
THE QUANTUM DIVIDED POWER ALGEBRA OF A

FINITE-DIMENSIONAL NICHOLS ALGEBRA OF

DIAGONAL TYPE
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Abstract. Let Bq be a finite-dimensional Nichols algebra of diagonal
type corresponding to a matrix q. We consider the graded dual Lq of

the distinguished pre-Nichols algebra B̃q from [A3] and the quantum
divided power algebra Uq, a suitable Drinfeld double of Lq#kZθ. We
provide basis and presentations by generators and relations of Lq and
Uq, and prove that they are noetherian and have finite Gelfand-Kirillov
dimension.

1. Introduction

We fix an algebraically closed field k of characteristic zero. Let g be
a finite-dimensional simple Lie algebra and q ∈ k a root of 1 (with some
restrictions depending on g). In the theory of quantum groups, there are
several Hopf algebras attached to g and q:

◦ The Frobenius-Lusztig kernel (or small quantum group) uq(g).
◦ The q-divided power algebra Uq(g), see [L1, L2].
◦ The quantized enveloping algebra Uq(g), see [DK, DKP, DP].

These Hopf algebras have the following features:

� They admit triangular decompositions, e. g. uq(g) ' u+
q (g)⊗u0

q(g)⊗u−q (g).
� The 0-part of this triangular decomposition is a Hopf subalgebra, actually

a group algebra.
� The positive and negative parts are not Hopf subalgebras, but rather Hopf

algebras in braided tensor categories, braided Hopf algebras for short.
� There are morphisms u+

q (g) ↪→ U+
q (g), U+

q (g) � u+
q (g) of braided Hopf

algebras, and ditto for the full Hopf algebras.
� The full Hopf algebras can be reconstructed from the positive part by

standard procedures (bosonization, the Drinfeld double).
� The positive part u+

q (g) has very special properties– it is a Nichols algebra.

Indeed, u+
q (g) is completely determined by the matrix q = (qdiaij ), where

(aij) is the Cartan matrix of g and di ∈ {1, 2, 3} make (diaij) symmetric. In
other words, u+

q (g) is the Nichols algebra of diagonal type associated to q.
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The knowledge of the finite-dimensional Nichols algebras of diagonal type
is crucial in the classification program of finite-dimensional Hopf algebras
[AS]. Two remarkable results on these Nichols algebras are:

(a) The explicit classification [H2].
(b) The determination of their defining relations [A1, A2].

Let q ∈ kθ×θ with Nichols algebra Bq and assume that dimBq <∞. There
are several reasons to consider the analogues of the braided Hopf algebras
U+
q (g) and U+

q (g), for Bq, motivated by the classification of Hopf algebras
with finite Gelfand-Kirillov dimension and by representation theory. The

analogue B̃q of U+
q (g) was introduced in [A2] and studied in [A3] under

the name of distinguished pre-Nichols algebra. The definition of B̃q is by
discarding some of the relations in [A2]. The purpose of this paper is to

study the analogue Lq of U+
q (g); this is the graded dual of B̃q and although

it could be called the distinguished post-Nichols algebra of q, we prefer to
name it the Lusztig algebra as in [A+], where mentioned in passing.

The paper is organized as follows. Section 2 is devoted to preliminaries
and Section 3 to Nichols algebras of diagonal type and distinguished pre-
Nichols algebras. In Section 4 we discuss Lusztig algebras: we provide a
basis and a presentation by generators and relations, and prove that they
are noetherian and have finite Gelfand-Kirillov dimension. In Section 5 we
introduce the quantum divided power algebra Uq, that is a suitable Drin-
feld double of Lq#kZθ; we also provide a presentation by generators and
relations, and prove that it is noetherian and has finite Gelfand-Kirillov
dimension.

Remark 1.1. The quantum divided power algebras were introduced and
studied in [GH, Hu]; they correspond to Nichols algebras of Cartan type
A1 × · · · ×A1.

Acknowledgement. We thank the referee for the careful reading of the
manuscript.

2. Preliminaries and conventions

2.1. Conventions. If θ ∈ N, then we set Iθ := {1, 2, ..., θ}; or simply I if no

confusion arises. If Γ is a group, then Γ̂ is its group of characters, that is,
one-dimensional representations.

Let Sn and Bn be the symmetric and braid groups in n letters, with
standard generators τi = (i i+ 1), respectively σi, i ∈ In−1. Let s : Sθ → Bθ
be the (Matsumoto) section of the projection π : Bθ � Sθ, π(σi) = τi,
i ∈ In−1, given by s(ω) = σi1σi2 ...σij , whenever ω = τi1τi2 ...τij ∈ Sθ has
length j.

We consider the q-numbers in the polynomial ring Z[q], n ∈ N, 0 ≤ i ≤ n,

(n)q =

n−1∑
j=0

qj , (n)!
q =

n∏
j=1

(j)q,

(
n

i

)
q

=
(n)!

q

(n− i)!
q(i)!

q

.
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If q ∈ k, then (n)q, (n)!
q,
(
n
i

)
q

are the respective evaluations at q.

We use the Heynemann-Sweedler notation for coalgebras and comodules;
the counit of a coalgebra is denoted by ε, and the antipode of a Hopf algebra,
by S. All Hopf algebras in this paper have bijective antipode.

Let H be a Hopf algebra. A Yetter-Drinfeld module V over H is a H-
module and a H-comodule satisfying the compatibility condition

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0), h ∈ H, v ∈ V.

Morphisms of Yetter-Drinfeld modules preserve the action and the coaction.
Thus Yetter Drinfeld modules over H form a braided tensor category H

HYD,
with braiding cV,W (v ⊗ w) = v(−1) · w ⊗ v(0), V,W ∈ H

HYD, v ∈ V , w ∈ W .
The full subcategory of finite-dimensional objects is rigid.

2.2. Braided vector spaces and Nichols algebras. A braided vector
space is a pair (V, c) where V is a vector space and c ∈ Aut(V ⊗ V ) is a
solution of the braid equation (c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

If V is a vector space, then we identify V ∗⊗V ∗ with a subspace of (V ⊗V )∗

by 〈f ⊗ g, v⊗w〉 = 〈f, w〉〈g, v〉, for v, w ∈ V , f, g ∈ V ∗.1 If (V, c) is a finite-
dimensional braided vector space, then (V ∗, ct) is its dual braided vector
space, where ct : V ∗⊗V ∗ → V ∗⊗V ∗ is 〈ct(f ⊗g), v⊗w〉 = 〈f ⊗g, c(v⊗w)〉.

We refer to [T] for the basic theory of braided Hopf algebras. If R =⊕
n≥0R

n is a graded braided Hopf algebra with dimRn <∞ for all n, then

its graded dual Rd =
⊕

n≥0(Rn)∗ is again a graded braided Hopf algebra.

We use the variation of the Sweedler notation ∆(X) = X(1) ⊗X(2) for the
coproducts in braided Hopf algebras.

The Nichols algebra of a braided vector space (V, c) is a graded braided
Hopf algebra B(V ) = ⊕n≥0Bn(V ) with very rigid properties. There are
several alternative definitions of Nichols algebras, see [AS]. We recall now
two of these definitions.

Let T (V ) = ⊕n≥0T
n(V ) be the tensor algebra of V ; it has a braiding c

induced from V . Let T (V )⊗T (V ) = T (V ) ⊗ T (V ) with the multiplication
(m ⊗ m)(id⊗c ⊗ id) and let ∆ : T (V ) → T (V )⊗T (V ) be the unique al-
gebra map such that ∆(v) = v ⊗ 1 + 1 ⊗ v, for all v ∈ V . Then T (V ) is
a (graded) braided Hopf algebra with respect to ∆. Dually, consider the
cotensor coalgebra T c(V ) which is isomorphic to T (V ) as a vector space. It
bears a multiplication making T c(V ) a braided Hopf algebra with an analo-
gous property, see e. g. [R, AG]. There exists only one morphism of braided
Hopf algebras Θ : T (V )→ T c(V ) that it is the identity on V . The image of
Θ is the Nichols algebra B(V ) of V .

Here is the second description of B(V ). Let S be the partially ordered
set of homogeneous Hopf ideals of T (V ) with trivial intersection with k⊕V .
Then S has a maximal element J (V ) and B(V ) = T (V )/J (V ) [AS].

1We prefer this identification instead of 〈f ⊗ g, v ⊗ w〉 = 〈f, v〉〈g, w〉 because it gives
the right extension to tensor categories.
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2.3. Pre- and post-Nichols algebras. For several purposes, it is useful to
consider braided Hopf algebras T (V )/I, for various I ∈ S. These are called
pre-Nichols algebras [M]. Indeed, Pre(V ) = {T (V )/I : I ∈ S} is a poset
with ordering given by the surjections; so that it is isomorphic to (S,⊆). The
minimal element in Pre(V ) is T (V ), and the maximal is B(V ). Dually, the
poset Post(V ) consists of graded Hopf subalgebras S =

⊕
n≥0 S

n of T c(V )

such that S1 = V , ordered by the inclusion. Now the minimal element is
B(V ) and the maximal is T c(V ). We shall call them post-Nichols algebras.

Remark 2.1. The map Φ : Pre(V ) → Post(V ∗), Φ(R) = Rd, is an anti-
isomorphism of posets.

Proof. If R = T (V )/I ∈ Pre(V ), then Rd = I⊥: hence, Φ is well-defined and
it reverses the order. Also Φ is surjective, because for a given S ∈ Post(V ∗),
I = S⊥ is a graded Hopf ideal of T (V ) and S = (T (V )/I)d. �

3. Nichols algebras of diagonal type

A braided vector space (V, c) is of diagonal type if there exist a basis
x1, . . . , xθ of V and a matrix q = (qij) ∈ Mθ(k

×) such that c(xi ⊗ xj) =

qijxj ⊗ xi for all i, j ∈ I = Iθ. Let H = kG be a group algebra, χi ∈ Ĝ
and gj ∈ Z(G) such that χj(gi) = qij , i, j ∈ I. Then (V, c) is realized in
H
HYD by h · xi = χi(h)xi and ρ(xi) = gi ⊗ xi for all i ∈ I, h ∈ H. We will

only consider the case when H = kZθ, gi = αi and χj ∈ Ẑθ is given by

χj(αi) = qij , i, j ∈ I. Here α1, . . . , αθ is the canonical basis of Zθ.
Let V ∗ ∈ kZθ

kZθYD; it is also a braided vector space of diagonal type, with
matrix q. Indeed, if y1, . . . , yθ is the dual basis of x1, . . . , xθ, then

〈ct(yi ⊗ yj), xh ⊗ xk〉 = 〈yi ⊗ yj , c(xh ⊗ xk)〉 = qhk〈yi ⊗ yj , xk ⊗ xh〉
= qhkδjkδih = qij〈yj ⊗ yi, xh ⊗ xk〉.

Since T (V ) and Bq = B(V ) are Hopf algebras in kZθ
kZθYD, we may consider

the bosonizations T (V )#kZθ and Bq#kZθ. We refer to [AS, §1.5] for the
definition of the adjoint action of a Hopf algebra, respectively the braided

adjoint adc action of a Hopf algebra in kZθ
kZθYD. Then adc x⊗ id = ad(x#1)

if x ∈ T (V ) or Bq, see [AS, (1-21)].
Now the matrix q gives rise to a Z-bilinear form Ξ : Zθ × Zθ → k× by

Ξ(αj , αk) = qjk for all j, k ∈ I. If α, β ∈ Zθ, we also set

qαβ = Ξ(α, β).(1)

The algebra T (V ) is Zθ-graded. If x, y ∈ T (V ) are homogeneous of degrees
α, β ∈ Zθ respectively, then their braided commutator is

[x, y]c = xy −multiplication ◦ c(x⊗ y) = xy − qαβyx.(2)

Note that adc(x)(y) = [x, y]c whenever x is primitive. We say that x q-
commutes with a family (yi)i∈I of homogeneous elements if [x, yi]c = 0, for
all i ∈ I. Same considerations are valid in any braided graded Hopf algebra.
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Define a matrix (cqij)i,j∈I with entries in Z ∪ {−∞} by cqii = 2,

cqij := −min {n ∈ N0 : (n+ 1)qii(1− qniiqijqji) = 0} , i 6= j.(3)

We assume from now on that dimBq < ∞. Then cqij ∈ Z for all i, j ∈ I
[R, Section 3.2] and we may define the reflections sqi ∈ GL(Zθ), by sqi (αj) =
αj − cqijαi, i, j ∈ I. Let i ∈ I and let ρi(V ) be the braided vector space of

diagonal type with matrix ρi(q), where

ρi(q)jk = Ξ(sqi (αj), s
q
i (αk)), j, k ∈ I.(4)

The proofs of statements (a) and (b) in the Introduction have as a crucial
ingredient the Weyl groupoid [H1] and the generalized root system [HY1];
the definitions involve the assignements q ρi(q) described above. For our
purposes, we just need to recall that

∆+
q is the set of positive roots of Bq.(5)

3.1. Drinfeld doubles. Let (V, c) be our fixed braided vector space of di-

agonal type with matrix q, realized in kZθ
kZθYD as above. In this Subsection,

the hypothesis on the dimension of the Nichols algebra is not needed. We
describe here the Drinfeld doubles of the bosonizations T (V )#kZθ, Bq#kZθ
with respect to suitable bilinear forms. This construction goes back essen-
tially to Drinfeld [Dr] and was adapted to different settings in various papers;
here we follow [H3].

Definition 3.1. The Drinfeld double Uq of T (V )#kZθ is the algebra gen-

erated by elements Ei, Fi, Ki, K
−1
i , Li, L

−1
i , i ∈ I, with defining relations

XY = Y X, X, Y ∈{K±i , L
±
i : i ∈ I},

KiK
−1
i = LiL

−1
i = 1, EiFj − FjEi = δi,j(Ki − Li).

KiEj = qijEjKi, LiEj = q−1
ji EjLi,

KiFj = q−1
ij FjKi, LiFj = qjiFjLi.

Then Uq is a Zθ-graded Hopf algebra, where the comultiplication and the
grading are given, for i ∈ I, by

∆(K±1
i ) = K±1

i ⊗K
±1
i , ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei,

∆(L±1
i ) = L±1

i ⊗ L
±1
i , ∆(Fi) = Fi ⊗ Li + 1⊗ Fi.

deg(Ki) = deg(Li) = 0, deg(Ei) = αi = −deg(Fi).

Let U+
q (respectively, U−q ) be the subalgebra of Uq generated by Ei (re-

spectively, Fi), i ∈ I. Let W = (V ∗, qt). 2 Moreover, U+
q and U−q are Hopf

algebras in kZθ
kZθYD via the actions and coactions

Ki · Ej = qijEj , δ(Ei) = Ki ⊗ Ei;

2Here and in Section 5 below, qt corresponds to V ∗ when realized as Yetter-Drinfeld
module over the dual Hopf algebra.
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Li · Fj = qjiFj , δ(Fi) = Li ⊗ Fi.

Thus, there are isomorphisms ψ+ : T (V )→ U+
q , ψ− : T (W )→ U−q of Hopf

algebras in kZθ
kZθYD given by ψ+(xi) = Ei and ψ−(yi) = Fi.

Let

uq = Uq/(ψ
−(Jqt) + ψ+(Jq));

this is the Drinfeld double of Bq#kZθ. We denote by Ei, Fi, Ki, Li the
elements of uq that are images of their homonymous in Uq. Let u0 (respec-
tively, u+

q , u−q ) be the subalgebra of uq generated by Ki, Li, (respectively,

by Ei, by Fi), i ∈ I. Then u0 ' kZ2θ;

• there is a triangular decomposition uq ' u+
q ⊗ u0 ⊗ u−q ;

• u+
q ' Bq, u−q ' Bqt .

3.2. Lusztig isomorphisms and PBW bases. G. Lusztig defined auto-
morphisms of the quantized enveloping algebra Uq(g) of a simple Lie algebra
g, see [L2]. These automorphisms satisfy the relations of the braid group
covering the Weyl group of g; they are instrumental in the construction of
Poincaré-Birkhoff-Witt (PBW) bases of Uq(g). These results were extended
to the Drinfeld double of a finite-dimensional Nichols algebra of diagonal
type in [H3], with the role of the Weyl group played here by the Weyl
groupoid Wq. The definition of the Lusztig isomorphisms in [H3] requires
some hypotheses on the matrix q, that are always satisfied in the finite-
dimensional case. So, let (V, c) and q as above; recall that we assume that
dimBq < ∞. Fix i ∈ I. We first recall the definition of the isomorphisms
uq → uρi(q) [H3]. For i 6= j ∈ I and n ∈ N0, define the elements of uq

Ej,n = (adEi)
nEj , Fj,n = (adFi)

nFj .

Let Ej , F j , Kj , Lj be the generators of uρi(q). Set

(6) aj(q) := (−cqij)
!
qii

−cqij−1∏
s=0

(qsiiqijqji − 1), j 6= i.

Theorem 3.2. [H3, 6.11] There are algebra isomorphisms Ti : uq → uρi(q)
uniquely determined, for h, j ∈ I, j 6= i, by

Ti(Kh) = K
−cqih
i Kh, Ti(Ei) = F iL

−1
i , Ti(Ej) = Ej,−cqij

,

Ti(Lh) = L
−cqih
i Lh, Ti(Fi) = K−1

i Ei, Ti(Fj) =
1

aj(ρi(q))
F j,−cqij

. �

Let w ∈ Wq be an element of maximal length and fix a reduced expression
w = σqi1σi2 · · ·σiM . If k ∈ IM and h = (h1, . . . , hM ) ∈ NM0 , set

βk = sqi1 · · · sik−1
(αik),(7)

Eβk = Ti1 · · ·Tik−1
(Eik) ∈ (u+

q )βk ,(8)

Eh = EhMβME
hM−1

βM−1
· · ·Eh1β1 .(9)
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By [CH, Prop. 2.12], ∆q
+ = {βk|1 ≤ k ≤M}. Thus, we set

Nβ = Nk = ord qββ ∈ N ∪ {∞}, if β = βk ∈ ∆q
+.(10)

Theorem 3.3. [HY2, 4.5, 4.8, 4.9] The following set is a basis of u+
q :

{Eh |h ∈ NM0 , 0 ≤ hk < Nk, k ∈ IM}. �

3.3. Distinguished pre-Nichols algebra. We now recall the definition
of the distinguished pre-Nichols algebra from [A3]. Let q, V be as above.
First, i ∈ I is a Cartan vertex of q if

qijqji = q
cqij
ii , for all j 6= i,(11)

recall (3). Then the set of Cartan roots of q is

Oq = {sqi1si2 . . . sik(αi) ∈ ∆q
+ : i ∈ I is a Cartan vertex of ρik . . . ρi2ρi1(q)}.

A set of defining relations of the Nichols algebra Bq, i. e. generators of
the ideal Jq, was given in [A2, Theorem 3.1]. We now consider the ideal
Iq ⊂ Jq of T (V ) generated by all the relations in loc. cit., but

• we exclude the power root vectors ENαα , α ∈ Oq,

• we add the quantum Serre relations (adcEi)
1−cqijEj for those i 6= j

such that q
cqij
ii = qijqji = qii.

Definition 3.4. [A3, 3.1] The distinguished pre-Nichols algebra of V is

B̃q = T (V )/Iq.

Let ũq = Uq/(ψ
−(Iqt)+ψ+(Iq)); this is the Drinfeld double of B̃q#kZθ. It

was shown in [A3] that there is a triangular decomposition ũq ' ũ+
q ⊗ ũ0⊗ ũ−q

as above, with ũ0 ' u0 ' kZ2θ.

If βk is as in (7), k ∈ IM , then we set Ñk =

{
Nk if βk /∈ Oq,

∞ if βk ∈ Oq,
. For

simplicity, we introduce

H = {h ∈ NM0 : 0 ≤ hk < Ñk, for all k ∈ IM}(12)

Theorem 3.5.

(a) [A3, 3.4] There exist algebra isomorphisms T̃i : ũq → ũρi(q) inducing
the isomorphisms Ti : uq → uρi(q).

(b) [A3, 3.6] Let Ẽβk , Ẽh be the elements of ũq defined as in (8), (9)

with T̃i instead of Ti. Then {Ẽh |h ∈ H} is a basis of ũ+
q . �

As before, we have an isomorphism ψ̃ : B̃q → ũ+
q of Hopf algebras in

kZθ
kZθYD, so we define

xβk = ψ̃−1(Ẽβk), k ∈ IM ; xh = ψ̃−1(Ẽh), h ∈ H.
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Note that Ẽβk is a well-defined sequence of braided commutators in the
elements Ei, i ∈ I; then xβk is the same sequence of braided commutators

in the xi’s. Also, xh = xhMβMx
hM−1

βM−1
· · ·xh1β1 and

B = {xh |h ∈ H}

is a basis of B̃q. The Hilbert series of a graded vector space V = ⊕n∈N0V
n

is HV =
∑

n∈N0
dimV n Tn ∈ Z[[T ]]. It follows from Theorem 3.5 (b) that

GKdim B̃q = |Oq|, HB̃q =
∏

βk∈Oq

1

1− T deg β
.
∏

βk /∈Oq

1− TNβ deg β

1− T deg β
.(13)

4. Lusztig algebras

Let q = (qij) ∈ Mθ(k
×), (V, c) the corresponding braided vector space of

diagonal type and (V ∗, q) the dual braided vector space. We still assume
that Bq is finite-dimensional. As in [A+, 3.3.4], we define the Lusztig algebra

Lq of (V, c) as the graded dual of the distinguished pre-Nichols algebra B̃q
of (V ∗, q); thus, Bq ⊆ Lq. In this Section we establish some basic properties
of this algebra.

4.1. Presentation. In the rest of the section we consider the bilinear form
〈 , 〉 : B̃q × B̃∗q → k carried from the identification V ∗ ⊗ V ∗ ' (V ⊗ V )∗ in

Section 2.2 which satisfies for all x, x′ ∈ B̃q, y, y′ ∈ B̃∗q
〈y, xx′〉 = 〈y(2), x〉〈y(1), x′〉 and 〈yy′, x〉 = 〈y, x(2)〉〈y′, x(1)〉.

If h ∈ H, then define yh ∈ B̃∗q by 〈yh,x
j〉 = δh,j, j ∈ H. Then yh ∈ Lq and

{yh |h ∈ H} is a basis of Lq.
Let (hk)k∈IM denote the canonical basis of ZM . If k ∈ IM and β = βk ∈

∆q
+, then we denote the element ynhk by y

(n)
β .

We recall some notation and results from [A3] and [AY]. For i ∈ IM , let

Bi = 〈{xhiβi · · ·x
h1
β1
|0 ≤ hj < Nj}〉 ⊆ Bq,

Bi = 〈{xhMβM · · ·x
hi
βi
|0 ≤ hj < Nj}〉 ⊆ Bq,

B̃i = 〈{xhiβi · · ·x
h1
β1
|0 ≤ hj < Ñj}〉 ⊆ B̃q,

B̃i = 〈{xhMβM · · ·x
hi
βi
|0 ≤ hj < Ñj}〉 ⊆ B̃q.

We also denote by L̃i and L̃i the analogous subspaces of Lq:

L̃i = 〈{y(h1)
β1
· · · y(hi)

βi
|0 ≤ hj < Ñj}〉 ⊆ Lq,

L̃i = 〈{y(hi)
βi
· · · y(hM )

βM
|0 ≤ hj < Ñj}〉 ⊆ Lq.

Proposition 4.1. • [AY, 4.2, 4.11] Bi (respectively Bi) is a right (respec-
tively left) coideal subalgebra of Bq.
• [A3, 4.1] If β ∈ Oq, then x

Nβ
β q-commutes with every element of B̃q.
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• [A3, 4.9] If βi ∈ Oq, then there exist X(n1, . . . , ni−1) ∈ B̃q such that

∆(x
Nβi
βi

) = x
Nβi
βi
⊗ 1 + 1⊗ xNβiβi

+
∑
nk∈N0

x
ni−1Nβi−1

βi−1
. . . x

n1Nβ1
β1

⊗X(n1, . . . , ni−1). �

Corollary 4.2. B̃i is a right coideal subalgebra of B̃q. �

Let Z+
q be the subalgebra of B̃q generated by x

Nβ
β , β ∈ Oq.

Theorem 4.3. [A3, 4.10, 4.13] Z+
q is a braided normal Hopf subalgebra of

B̃q. Moreover Z+
q = coπB̃q, where π denotes the canonical projection of B̃q

onto Bq. �

Lemma 4.4. Let x, x1 and x2 be elements in the PBW basis B of B̃q.
Write ∆(x) as a linear combination of {a ⊗ b|a, b ∈ B}. Assume that x1 ⊗
x2 has a non-zero coefficient in ∆(x) (in this combination) and x1x2 (the
concatenation of x1 and x2) is in B. Then x = x1x2.

Proof. Suppose that x = xhiβi · · ·x
h1
β1

with hi > 0. Let

m(x) = min{j ∈ N : hj 6= 0},

D(x) =
i∑

j=1

hj∑
t=1

(
hj
t

)
qβjβj

xhiβi · · ·x
t
βj
⊗ xhj−tβj

· · ·xh1β1 + 1⊗ x,

C̃i = 〈{xhMβM · · ·x
h1
β1
∈ B| ∃j > i s.t. hj 6= 0}〉.

Observe that if x1 ⊗ x2 appears in D(x), then x = x1x2. However, if

x1⊗x2 ∈
∑

u∈B̃i u⊗ C̃
m(u), then x1x2 /∈ B. Therefore the proof is completed

by showing that

∆(x) ∈ D(x) +
∑
u∈B̃i

u⊗ C̃m(u).

We proceed by induction on i. If i = 1, then x = xhβ1 and xβ1 is primitive,

so ∆(xhβ1) =
∑

0≤k≤h
(
h
k

)
qβ1β1

xkβ1 ⊗ xh−kβ1
= D(xhβ1). Let i > 1. Now we

proceed by induction on hi. Set x′ = xhi−1
βi

x
hi−1

βi−1
· · ·xh1β1 , so x = xβix

′.

Notice that

∆(xβi) ∈ xβi ⊗ 1 + 1⊗ xβi + B̃i−1 ⊗ C̃i.(14)

Indeed the analogous statement for Bq was proved in [AY, 4.3], but the same

argument applies for B̃q. By the inductive hypothesis and (14)

∆(x) = ∆(xβi)∆(x′)

∈
(
xβi ⊗ 1 + 1⊗ xβi + B̃i−1 ⊗ C̃i

)(
D(x′) +

∑
u∈B̃i

u⊗ C̃m(u)
)
.
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Notice that (xβi ⊗ 1 + 1⊗ xβi)D(x′) ∈ D(x) +
∑

u∈B̃i u⊗ C̃
m(u), since

(xβi ⊗ 1 + 1⊗ xβi)
( hi−1∑
t=1

(
hi − 1

t

)
qβiβi

xtβi ⊗ x
hi−1−t
βi

· · ·xh1β1 + 1⊗ x′
)

=

xβi ⊗ x
′ +

hi∑
t=2

(
hi − 1

t− 1

)
qβiβi

xtβi ⊗ x
hi−t
βi
· · ·xh1β1+

hi−1∑
t=1

qtβiβi

(
hi − 1

t

)
qβiβi

xtβi ⊗ x
hi−t
βi
· · ·xh1β1 + 1⊗ xβix

′

and for hi > 1, 1 ≤ t < hi, we have
(
hi−1
t−1

)
qβiβi

+ qtβiβi
(
hi−1
t

)
qβiβi

=
(
hi
t

)
qβiβi

.

Also, B̃i−1 ⊂ B̃i, B̃i is a subalgebra and C̃iz ⊂ C̃i for all z ∈ B̃q, by [A3,
3.15], so

(B̃i−1 ⊗ C̃i)D(x′) ⊂ B̃i−1B̃i ⊗ C̃iB̃i ⊂ B̃i ⊗ C̃i.

As xβiu ∈ B̃i for all u ∈ B̃i and m(u) = m(xβiu), then

xβiu⊗ C̃
m(u) = xβiu⊗ C̃

m(xβiu) and u⊗ xβiC̃
m(u) ⊂ u⊗ C̃m(u).

Finally, B̃i−1u⊗C̃iC̃m(u) ⊂ B̃i⊗C̃i ⊂
∑

v∈B̃i v⊗C̃
m(v) for all u ∈ B̃i. From

these considerations the proof of the inductive step follows directly. �

Corollary 4.5. If β ∈ ∆q
+, then

y
(r)
β =

yrβ
(r)!

qββ

, r < Nβ = ord qββ ;(15)

y
(n)
β =

(y
(Nβ)
β )s

s!
y

(r)
β , β ∈ Oq, n = sNβ + r, r < Nβ.(16)

Proof. Arguing inductively, we may suppose that yr−1
β = (r−1)!

qββ
y

(r−1)
β . If

x = xh ∈ B̃q such that

〈yrβ, x〉 = 〈yr−1
β , x(1)〉〈yβ, x(2)〉 6= 0,

then by Lemma 4.4, x = xrβ. Then

〈yrβ, xrβ〉 = 〈yr−1
β , (xrβ)(1)〉〈yβ, (xrβ)(2)〉 = (r − 1)!

qββ
(r)qββ = (r)!

qββ
.

The second equation follows immediately since 〈y(Nβ)
β y

(r)
β , x

Nβ+r
β 〉 = 1. �

The next lemma is crucial for the presentation of the algebra Lq by gen-
erators and relations.

Lemma 4.6. Let i ∈ IM , hi < Ñβi and h = (h1, . . . , hM ) ∈ NM0 , then

yh = y
(h1)
β1
· · · y(hM )

βM
.(17)

Hence {y(h1)
β1
· · · y(hM )

βM
| 0 ≤ hi < Ñβi} is a basis of Lq.
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Proof. The proof is by induction on ht(h) :=
∑

i∈IM hi. If ht(h) = 1 then

yh = yβ for some β ∈ ∆q
+ and the claim follows by definition.

Let 1 ≤ i1 < · · · < ij ≤ M , nk < Ñβik
and n1 = sNβi1

+ r 6= 0 where

r < Nβi1
. Let y = y

(n1)
βi1

. . . y
(nj)
βij
∈ Lq. Since {yh |h ∈ H} is a basis of Lq, we

can express y as the linear combination y =
∑

h∈H chyh. Notice that ch 6= 0

if and only if 〈y, xh〉 6= 0.

If r 6= 0, then we write y = 1
(r)q

yβi1y
′ where y′ = y

(n1−1)
βi1

. . . y
(nj)
βij

and

q = qβi1βi1 . Then 〈y, xh〉 = 1
(r)q
〈yβi1 , (x

h)(2)〉〈y′, (xh)(1)〉. By inductive hy-

pothesis and Lemma 4.4, ch 6= 0 if and only if h = (0, . . . , n1, . . . , nk, 0, . . . ).
Moreover, the nonzero ch is equal to 1 and the proof in this case is completed.

If r = 0, n1 = sNβi1
, then we write y = y

(Nβi1
)

βi1
y′. Arguing as above, (17)

follows. Hence {y(h1)
β1
· · · y(hM )

βM
| 0 ≤ hi < Ñβi} is a basis of Lq because so is

{yh : h ∈ H} by definition. �

We seek for a presentation of Lq. Let us consider the algebra L presented

by generators y
(n)
β , β ∈ ∆q

+, n ∈ N with relations

y
(Nβ)
β = 0, β ∈ ∆q

+ −Oq;(18)

y
(h)
β y

(j)
β =

(
h+ j

j

)
qββ

y
(h+j)
β ,

β ∈ ∆q
+,

h, j ∈ N ;(19)

[y
(h)
β , y(j)

α ]c =
∑

m∈M(α,β,h,j)

κmm,
α < β ∈ ∆q

+,
0 < h < Nα,
0 < j < Nβ;

(20)

[y
(Nβ)
β , y(Nα)

α ]c = κγy
(Nγ)
γ +

∑
0<l<Nβ , 0<i<Nα

m∈M(α,β,Nα−i,Nβ−l)

κi,lm y(i)
α my

(l)
β ,

α, β, γ ∈ Oq,
α < γ < β;

(21)

[y
(j)
β , y(Nα)

α ]c =
∑

0<i<Nα,
m∈M(α,β,Nα−i,j)

κi,0m y(i)
α m,

α ∈ Oq,
β ∈ ∆q

+,
0 < j < Nβ.

(22)

Here we set

M(α, β, h, j) = {m = y
(hr)
βr
· · · y(hk)

βk
∈ L̃β ∩ L̃α : degm = deg y(h)

α + deg y
(j)
β };

κi,lm = 〈y(h)
β y(j)

α , xlβx
hk
βk
· · ·xhrβrx

i
α〉;

κγ = 〈y(Nβ)
β y(Nα)

α , x
Nγ
γ 〉, deg y

(Nγ)
γ = deg y(Nα)

α + deg y
(Nβ)
β .

Theorem 4.7. There is an algebra isomorphism Υ : L→ Lq given by

Υ(y
(n)
β ) = y

(n)
β , β ∈ ∆q

+, n < Ñβ.
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Proof. We first prove that Υ is well-defined, i. e. that (18), . . . , (22) are

satisfied by the elements y
(n)
β ∈ Lq. Relation (18) is trivial since x

Nβ
β = 0 if

β /∈ Oq and (19) is clear from (15).

For the other relations, given α < β and h, j ∈ N, we write y
(h)
β y

(j)
α =∑

h∈H chyh. Then

ch = 〈y(h)
β y(j)

α ,xh〉 = 〈y(j)
α , (xh)(1)〉〈y(h)

β , (xh)(2)〉

is the coefficient of xjα⊗xhβ in the expression of ∆(xh) as linear combination
of elements of the PBW basis in both sides of the tensor product.

If j < Nα and h < Nβ, then y
(j)
α , y

(h)
β ∈ Bq. If ch 6= 0 then xh appears in

the expression of xjαxhβ in elements of the PBW basis, see [A1, Section 3].

Hence, by [HY2, 4.8] xh ∈ Bα ∩Bβ, and relation (20) is clear.
Let α, β ∈ Oq, j = Nα and h = Nβ. Suppose that there is h =

(h1, . . . , hM ) such that ch 6= 0 and hi ≥ Ni for some i ∈ IM . As xNiβi q-

commutes with every element of B̃q, we have xh = c xNiβi xh′ , where h′ =

(h1, . . . , hi − Ni . . . , hM ) and c = Ξ(hMβM + · · · + hi+1βi+1, Niβi) ∈ k.

Then ∆(xh) = c∆(xNiβi )∆(xh′) and hence xh = xNiβi by Proposition 4.1.

For the remaining j such that cj 6= 0 we have ji < Ni for all i ∈ IM .

We write xNαα ⊗ x
Nβ
β = ξ(1 ⊗ xnβ)(xNα−mα ⊗ x

Nβ−n
β )(xmα ⊗ 1) where ξ =

Ξ−1((Nα−m)α, nβ)Ξ−1(mα, (Nβ−n)β). Therefore, arguing as in the proof

of (20) for y
(Nβ−n)
β y

(Nα−m)
α , we obtain that yj = y

(m)
α my

(n)
β , m ∈ L̃β ∩ L̃α.

Here, either m = Nα, n = Nβ so yj = Ξ(Nαα,Nββ)y
(Nα)
α y

(Nβ)
β , or else

m < Nα n < Nβ. Hence relation (21) follows up to consider the correct
degree for yh.

For (22), ch 6= 0 implies xh ∈ Bq by the same argument above, since Z+
q

is a braided Hopf subalgebra by Theorem 4.3.
Hence, Υ is a morphism of algebras. By the presentation of L we can

prove that {y(h1)
β1

. . . y
(hM )
βM

: hi < Ñi} is a basis of L. So, Υ maps a basis to

a basis by Lemma 4.6 and then it is bijective. �

Example 4.8. Let θ = 3 ≤ N , q ∈ k×, ord q = N . We consider a diagonal
braiding (of super type A) given by a matrix q = (qij)i,j∈I3 such that

q11 = q23q32 = q, q12q21 = q−1, q22 = q33 = −1, q13q31 = 1.

Let αjk =
∑
j≤i≤k

αi; then ∆+
q = {αjk : 1 ≤ j ≤ k ≤ 3}, O+

q = {α1, α23, α13}.

The Lusztig algebra Lq is presented by generators y
(n)
jk , 1 ≤ j ≤ k ≤ 3,

n ∈ N and relations:

y
(2)
12 = y

(2)
2 = y

(2)
3 = 0,
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y
(n)
jk y

(m)
jk =

(
n+m

n

)
qjk

y
(n+m)
jk , n,m ∈ N,

[y12, y1]c = [y13, y1]c = [y3, y1]c = [y13, y12]c = [y2, y12]c = [y23, y12]c = 0,

[y2, y13]c = [y23, y13]c = [y3, y13]c = [y23, y2]c = [y3, y23]c = 0,

[y2, y1]c = (1− q−1)y12, [y3, y12]c = (1− q)y13,

[y23, y1]c = (1− q−1)y13, [y3, y2]c = (1− q)y23,

[y
(N)
23 , y1]c = (1− q−1)(q21q31)N−1y13y

(N−1)
23 ,

[y23, y
(N)
1 ]c = (1− q−1)(q21q31)N−1y

(N−1)
1 y13,

[y2, y
(N)
1 ]c = (1− q−1)qN−1

21 y
(N−1)
1 y12,

[y12, y
(N)
1 ]c = [y13, y

(N)
1 ]c = [y3, y

(N)
1 ]c = 0,

[y
(N)
13 , y1]c = [y

(N)
13 , y12]c = [y2, y

(N)
13 ]c = [y23, y

(N)
13 ]c = [y3, y

(N)
13 ]c = 0,

[y
(N)
23 , y12]c = [y

(N)
23 , y13]c = [y

(N)
23 , y2]c = [y3, y

(N)
23 ]c = 0,

[y
(N)
13 , y

(N)
1 ]c = [y

(N)
23 , y

(N)
13 ]c = 0,

[y
(N)
23 , y

(N)
1 ]c = (1− q−1)N (q21q31)N

N−1
2 y

(N)
13

+
N−1∑
k=1

(1− q−1)k(q21q31)k
2N−k−1

2 y
(N−k)
1 y

(k)
13 y

(N−k)
23 .

Indeed, to compute y
(N)
23 y

(N)
1 in Lq, we need to describe all h ∈ H, cf. (12),

such that xN1 ⊗ xN23 appears in ∆(xh) with non-zero coefficient (also to be
determined), where (for some numeration of ∆+

q )

xh = xh13 xh223x
h3
2 xh4123x

h5
12x

h6
1 .

One of these xh is xN23x
N
1 , with coefficient qNα1,Nα2+Nα3 . Let h be as needed.

We use the coproduct formulas in [A3, 5.1]. Clearly h1 = 0. From ∆(xh223),
the only contribution is (1⊗x23)h2 . Then we deduce easily that h3 = h5 = 0,
and h6 = h2 = N − h4. In this case, set h4 = k to simplify the notation, so

(1⊗ x23)N−k(x1 ⊗ x23)k(x1 ⊗ 1)N−k = (q21q31)k
2N−k−1

2 xN1 ⊗ xN23.

This gives the last relation, and the others are deduced analogously.

Corollary 4.9. The algebra Lq is finitely generated.

Proof. By (19), it is generated by {yβ : β ∈ ∆q
+} ∪ {y

(Nα)
α : α ∈ Oq}. �

Remark 4.10. Actually, the subalgebra Bq ⊂ Lq is generated by its primitive
elements {yα : α ∈ Πq} where Πq denotes the set of simple roots α1, . . . , αθ.

Moreover, y
(Nγ)
γ ∈ k×[y

(Nβ)
β , y

(Nα)
α ]c if and only if xNαα ⊗ xNββ appears with
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nonzero coefficient in ∆(x
Nγ
γ ). Hence,

{yα : α ∈ Πq} ∪ {y(Nα)
α : α ∈ Oq, x

Nα
α ∈ P(B̃q)}

generates Lq as an algebra.

Proposition 4.11. L̃i is a right coideal subalgebra of Lq.

Proof. From Theorem 4.7 we have that y
(n)
βj
y

(m)
βi
∈ L̃i for i < j, thus L̃i

is a subalgebra of Lq. On the other hand, we know that 〈y(n)
β , xx′〉 =

〈(y(n)
β )(2), x〉〈(y(n)

β )(1), x′〉. Therefore yj⊗yh appears with nonzero coefficient

in ∆(y
(n)
β ) if and only if xnβ appears with nonzero coefficient in the expression

of xhxj in the PBW basis. The last condition implies that xh ∈ B̃β and

xj ∈ B̃β. Hence,

∆(y
(n)
β ) ∈

n∑
i=0

y
(i)
β ⊗ y

(n−i)
β + L̃β ⊗ L̃β.

Hence ∆(y
(ni)
βi

. . . y
(nM )
βM

) = ∆(y
(ni)
βi

)∆(y
(ni+1)
βi+1

. . . y
(nM )
βM

) ∈ L̃i ⊗ Lq and the

proof is complete. �

4.2. Noetherianity and Gelfand-Kirillov dimension. We argue as in
the pre-Nichols case [A3, Section 3.4], cf. [DP]. Let us consider the lexico-
graphic order in NM0 , so that hM < · · · < h1, where (hj)j∈IM denotes the

canonical basis of ZM .

Lemma 4.12. Let Lq(h) be the subspace of Lq generated by yj, with j ≤ h.

Then Lq(h) is an NM0 -algebra filtration of Lq.

Proof. It is enough to prove that yhyj ∈ Lq(h + j) for all h, j ∈ H. First we
consider the case when h = nhk, j = mhl, k, l ∈ IM , n,m ∈ N. We claim

that y
(n)
βk
y

(m)
βl
∈ Lq(nhk + mhl). This follows by definition when k ≤ l. If

l < k, then [y
(n)
βk
, y

(m)
βl

]c ∈
∑

j<m y
(j)
βl
.L̃l+1 by Theorem 4.7, thus

y
(n)
βk
y

(m)
βl
∈ Lq(nhk +mhl) since

M∑
j=l+1

ajhj < nhk +mhl.

The Lemma follows by reordering the factors of yhyj, for any h, j ∈ NM0 . �

We now consider the corresponding graded algebra

grLq = ⊕h∈NM0
grh Lq, where grh Lq = Lq(h)/

∑
j<h

Lq(j).

Lemma 4.13. The algebra grLq is presented by generators y
(n)
k , k ∈ IM ,

n ∈ N, and relations

y
(Nk)
k = 0, βk /∈ Oq,
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y
(n)
k y

(m)
k =

(
n+m

m

)
qβkβk

y
(n+m)
k ,

[y
(n)
k , y

(m)
l ]c = 0, l < k.

Proof. Let G be the algebra presented by the generators and relations above

and π : G → grLq given by y
(n)
k 7→ y

(n)
βk

. By Theorem 4.7, the relations

above hold in grLq. By a direct computation, G has a basis

{y(h1)
1 . . . y

(hM )
M : hi < Ñi}.

On the other hand, yh ∈ Lq(h) −
∑

j<h Lq(j). Hence the projection of the
PBW basis of Lq is a basis of grLq and π is an isomorphism. �

Proposition 4.14. The algebra Lq is Noetherian.

Proof. Let Z+ be the subalgebra of grLq generated by {y(Nβ)
β : β ∈ Oq}.

Then Z+ is a quantum affine space and grLq is a finitely generated free
Z+-module. Hence grLq is Noetherian and so is Lq. �

We compute either from Lemma 4.6 or else from Lemma 4.13 the Gelfand-
Kirillov dimension of Lq.

Proposition 4.15. GKdimLq = |Oq|. �

5. Quantum divided power algebras

5.1. Definition. Let q, (V, c) be as above with dimBq <∞. Let W = V ∗,

with matrix qt, see footnote 2, and let {z(n)
β : β ∈ ∆q

+, n ∈ N} be the

generators of Lqt . Here we consider W ∈ kZθ
kZθYD via the equivalence of

categories between
(kZθ)∗

(kZθ)∗
YD and kZθ

kZθYD. Then we have a natural evaluation

map such that 〈w ⊗w′, v ⊗ v′〉 = 〈w ⊗ v′〉〈w′ ⊗ v〉. In this section we define
the quantum divided power algebra Uq of (V, c) and we establish some of its
basic properties.

Let Γ and Λ be two copies of Zθ, generated by (Ki)i∈I and (Li)i∈I re-
spectively; so that (K±1

i )i∈I and (L±1
i )i∈I are the generators of kΓ and

kΛ, respectively. Set Kα = Ka1
1 . . .Kaθ

θ and Lα = La11 . . . Laθθ for α =

(a1, . . . , aθ) ∈ Zθ. Then Lq ∈ kΓ
kΓYD, Lqt ∈ kΛ

kΛYD with structure determined
by the formulae

K±1
α · y

(n)
β = q±nαβ y

(n)
β , ρ(y

(n)
β ) = Kn

β ⊗ y
(n)
β ;

L±1
α · z

(n)
β = q±nβα z

(n)
β , ρ(z

(n)
β ) = Lnβ ⊗ y

(n)
β .

Therefore, we can consider the bosonizations Lq#kΓ and Lqt#kΛ.

We define next the quantum double of Lq#kΓ and Lqt#kΛ following [J,
3.2.2]. For this we need a Hopf pairing between them.
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Lemma 5.1. There is a unique bilinear form ( | ) : T c(V )×(T c(W ))cop → k
such that (1|1) = 1,

(yi|zj) = δij , i, j ∈ I;

(y|zz′) = (y(1)|z)(y(2)|z′), y ∈ T c(V ), z, z′ ∈ T c(W );

(yy′|z) = (y|z(1))(y′|z(2)), y, y′ ∈ T c(V ), z ∈ T c(W );

(y|z) = 0, |y| 6= |z|, y ∈ T c(V ), z ∈ T c(W ).

Proof. Let Tn =
∑

σ∈Sn s(σ) : (T c)n(W ) → Tn(W ), where s : Sn → Bn is
the Matsumoto section, see [AG, §3.2]. Let 〈 , 〉 : T c(V ) ⊗ T (W )op → k be
the evaluation map. We define (1|1) = 1,

(y|z) = 〈y,Tn(z)〉, y ∈ (T c)n(V ), z ∈ (T c)n(W )

(y|z) = 0, y ∈ (T c)n(V ), z ∈ (T c)m(W ), n 6= m.

Note that Ti+j = Ti,j(T
i ⊗ Tj) with Ti,j =

∑
s(σ−1) where the sum

is over all (i, j)-shuffles σ. Then, for y ∈ (T c)n(V ), z ∈ (T c)n−i(W ), z′ ∈
(T c)i(W ),

(y|zz′) = 〈y,Tn(z′z)〉 = 〈y,Ti,n−i(T
i ⊗Tn−i)(z′z)〉

= 〈y,Ti,n−i(T
i(z′)⊗Tn−i(z))〉 = 〈y(1),Tn−i(z)〉〈y(2),Ti(z′)〉

= (y(1)|z)(y(2)|z′)

The other conditions are clear. �

This bilinear form restricts to Lq × (Lqt)cop and then it can be extended
to a bilinear form between their bosonizations. Then we may define a skew-
Hopf pairing between Lq#kΓ and Lqt#kΛ, or equivalently:

Corollary 5.2. There is a unique Hopf pairing

( | ) : Lq#kΓ× (Lqt#kΛ)cop → k

such that for all Y, Y ′ ∈ Lq#kΓ, Z,Z ′ ∈ (Lqt#kΛ)cop, y
(n)
α ∈ Lq, Kα ∈ kZθ,

z
(m)
β ∈ Lqt and Lβ ∈ kZθ

(Y |ZZ ′) = (Y(1)|Z)(Y(2)|Z ′), (Y Y ′|z) = (Y |Z(1))(Y
′|Z(2)),

(y(n)
α |z

(m)
β ) = δnα,mβ, (y(n)

α |Lβ) = 0, (Kα|z(m)
β ) = 0, (Kα|Lβ) = qαβ.

Moreover, this pairing satisfies the equation (yK|zL) = (y|z)(K|L). �

Let Uq be the Drinfeld double of Lq#kΓ and (Lqt#kΛ)cop with respect
to the Hopf pairing in Corollary 5.2. In other words:

Definition 5.3. Let Uq be the unique Hopf algebra such that

(1) Uq = (Lq#kΓ)⊗ (Lqt#kΛ) as vector spaces,
(2) the maps Y 7→ Y ⊗ 1 and Z 7→ 1⊗ Z are Hopf algebra morphisms,
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(3) the product is given by

(Y ⊗ Z)(Y ′ ⊗ Z ′) = (Y ′(1)|S(Z(1)))Y Y
′

(2) ⊗ Z(2)Z
′(Y ′(3)|Z(3))

for all Y, Y ′ ∈ Lq#kΓ and Z,Z ′ ∈ (Lqt#kΛ)cop.

By the construction of Uq, there is a triangular decomposition, via the
multiplication, Uq ' U+

q ⊗ U0 ⊗ U−q where

U+
q ' Lq, U−q ' Lqt , U0 ' k(Zθ × Zθ).

We give a presentation of the algebra Uq by generators and relations. The
tensor product signs in elements of Uq will be omitted.

Proposition 5.4. The algebra Uq is generated by the elements y
(n)
β , z

(n)
β ,

K±1
β , L±1

β for β ∈ ∆q
+, n ∈ N; and relations (18), . . . , (22) between the

y
(n)
β ’s, similar relations for the z

(n)
β ’s plus the relations

KβK
−1
β = L−1

β Lβ = 1, K±1
β L±1

α = L±1
α K±1

β(23)

Kαy
(n)
β = qnαβy

(n)
β Kα, Lαy

(n)
β = q−nβα y

(n)
β Lα,(24)

Kαz
(n)
β = q−nαβ z

(n)
β Kα, Lαz

(n)
β = qnβαz

(n)
β Lα,(25)

zy = (y(1)|S(z(3))) (K2K3|L−1
3 ) (y(3)|z(1)) y(2)K3z

(2)L3,(26)

for all α, β ∈ ∆q
+, n,m ∈ N. Here in (26) y = y

(n)
β ∈ Lq, z = z

(m)
α ∈ Lqt,

and denote Ki = (y(i))(−1) and Li = (z(i))(−1) for the coactions of kΓ and
kΛ respectively. �

Note that if y = yαi , z = zαj with αi, αj ∈ Πq, then y, z are primitives
and relation (26) is zy − yz = δij(Ki − Li).

5.2. Basic properties. Proceeding as in [DP, A3], we will prove that the
algebra Uq is Noetherian. For each h, j ∈ H, K ∈ Γ, L ∈ Λ, set

d1(yhKLzj) =
∑
i∈IM

(hi + ji) ht(βi),

d(yhKLzj) =
(
d1(yhKLzj), h1, . . . , hM , j1, . . . , jM

)
∈ N2M+1

0 .

Consider the lexicographic order in N2M+1
0 . If u ∈ N2M+1

0 , then we set

Uq(u) = span of {yhKLzj : h, j ∈ H, K ∈ Γ, L ∈ Λ, d(yhKLzj) ≤ u}.

Lemma 5.5. (Uq(u))u∈N2M+1
0

is an N2M+1
0 -algebra filtration of Uq.

Proof. It is enough to prove that (yhKLzj)(yh′K
′L′zj′) ∈ Uq(u + u′) for

all h, j,h′, j′ ∈ H, K,K ′ ∈ Γ and L,L′ ∈ Λ where d(yhKLzj) = u and
d(yh′K

′L′zj′) = u′.
First we claim that

(27) d1(z
(n)
β y(m)

α − y(m)
α z

(n)
β ) < mht(α) + n ht(β).
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Indeed, since the coproduct in Lq (resp. Lqt) is graded, we have that

d1((y
(m)
α )(2)) < mht(α) if (y

(m)
α )(1) 6= 1 (resp. d1((z

(n)
β )(2)) < nht(β) if

(z
(n)
β )(1) 6= 1). Hence, for K ∈ Γ and L ∈ Λ we have

d1((y(m)
α )(2)KL(z

(n)
β )(2)) ≤ mht(α) + n ht(β)

and by Proposition 5.4 the claim follows.
Since K, L q-commutes with all elements of Lq and Lqt for all K ∈ Γ

and L ∈ Λ. We proceed as in Lemma 4.12 and we reduce the proof to the

product between z
(n)
βi

and y
(m)
βj

. It follows directly by (27) that

z
(n)
βi
y

(m)
βj
∈ Uq(m ht(βj) + n ht(βi), δj , δi). �

We consider the associated graded algebra grUq = ⊕v∈N2M+1
0
Uqv where

Uqv = Uq(v)/
∑

u<v Uq(u).

Corollary 5.6. The algebra grUq is presented by generators y
(n)
j , z

(n)
j , K±1

j ,

L±1
j , j ∈ IM , n ∈ N and relations

RS = SR, R, S ∈ {K±1
j , L±1

j : j ∈ IM}

KβK
−1
β = LβL

−1
β = 1 y

(n)
k z

(m)
l = z

(m)
l y

(n)
k

y
(Nk)
k = 0, βk /∈ Oq, z

(Nk)
k = 0, βk /∈ Oq,

y
(n)
k y

(m)
k =

(
n+m

m

)
qβkβk

y
(n+m)
k , z

(n)
k z

(m)
k =

(
n+m

m

)
qβkβk

z
(n+m)
k ,

[y
(n)
k , y

(m)
l ]c = 0, l < k, [z

(n)
k , z

(m)
l ]c = 0, l < k,

Kαy
(n)
β = qnαβy

(n)
β Kα, Kαz

(n)
β = q−nαβ z

(n)
β Kα,

Lαy
(n)
β = q−nβα y

(n)
β Lα, Lαz

(n)
β = qnβαz

(n)
β Lα.

Proof. The proof of this statement is similar to the proof of Lemma 4.13 if

we check that y
(n)
k z

(m)
l = z

(m)
l y

(n)
k for all y

(n)
k ∈ Lq and z

(m)
l ∈ Lqt ; but this

follows by (27). �

Proposition 5.7. The algebra Uq is Noetherian and GKdimUq = 2|Oq|+2θ.

Proof. Let Z be the subalgebra of grUq generated by {Ki, Li : i ∈ I} and

{y(Nβ)
β , z

(Nβ)
β : β ∈ Oq}. Then Z is the localization of a quantum affine

space and grUq is a free Z-module of rank
∏
i∈IM Ni. Therefore grUq is

Noetherian and so is Uq. Moreover, by [KL, Prop. 6.6],

GKdimUq = GKdim grUq = GKdimZ = 2|Oq|+ 2θ. �
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[A+] N. Andruskiewitsch, I. Angiono, A. Garćıa Iglesias, B. Torrecillas, C. Vay. From Hopf
algebras to tensor categories, 1–32. Conformal field theories and tensor categories,
Mathematical Lectures from Peking University. Bai, C. et al, eds. Springer, 2014.

[AG] N. Andruskiewitsch, M. Graña. Braided Hopf algebras over non-abelian finite groups.
Bol. Acad. Nac. Cienc. (Córdoba) 63 (1999), 45–78.
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