin < () < Pmax < 00, A* € C(Q2) with 0 < Apin <
A (x) < Amax < 00 and f € L™(Q). Let u be a weak solution to P(f,p,\*) in Q and xy €
QN Oreq{u > 0}.

There exists oy > 0 such that, if o < og, there exists ro > 0 such that, for every r < rg,

u€ F(o,1;00) in  Bp(xo) in direction v(xo),

with power p, slope X* and rhs f. Here v(xo) denotes the exterior unit normal to QN O{u > 0} at
zo in the measure theoretic sense.

Proof. Assume for simplicity that 29 = 0 and v(xg) = ey. Let R > 0 be such that Bsr C Q.
Given 0 < e < %, there exists r. < R such that

{u>0}n B

3.37 - < if r<rg,
( ) ’Br’ 15
and also a constant cy > 1 so that
1/2 —
(3.38) |IBF\{0 <2y <or} >|B|(1/2 —cyo) > €|B,| if o< /c =
N

Let r < % and suppose there exists 7 € (B;/\{0 < znx < or})Nd{u > 0}. Then, supg ()t > Cminp,
if p < pp = min{rg, R}, with cmin and ro the constants corresponding to D = Bsyp in the definition
of weak solution.

Then, if r < po, there exists 21 € By, 2(Z) such that u(z1) > ¢minor/2, implying that

u(z) > cpinor/2 — Lkor/2 >0 in By, a(71) C By,
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if x < min{1, <=}, where L is the Lipschitz constant of u in Bag. As a consequence,
[{u >0} N By,
’B2T’

which contradicts (3.37) if (ko/4)N > e. Finally, we fix 09 = (2cy)7!, take ¢ < 0¢ and choose
0<e< % satisfying

> (ko /4",

don o, M2

K cN
Then, letting 7, = min{%, po} and r < r,, we observe that (B;7 \ {0 < zny < or})No{u >0} =0
by the above discussion, and that we cannot have u > 0 in B;Y \ {0 < xny < or} because of (3.37)
and (3.38). Therefore we conclude that u € F'(o,1;00) in B, with power p, slope A* and rhs f, for

every 1 < Tg. O

Now, we get a result that holds at free boundary points satisfying a density condition on the zero
set. This is the situation when u comes from a minimization problem as was the case in [1, 2, 8],
for instance.

Lemma 3.11. Let p and f as in Lemma 8.8 with ¢ > max{l,N/2} and \* € C* (Q) with

0 < Amin < A (2) < Apax < 00 in Q and [)\*]Ca*(g) < C*. Let u be a weak solution to P(f,p, \*)

in Q and let xo € QN I{u > 0} with Byr(zo) C Q, R < 1. Assume that

| Br(z0) N {u = 0}
| B (o)

(3.39) >c¢ >0 if r<R.

Then, for every x1 in By(xo),

(3.40) \vu\gx*<m1)+c(%)” in By(1) if r<R,

for some constants C and 0 < v < 1 depending only on N, Pmin, Pmax; Amin, ||| Lo (Byn(xo))n1a(Bog(z0))s
1Dl w20 (Ba(zo)) W24 (Bor(zo)): @5 CF5 @5 VUl Lo (Byg (o)) and co-

Proof. The proof is exactly as that of Lemma 3.9 the only difference being that instead of the
flatness condition we use the density condition (3.39). O

Now, with the ideas in the proof of Lemma 3.9 we can improve on the gradient.

Lemma 3.12. Let p € Wl’oo(Bp) N Wz’q(Bp) with 1 < pmin < p(x) < Pmax < 00 in B, and f €
L>(By) "\WH(B,) with ¢ > max{1, N/2}, [[plwe(p,)rw2a(s,) < Ly and || f|| o (m,)nwia(s,) <
Lo. Let \* € CO‘*(BP) with 0 < Amin < A (2) < Aax < 00 in B, and [)‘*]Ca*(Bp) < C*.
Let 0 < 6 < 1. There exist oy, cg, C, C and 4 such that, if
u € F(o,1;7) in B, in direction v
with power p, slope \* and rhs f and, if o < o9, T < 0g0? and C‘pﬁ < AminT, there holds that
u € F(#o,00;60%7) in B; in direction v

with the same power, slope and rhs and
1
cepgﬁgzp, lv — | < Co.

The constants depend only on N, Pmin, Pmax, Amin, Amax; El, Eg, o, C*, q. The constants oy and
cg depend moreover on 6.
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Proof. We will apply Lemma 3.7 inductively, and we will obtain the improvement of the value 7
with an argument similar to the one in Lemma 3.9.
In fact, if oy is small enough, we can apply Proposition 3.1 to u(x) = %u(px) and we get

u € F(Coo,Cyo;7) in B, /5 in direction v,

with power p, slope \* and rhs f. Then for 0 < 6; < % we can apply Lemma 3.7, if again oy is
small, and we obtain

(3.41) u € F(Cybyo,1;7) in B,,, in direction vy,
with the same power, slope and rhs, for some r1,v; with
co, <2rp <0y, and |v; —v| < Co.

In order to improve the value of 7 we proceed as in the proof of Lemma 3.9. In fact, we let
Ry = R = r1p, xop = 0 and repeat the argument leading to (3.34), with » = r1p. In the present
case we use the fact that, because of (3.41), u vanishes in the ball B rie (%2v1). We also use that,

in By, |[Vu| < A*(0)(1 +7) < 2A\pnax. We obtain
sup (|7l = X,,) " < (1-0) sup (IVul = 2,,,) "+ Clrip)> s,

1P 2r1p
with
)‘zrlp = sup )\*(.’L'),
2r1p
and constants 0 < ¢ < 1 and C > 0 depending only on N, pmin, Pmax; Amin, Amax; El, ZQ and q. It
follows that

sup [Vl < Mgy + (1= &) Ngy, 7+ C(2)*7 0

Brip

* C *
< Agpyp t (1 - 5))‘27’1;777
if we let C(§)2_N/q < SAminT. Therefore, for H=1— £, we get

sup |Vl < A3, ,(1+67)

TP
< A0)(1 + 07) + C*(2r1p)® (1 + 07)

<A (0)(1+ 67+ ) = X(0)(1 +657),

if C*pa* < %)\minT and 9? < %é, with 4 = min{a*,2 — N/q} and 0y = 12ﬁ
We see that, if 61 is chosen small enough,
u € F(6yo, 1; 987) in B, in direction vy,

with power p, slope A* and rhs f. Moreover, r] < 68.
Then, we can repeat this argument a finite number of times, and we obtain

ue F(0yo,1; ¢9ng) in By, .. .r,, in direction vy,

with the same power, slope and rhs, with

co; < 2r; < 05, and |vy, —v| < .

—1—6
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Finally we choose m large enough and use Proposition 3.1. O

4. REGULARITY OF THE FREE BOUNDARY FOR WEAK SOLUTIONS TO PROBLEM P(f,p, \*)

In this section we study the regularity of the free boundary for weak solutions to problem
P(f,p, \").

We prove that the free boundary of a weak solution is a C'h® surface near flat free boundary
points (Theorems 4.1, 4.2 and 4.3). As a consequence we get that the free boundary is C*® in a
neighborhood of every point in the reduced free boundary (Theorem 4.4).

We also obtain further regularity results on the free boundary, under further regularity assump-
tions on the data (Corollary 4.1).

Among Theorems 4.1, 4.2 and 4.3 the most general one is Theorem 4.3.

Theorems 4.1 and 4.2 require the extra assumptions (4.1) and (4.10), respectively. But, under
these additional assumptions, the constant in the C1® continuity of the free boundary becomes
universal.

The difference stems from the fact that in Theorems 4.1 and 4.2 the choice of p in the statements
can be done independently of the weak solution w under consideration, whereas in Theorem 4.3
there is a strong dependence on u.

We remark that the Holder exponent « is universal in the three results.

Our first result holds at free boundary points satisfying a density condition on the zero set. This
is the situation when u comes from a minimization problem as was the case in [1, 2, 8], for instance.

Theorem 4.1. Let p € WH°(Q) N W?24(Q) with 1 < pmin < p(x) < Pmax < 00 in Q and f €
L>®(Q) N W(Q) with ¢ > max{1, N/2}. Let \* € C* (Q) with 0 < Apin < A (2) < Amax < 00 in
Q and [X*]gar ) < C*. Let u be a weak solution to P(f,p,A*) in €2 and let zg € 2N {u > 0} with
Bygr(zo) C Q, R < 1. Assume that

| By (20) N {u = 0}
| Br(zo)|
Then there are constants o, 3, 69, C and C such that if

(4.1)

>c>0 if r<R.

u € F(o,1;00) in By(xo) in direction v
with power p, slope X\* and rhs f, with o < &9 and Cp® < 6902, then
B, 4(0) N O{u > 0} is a O surface,

more precisely, a graph in direction v of a C%% function, and, for x,y on this surface,

(67

Ty
P

The constants depend only on N, Pmin, Pmax; Amins Amax, &5 C, @, || fll oo (By g (20))n W a(Bsp(wo)) »

[Pl w1.00 (By e (20))nW2:4(Bs (o)) 15 o and the constants Cmax(Bsr(zo)) and ro(Bsr(zo)) in Defini-
tion 2.2.

(4.2) v(z) —v(y)| < Co

Proof. Let us first get a bound for [[Vu| (B, (z) for a suitable 0 < r; < R. In fact, we

denote rg = r9(Bsgr(xo)) and Cpax = Cmax(Bsr(xo)), the constants in Definition 2.2. We now let
r1 = 1 min{3R, ro} and see that there holds that [ull oo (Bay, (20)) S CmaxTo-
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Then, by Proposition 2.1, it follows that ||Vu||pe(B,,, (z,)) can be estimated by a constant de-

1 (o
pending only on N, pmin, Pmax, 715 [|fllo0 (B4, (@o)nWta(Ban, (@o))s 1PIW o0 (Bar, (20)) W2 (Bar, (20))
Cinax and 7g.

Next, we choose the constants in the statement so that p < ;. Then, we can apply Lemma 3.11
in By, (z0) and get, for x € B,(x),

c
V()] < X (z0) + C1p7 < N (w0) (1+ - o),

min
with C; and v constants depending only on N, Pmin, Pmax,; Amins ||f”Loo(BzT1 (20))WL4(Bar, (20))>
IPllwioe (8o, @)W 2a(Bay (@o))» @5 €5 @5 [Vt Loo(8s,, (29))» €0 and 71 .
We let C' and § in the statement satisfying C' > /\?nlin and 8 < 7, and take 7 = CpP. Therefore
we obtain

u € F(o,1;7) in B,(xg) in direction v,
with power p, slope A* and rhs f.
Applying Proposition 3.1 we have that

(4.3) u € F(Coo,Coo;7) in B, p(wo) in direction v,
with the same power, slope and rhs, if we choose C > C*, B < a*, and &g is small enough so that,
in particular, 7 < ¢ and C’*po‘* < Cpﬂ < Amin0.
Let z1 € B,/5(wo) N 0{u > 0}. Since Lemma 3.11 also gives
[Vu(z)] < X (z1) + Ci1p? < X (z1)(1+7) in Bp/g(xl)
and (x1 — xg,v) > —Coo§ there holds that,
u € F(Cyo,1;7) in B, (1) in direction v,
with power p, slope A\* and rhs f, for any constant Cy > (Cp + 2).

If we let &y small enough, the above choice of C' and 3, which implies in particular that 7 < Cyo

and C*(g)o‘ < AminCoo, allows us to apply again Proposition 3.1 and deduce that
u € F(Co,Co;7) in B,4(x1) in direction v,

with the same power, slope and rhs.

We want to apply Lemma 3.12 in B,/,(71) for some 0 < ¢ < 1. In fact, we need Co < 0y,
7 < 09(Co)? and C’(g):’ < Amin7, Which is satisfied if we let 59 < 7, 60 < o9C?, C > )\n(in and
B <7

Moreover, we want to apply Lemma 3.12 inductively in order to get sequences p,, and v,, with
po = p/4 and vy = v, such that

u € F(0™Co,0™Co;6° ™) in B,,, (1) in direction vy,
with power p, slope A* and rhs f, with
(4.4) copm < pm+1 < pm/4  and  |Vpmy1 — vp| < 0MCo.

For this purpose, we have to verify at each step that
0"Co < g, 0°"7 < 09(0™C0)?, Cp), < Amind*"7.

Since p,, < 47 po, this is satisfied if, in addition, we let § = 277 < 1.
Thus, we have that

[z —x1,vm)| < O0"Copy, for x € By, (z1)N0{u > 0}.
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We also have that there exists v(x1) = limy, 00 v, and

com
4. <2,
(45) en) — vl < 0
Now let x € B,/4(x1) N d{u > 0} and choose m such that py,41 < |2 — 21| < ppm. Then
— 1 1
e — 21, v(21))| < ce%(‘ﬁ_‘?'mm) < CGma<1 — +£)|x—x1]

and since |z — 1| > c@”“po we have

(4.6) ol < (L_“‘)a with o= 21982 _ logf
R logc, " logey’

and we obtain that

(4.7 [z — 21, v(x1))| < Cpf]w — x|t r € Byy(x1) No{u > 0},

Let us finally observe that the result in the statement follows if we take &y small enough.

In fact, (4.7) implies that v(x1) is the normal to d{u > 0} at z;.

From (4.3), (4.7) and (4.5) with m = 0 we get that B,/,(z9)N0{u > 0} is a graph in the direction
v of a function ¢ that is defined, differentiable and Lipschitz in B;) / 4(x(). This holds if 7 is small
so that

V1—(Cyo)?>1/2 and CU(l—l—fle) <1/2 for o <ay.

With these choices, the Lipschitz constant of g is universal (observe that (4.3) implies that
l9(a") — g(ah)| < Coop if o', € B, (ah)):

In order to see that (4.2) holds we let 2,y € B, /o(w0) N d{u > 0} such that |z —y| < p/8.

We can apply the construction above with x; = y, so we have sequences p,, = pn(y) with
po(y) = p/4, and vy, = vy, (y) satistying (4.4), with v(y) = limy, 00 Vm (y).

Now let mg be such that

Pmo+1 Pmo
4.8 — <l |lz—vy| < .
(43) ot <yl < 22
We use that
4.9 U € F(Omy, Omg; Tme) in B y) in direction v, (y),
0 0 0 Pmg 0

with power p, slope A\* and rhs f, for o,,, = 0™ Co and 7, = 6*™07.

In fact, we have now the following picture: u is under the assumption of the theorem with xg
replaced by y and flatness condition (4.9). Then, with x; replaced by x, po(x) = pm,(y) and
vo(x) = Umg (y), (4.5) with m = 0 gives
Com,
1-6°
Let us notice that, from the choice of & we made in (4.6), oy, = Co0™ = Co(cy™)*. Since, by
(4.4) and (4.8), c;nOH < 4“"%“ < %|x — y|, there holds

Co (8lx —y[\“
(o) = )] < 17 (M)

v (@) = vmg (y)] = [v(z) —vo(2)] <
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Estimate (4.5) also gives

Co (8|lz—yl\”
— < .
W (y) — Vme (Y)] < 1—9 ( cop )

We thus get

«
xr —

v(z) —v(y)| < Co if z,y€ Byp(wo)No{u>0}, |z—yl<p/8.

Finally, if 2,y € B,/4(z0) N 0{u > 0} are such that [z — y| > p/8 we can find points 2; €
B, 4(0) N O{u > 0} with z9 = z, 2 = v, |2; — zi+1]| < p/8 for every i and k a universal number.
By applying the last estimate we get (4.2).

So, the theorem is proved. O

In the next result we replace the density condition (4.1) of Theorem 4.1 by a flatness condition
at the point, at every scale. In fact, we get

Theorem 4.2. Let p € WH(Q) N W24(Q) with 1 < pmin < p(z) < Ppmax < o0 in Q and f €
L®(Q) N WH4(Q) with ¢ > max{1, N/2}. Let \* € C* () with 0 < Amin < M (2) < Apax < 00 in
Q and [X*]gar ) < C*. Let u be a weak solution to P(f,p,A") in €2 and let zg € 2N {u > 0} with
Byr(zo) C Q, R < 1. Assume that, for every r < R,

(4.10) ue F(1/2,1;00) in  Bp(xg) in some direction vy,

with power p, slope \* and rhs f. B
Then there are constants «, 3, 69, C and C such that if

u € F(o,1;00) in By(xo) in direction v
with power p, slope \* and rhs f, with o < 6o and Cp® < Goo?, then
B, 4(0) N 0{u > 0} is a O surface,

more precisely, a graph in direction v of a CY® function, and, for x,y on this surface,
(034

r—y

p

The constants depend only on N, Pmin, Pmax, Amin; Amax, &5 C, @, || fll oo (By g (20))nW4(Bsp(wo)) »
[Pl w1.00 (By e (20)) W24 (Bs (o)) I and the constants Cmax(Bsr(20)) and 1o(Bsgr(wo)) in Definition
2.2.

v(z) —v(y)| < Co

Proof. The proof is exactly as that of Theorem 4.1 the only difference being that instead of using
Lemma 3.11, we make use of Lemma 3.9. O

Our last result on the regularity of the free boundary of a weak solution in a neighborhood of a
flat free boundary point holds without the extra assumptions (4.1) and (4.10) of Theorems 4.1 and
4.2. In fact, we get

Theorem 4.3. Let p € WH°(Q) N W?24(Q) with 1 < pmin < p(x) < Pmax < 00 in Q and f €

L®(Q) N WH4(Q) with ¢ > max{1, N/2}. Let \* € CY () with 0 < Amin < A (7) < Apax < 00 in

Q and [N]cor () < C*. Let u be a weak solution to P(f,p,\*) in € and let xo € QN {u > 0}.
Then there are constants o, o9 and C such that if

u € F(o,1;00) in By(xo) in direction v



REGULARITY OF THE INTERFACE IN A FREE BOUNDARY PROBLEM FOR THE p(z)-LAPLACIAN 33

with power p, slope \* and rhs f, with 0 < 6o and p small enough, then
B, 4(0) N 0{u > 0} is a O surface,

more precisely, a graph in direction v of a CY® function, and, for x,y on this surface,
[0

r—y

p

The constants o, 3o and C depend only on N, Pmin, Pmax; || fllzoe@)nwra@), [IPllwie@)nwza@)s
)\minz )\ma}o a*, C* and q.

v(x) —v(y)| < Co

Proof. Since

lim sup |[Vu(z)| < A*(xp),

T

u(x)>0

given gg and o < ay, there exists p1 = p1(u, o, 50, 0, Amin) such that, if p < py,
5’002
2

(4.11) Vu(z)] < N (20) (1 v ) for @ € B,(x0).

We take 7 = Ggo? and obtain
u € F(o,1;7) in B,(x0) in direction v,

with power p, slope A* and rhs f.

Applying Proposition 3.1 we have that

u € F'(Coo,Cyo;7) in B,s(wg) in direction v,

with the same power, slope and rhs, if Gy is small enough so that, in particular, 7 < ¢ and
p < p2(C*, &*, Amin, 0) s0 that C*p®" < Apino.

Let z1 € B,/5(wo) N 0{u > 0}. From (4.11) and the Hélder continuity of A\*(z) we get

= 2
* * * 000 * .
V(@) < (N (1) + C(p/2)*) (14 2 ) X @)1 +7)  in Bypo(an),

if p < p3(C*, @*, Amin, 00, 0), so that C*(p/2)o‘* < )\minﬁ(’ff.

Then,

u € F(Cyo,1;7) in B, /(1) in direction v,

with power p, slope A* and rhs f, for any constant Cy > Co + 2. B

If we let 6p small enough, so that, in particular, 7 < Cyo, and take p < ps(C*, @*, Ayin, Co, 0)
so that C*( g)a < AminCoo, we can apply again Proposition 3.1 and deduce that

u € F(Co,Co;7) in B,y(71) in direction v,

with the same power, slope and rhs.

We want to apply Lemma 3.12 in B,/,(71) for some 0 < ¢ < 1. In fact, we need Co < 0y,
7 < 09(Co)? and é(g)'y < Amin7, Which is satisfied if we let 6o < %, 79 < 09C? and p <

05(07 '77 )\miny 00, J)-
Moreover, we want to apply Lemma 3.12 inductively in order to get sequences p,, and v,, with
po = p/4 and vy = v, such that

u € F(0™Co,0™Co;6°™1) in B,,, (1) in direction vy,

with power p, slope \* and rhs f, with cgpm < pm+1 < pm/4 and Vi1 — v | < 0" Co.
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For this purpose, we have to verify at each step
0mCo < gg, 6*"1 < O‘e(@mCU)Q, C’pf’n < Apin0?" 7.
Since py, < 4 ™ po, this is satisfied if, in addition, we let § = 277 < 1.

Now the proof follows as that of Theorem 4.1, with a = 2182 and the conclusion is obtained

logc,
if p < po = min{p1, p2, p3, P4, P }- U

As a consequence of Theorem 4.3 we obtain

Theorem 4.4. Let f, p and \* be as in Theorem 4.5. Let u be a weak solution of P(f,p, \*) in
and let g € QN Oweq{u > 0}. There exists 7o > 0 such that Br,(xo) NO{u > 0} is a CH surface for
some 0 < o < 1. It follows that, for some 0 < v < 1, u is C17V up to By, (z0)Nd{u > 0} and the free
boundary condition is satisfied in the classical sense. In addition, for every x1 € By, (xo)N0{u > 0}
there is a neighborhood U such that Vu # 0 inUUN{u > 0}, u € I/Vli’f (UN{u > 0}) and the equation
is satisfied in a pointwise sense in U N {u > 0}.

If moreover Vp and f are Hélder continuous in 2, then u € C*(U N {u > 0}) and the equation
is satisfied in the classical sense in U N {u > 0}.

Proof. The result follows from Theorem 4.3, by applying Lemma 3.10 at the point xg.
The C'7 smoothness of u up to d{u > 0}, for some 0 < 7 < 1, follows from the regularity results
up to the boundary of [14] (see Theorem 1.2 in [14]). O

We can also obtain higher regularity of 9{u > 0} if the data are smoother. We have

Corollary 4.1. Let u, xo and 7o be as in Theorem 4.4. Assume moreover that p € C?*(Q),
f € CHQ) and \* € C%(Q), then By, (x0)NO{u > 0} € C*# for every 0 < pu < 1. Ifp € C™T1H(Q),
f € C™H(Q) and \* € C™TLH(Q) for some 0 < p < 1 and m > 1, then Br,(x9) N {u > 0} €
Cm+2,u.

Finally, if p, f and \* are analytic, then By, (zo) N 0{u > 0} is analytic.

Proof. As in Theorem 8.4 in [1], Theorem 6.3 and Remark 6.4 in [2] and Corollary 9.2 in [8], we
use Theorem 2 in [19].
In fact, we apply this theorem with our equation seen in the form F(z,u, Du, D?u) = 0, with

2)— qiq,
Fls,0.00) = a2 3205+ (0le) 20 My + 3 @) ozl ] - 7o),
] J
in a neighborhood of the free boundary where |Vu| > %, and boundary condition in the form

g(x, Du) = 0, with

g(w,q) = |q]* = A*(2).
Already in [1] it was observed that Theorem 2 in [19] holds with « € C? in {u > 0} and v € C*Y
up to d{u > 0}, even though the result in [19] is stated with u € C? up to d{u > 0}. O

5. APPLICATION TO A SINGULAR PERTURBATION PROBLEM

In this section we apply the regularity results obtained in the previous section to a singular
perturbation problem we studied in [25]. Our regularity results apply to limit functions satisfying
suitable conditions that are fulfilled, for instance, under the situation we considered in [26].

For a different application of these regularity results we refer to our work [26].

We next consider the following singular pertubation problem for the p.(z)-Laplacian:

(P-(f¢,pe)) Ape(f)ua =Be(u’) + f5, u >0
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in a domain Q C RY. Here £ > 0, B.(s) = % (£), with 8 a Lipschitz function satisfying 8 > 0 in
(0,1), B =0 outside (0,1) and [ B(s)ds = M.

We assume that 1 < ppin < pe(2) < Pmax < 00, ||Vpe||ree < L and that the functions u® and f¢
are uniformly bounded.

In [25] we proved local uniform Lipschitz regularity for solutions of this problem, we passed to the
limit (¢ — 0) and we showed that, under suitable assumptions, limit functions are weak solutions

to the free boundary problem: v > 0 and

{Ap(x)u =f in {u >0}

(P(f,p,A")) w=0, |Vu| = \(z) on d{u> 0}

1/p(z)
) g , p=Ilimp, and f = lim f¢.

with X*(z) = (525 M

Before giving the precise statement of one of the results we proved in [25], we need the following
definitions

Definition 5.1. Let u be a continuous nonnegative function in a domain © C RY. Let zg €
QNo{u > 0}. We say that z¢ is a regular point from the positive side if there is a ball B C {u > 0}
with xg € 0B.

Definition 5.2. Let u be a continuous nonnegative function in a domain @ C RN. Let zg €
QN o{u > 0}.

We say that condition (D) holds at zp if there exist v > 0 and 0 < ¢ < 1 such that, for
every © € By(xzg) N 0{u > 0} which is regular from the positive side and r < =, there holds that
{u=0}n B (z)] > ¢|B(x)].

Definition 5.3. Let u be a continuous nonnegative function in a domain @ C RN. Let zg €
QNo{u > 0}.

We say that condition (L) holds at zq if there exist v > 0, § > 0 and sop > 0 such that
for every point y € B,(x0) N d{u > 0} which is regular from the positive side, and for every ball
B, (z) C {u > 0} withy € 0B, (z) and r < v, there exists a unit vector é,, with (€, z—y) > 0||z—yl|,
such that u(y — sé,) =0 for 0 < s < s0.

In [25] we obtained the following result:

Theorem 5.1. Let u® be a family of solutions to P, (f,pe;) in a domain Q C RY with 1 <
Pmin < Pe; (7) < Pmax < 00 and pe,(x) Lipschitz continuous with ||Vpe,||p~ < L, for some L > 0.
Assume that u® — u uniformly on compact subsets of Q, f% — f x—weakly in L>(2), p;, — p
uniformly on compact subsets of £ and €; — 0.

Assume that w is locally uniformly nondegenerate on Q N O{u > 0} and that at every point
xo € QN O{u > 0} either condition (D) or condition (L) holds.

Then, u is a weak solution to the free boundary problem: u > 0 and

{Ap(x)u =f in {u >0}

(P(f,p, X)) w=0, |Vu| = \(z) on d{u> 0}

1/p(x
with \*(x) = ( p(z) M) ) and M = [ S(s)ds.
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Remark 5.1. In [26] we proved that if %3, f%, p.,, €;, f and p are as in Theorem 5.1 and u% — u
uniformly on compact subsets of € with 4% local minimizers of an energy functional, then w is
under the assumptions of Theorem 5.1.

As a first application of Theorem 4.4 we obtain the following result on the regularity of the free
boundary for limit functions of the singular perturbation problem P (f%/, pe,).

Theorem 5.2. Let u®, f%, p.., €;, u, f and p be as in Theorem 5.1. Assume moreover that
fewWhi(Q) and p € W29(Q) with ¢ > max{1, N/2}.

Let zg € QNOreq{u > 0}. Then, there exists 7y > 0 such that Br,(z0)NO{u > 0} is a C1 surface
for some 0 < a < 1. It follows that, for some 0 <~y < 1, u is CYY up to By, (z0)Nd{u > 0} and the
free boundary condition is satisfied in the classical sense. In addition, for every x1 € By, (xo)No{u >

0} there is a neighborhood U such that Vu # 0 in U N {u > 0}, u € I/VI(QDCQ(U N{u > 0}) and the
equation is satisfied in a pointwise sense in U N {u > 0}.

If moreover Vp and f are Hélder continuous in €2, then u € C*(U N {u > 0}) and the equation
is satisfied in the classical sense in U N {u > 0}.

Proof. The result follows from the application of Theorems 5.1 and 4.4 above. O
We also obtain higher regularity from the application of Corollary 4.1.

Corollary 5.1. Let u, zo and 7o be as in Theorem 5.2. Assume moreover that p € C%(Q) and
f € CHQ), then By, (w0)NO{u > 0} € C*# for every0 < p < 1. If p € C™HL1(Q) and f € C™H(R)
for some 0 < < 1 and m > 1, then By,(x9) N 0{u > 0} € C™F2~,

Finally, if p and f are analytic, then Br,(xo) N 0{u > 0} is analytic.
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