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1. Introduction and main results

In this work we study mixed weighted weak-type inequalities of the form

(1.1) uv

({
x ∈ Rn :

|T (fv)(x)|
v(x)

> t

})
≤ C

t

∫
Rn

|f(x)|Mu(x)v(x) dx,

where to fix ideas, the operator T is either the Hardy-Littlewood maxi-

mal operator or any Calderón-Zygmund Operator. Versions of these type

of inequalities were studied by Sawyer in [Sa] motivated by the work of

Muckenhoupt and Wheeden [MW] (see also the works [AM] and [MOS]).

E. Sawyer proved that inequality (1.1) holds in R when T = M is the

Hardy-Littlewood maximal operator if the weights u and v belong to the

class A1. Although this result can be seen as a very delicate extension of the

classical weak type (1, 1) estimate, the reason why E. Sawyer was interested

on inequality it is due to the following interesting observation. Indeed, this

inequality yields a new proof of Muckenhoupt’s classical theorem assuming

that the Ap weights can be factored (P. Jones’s theorem), namely if w ∈ Ap

then w = w1w
1−p
2 for some w1, w2 ∈ A1. In fact, we have that the operator

f → M(fv)
v

is bounded on L∞(uv) and the same operator satisfies (1.1).

Hence by interpolation we recover Muckenhoupt’s theorem.

In the same paper, Sawyer conjectured that if T is instead the Hilbert

transform the inequality also holds with the same hypotheses on the weights

u and v. That conjecture was proved in [CMP2]. In fact, it is proved in

this paper that the inequality (1.1) holds for both the Hardy-Littlewood

maximal operator and for any Calderón-Zygmund Operator in any dimen-

sion n if either the weights u and v belong to A1 or u belongs to A1 and

uv ∈ A∞. The authors conjectured that their results may hold with weaker

hypotheses. To be more precise they propose that inequality (1.1) is true

if u ∈ A1 and v ∈ A∞. The method of proof is quite different from that in

The first author is grateful to the Department of Mathematical Analysis of the Uni-
versidad de Sevilla for the hospitality, and he is partially supported by SGCyT,UNS
and a fellowship from Junta of Andalućıa, the second author is partially supported by
DGICYT Grant PB980106.
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[Sa] (also from [MW]) and it is based on certain ideas from extrapolation

that goes back to the work of Rubio de Francia (see [CMP2] and also the

review [CMP3]).

In this work we generalize the extrapolation result in [CMP3]), for a

more general class of weights (see Theorem 1.1 below). This method of

extrapolation is flexible enough that can be applied the result goes beyond

the classical linear operators. Indeed, it can be applied to square functions,

vector valued operators as well and multilinear singular integral operators.

See Section 2 for some of these applications.

When T is the Hardy-Littlewood maximal operator we can think that this

type of inequalities can be considered like a generalization of the classical

Fefferman-Stein inequality. However, in Section 3, we will see that the

inequality (1.1) in general even taking weights v ∈ RH∞ ⊂ A∞ does not

hold.

The best way to state the extrapolation theorem is without considering

operators. In fact the result is a property of families of functions. Hereafter,

F will denote a family of ordered pairs of non-negative, measurable functions

(f, g). Also we are going to assume that this family F of functions, satisfies

the following property: for some p0, 0 < p0 < ∞, and every w ∈ A∞,

(1.2)

∫
Rn

f(x)p0w(x) dx ≤ C

∫
Rn

g(x)p0w(x) dx,

for all (f, g) ∈ F such that the left-hand side is finite, and where C depends

only on the A∞ constant of w. By the main theorem in [CMP1], this

assumption turns out to be equivalent to that for every p, 0 < p < ∞, and

every w ∈ A∞,

(1.3)

∫
Rn

f(x)pw(x) dx ≤ C

∫
Rn

g(x)pw(x) dx,

for all (f, g) ∈ F such that the left-hand side is finite, and where C depends

only on the A∞ constant of w. See [CMP1], [CGMP] and the survey paper

[CMP3] for more information and applications.

It is also interesting that both 1.2 and 1.3 are equivalent to the following

vector-valued version: for all 0 < p, q < ∞ and for all w ∈ A∞ we have∥∥∥(∑
j

(fj)
q
) 1

q
∥∥∥

Lp(w)
≤ C

∥∥∥(∑
j

(gj)
q
) 1

q
∥∥∥

Lp(w)
,(1.4)

for any {(fj, gj)}j ⊂ F , where these estimates hold whenever the left-hand

sides are finite.

Next theorem improves the corresponding Theorem from [CMP2]. In-

deed, observe that weights of the form v(x) = |x|−nr for any r > 0 are
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included in the hypothesis of the Theorem but not in the corresponding

Theorem from [CMP2] when r ≥ 1, namely the singular case.

Theorem 1.1. Let F be a family of functions satisfying (1.2) and let θ ≥ 1.

Suppose that u ∈ A1 and that v is a weight such that for some δ > 0,

vδ ∈ A∞.

Then, there is a constant C

(1.5)
∥∥∥ f

vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥ g

vθ

∥∥∥
L1/θ,∞(uv)

, (f, g) ∈ F .

Similarly, there is the following vector-valued extension: for any 0 <

p, q < ∞,

(1.6)
∥∥∥∑j(fj)

q
) 1

q

vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥∑j(gj)

q
) 1

q

vθ

∥∥∥
L1/θ,∞(uv)

,

for any {(fj, gj)}j ⊂ F .

The proof of (1.6) is immediate since we can extrapolate using as initial

hypothesis (1.4) applying (1.5).

Corollary 1.2. Let F , u and θ ≥ 1 as in the Theorem. Suppose now

that vi, i = 1, · · · , m, are weights such that for some δi > 0, vδi
i ∈ A∞,

i = 1, · · · , m.

Then, if we denote v =
∏m

i=1 vi∥∥∥ f

vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥ g

vθ

∥∥∥
L1/θ,∞(uv)

, (f, g) ∈ F .

and similarly for all 0 < p, q < ∞,

∥∥∥∑j(fj)
q
) 1

q

vθ

∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥∑j(gj)

q
) 1

q

vθ

∥∥∥
L1/θ,∞(uv)

,

for any {(fj, gj)}j ⊂ F .

The proof reduces to the Theorem by choosing δ > 0 small enough such

that vδ =
∏m

i=1 vδ
i ∈ A∞ which follows by convexity since vδi

i ∈ A∞, i =

1, · · · , m.

To apply the extrapolation theorem above to some of the classical opera-

tors we need a mixed weak type estimate for the Hardy-Littlewood maximal

operator. In fact by that Theorem we just need the dyadic version.

The next Theorem was obtained in dimension one by Andersen and Muck-

enhoupt in [AM] and by Mart́ın-Reyes, Ortega Salvador and Sarrión Gavián

[MOS] in higher dimensions. In each case the proof follows as a consequence
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of a more general result with the additional hypothesis that u ∈ A1. How-

ever, for the sake of completeness we will give an independent and direct

proof with no condition on the weight u.

Theorem 1.3. Let u ≥ 0 and v(x) = |x|−nr for some r > 1. Then there is

a constant C such that for all t > 0,

(1.7) uv

({
x ∈ Rn :

M(fv)(x)

v(x)
> t

})
≤ C

t

∫
Rn

|f(x)|Mu(x)v(x) dx.

Remark 1.4. We remark that, in general, the case r = 1 is false for the

previous theorem even in the case u = 1, see [AM]. However, we already

mentioned that weights of the form v(x) = |x|−nr, r > 0 are included in the

extrapolation Theorem 1.1.

Acknowledgement. The authors are grateful to F. J. Mart́ın-Reyes and

P. Ortega-Salvador to point out reference [MOS].

2. Some applications

In this section we show the flexibility of the method by giving two appli-

cations.

2.1. The vector-valued case. Let T be any singular integral operator

with standard kernel and let M is the Hardy-Littlewood maximal function.

We are going to show that starting from the following inequality due to

Coifman [Coi]: for 0 < p < ∞ and w ∈ A∞,

(2.1)

∫
Rn

|Tf(x)|p w(x) dx ≤ C

∫
Rn

Mf(x)p w(x) dx,

which combined with the extrapolation Theorem 1.1 together with Theorem

1.3 yields the following corollary.

Corollary 2.1. Let u ∈ A1 and v(x) = |x|−nr for some r > 1. Also let

1 < q < ∞. Then, there is a constant C such that for all t > 0,

uv

({
x ∈ Rn :

(∑
j M(fjv)(x)q

) 1
q

v(x)
> t

})
≤ C

t

∫
Rn

(∑
j

|fj(x)|q
) 1

q
u(x)v(x) dx,

uv

({
x ∈ Rn :

(∑
j |T (fjv)(x)|q

) 1
q

v(x)
> t

})
≤ C

t

∫
Rn

(∑
j

|fj(x)|q
) 1

q
u(x)v(x) dx.

Observe that in particular we have the following scalar version:

uv

({
x ∈ Rn :

|T (fv)(x)|
v(x)

> t

})
≤ C

t

∫
Rn

|f(x)|u(x)v(x) dx.
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This scalar version was proved in [MOS].

To proof of the second inequality of the Corollary, follows from the first

one by applying inequality (1.6) in Theorem 1.1 with initial hypothesis (2.1):

sup
t>0

tuv

({
x ∈ Rn :

(∑
j |T (fj)(x)|q

) 1
q

v(x)
> t

})
≤

C sup
t>0

tuv

({
x ∈ Rn :

(∑
j M(fj)(x)q

) 1
q

v(x)
> t

})
.

To prove the first inequality in Corollary 2.1 we first note that in [CGMP]

was shown for 1 < q < ∞ and for all 0 < p < ∞ and w ∈ A∞,∥∥∥(∑
j

(M(fj))
q
) 1

q
∥∥∥

Lp(w)
≤ C

∥∥∥M((∑
j

|fj|q
) 1

q

)∥∥∥
Lp(w)

.

To conclude we apply Theorem 1.1 combined with Theorem 1.3.

2.2. Multilinear Calderón-Zygmund operators: We now apply our

main results to multilinear Calderón-Zygmund operator. We follow here the

theory developed by Grafakos and Torres in [GT1], that is, T is an m-linear

operator such that T : Lq1 × · · · × Lqm −→ Lq, where 1 < q1, . . . , qm < ∞,

0 < q < ∞ and

(2.2)
1

q
=

1

q1

+ · · ·+ 1

qm

.

The operator T is associated with a Calderón-Zygmund kernel K in the

usual way:

T (f1, . . . , fm)(x) =

∫
Rn

· · ·
∫

Rn

K(x, y1, . . . , ym) f1(y1) . . . fm(ym) dy1 . . . dym,

whenever f1, . . . , fm are in C∞
0 and x /∈

⋂m
j=1 supp fj. We assume that

K satisfies the appropriate decay and smoothness conditions (see [GT1,

GT2] for complete details). Such an operator T is bounded on any other

product of Lebesgue spaces with exponents 1 < q1, . . . , qm < ∞, 0 < q < ∞
satisfying (2.2). Further, it also satisfies weak endpoint estimates when

some of the qi’s are equal to one. There are also weighted norm inequalities

for multi-linear Calderón-Zygmund operators; these were first proved in

[GT2] using a good-λ inequality, and later in [PT] using the sharp maximal

function. They showed that for 0 < p < ∞ and for all w ∈ A∞,

‖T (f1, . . . , fm)‖Lp(w) ≤ C
∥∥∥ m∏

j=1

Mfj

∥∥∥
Lp(w)

.
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Beginning with these inequalities, we can apply Theorem 1.1 to the family

F
(
T (f1, . . . , fm),

∏m
j=1 Mfj

)
. Hence, if u ∈ A1 and v(x) = |x|−nr for some

r > 1.

(2.3)
∥∥∥ |T (f1, . . . , fm)|

vm

∥∥∥
L1/m,∞(uv)

≤ C
∥∥∥∏m

j=1 Mfj

vm

∥∥∥
L1/m,∞(uv)

Corollary 2.2. Let T be a multilinear Calderón-Zygmund operator as above.

Let u ∈ A1 and v(x) = |x|−nr for some r > 1. Then∥∥∥ |T (f1, . . . , fm)|
vm

∥∥∥
L1/m,∞(uv)

≤ C
m∏

j=1

∫
Rn

|fj|u dx, .

To prove this corollary we will use the following version of the generalized

Holder’s inequality: for 1 ≤ q1, . . . , qm < ∞ with

1

q1

+ · · ·+ 1

qm

=
1

q
,

there is a constant C such that

‖
m∏

j=1

hj‖Lq,∞(w) ≤ C
m∏

j=1

‖hj‖Lqj ,∞(w).

The proof of this inequality follows in a similar way that the proof of the

classic generalized Holder’s inequality in Lp Theory.

Now, if we combine this together with (2.3) we have∥∥∥ |T (f1, . . . , fm)|
vm

∥∥∥
L1/m,∞(uv)

≤ C
m∏

j=1

∥∥∥Mfj

v

∥∥∥
L1,∞(uv)

,

So from this and (1.3) we conclude the proof of the corollary.

3. counterexamples

We consider that it is an interesting fact that we can obtain in Theorem

1.3

(3.1)

uv

({
x ∈ Rn :

M(fv)(x)

v(x)
> t

})
≤ C

t

∫
Rn

|f(x)|Mu(x)v(x) dx u ≥ 0

for v(x) = |x|−nr, r > 1. On the other hand from the works [Sa] and [CMP3]

we know that the same inequality holds if u ∈ A1 and v ∈ A1 or uv ∈ A∞.

A natural question is whether we could prove inequality (3.1) for these class

of weights v improving the classical Fefferman-Stein inequality. However,

we will show in next example that this is false in general.

Before giving this example, we observe that if u ∈ A1 and v belongs to

RH∞ the inequality (3.1) holds. This fact follows since uv ∈ A∞, and by

Theorem 1.4 in [CMP2].
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Example 3.1. Let v(x) =
∑

k∈Z |x− k|χIk
(x), where Ik denote the interval

|x− k| ≤ 1/2, it is not difficult to see that v ∈ RH∞. If we choose u(x) =∑
k∈N
k>10

k
log(k)

χJk
(x) with Jk =

[
k + 1

4k
, k + 1

k

]
, and f(x) = χ[−1,1](x) then it

does not exist a finite constant C such that the inequality

(3.2) uv({x : Mf (x) > v(x)}) ≤ C

∫
|f |M2u

holds.

We will the following observation:

In Rn, there is a geometric constant such that

M2w(x) ≈ M
L log L

w(x),

where

M
L log L

f(x) = sup
Q3x

‖f‖
L log L,Q

and

‖f‖
L log L,Q

= inf{λ > 0 :
1

|Q|

∫
Q

Φ(
|f |
λ

) dx ≤ 1}.

with Φ(t) = t log(e + t), see [PW] or [G]. Now, it is a computation to see

that if x ∈ [−1, 1], M2u(x) ≈ M
L log L

u(x) ≤ C so the right hand side of

(3.2) is finite, and however the left hand side of (3.2) is infinite. We will

see that. For |x| > 2 we have that Mf (x) ≥ 1
|x| and if x ∈ Jk ⊂ Ik for

k > 10 1
|x| > 1

2k
, then it is easy to see that (k + 1

4k
, k + 1

2k
) ⊂ {x ∈ Jk :

Mf(x) > v(x)} and therefore we obtain that

uv({x : Mf (x) > v(x)}) >
∑
k∈N
k>10

k

log(k)

∫ k+ 1
2k

k+ 1
4k

(x− k) dx >

>
∑
k∈N
k>10

1

8klog(k)
= ∞.

4. Proof of Theorem 1.1

The following Lemmas will be useful:

Lemma 4.1. If u ∈ A1, w ∈ A1, then there exists 0 < ε0 < 1 depending

only on [u]A1 such that uwε ∈ A1 for all 0 < ε < ε0.

Proof. Since u ∈ A1, u ∈ RHs0 for some s0 > 1 depending on [u]A1 . Let

ε0 = 1/s0
′ and 0 < ε < ε0. This implies that u ∈ RHs with s = (1/ε)′.

Then since u, v ∈ A1, for any cube Q and almost every x ∈ Q,

1

|Q|

∫
Q

u(y)w(y)ε dy ≤
(

1

|Q|

∫
Q

u(y)s dy

)1/s(
1

|Q|

∫
Q

w(y) dy

)1/s′
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≤ [u]RHs

|Q|

∫
Q

u(y) dy

(
1

|Q|

∫
Q

w(y) dy

)1/s′

≤ [u]RHs [u]A1 [w]εA1
u(x)w(x)ε.

Hence uwε ∈ A1 with [uwε]A1 ≤ [u]RHs [u]A1 [w]εA1
.

�

Also we need the following version of the Marcinkiewicz interpolation

theorem in the scale of Lorentz spaces. In fact we need a version of this

theorem with precise constants. The proof can be found in [CMP2].

Proposition 4.2. Given p0, 1 < p0 < ∞, let T be a sublinear operator such

that

‖Tf‖Lp0,∞ ≤ C0 ‖f‖Lp0,1 and ‖Tf‖L∞ ≤ C1 ‖f‖L∞ .

Then for all p0 < p < ∞,

‖Tf‖Lp,1 ≤ 21/p
(
C0 (1/p0 − 1/p)−1 + C1

)
‖f‖Lp,1 .

Fix u ∈ A1 and v such that vδ ∈ A∞ for some δ > 0. Then by the

factorization theorem vδ = v1v2 for some v1 ∈ A1 and v2 ∈ RH∞. Define

the operator Sλ by

Sλf(x) =
M(fuv

1/λδ
1 )

uv
1/λδ
1

for some large enough constant λ > 1 that will be chosen soon.

By Lemma 4.1, there exists 0 < ε0 < 1 (that depends only on [u]A1) such

that u wε ∈ A1 for all w ∈ A1 and 0 < ε < ε0.

Hence we choose λ > 1
δε0

such that uv
1/λδ
1 ∈ A1. Hence, Sλ is bounded on

L∞(uv) with constant C1 = [u]A1 . We will now show that for some larger

λ, Sλ is bounded on Lm(uv). Observe that∫
Rn

Sf(x)λ u(x) v(x) dx =

∫
Rn

M(fuv
1/λδ
1 )(x)λ u(x)1−λ v2(x)1/δ dx.

Since v2 = ṽ1−t
2 for some ṽ2 ∈ A1 and t > 1. Hence,

u1−λ v
1/δ
2 = u1−λ ṽ

1−t
δ

2 =
(
u ṽ

t−1
δ(λ−1)

2

)1−λ
.

By Lemma 4.1 there exists λ even bigger if necessary (λ > 1 + t−1
δε0

) such

that u ṽ
t−1

δ(λ−1)

2 ∈ A1 and hence u1−λ v
1/δ
2 ∈ Aλ. By Muckenhoupt’s theorem,

M is bounded on Lλ(u1−λv
1/δ
2 ) and therefore S is bounded on Lλ(uv) with

some constant C0. Observe that λ depends upon the A1 constant of u. We

fix one of these λ from now on.

Thus by Proposition 4.2 above we have that S is bounded on Lq,1(uv),

q > λ. Hence,

‖Sf‖Lq,1(uv) ≤ 21/q
(
C0 (1/λ− 1/q)−1 + C1) ‖f‖Lq,1(uv).
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Thus, for all q ≥ 2λ we have that ‖Sf‖Lq,1(uv) ≤ K0 ‖f‖Lq,1(uv) with K0 =

4λ (C0 + C1). We emphasize that the constant K0 is valid for every q ≥ 2λ.

Fix (f, g) ∈ F such that the left-hand side of (1.5) is finite. We let

θ < r < θ(2λ)′ that is going to be chosen soon. Now, by the duality of Lr,∞

and Lr′,1,∥∥f v−θ
∥∥ 1

r

L1/θ,∞(uv)
=
∥∥(f v−θ)

1
r

∥∥
Lr/θ,∞(uv)

= sup

∫
Rn

f(x)
1
r h(x) u(x) v(x)1−θ/r dx,

where the supremum is taken over all non-negative h ∈ L( r
θ
)′,1(uv) with

‖h‖
L

( r
θ
)′,1

(uv)
= 1. Fix such a function h. We are going to build a larger

function Rh using the Rubio de Francia‘s method such Rhuv1−θ/r ∈ A∞.

Hence we will use the hypothesis (1.3) with p = θ/r (recall that is equivalent

to (1.2)) with the weight Rhuv1−θ/r ∈ A∞

We let r such that ( r
θ
)′ > 2λ and hence S( r

θ
)′ is bounded on L( r

θ
)′,1(uv)

with constant bounded by K0. Now apply the Rubio de Francia algorithm

(see [GCRdF]) to define the operator R on h ∈ L( r
θ
)′,1(uv), h ≥ 0, by

Rh(x) =
∞∑

j=0

Sj
( r

θ
)′h(x)

2j Kj
0

,

Recall that the operator S( r
θ
)′ is defined by

S( r
θ
)′f(x) =

M(fuv
1/( r

θ
)′δ

1 )

uv
1/( r

θ
)′δ

1

.

Recall that by the choice of r uv
1/( r

θ
)′δ

1 ∈ A1.

It follows immediately from this definition that:

(a) h(x) ≤ Rh(x);

(b) ‖Rh‖
L

( r
θ
)′,1

(uv)
≤ 2 ‖h‖

L
( r

θ
)′,1

(uv)
;

(c) S( r
θ
)′(Rh)(x) ≤ 2 K0Rh(x).

In particular, it follows from (c) and the definition of S that Rhuv
1/( r

θ
)′δ

1 ∈
A1 and therefore Rhuv1/( r

θ
)′ = Rhuv

1/δ( r
θ
)′

1 v
1/δ( r

θ
)′

2 ∈ A∞.

To apply the hypothesis (1.3) we must first check that the left-hand side

is finite, but this follows at once from Hölder’s inequality and (b):∫
Rn

f(x)
1
r Rh(x) u(x) v(x)1− θ

r dx ≤
∥∥(f v−θ)

1
r

∥∥
Lr/θ,∞(uv)

‖Rh‖L(r/θ)′,1(uv)

≤ 2
∥∥f v−θ

∥∥ 1
r

L1/θ,∞(uv)
‖h‖

L
( r

θ
)′,1

(uv)
< ∞.

Thus since Rhuv1/( r
θ
)′ ∈ A∞ by (1.3)∫

Rn

f(x)
1
r h(x) u(x) v(x)1− θ

r dx ≤
∫

Rn

f(x)
1
r Rh(x) u(x) v(x)1− θ

r dx
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≤ C

∫
Rn

g(x)
1
r Rh(x) u(x) v(x)1− θ

r dx

≤ C
∥∥(g v−θ)

1
r

∥∥
Lr/θ,∞(uv)

‖Rh‖
L

( r
θ
)′,1

(uv)

≤ 2 C
∥∥g v−θ

∥∥ 1
r

L1/θ,∞(uv)
.

Since C is independent of h, inequality (1.5) follows finishing the proof of

the theorem.

5. Proof of Theorem 1.3

5.1. Proof of (1.7). The following lemma is important in the proof.

Lemma 5.1. Let f be a positive and locally integrable function. Then for

r > 1 there exists a positive real number a depending on f and λ such that

the inequality (∫
|y|≤a

1
r−1

f(y)dy

)
an = λ

holds.

Proof. Consider the function

g(a) =

(∫
|y|≤a

1
r−1

f(y)dy

)
an, for a ≥ 0,

then by the hypothesis we have that g is a continuous and non decreasing

function. Furthermore , g(0) = 0, and g(+∞) = +∞, and therefore, by

the mean value theorem there exists a such that satisfies the conditions of

lemma. �

By simplicity we denote g = fv, furthermore by homogeneity we can as-

sume that λ = 1. We denote Gk =
{
2k < |x| ≤ 2k+1

}
, Ik =

{
2k−1 < |x| ≤ 2k+2

}
,

Lk =
{
2k+2 < |x|

}
, Ck =

{
|x| ≤ 2k−1

}
.

It will be enough to prove the following estimates

(5.1)
∑
k∈Z

u(x)

|x|nr

{
x ∈ Gk : MgχIk

(x) >
1

|x|nr

}
≤ Cr,n

∫
g Mu,

(5.2)
∑
k∈Z

u(x)

|x|nr

{
x ∈ Gk : MgχLk

(x) >
1

|x|nr

}
≤ Cr,n

∫
g Mu,

(5.3)
∑
k∈Z

u(x)

|x|nr

{
x ∈ Gk : MgχCk

(x) >
1

|x|nr

}
≤ Cr,n

∫
g Mu,
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Taking into account that in Gk, v(x) = 1
|x|nr ∼ 2−knr, using the (1, 1)

weak type inequality of M with respect to the pair of weights (u, Mu) and

since the subsets Ik are overlapping at most three times we obtain (5.1).

By the inequality (5.2) we will estimate MgχLk
(x). Observe that if x

belongs to Gk and y ∈ Lk =
{
2k+2 < |y|

}
, and if |y − x| ≤ ρ, we have that

|y|
2
≤ ρ,

1

ρn

∫
|y−x|≤ρ

g(y)χLk
(y) dy ≤ Cn

∫
2k+2<|y|

g(y)

|y|n
dy ≤ Cn

∫
|x|<|y|

g(y)

|y|n
dy.

If we denote F (x) =
∫
|x|<|y|

g(y)
|y|n dy the left hand side in (5.2) is bounded by∑

k∈Z

2−krnu
{
x ∈ Rn : F (x) > C 2−knr

}
≈
∫ ∞

0

tu {x ∈ Rn : F (x) > t} dt

t

=

∫
Rn

F (x) u(x)dx =

∫
Rn

∫
|x|<|y|

g(y)

|y|n
dy u(x)dx

=

∫
Rn

g(y)
1

|y|n
∫
|x|<|y|

u(x)dx dy ≤ C

∫
Rn

g(y) Mu(y)dy.

Now we will estimate MgχCk
(x) for x ∈ Gk. For x ∈ Gk, si y ∈ Ck,

2 |y| < |x| and since MgχCk
(x) ≤ cn

1
|x|n
∫

Ck
g(y)dy, we obtain

MgχCk
(x) ≤ C

|x|n
∫

Ck

g ≤ C

|x|n
∫
|y|≤ |x|

2

g,

Thus, since the subsets Gk are disjoints, the left hand side in (5.3) is bounded

by

u(x)

|x|nr

{
x ∈ Rn :

C

|x|n
∫
|y|≤ |x|

2

g >
1

|x|nr

}
.

Now, if a denotes the positive real number that appears in Lemma 5.1

(i.e., a satisfies that 1 =
(∫

|y|≤a
1

r−1
g
)

an, we express the last integral in the

following way:

u(x)

|x|nr

({
x :

C

|x|n
∫
|y|≤ |x|

2

g >
1

|x|nr

})
=

u(x)

|x|nr

({
|x| ≤ a

1
r−1 :

C

|x|n
∫
|y|≤ |x|

2

g >
1

|x|nr

})
+

(5.4)

+
∞∑

k=0

u(x)

|x|nr

({
x ∈ 2ka

1
r−1 < |x| ≤ 2k+1a

1
r−1 :

C

|x|n
∫
|y|≤ |x|

2

g >
1

|x|nr

})

If |x| ≤ a
1

r−1 , since |y| ≤ |x|
2

we have that |y| ≤ a
1

r−1 , thus the set

{
|x| ≤ a

1
r−1 :

C

|x|n
∫
|y|≤ |x|

2

g >
1

|x|nr

}
⊂

{
|x| ≤ a

1
r−1 : |x|n(r−1) > C

(∫
|y|≤a

1
r−1

g

)−1
}

.
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Taking into account the last inclusion and since
(∫

|y|≤a
1

r−1
g
)−1

= an, the

first summand in the second term in (5.4) is bounded by

u(x)

|x|nr (
{
|x|r−1 > Ca

}
) =

u(x)

|x|nr (
{
|x| > car′−1

}
).

Using again Lemma 5.1, the last term can been estimated by

∫
|x|>C ar′−1

u(x)

|x|nr
dx ≤ C

∞∑
k=1

1

(2kar′−1)nr

∫
c2k−1ar′−1≤|x|<c2kar′−1

u(x) dx ≤

≤ C
∞∑

k=1

1

2k(r−1)n

1

an

1

(c2kar′−1)n

∫
|x|≤c2kar′−1

u(x) dx

= C
∞∑

k=1

1

2k(r−1)n

∫
|y|≤ar′−1

f(y) dy
1

(c2kar′−1)n

∫
|x|≤c2kar′−1

u(x) dx

And this term is bounded by

≤ C
∞∑

k=1

1

2k(r−1)n

∫
|y|≤ar′−1

g(y)Mw(y) dy ≤ C

∫
g Mu

To finish, we must estimate the series in (5.4). It is clear that sum is

bounded by

∞∑
k=0

u(x)

|x|nr

({
x ∈ 2kar′−1 < |x| ≤ 2k+1ar′−1

})
≤ C

∞∑
k=0

1

(2kar′−1)nr

∫
2k−1ar′−1≤|x|<2kar′−1

u dx

and arguing as before we conclude the proof of (5.3).

Remark 5.2. We observe that the proof only uses the following conditions

for a sublinear operator T : a) T is of weak type (1, 1) with respect to the

pair of weight (u, Mu) and b) T is a convolution type operator such that

the associate kernel satisfies the usual standard condition:

|K(x)| ≤ c

|x|n
.

In particular if u ∈ A1, this observation can be applied to the usual Calderón-

Zygmund Singular Integral Operators and moreover to the Strongly Singular

Integral Operators (see [Ch] and [F]).
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[GCRdF] J. Garćıa-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and
Related Topics, North Holland Math. Studies 116, North Holland, Amsterdam,
1985.

[G] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, New
Jersey, 2004.

[GT1] L. Grafakos and R. Torres, Multilinear Calderón-Zygmund theory, Adv. in
Math. 165 (2002), 124–164.

[GT2] L. Grafakos and R. Torres, Maximal operator and weighted norm inequalities
for multilinear singular integrals, Indiana Univ. Math. J. 51 (2002), no. 5, 1261–
1276.

[MOS] F. J. Mart́ın-Reyes, P. Ortega Salvador, M. D. Sarrión Gavilán, Boundedness
of operators of Hardy type in Λp,q spaces and weighted mixed inequalities for
singular integral operators, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no.
1, 157–170.

[MW] B. Muckenhoupt and R. Wheeden, Some weighted weak-type inequalities for the
Hardy-Littlewood maximal function and the Hilbert transform, Indiana Math.
J. 26 (1977), 801–816.
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