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ABSTRACT. Let By be a finite-dimensional Nichols algebra of diagonal
type corresponding to a matrix q. We consider the graded dual L4 of
the distinguished pre-Nichols algebra gq from [A3] and the quantum
divided power algebra U, a suitable Drinfeld double of Eq#kZG. We
provide basis and presentations by generators and relations of £4 and
Uy, and prove that they are noetherian and have finite Gelfand-Kirillov
dimension.

1. INTRODUCTION

We fix an algebraically closed field k of characteristic zero. Let g be
a finite-dimensional simple Lie algebra and ¢ € k a root of 1 (with some
restrictions depending on g). In the theory of quantum groups, there are
several Hopf algebras attached to g and ¢:

o The Frobenius-Lusztig kernel (or small quantum group) uy(g).
o The ¢-divided power algebra U,(g), see [L1, L2].
o The quantized enveloping algebra U,(g), see [DK, DKP, DP].

These Hopf algebras have the following features:

o They admit triangular decompositions, e. g. uq(g) ~ u} (g)@u)(g)®u, (g).

¢ The O-part of this triangular decomposition is a Hopf subalgebra, actually
a group algebra.

o The positive and negative parts are not Hopf subalgebras, but rather Hopf
algebras in braided tensor categories, braided Hopf algebras for short.

o There are morphisms w} (g) < U, (g), U, (g) — u/(g) of braided Hopf
algebras, and ditto for the full Hopf algebras.

o The full Hopf algebras can be reconstructed from the positive part by
standard procedures (bosonization, the Drinfeld double).

¢ The positive part u; (g) has very special properties— it is a Nichols algebra.

Indeed, u;(g) is completely determined by the matrix q = (¢%%9), where
(ai;) is the Cartan matrix of g and d; € {1, 2,3} make (d;a;j) symmetric. In
other words, u;; (g) is the Nichols algebra of diagonal type associated to q.
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The knowledge of the finite-dimensional Nichols algebras of diagonal type
is crucial in the classification program of finite-dimensional Hopf algebras
[AS]. Two remarkable results on these Nichols algebras are:

(a) The explicit classification [H2].
(b) The determination of their defining relations [A1, A2].

Let q € k%Y with Nichols algebra, B, and assume that dim By < co. There
are several reasons to consider the analogues of the braided Hopf algebras
U/ (g) and U,f (g), for By, motivated by the classification of Hopf algebras
with finite Gelfand-Kirillov dimension and by representation theory. The
analogue By of U (g) was introduced in [A2] and studied in [A3] under

the name of distinguished pre-Nichols algebra. The definition of gq is by
discarding some of the relations in [A2]. The purpose of this paper is to
study the analogue L of L{;' (g); this is the graded dual of gq and although
it could be called the distinguished post-Nichols algebra of q, we prefer to
name it the Lusztig algebra as in [A+], where mentioned in passing.

The paper is organized as follows. Section 2 is devoted to preliminaries
and Section 3 to Nichols algebras of diagonal type and distinguished pre-
Nichols algebras. In Section 4 we discuss Lusztig algebras: we provide a
basis and a presentation by generators and relations, and prove that they
are noetherian and have finite Gelfand-Kirillov dimension. In Section 5 we
introduce the quantum divided power algebra U{;, that is a suitable Drin-
feld double of Eq#kZQ; we also provide a presentation by generators and
relations, and prove that it is noetherian and has finite Gelfand-Kirillov
dimension.

Remark 1.1. The quantum divided power algebras were introduced and
studied in [GH, Hul; they correspond to Nichols algebras of Cartan type
A1 X X Al.

Acknowledgement. We thank the referee for the careful reading of the
manuscript.

2. PRELIMINARIES AND CONVENTIONS

2.1. Conventions. If § € N, then we set Iy := {1, 2, ...,0}; or simply I if no
confusion arises. If I' is a group, then T is its group of characters, that is,
one-dimensional representations.

Let S,, and B,, be the symmetric and braid groups in n letters, with
standard generators 7; = (17 + 1), respectively o;, ¢ € I,,_1. Let s: Sy — By
be the (Matsumoto) section of the projection 7 : By — Sy, w(0;) = 7,
i € I,—1, given by s(w) = 0y,0i,...04;, whenever w = 7;,7,...7;; € Sp has
length j.

We consider the g-numbers in the polynomial ring Z[q], n € N, 0 < i < n,

j=1 a\"/q
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(2
We use the Heynemann-Sweedler notation for coalgebras and comodules;

the counit of a coalgebra is denoted by ¢, and the antipode of a Hopf algebra,
by S. All Hopf algebras in this paper have bijective antipode.

Let H be a Hopf algebra. A Yetter-Drinfeld module V over H is a H-
module and a H-comodule satisfying the compatibility condition

o(h-v)= h(l)v(,l)S(h(g)) ® h(2) " (0), he HuvelV.

If g € k, then (n)4, (n);, (n)q are the respective evaluations at g.

Morphisms of Yetter-Drinfeld modules preserve the action and the coaction.
Thus Yetter Drinfeld modules over H form a braided tensor category gyD,
with braiding cy,w (v @ w) = v(_1) - w @ vy, V,W € BYD,veV,weW.
The full subcategory of finite-dimensional objects is rigid.

2.2. Braided vector spaces and Nichols algebras. A braided vector
space is a pair (V,¢) where V is a vector space and ¢ € Aut(V ®@ V) is a
solution of the braid equation (¢®id)(id ®c)(c®id) = (id ®c)(c®id)(id ®c).

If V' is a vector space, then we identify V*®V™* with a subspace of (V&@V')*
by {f @ g,v @w) = (f,w){g,v), for v,w €V, f,g € V*1 If (V,¢) is a finite-
dimensional braided vector space, then (V*, ¢!) is its dual braided vector
space, where ¢! : V*@V* = V*@V*is (c(f®g),v@w) = (f®g,c(vaw)).

We refer to [T] for the basic theory of braided Hopf algebras. If R =
D,,~o R" is a graded braided Hopf algebra with dim R"™ < oo for all n, then

its graded dual R? = D,.>0(R")" is again a graded braided Hopf algebra.

We use the variation of the Sweedler notation A(X) = X ® X@ for the
coproducts in braided Hopf algebras.

The Nichols algebra of a braided vector space (V,c) is a graded braided
Hopf algebra B(V) = @,>0B"(V) with very rigid properties. There are
several alternative definitions of Nichols algebras, see [AS]. We recall now
two of these definitions.

Let T(V) = @n>0T™(V) be the tensor algebra of V; it has a braiding ¢
induced from V. Let T(V)®T(V) = T'(V) ® T(V) with the multiplication
(m ®m)(id®c ® id) and let A : T(V) — T(V)®T(V) be the unique al-
gebra map such that A(v) =v® 1+ 1®wv, for all v € V. Then T(V) is
a (graded) braided Hopf algebra with respect to A. Dually, consider the
cotensor coalgebra T°(V') which is isomorphic to 7'(V') as a vector space. It
bears a multiplication making 7°(V') a braided Hopf algebra with an analo-
gous property, see e. g. [R, AG]. There exists only one morphism of braided
Hopf algebras © : T'(V') — T°(V) that it is the identity on V. The image of
© is the Nichols algebra B(V') of V.

Here is the second description of B(V). Let & be the partially ordered
set of homogeneous Hopf ideals of T'(V') with trivial intersection with k@ V.
Then & has a maximal element J (V) and B(V) =T(V)/J(V) [AS].

IWe prefer this identification instead of (f ® g,v ® w) = (f,v)(g, w) because it gives
the right extension to tensor categories.
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2.3. Pre- and post-Nichols algebras. For several purposes, it is useful to
consider braided Hopf algebras T'(V')/I, for various I € &. These are called
pre-Nichols algebras [M]. Indeed, Bre(V) = {T(V)/I : I € S} is a poset
with ordering given by the surjections; so that it is isomorphic to (&, C). The
minimal element in Pre(V') is T(V), and the maximal is B(V'). Dually, the
poset Post(V') consists of graded Hopf subalgebras S = €,,~., 5™ of T¢(V)
such that S' = V, ordered by the inclusion. Now the minimal element is
B(V) and the maximal is 7¢(V'). We shall call them post-Nichols algebras.

Remark 2.1. The map ® : Pre(V) — Post(V*), ®(R) = R?, is an anti-
isomorphism of posets.

Proof. If R = T(V)/I € Pre(V), then R? = I+: hence, ® is well-defined and
it reverses the order. Also ® is surjective, because for a given S € Post(V*),
I = S+ is a graded Hopf ideal of T(V) and S = (T(V)/I). O

3. NICHOLS ALGEBRAS OF DIAGONAL TYPE

A braided vector space (V,c¢) is of diagonal type if there exist a basis
x1,...,29 of V and a matrix q = (¢;;) € Mp(k™) such that c(z; ® ;) =
gijrj ® x; for all 4,5 € I = Ip. Let H = kG be a group algebra, x; € G
and g; € Z(G) such that x;(¢;) = @ij, 1,7 € I. Then (V,¢c) is realized in
g)ﬂD by h-z; = xi(h)x; and p(z;) = ¢g; ® z; for all ¢ € 1, h/E\ H. We will
only consider the case when H = kZ’, ¢; = a; and xj € Z% is given by
X;j(a;) = qij, 3,5 € I. Here oy, ..., ap is the canonical basis of Z°.

Let V* € ‘;%Zyp; it is also a braided vector space of diagonal type, with
matrix q. Indeed, if y1,...,yp is the dual basis of x1,...,xg, then

(" (yi @ y5),zn @ zk) = (i @ Y5, c(wh @ T3)) = qrie(Yi @ Y5 Tp @ Tp)
= qukdk0in = Qij(Y; @ Yi, T @ Tp,).

Since T'(V') and By = B(V') are Hopf algebras in ﬁ%g)ﬂ), we may consider
the bosonizations T(V)#kZ’ and By#kZ’. We refer to [AS, §1.5] for the
definition of the adjoint action of a Hopf algebra, respectively the braided
adjoint ad. action of a Hopf algebra in 11:%2 YD. Then ad.z ® id = ad(z#1)
if x € T(V) or By, see [AS, (1-21)].

Now the matrix q gives rise to a Z-bilinear form = : Z% x Z¢ — k* by
E(ayj, o) =qji for all j kel If o, B € 70, we also set

The algebra T(V) is Z%-graded. If z,y € T(V) are homogeneous of degrees
a, B € 7Y respectively, then their braided commutator is
(2) [z,y]c = zy — multiplication o ¢(z ® y) = 2y — ¢ugYT.

Note that ad.(z)(y) = [z,y]. whenever z is primitive. We say that = g-
commutes with a family (y;);e; of homogeneous elements if [z, y;]. = 0, for
all ¢ € I. Same considerations are valid in any braided graded Hopf algebra.
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Define a matrix (cf;)i jer with entries in Z U {—oo} by =2,
(3) ¢ :=—min{n € No: (n+1)q,(1 - qjqi;9;;) = 0}, i

We assume from now on that dimB; < oo. Then c;'j € Z for all 7,5 €1
[R, Section 3.2] and we may define the reflections s! € GL(Z?), by s!(a;) =
o — cgjai, i, € I. Let i € I and let p;(V') be the braided vector space of
diagonal type with matrix p;(q), where

(4) pil@)je = Z(s3(ay), s3(an)), kel
The proofs of statements (a) and (b) in the Introduction have as a crucial
ingredient the Weyl groupoid [H1] and the generalized root system [HY1];

the definitions involve the assignements q ~» p;(q) described above. For our
purposes, we just need to recall that

(5) A;r is the set of positive roots of Bj.

3.1. Drinfeld doubles. Let (V,¢) be our fixed braided vector space of di-

agonal type with matrix q, realized in i% YD as above. In this Subsection,
the hypothesis on the dimension of the Nichols algebra is not needed. We
describe here the Drinfeld doubles of the bosonizations T'(V)#kZ?, Bq#k29
with respect to suitable bilinear forms. This construction goes back essen-
tially to Drinfeld [Dr] and was adapted to different settings in various papers;

here we follow [H3].

Definition 3.1. The Drinfeld double Uy, of T'(V)#kZ? is the algebra gen-
erated by elements F;, F;, K;, K ;1, L;, L;l, i € I, with defining relations

XY =YX, X,Y e{KF, LF i},
KK '=LL =1, EF; — F;E; = §; ;(K; — L;).
KiE; = qi; E; K;, LiE; = qj_ilEjLi,
KiFj = q;;' F; K, LiFj = qj;F; L;.

Then Uy is a 70-graded Hopf algebra, where the comultiplication and the
grading are given, for ¢ € I, by

A(K) = K o K, AE)=E®1+K o E,
ALFY = L o LT, A(F)=F®Li+1®F,.
deg(K;) = deg(L;) =0, deg(E;) = a; = — deg(F;).

Let U;IF (respectively, U;") be the subalgebra of U generated by E; (re-
spectively, F;), i € I. Let W = (V*,q"). 2 Moreover, Uy and U, are Hopf

kz°
kZ9

Ki . Ej = QijEj> 5(E’L) = K’L ® E@';

algebras in 7, VD via the actions and coactions

2Here and in Section 5 below, q° corresponds to V* when realized as Yetter-Drinfeld
module over the dual Hopf algebra.
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L; - F; = qjiFj, 0(F;) = L ® F;.
Thus, there are isomorphisms ™ : T(V) — Ug‘, Y~ :T(W) — U, of Hopf

algebras in 1;%:)77) given by ¢ (z;) = E; and ¢~ (y;) = F;.
Let

ug = Uq/(¥™ (Tq) + ¢ ()5

this is the Drinfeld double of Bq#kZe. We denote by E;, F;, K;, L; the
elements of uy that are images of their homonymous in Ug. Let u% (respec-
tively, u;r, ug ) be the subalgebra of 14 generated by Kj;, L;, (respectively,
by Ej, by F;), i € I. Then u® ~ k7%

e there is a triangular decomposition g ~ u;l" u'® Ug's

o ul ~ By ug >~ By

3.2. Lusztig isomorphisms and PBW bases. G. Lusztig defined auto-
morphisms of the quantized enveloping algebra U, (g) of a simple Lie algebra
g, see [L2]. These automorphisms satisfy the relations of the braid group
covering the Weyl group of g; they are instrumental in the construction of
Poincaré-Birkhoff-Witt (PBW) bases of Uj,(g). These results were extended
to the Drinfeld double of a finite-dimensional Nichols algebra of diagonal
type in [H3], with the role of the Weyl group played here by the Weyl
groupoid W;. The definition of the Lusztig isomorphisms in [H3] requires
some hypotheses on the matrix q, that are always satisfied in the finite-
dimensional case. So, let (V,c) and q as above; recall that we assume that
dim B; < co. Fix ¢ € I. We first recall the definition of the isomorphisms
Ug = Uy, (q) [H3]. For i # j € I and n € Ny, define the elements of 1,

Ejn = (ad E;)" Ej, Fjn = (ad F})"F}.

Let E;, F;, K, L; be the generators of u,,). Set
—cgj—l
! . .
(6) a;(q) = (*c?j);m H (959595 — 1), J# 1.
s=0

Theorem 3.2. [H3, 6.11] There are algebra isomorphisms T; : uq — Uy, (
uniquely determined, for h,j € 1, j #1i, by

q)

—c4 _
T(Ky) = K; " Ky, T(E) = FiL7", Ti(Ej) = B

.t _ 1
Ty(Ly) = L; "L, Ti(F) =K 'E; T,(F)=———F, . O

aj(pi(a)) —"
Let w € W, be an element of maximal length and fix a reduced expression
w = 0'1?10'7:2 Oy Ifk c ]IM and h = (hla-'-7hM) c N6W7 set

(7) Bk = 8?1 T Sik—l(aik)?
(8) Eg, =T - T, (Ey,) € (u;—)ﬁk’
(9) EP = phu plv-1. gl

o Br”

By B
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By [CH, Prop. 2.12], A% = {8;|1 <k < M}. Thus, we set
(10) Ng = Nj, = ord ggg € NU {00}, if 8=, €Al
Theorem 3.3. [HY2, 4.5, 4.8, 4.9] The following set is a basis of u&* :
{(EM heNY 0<h, <N, kely} O

3.3. Distinguished pre-Nichols algebra. We now recall the definition
of the distinguished pre-Nichols algebra from [A3]. Let q, V be as above.
First, i € I is a Cartan vertex of q if

q

(11) Gidji = 4, for all j # 1,
recall (3). Then the set of Cartan roots of q is
Oq = {s] 81 ... 51, (i) € Al 17 € Tis a Cartan vertex of p;, ... pipi; (4)}-

A set of defining relations of the Nichols algebra By, i. e. generators of
the ideal J;, was given in [A2, Theorem 3.1]. We now consider the ideal
Iy C Jy of T(V) generated by all the relations in loc. cit., but

e we exclude the power root vectors ENe, o € Oy,

e we add the quantum Serre relations (ad. Ei)l_cgj E; for those i # j
9.
such that q;-” = {qij45i = Yii-
Definition 3.4. [A3, 3.1] The distinguished pre-Nichols algebra of V is
By =T(V)/I,.
Let ug = Uy /(v (Zgt)+1pT (Zy)); this is the Drinfeld double of gq#sz’_ It
was shown in [A3] that there is a triangular decomposition Ty ~ 7 @U° @1y
as above, with 19 ~ u% ~ k72,

Nk 1fﬁk‘¢0m

. . For
oo if B € Oy,

If By is as in (7), k € Ips, then we set Ny = {

simplicity, we introduce
(12) H={heN}:0<h, <Ny, forall k €I}

Theorem 3.5.
(a) [A3, 3.4] There exist algebra isomorphisms T; : Ug — Uy, (q) inducing
the isomorphisms Tj : uqg — U, (q)-
(b) [A3, 3.6] Let E’ﬁk, E" be the elements of uq defined as in (8), (9)
with T; instead of T;. Then {EP|h € H} is a basis of uf . O

As before, we have an isomorphism 1; : gq — ﬁ;’ of Hopf algebras in
}:%Zy@, so we define

Lpy, = Jﬁl(Eﬂk)v k€ In; x" = J—I(Eh)’ h € H.
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Note that E/gk is a well-defined sequence of braided commutators in the

elements FE;, ¢ € [; then g, is the same sequence of braided commutators

. bt
in the x;’s. Also, x? = xgj\‘fa:ﬁj‘éi . :cgi and

B={x"|hcH}
is a basis of gq. The Hilbert series of a graded vector space V = @pen, V"
is Hy = Y ,en, dim V*T™ € Z[[T]]. Tt follows from Theorem 3.5 (b) that
1 1 —TNs deg 8
I_Tdcgﬁ' H 1_Tdog6 .
Br&9Oq

(13)  GKdimBy =9y, Hg = []
Br€Dy

4. LUSZTIG ALGEBRAS

Let q = (gij) € Mp(k*), (V,c) the corresponding braided vector space of
diagonal type and (V*,q) the dual braided vector space. We still assume
that By is finite-dimensional. As in [A+, 3.3.4], we define the Lusztig algebra

Lq of (V,c) as the graded dual of the distinguished pre-Nichols algebra B,
of (V*,q); thus, By C L4. In this Section we establish some basic properties
of this algebra.

4.1. Presentation. In the rest of the section we consider the bilinear form
(,) 1 By x By — k carried from the identification V* @ V* ~ (V. ® V)* in

Section 2.2 which satisfies for all x, 2’ € gq, Y,y € g;
(y,aa’) = () 2)yW,2')  and  (yy,@) = (y,2@)(/,2V).

If h € H, then define yy, € ga‘ by (yn,x) = Onj, j € H. Then yy € L4 and
{yn|h € H} is a basis of L,.
Let (hg)ger,, denote the canonical basis of ZM Itk eIy and B = B €

Ai, then we denote the element y,n, by y(n).

We recall some notation and results from [A3] and [AY]. For i € I/, let
B' = ({af -+ a0 < hj < N;}) C By,
B' = ({a}¥ - 2}i|0 < h; < N;}) € By,
B' = ({affi -+ 2|0 < hy < Nj}) C By,
B' = ({af¥ - 2}i|0 < hj < N;}) € B,
We also denote by L' and L the analogous subspaces of Lg:
= 5 hi ~
L= (yg -y 10 < hy < Nj)) € £,
~ hi b ~
L= ({yh" -y 10 < by < Nj)) € L.

Proposition 4.1. e [AY, 4.2, 4.11] B? (respectively B') is a right (respec-
tively left) coideal subalgebra of By.
o [A3,4.1] If B € g, then xgﬁ q-commutes with every element of gq.
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o [A3,4.9] If B; € Oy, then there exist X(n1,...,ni—1) € Eq such that

A(w?ﬁ) = xN?" ®1+1® xNﬁl

n;—1N, i N,
+ ZLI} H 1$Zi 51®X(n1,...,ni_1). ]
nkENo
Corollary 4.2. Biisa right coideal subalgebra of gq. U

Let Zc‘f be the subalgebra of gq generated by xzﬁvﬁ , BeDy.

Theorem 4.3. [A3, 4.10, 4.13] ZJr is a braided normal Hopf subalgebra of
B Moreover ZJr = CO“Bq, where m denotes the canonical projection ofB
onto By. O

Lemma 4.4. Let x, x1 and xo be elements in the PBW basis B of Eq,
Write A(z) as a linear combination of {a ® bla,b € B}. Assume that r; ®
x9 has a non-zero coefficient in A(x) (in this combination) and xi1xo (the
concatenation of x1 and x2) is in B. Then x = x1x2.

Proof. Suppose that x = l‘g B b with h; > 0. Let
m(x) =min{j € N: h; # 0},

i J
h; hi t hj—t h1
j=1t=1 8,8,

~ h
C" = ({agy - x51€B|E|]>zst h; # 0}).
Observe that if 21 ® xo appears in D(x), then © = zix9. However, if

T1RTo € Zueéi u®6m(“), then x129 ¢ B. Therefore the proof is completed
by showing that

Alz) € D(x)+ Y uw ™™

ueBi
We proceed by induction on 7. If i = 1 then x = xg and xg, is primitive,
h ‘
SO A(w?h) = Y o<k<h (k)qﬁlﬁlxgl ® wﬂ = D(xﬂl) Let ¢ > 1. Now we
proceed by induction on h;. Set 2/ = ZUB lazgz 1 ajgi so x = wg,x’.
Notice that
(14) Azg) €2, @1+ 1®a5 + B 1ol

Indeed the analogous statement for B, was proved in [AY, 4.3], but the same
argument applies for B,. By the inductive hypothesis and (14)

Ax) = A(zg,)A2")

€ (zp, 01+ 1@ +B’1®CZ( Zu@Cm(“>
ue B’
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Notice that (z5 ® 1 +1®25,)D(z') € D(2) + ) 5 U ® C™W) | since

h;—1

(a:gi®l+1®:c5i)(z (hl 1) x%j@xngl’t...mgi—kl@x’) =
t=1 4as,;8;
S (hi—1
/ i t ]’Li—t h
ﬂfﬁi®$+z<t_1) Tp, ®Tg Tt
t=2 8;8;
h;—1

h; —1 _
S (MY ahedtal e
t=1 4B, 8;

and for h; > 1,1 <t < h;, we have (f;ff)qﬁiﬂi + 05, (") s, = (V)0

Also, Bi-1 ¢ Ei, Biis a subalgebra and C'z C Ci for all 2 € By, by [A3,
3.15], so

(B'o CYD(') c BBl OB c Bl o C'.
As xgu € Bi for all u € B' and m(u) = m(xg,u), then
r3,u ® o) = U ® C™@5 %) and  u® xgié'm(“) cu®C™W,

Finally, B lu®CiC™") ¢ Big (! C > e v®C™®) for all u € B'. From
these considerations the proof of the inductive step follows directly. O

Corollary 4.5. If 3 € A, then

r y
VEE
(y(NB))S
(16) ygl) = Bs! ylg), B € Oq, n=5Ng+r r<Ng.

Proof. Arguing inductively, we may suppose that yg_l =(r— 1); 55 yg_l). If

r=xPe gq such that

W) = (V) (s a®) £ 0,
then by Lemma 4.4, x = x% Then

Whoah) = (5t (@h) D ys, (25) ) = (r = Dl (M)gss = (1)},

The second equation follows immediately since <yéN5 )yg), xgﬂ =1 O

The next lemma is crucial for the presentation of the algebra £, by gen-
erators and relations.

Lemma 4.6. Let i € [y, hi < Ng, and h = (hy, ..., har) € NY, then

h h
(17) yh =yt -y,

M

Hence {ygfl) : --yg;”)\ 0 < hi < Ng,} is a basis of Lq.
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Proof. The proof is by induction on ht(h) := >,y h;. If ht(h) =1 then
Yh = g for some 3 € Aj_ and the claim follows by definition.

Let 1 <41 <---<ij <M, n, < NB' and nq :sNﬁv + r # 0 where
7 < Ng, . Lety = ygf 2 yé 1) e Ly. Since {yn | h € H} is a basis of L,, we
can express y as the linear comblnatlon Y = D hen ChYn- Notice that i # 0
if and only if (y, z®) # 0.

If r # 0, then we write y = ﬁygily' where 3y = y(nl_l) ) and

Bil y,Bz
a4 = ds,, 5, - Then (y,2") = 3-(ys, . (z™)P)(y/, («")V)). By inductive hy-
pothesis and Lemma 4.4, ¢, # 0 if and only if h = (0,...,n1,...,ng,0,...).
Moreover, the nonzero ¢y, is equal to 1 and the proof in this case is completed.
N,
If r =0, n1 = sNg, , then we write y = y; B”)y’ Arguing as above, (17)

follows. Hence {?/gl” ?JBAM)\ 0<h; < Nﬁ } is a basis of L4 because so is
{yn : h € H} by definition. 0

We seek for a presentation of L. Let us consider the algebra L presented
by generators ygl), B e Ai, n € N with relations

(18) y$"¥ =0, BeAl -9y
w0 _ (htI (h+5) BeAl,
T/ qpp
a<pfeAl,
200 by yPl= > bmm, 0<h < Na,
meM(a8,h.5) 0<j < Ng;
(Ng) (Na)1 _ ( 7) il 6, (0 a, 3,7 € Oq,
(21) [yﬁ 7ya ] =K y Z ’k';m ya myﬁ 9 a < 'Y < /87

0<Z<NB,O<i<Na
meM(a,8,No—i,Ng—1)

a € Oy,
(22) Y,y = S wy0m, Benl,
0<i<Na, 0<j<Ng.

meM(a,8,Na—1,5)

Here we set

M(ev, B, b, J)—{m—y('“)m U e LP ALY : degm = degy™ + degy'};

«a
<y§3 )y((x])axﬂ'xg 'xﬁ:xa>;

N.
<()()’ v>

N~

degyy ( B)

= deg y((x ) 4 degy

Theorem 4.7. There is an algebra isomorphism T : L. — L given by

T(y§) =", Be AL, n< N
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Proof. We first prove that T is well-defined, i. e. that (18), ..., (22) are
satisfied by the elements yén) € Ly. Relation (18) is trivial since xgﬁ =0if
B ¢ Oq and (19) is clear from (15).

For the other relations, given a < § and h,j € N, we write yé )yg) =
> hen Chyh. Then

en = (59 x®) = (9, (x Dy, (x)?)

is the coefficient of 27, ® xg in the expression of A(x®) as linear combination
of elements of the PBW basis in both sides of the tensor product.

If j < Ny and h < Ng, then y&]),yé ) e By. If ¢, # 0 then xP appears in

the expression of xéxg in elements of the PBW basis, see [Al, Section 3].
Hence, by [HY2, 4.8] x® € B® N B, and relation (20) is clear.

Let a,8 € Oq, j = No and h = Ng. Suppose that there is h =
(h1,...,har) such that ¢, # 0 and h; > N; for some ¢ € ]IM As xg‘ g-

commutes with every element of By, we have xP = cx]ﬂv x" | where h’ =

(ha,... hi — hM) and ¢ = E(hpBy + -+ + hiy1Biv1, Niffi) €

Then A( hy — CA( T, MYA(x"") and hence xP = x]ﬁvz by Proposition 4.1.
For the remaining j such that ¢; # 0 we have j; < N; for all 7 € ).
We write zle ® xg = §(1 @ z)(xy ga—m :EN’B ")(z™ @ 1) where & =
E71((No—m)a, nB)E~ (ma, (Ng—n)B). Therefore arguing as in the proof

of (20) for y(ﬁ o n)y(N“_m), we obtain that y; = y& )mygn), m € L N L.

Here, either m = No, n = Ng so yj = ZE(Nao Nﬁﬁ) é ﬁ), or else
m < No n < Ng. Hence relation (21) follows up to consider the correct
degree for yp,.

For (22), cp # 0 implies x® € B, by the same argument above, since Zq+
is a braided Hopf subalgebra by Theorem 4.3.

Hence, T is a morphism of algebras. By the presentation of L. we can

prove that {ygi’ ygLM) hi < N;} is a basis of L. So, T maps a basis to
a basis by Lemma 4 6 and then it is bijective. U

Example 4.8. Let 0 =3 < N, g € k*, ordq = N. We consider a diagonal
braiding (of super type A) given by a matrix q = (gi;)i jer, such that

qd11 = §23432 = ¢, q12421 = qfl, qo2 = q33 = —1, q13g31 = 1.
Let aji = Z ;3 then AF = {aj, : 1 < j <k <3}, OF = {a1, a3, 13}
J<i<k

The Lusztig algebra L is presented by generators ?/J('Z)’ 1 <5<k <3,
n € N and relations:

yg) . y( ) = y§2) 0,
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n+m
il = ("), T e
ik

[y127y1 c [yl?nyl]c = [y3, yl]c = [y13,yl2]c = [y2>y12}c = [3/23, ylz]c =0,
[Y2, y13]e = (Y23, y13)e = U3, Y13lec = (Y23, Y2]e = [y3, Y23]c = 0,

Je =
Je =
[y2, 1] = (1 — ¢~ e, [y3: y12]e = (1 — @)y13,
[y23, y1le = (1 — ¢~ Vs, (Y3, y2le = (1 — q)y23,
[y23 e =1 —q Ngags)™ y13ygév Y,
o3, vV = (1 — ¢ 1)(6]21Q31)N_ N Vs,
2.t = (1= ¢ Dad 'y Vo,
12,9 = [y13,y1 e = lys. pi™]e = 0,
i uile = Wiy vole = 2, 55 e = [y2s 93 le = lys, i3 Je = 0,
s ,ym]c =[5y yisle = (S5 wele = [y, w8y e = 0,
[913 7y1 )]c = [?Jgg)v Y13 ]c =0,
sy ™M e =1 —q7h) (Q21Q31)N%yg)

N-—1
2N—k—1 (N—Fk N—k
+ Z 1— ¢ ¥ (ggs)* 2 y§ )y§3)y§3 ),
k=1

Indeed, to compute yééV)yEN) in Lq, we need to describe all h € H, cf. (12),
such that »¥¥ ® 20, appears in A(x") with non-zero coefficient (also to be
determined), where (for some numeration of A;")

h hi_ho hs ha _hs _he
X = T3 To3Lo " X193L1o L7 -

One of these x is x%x{v, with coefficient qna,,Nas+Nas- Let h be as needed.

We use the coproduct formulas in [A3, 5.1]. Clearly Ay = 0. From A(:p23)
the only contribution is (1®x23)h2. Then we deduce easily that hg = hs = 0,
and hg = ho = N — h4. In this case, set hy = k to simplify the notation, so

- _ 2N—k=1
(1@ 223)V F (21 @ 23) (21 @ )V F = (guign)*™ 2 =) ® 2.
This gives the last relation, and the others are deduced analogously.

Corollary 4.9. The algebra Lq is finitely generated.

Proof. By (19), it is generated by {yg: 8 € Al} U {ya “).qe Oq} O

Remark 4.10. Actually, the subalgebra B, C L, is generated by its primitive

elements {ya a € II;} where II; denotes the set of simple roots ay, ..., .

Moreover, yy N2 e kX[ (Ns) y&N‘)‘)]C if and only if z)e ® .,”Ugﬁ appears with
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nonzero coefficient in A(miv 7). Hence,
(Yo s € T} U {yN) - a € O, 2l € P(gq)}

generates Lq as an algebra.

Proposition 4.11. Liisa right coideal subalgebra of Lg.

Proof. From Theorem 4.7 we have that yé )yé, ") e Li for i < 7, thus L

is a subalgebra of £;. On the other hand, we know that <ygl),xg:’> =

((yén) L) ((ygl))(l) ,2'). Therefore y; @ yn appears with nonzero coefficient
in A(yén)) if and only if azg appears with nonzero coefficient in the expression

of xhgj in the PBW basis. The last condition implies that zP € B® and
2 € BP. Hence,

Zy y T P IO,

Hence A(yg“) yg;”)) = A(ygi))A(ygj:l) ygz”)) eLi® Ly and the

proof is complete. O

4.2. Noetherianity and Gelfand-Kirillov dimension. We argue as in
the pre-Nichols case [A3, Section 3.4], cf. [DP]. Let us consider the lexico-
graphic order in NSJ, so that hy; < --- < hy, where (h;);cr,, denotes the
canonical basis of ZM.

Lemma 4.12. Let Ly(h) be the subspace of Lq generated by y;, with j < h.
Then Lq(h) is an N} -algebra filtration of L.

Proof. 1t is enough to prove that yny; € L4(h +j) for all h,j € H. First we
consider the case when h = nhy, j = mhy, k1 € Iy, n,m € N. We claim

that yé )yé ™) ¢ Lq(nhy, + mhy). This follows by definition when k < [. If

[ < k, then [yéz),yg;l)]c € icm yg)ilﬂ by Theorem 4.7, thus

M
yg:)yém) € Lq(nhy, + mhy) since Z a;jh; < nhy +mh;.
j=l+1

The Lemma follows by reordering the factors of yyy;, for any h,j € Né\/l g

We now consider the corresponding graded algebra

gr Ly = Openy e L, where g Ly = L4(h)/ Z Lq()
j<h

Lemma 4.13. The algebra gr L is presented by generators y (n ), k € Iy,
n € N, and relations

YIgNk) = Oa Bk‘ ¢ DCI7
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n n+m n+m
y;(g)yl(c)< ) yom,
m

4By By,

[y,g, ),yl( )]C:O, [ < k.

Proof. Let G be the algebra presented by the generators and relations above
and m : G — gr Ly given by y,(cn) — y,(BZ)' By Theorem 4.7, the relations

above hold in gr £,. By a direct computation, G has a basis
{yghl) .. .y(hM) hi < N;}.

On the other hand, yn € Lq(h) — 21, £4(j). Hence the projection of the
PBW basis of L is a basis of gr £; and 7 is an isomorphism. O

Proposition 4.14. The algebra Ly is Noetherian.

Proof. Let Z1 be the subalgebra of gr £, generated by {y/gNB ) B € Oq}.

Then Z* is a quantum affine space and gr £, is a finitely generated free
ZT-module. Hence gr £ is Noetherian and so is L. (]

We compute either from Lemma 4.6 or else from Lemma 4.13 the Gelfand-
Kirillov dimension of L.

Proposition 4.15. GKdim £, = |O,]. O

5. QUANTUM DIVIDED POWER ALGEBRAS

5.1. Definition. Let q, (V,c) be as above with dim By < co. Let W = V*,
with matrix q’, see footnote 2, and let {z(") : B € A%,n € N} be the

generators of L. Here we consider W € lﬁZQyD via the equivalence of

categories between yD nd ¥ ng yD Then we have a natural evaluation

kZe *
map such that (w (X(> w vV = (w®v)(w @v). In this section we define
the quantum divided power algebra Uy of (V, c) and we establish some of its
basic properties.

Let T and A be two copies of Z?, generated by (K;)ser and (L;)icr re-
spectively; so that (Kiil)ie]l and (Liﬂ)ieﬂ are the generators of kI' and
kA, respectively. Set K, = Ki'...Kp’ and Lo = LY ... Ly? for o =
(a1,...,a9) € 7?. Then Ly € k;yp [, ¢ 6 yD with structure determlned
by the formulae

Kyl = oy, plyg”) = K @ yS";
L(j;l . Zé”) — Q5i£ é")7 p(zé )) — g® (")

Therefore, we can consider the bosonizations Lq#kI" and Lg:#kA.

We define next the quantum double of Ly#kI" and Ly #kA following [J,
3.2.2]. For this we need a Hopf pairing between them.
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Lemma 5.1. There is a unique bilinear form (|) : T<(V) x (T¢(W))*°P — k
such that (1|1) =1,

(yilz;) = iy, i,j el
(y]22) = (yV[2) (¥, y € T°(V), 2,2 € T(W);
(yy'|2) = (y!z(”)(y’\z(z)), v,y € T(V), = € T(W);
(yl2) = lyl # 2], y € TY(V), 2 € T(W).

Proof. Let T" =} g s(o) : (T)"(W) — T™(W), where s : S;, — By, is
the Matsumoto section, see [AG, §3.2]. Let (, ) : T%(V) @ T(W)°? — k be
the evaluation map. We define (1]|1) =1,

(ylz) = (v, T"(2)), y € (T9)"(V), 2 € (T)" (W)
(ylz) =0, y e (T9)"(V),z € (T)"(W),n # m.

Note that T = T, ;(T' ® T9) with T;; = Y s(oc~!) where the sum
is over all (i, j)-shuffles 0. Then, for y € (T¢)"(V), z € (T°)"""(W), 2’ €
(1) (W),

(ylz2") = (y. T"(2'2)) = (y, Tipn—i(T' @ T"7)(2'2))
= (y, Tin—i(T'(2) © T"'(2))) = (yV, T" " (2)) (y®, T'(="))
= 1))

The other conditions are clear. O

This bilinear form restricts to Ly x (£4:)°°P and then it can be extended
to a bilinear form between their bosonizations. Then we may define a skew-
Hopf pairing between Lq#KkI" and Lg:#kA, or equivalently:

Corollary 5.2. There is a unique Hopf pairing
() : Lq#KD x (L #KkA)P — k
such that for all Y,Y' € Lo#KT, Z, 7' € (Lo #kA)P, 4 € Lo, K, € K27,
zém) € Lyt and Lg € k7°
YZZ") = (Y1)|2) (Y| Z),  (YY'|2) = (Y]Z0))(Y'|Z(2)),
W) = bnamp, WILE) =0, (Kalz§™) =0, (KalLg) = dap.
Moreover, this pairing satisfies the equation (yK|zL) = (y|z)(K|L). O

Let U, be the Drinfeld double of Lq#kI" and (Ly#kA)“P with respect
to the Hopf pairing in Corollary 5.2. In other words:

Definition 5.3. Let U/; be the unique Hopf algebra such that

(1) Uy = (Lq#kD) ® (L #KkA) as vector spaces,
(2) themaps Y — Y ®1 and Z — 1 ® Z are Hopf algebra morphisms,
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(3) the product is given by
Ye2)(Y'®Z)=(Y}|S(Z20)YY) ® ZiyZ' (Y3 Z(3)
for all Y, Y € L#KT and Z, Z' € (Lq #KA)<P.

By the construction of Uy, there is a triangular decomposition, via the
multiplication, Uy ~ U™ ® U ® Uy where

Ut~ L, Uy ~ Ly, U’ ~k(z° x 7°).

We give a presentation of the algebra U/; by generators and relations. The
tensor product signs in elements of U; will be omitted.

Proposition 5.4. The algebra U, is generated by the elements y(n), z(n),

Kgﬂ, L?;l for B € A1, n € N; and relations (18), ..., (22) between the

y(n) ’s, similar relations for the zén) ’s plus the relations

(23) KﬁKﬁTl = L?LB =1, Ké[lL;ﬂ _ LflKgl
(24) Kocy(n) = qgﬁy(n)Kou Lozy(m - qggyé")La,
(25) Kazg”) = q;gz(n)Ka, Laz/én) = qgaz(n)La,
(26) 2y = (OIS (Ko K3 L7Y) (y®))20) y@ K352@ L,

for all o, € A}, n,m € N. Here in (26) y = y(n) €Ly, z = z,&m) € Ly,
and denote K; = (y(i))(_l) and L; = (z(i))(_l) for the coactions of kI and
kA respectively. O

Note that if ¥y = ya,;, 2 = 24, With a;, a; € Ilg, then y, 2z are primitives
and relation (26) is zy — yz = 0;;(K; — L;).

5.2. Basic properties. Proceeding as in [DP, A3], we will prove that the
algebra U, is Noetherian. For each h,j e H, K € I', L € A, set

di(ynKLz5) = ) (hi + ji) ht(5),
i€lps

d(YhKLZJ) = (dl(thLZJ)7 hla .. '7hM7 jla ce. 7]M> S N%M+1~

Consider the lexicographic order in NgM o Ifue NSM *1 then we set
Ug(u) = span of {ynKLzj:h,jeH, K e, LecA, diynKLz;) <u}.

Lemma 5.5. (Uy(u)) cpent1 is an NZMHL_algebra filtration of Uy.
0

Proof. Tt is enough to prove that (ynKLz;)(ywK'L'zy) € Uy(u+ u’) for
all h,j,h'j € H, K,K' € T and L,L' € A where d(ynKLz;) = u and
d(yh/K,L/Zj/) =u.

First we claim that

(27) di (2§75 =y =) < mht(a) + nhi(B).
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Indeed, since the coproduct in Ly (resp. Lg:) is graded, we have that
lly <m>>< ) < mhi(a) if () # 1 (resp. di((25")?) < nh(p) if
(zﬁ ) # 1). Hence, for K € I" and L € A we have

di ()P KL(=5")?) < mht(a) +nht(B)

and by Proposition 5.4 the claim follows.
Since K, L g-commutes with all elements of L4 and Ly for all K € T’
and L € A. We proceed as in Lemma 4.12 and we reduce the proof to the

product between zg) and ygjn) It follows directly by (27) that

2y € Up(mt(B;) +nht(5;),67,6,). O

We consider the associated graded algebra grify; = @V6N3M+1qu where
Uy¥ =Ug(V)] D uey Un(1).

(n) _(n) po+1

] 7KJ 9

Corollary 5.6. The algebra gr Uy is presented by generators Vi 2
L;-tl, j €Iy, n € N and relations

RS = SR, R,Se{K;" L7 :jely}
Kngf1 = LBLgl =1 y,(fn)zl(m) = zl(m)y,(cn)
YI(cNk) 0, Bk ¢ Oq, Z;Nk) =0, B¢ g,
e ) il LI B
45, 6y, 4By,
[y]gn),ygm)]c =0, [<k, [z,(cn),zl(m)]C =0, [<k,
Kayé") = qagyé")Ka, Ko2§Y = q;gzé")Ka,

Proof. The proof of this statement is similar to the proof of Lemma 4.13 if
we check that y,in)zl(m) = zl(m)y,(fn) for all y,(cn) € Ly and zl(m) € Lyt; but this
follows by (27). O

Proposition 5.7. The algebra Uy is Noetherian and GKdim U, = 2|O4]+26.

Pmof Let Z be the subalgebra of grify generated by {K;, L; : i € I} and
{ (NB : B € Oq}. Then Z is the localization of a quantum affine
space and griy is a free Z-module of rank Hz‘eﬂM N;. Therefore grify is

Noetherian and so is U;. Moreover, by [KL, Prop. 6.6],
GKdimU,; = GKdimgrif; = GKdim Z = 2|Oq| +20. O
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