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Abstract. Let K be a real quadratic field and OK its ring of integers. Let

Γ be a congruence subgroup of SL2(OK) and M(k1,k2)(Γ) be the finite dimen-

sional space of Hilbert modular forms of weight (k1, k2) for Γ. Given a form

f(z) ∈ M(k1,k2)(Γ), how many Fourier coefficients determine it uniquely in
such space? This problem was solved by Hecke for classical forms, and Sturm

proved its analogue for congruences modulo a prime ideal. The present article
solves the same problem for Hilbert modular forms over K. We construct a

finite set of indices (which depends on the cusps desingularization of the mod-

ular surface attached to Γ) such that the Fourier coefficients of any form in
such set determines it uniquely.

Introduction

It is a classical result that the space of modular forms of a fixed weight and level
is finite dimensional. Since modular forms admit a Fourier expansion, this implies
that a few Fourier coefficients should be enough to determine the form uniquely,
but how many coefficients are needed?

For classical modular forms, this was already known by Hecke (see [Hec70], page
811, Satz 1 and Satz 2). Let Γ be a congruence subgroup of SL2(Z). Write PΓ for the
image of Γ in PSL2(Z) and d = [PSL2 : PΓ] for the degree of the map X(Γ)→ X(1).
Let f(z) ∈ M2k(Γ) be a weight 2k modular form for Γ and f(z) =

∑
n≥0 an(f)qn

its Fourier expansion at a cusp, where q = e
2πiz
N is a local uniformizer. Recall that

the order of f at the cusp is defined as

ord(f) = inf{n | an(f) 6= 0}.

Theorem (Hecke). Let f(z) ∈ M2k(Γ) be a weight 2k modular form for Γ. If
ord(f) > dk/6, then f = 0.

This bound is optimal for SL2(Z) when k 6≡ 2 (mod 12), since b 2k
12 c+1 is exactly

the dimension of the space M2k(SL2(Z)). When k ≡ 2 (mod 12), the order of
vanishing is the dimension plus one.

One can consider the same problem with congruence conditions instead of vanish-
ing conditions. Let O be the ring of integers of a number field F , and m a maximal
ideal of O. We fix an embedding F ⊂ C. As before, let f(z) =

∑
n≥0 an(f)qn ∈

M2k(Γ) be a modular form such that an(f) ∈ O for all n ≥ 0. Then we define

ordm(f) = min{n | an(f) 6∈ m},
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with the convention ordm(f) =∞ if an(f) ∈ m for all n.

Theorem (Sturm). If ordm(f) > dk/6, then ordm(f) =∞.

Both results have many applications in computational and theoretical problems.
For example, such results are used to compute generators for the Hecke algebra
and to compute the discriminant of the integral Hecke algebra, whose divisors
are the primes of fusion, giving congruences between modular forms. The main
results of the present article are generalizations of the previous results to Hilbert
modular forms. For arbitrary totally real number fields, there are some partial
results to Hecke’s problem. For example, in [BCP02] the authors prove that the
number of coefficients that determine a form is less than an unexplicit constant
times the sum of the weights using techniques from analysis that do not work
over finite fields (see also the references therein for other previous results). In this
article we will focus on real quadratic fields only, and prove such a result with an
explicit computable constant. Furthermore, our method generalizes easily to fields
of positive characteristic, which allows us to solve also Sturm’s problem. We also
compare in some examples our result with the dimension of the space of modular
forms to show how effective it is.

Let K be a real quadratic field and Γ a congruence subgroup of SL2(K). Then
Γ acts on H2, the product of the upper half plane with itself. The quotient Γ\H
is a quasi-projective variety that can be compactified by adding a finite number of
cusps. The theory of modular forms can be extended to this variety as recalled in
sections 2 and 3. The first main result of the paper is the following.

Theorem 4.1 (Hecke bound). Let G be a Hilbert modular form of parallel weight
2k for the congruence subgroup Γ = Γ(OK , a). Let ci, i = 1, . . . , h be the cusps of
Γ\H and suppose that ordci G ≥ s for i = 1, . . . , h and ordci0 G ≥ r + s, for some
1 ≤ i0 ≤ h, with

r >
4knζK(−1)∑
j(bi0,j − 2)

− s

(∑h
i=1

∑
j(bi,j − 2)∑

j(bi0,j − 2)

)
.

Then G is zero.

In this theorem the numbers bi,j are the self intersection of the components of
the cusp desingularization divisors (we recall how to compute such numbers in Ap-
pendix A) and the number n needs to be chosen so that surface with level n is
minimal and of general type (see Section 2.1 and Summary 2.13). The translation
of this result from vanishing orders to vanishing of Fourier coefficients involves a
complete knowledge of the cusp desingularization (not only the intersection num-
bers, but the vertices of the convex hull involved), see Corollary 4.3. The Sturm
version of this corollary reads as follows.

Theorem 5.4 (Sturm bound). Let O ⊂ C be a ring of integers of a number field.
Let G be a Hilbert modular form of parallel weight 2k for Γ(OK , a), which vanishes
with order s at all cusps. Suppose that the Fourier expansion of G at the infinity
cusp c1 is

G =
∑

ξ∈(a−1)∨+∪{0}

aξ exp(ξz1 + ξ′z2),
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with aξ ∈ O for all ξ ∈ (a−1)∨+ ∪ {0}. Let p ⊂ O be a prime ideal such that p - Dn
and let r be an integer with

r >
4knζK(−1)∑
j(b1,j − 2)

− s

(∑h
i=1

∑
j(bi,j − 2)∑

j(b1,j − 2)

)
.

If aξ ∈ p for all ξ ∈ (a−1)∨+ ∪ {0} such that there is a j ∈ J with Tr(ξAj) < r + s,
then aξ ∈ p for all ξ ∈ (a−1)∨+ ∪ {0}.

In this theorem the elements Aj are vertexes representatives of the infinity cusp
desingularization.

Once one has a bound for modular forms of parallel weights a general bound
follows just by multiplying a form with its conjugate, which is done in Theorem 6.1.

For Hilbert modular forms in Mk(Γ0(c, a), χ) (i.e. a form for Γ0 with Nebenty-
pus) one can use Buzzard’s trick (as for classical forms) and get the same bound as
for Mk(Γ0(c, a)) (see Remark 6.3).

Our strategy to prove the Hecke and Sturm type bounds for Hilbert modular
forms is an algebro-geometric one. A Hilbert modular form f of parallel weight
determines a global section on the Hilbert modular surface XΓ of a suitable line
bundle and, therefore an effective divisor. We then consider a numerically effective
(NEF) divisor on XΓ (which plays the role of the degree function in the proof of the
classical Hecke/Sturm theorems given in Section 1) and compute its intersection
number with the divisor attached to f . If we prove that this intersection is non
positive, then the divisor associated to f is zero and the modular form vanishes.

If many Fourier coefficients of f at a cusp are zero, then the effective divisor
associated to f includes many copies of the resolution divisor of such cusp, and
at some point its intersection number with the NEF divisor becomes negative and
hence the modular form is zero.

The difficulty to follow such strategy is to find a NEF divisor and compute
explicitly the intersection numbers of it with different cycles on the Hilbert modular
surface. The natural candidate for a NEF divisor is the canonical divisor in the cases
where the surface in question is minimal and of general type (hence the assumption
of Theorem 4.1).

A particular case of this result was presented as an appendix in [DPS12], where

using a similar approach we gave a Sturm/Hecke bound for K = Q(
√

5), level

Γ0(12
√

5) and parallel weight 2.
The proof of our main results is constructive, and depends on the cusp desin-

gularization of the surface XΓ (which we recall in Appendix A). The result can be
thought as a procedure which given K and Γ, constructs the finite set of points
to check equality/congruence. We do not include any general bound on the size of
such set, since the presently known general bounds for the numbers involved (like
class numbers for real quadratic fields and continued fraction lengths) are far from
being optimal and would give a cardinality which is far from the real one.

Although we do not compare the number of Fourier coefficients given by the
main theorems to the dimension of the space M(k1,k2) (since there are no explicit
formulas for any of these two quantities) it is important to note that once we fix the
congruence subgroup Γ and vary the weights, the rate of growth of both quantities
is quadratic, so we do get the correct amount of elements up to a constant (which
depends on Γ). See Remark 6.4 and the examples in Section 7.
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The article is organized as follows: in the first section we give a proof of the
classical Hecke and Sturm theorems that although is not the original one, motivates
our generalization to Hilbert modular forms.

In the second section, we recall the main properties and definitions of Hilbert
modular surfaces (needed to state clearly the main theorems), their desingular-
ization and their classification. We also give criterions to decide for a particular
level, if the given surface is in minimal model and is of general type. Section 2.3 is
more technical and can be skipped in a first reading. For this purpose we added a
Summary of it at the end which contains all the important facts.

In the third section, we recall the main properties of Hilbert modular forms over
real quadratic fields, and we prove the relation between the order of vanishing at a
cusp and vanishing of Fourier expansion coefficients.

In the fourth section we state and prove the analogue of Hecke’s Theorem for
parallel weight 2k Hilbert modular forms over real quadratic fields with maximal
level structure. The statement is self contained (so there is no need to read the
previous sections to understand the statement) but the proof uses the results of the
previous sections.

In the fifth section we adapt the proof of the previous section to prove the
analogue of Sturm’s Theorem for parallel weight 2k Hilbert modular forms over
real quadratic fields with maximal level structure. The statement is the same in
both cases, but the proof in this case uses the integral structure of the modular
surfaces.

The sixth section contains statements and proofs for arbitrary weights and levels
and some remarks about its effectiveness. The last section contains examples of the
method as well as some tables comparing the dimension of the spaces involved and
the number of Fourier coefficients needed using our results in each case.

We end the article with two appendices, the first one recalls the “Hirzebruch-
Jung continued fraction” method used to compute the cusp desingularization and
the second one treats the real quadratic fields not covered by the method described
in the previous sections.

1. A geometric proof of Hecke and Sturm theorems

We want to sketch well known proofs of Hecke and Sturm theorems that, although
are different than the original proofs of Hecke and Sturm, are generalizable to higher
dimensions.

Recall the following facts about divisors. Let C be a curve defined over a field
F .

• The group of divisors of C is the free abelian group generated by the closed
points of C (so elements are of the form D =

∑
np[P ]).

• The divisor D is called effective if nP ≥ 0 for all P .
• Let K(C) be the field of rational functions on C. To a divisor D of C we

can associate the (finite dimensional) vector space

L(D) = {f ∈ K(C) | div(f) ≥ −D} ∪ {0}.

• The degree of the divisor D =
∑
np[P ] is defined as

deg(D) =
∑

nP [k(P ) : F ],

where k(P ) is the residue field at P . If deg(D) < 0 then L(D) = {0}.
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We start by proving the Hecke bound for Γ = SL2(Z). Choose N ≥ 3. Then
the modular curve X(Γ(N)) (the compactification of the open curve Γ(N)\H) is a
smooth compact complex curve.

Let g be the genus of X(Γ(N)) and c the number of cusps. Denote the different
cusps of X(Γ(N)) by σ1, . . . , σc.

Choose a rational differential form ω in X(Γ(N)) and let K = div(ω) be the
corresponding canonical divisor. If f(z) ∈ M2k(SL2(Z)) is a modular form, then

g = f(dz)⊗k

ω⊗k
is a well defined rational function on X(Γ(N)). Since f vanishes with

order ord(f) at the cusp ∞, the function g vanishes with order N ord(f) at each
cusp of X(Γ(N)). More precisely, g belongs to the space

L

(
k(K +

c∑
i=1

[σi])− ord(f)N

c∑
i=1

[σi]

)
.

The degree of the divisor D := k(K +
∑c
i=1[σi]) − ord(f)N

∑c
i=1[σi] is given by

k(2g − 2 + c) − ord(f)Nc. Since, 2g − 2 + c = Nc/6, if ord(f) > k/6, then we
conclude that deg(D) < 0, hence f = 0.

We next prove the Sturm bound for Γ = SL2(Z). Let p = m∩Z. Choose N such
that N ≥ 3 and p - N . Let ζN be a primitive N -th root of unity. Let F ′ = F [ζN ]
and O′ the ring of integers of F ′. Since O′ is integral over O, there exists a prime
ideal m′ of O′ such that m′ ∩ O = m. Hence, if ordm′(f) = ∞, then ordm(f) = ∞.
Thus, replacing O by O′, we may assume without loss of generality that ζN ∈ O.

Since ζN ∈ O, the curve X(Γ(N)) has an integral smooth model over S =
Spec(O[1/N ]), denoted X (Γ(N)) and each cusp σi of X(Γ(N)) determines a sec-
tion σi : S → X (Γ(N)), hence a horizontal divisor, also denoted by σi. Let
K be the relative canonical divisor of X (Γ(N))/S. The q-expansion principle
[Kat73, Corollary 1.6.2], implies that f determines a section, also denoted f , of
OX (Γ(N))(k(K +

∑
σi)). Let X (Γ(N))m be the fiber of X (Γ(N)) over m. It is a

smooth curve over the field k(m). The restriction of K to this curve agrees with its
canonical divisor, denoted Km. We denote by σi,m the restriction of the horizontal
divisor σi to X (Γ)m. Since σi is given by a section, the divisor σi,m is prime and
satisfies k(σi,m) = k(m). The hypothesis of the theorem imply that the restriction
of f to X (Γ)m determines an element of

L

(
k(Km +

c∑
i=1

[σi,m])− ordm(f)N

c∑
i=1

[σ1,m]

)
.

By the same argument as before this restriction is zero, thus ordm(f) =∞.
Let now Γ be a congruence subgroup. Any element γ ∈ PSL2(Z) acts on M2k(Γ)

by f 7→ f |2k[γ] and the elements γ ∈ PΓ act trivially. Let f(z) be as in Hecke’s
Theorem. Write

g =
∏

γ∈PΓ\PSL2(Z)

f |2k[γ].

Then g ∈ M2kd(SL2(Z)) and ord(g) ≥ ord(f). Thus, if ord(f) > kd/6 we deduce
that g = 0 and a fortiori f = 0. The same argument proves the Sturm bound.

We want to mimic this geometric proof in the Hilbert setting. For that purpose
we need something which looks like the degree function, whose role will be played
by a numerically effective divisor (NEF) in our surface, whose intersection number
with the cusp resolutions is non-zero.
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2. Hilbert modular surfaces

2.1. Basic definitions and notations. LetD > 0 be a fundamental discriminant,
K = Q(

√
D) the real quadratic field of discriminant D (which we think of inside

the real numbers), OK its ring of integers and δ the different of OK . If α ∈ K,
we denote by α′ its conjugate under the action of the generator of Gal(K/Q). An
element α ∈ K is called totally positive (and denoted α� 0) if α > 0 and α′ > 0.

If a ⊂ K is a fractional ideal, we denote by Γ(OK , a) the image in PGL+
2 (K) of

the group

SL2(OK , a) =

{
m ∈

(
OK a−1

a OK

)
: det(m) = 1

}
.

If c is an integral ideal in K, we denote by Γ(c, a) the image in Γ(OK , a) of the
group {(

α β
γ δ

)
∈ SL2(OK , a) : α ≡ δ ≡ 1 (mod c), β ∈ ca−1, γ ∈ ca

}
.

A congruence subgroup Γa ⊂ Γ(OK , a) is a subgroup which contains Γ(c, a) for
some ideal c.

The group GL+
2 (K) acts on H2 via(

α β
γ δ

)
(z1, z2) =

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
.

Since the center acts trivially, we can consider the action of PGL+
2 (K).

If Γ is a congruence subgroup, the quotient Γ\H2 is a quasi-projective variety with
at most quotient singularities. The Baily-Borel compactification of such quotient,
which we denote XΓ, is obtained as in the classical case by adding the cusps P1(K)
to the product of two copies of the upper half plane, i.e. XΓ = Γ\(H2 ∪ P1(K)). It
is a projective variety.

We denote by YΓ the minimal desingularization of XΓ and by ZΓ the surface
obtained by resolving only the cusp singularities of XΓ which we study in the next
sections.

2.2. On Cusp Resolution. We briefly recall the cusp desingularization at infinity.
For this section we follow closely the exposition of [vdG88]. If M is a lattice in K, we
denote by U+

M the group (under multiplication) of totally positive elements ε ∈ K
such that εM = M . Let V ⊂ U+

M be a subgroup of finite index. We define

G(M,V ) =

{(
ε m
0 1

)
: ε ∈ V , m ∈M

}
= M o V.

If we denote by UOK ,c the set of units of OK that are congruent to 1 modulo
c, for the particular congruence subgroups we will consider, we have the following
result.

Lemma 2.1. The isotropy group of the cusp corresponding to (α : β) ∈ P1(K) in
Γ(c, a) is conjugate to the image in PGL+

2 (K) of

G(a−1b−2c, U2
OK ,c),

where b = αOK + βa−1.

Proof. See the proof of Lemma 5.2 in [vdG88] (p. 78). �
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In particular the isotropy of the infinity cusp (corresponding to (1 : 0) which we
denote ∞) equals the image in PGL+

2 (K) of the group G(a−1c, U2
OK ,c

).

We consider the group Γ(c, a). Let M = a−1c ⊂ K ⊂ R be the lattice cor-
responding to the stabilizer of the ∞-cusp. It acts on C2 by translation, i.e.
m · (z1, z2) = (z1 + m, z2 + m′). A choice of basis {µ1, µ2} of M determines an
isomorphism

φµ1,µ2
: M\C2 → C× × C×, (z1, z2) 7→ (u, v),

where exp(2πiz1) = uµ1vµ2 and exp(2πiz2) = uµ
′
1vµ

′
2 . A different choice of a

basis is given by a matrix
(
a b
c d

)
∈ GL2(Z) which induces the biholomorphic map

ψ : C× × C× → C× × C× given by

(u, v) 7→ (uavb, ucvd).

We can always choose a basis of M formed by totally positive elements µ1, µ2 �
0. In this case, if Im(z1) and Im(z2) tends to infinity (that is (z1, z2) approaches
the infinity cusp) then at least one of u or v approaches 0. Thus it is natural to
consider the embedding C× × C× ⊂ C2.

The map ψ can be extended to an open subset of C2 such that its graph inside
C2×C2 is closed. Therefore if we use it to glue together two copies of C2 we obtain
a Hausdorff space.

Let M+ denote the elements of M which are totally positive, and consider the
embedding of M+ in (R+)2, given by

m 7→ (m,m′).

Denote by Aj = (A1
j , A

2
j ), j ∈ Z the vertices of the boundary of the convex hull

of the image of M+, ordered with the condition A1
j+1 < A1

j for all j. Any pair
(Aj−1, Aj) is a basis for M as Z-module (see [vdG88] Lemma 2.1). In Appendix A
we describe the how to compute such bases.

Let σj denote the cone spanned by Aj−1 and Aj , i.e.

σj = {sAj−1 + tAj : s, t ∈ R+}.

We obtain a partial compactification of M\C2 by taking a copy of C2 for each
element σj and gluing them together in terms of the change of basis matrix (see
[vdG88] page 31). By the above comment we obtain a Hausdorff space. Hence
we obtain a partial compactification of M\H2 denoted Y +. Then Y + = M\H2 ∪⋃
j∈Z S

′
∞,j , where each S′∞,j is a rational curve. The space Y + is a Hausdorff space.

The group of units U2
OK ,c

acts freely and properly discontinuously on Y + ([vdG88]

Lemma 3.1 page 34). A local description of the desingularization of the infinity cusp
is obtained by taking the quotient of Y + by U2

OK ,c
. Let S∞ denote the resolution

divisor of the infinite cusp and let {S∞,j}j be its irreducible components. Then
there is a one to one correspondence between the set of classes of vertices Aj under
the action of U2

OK ,c
and the set of irreducible components of the resolution divisor

of the infinity cusp, and each irreducible component is a rational curve.
Recall that we denote ZΓ the desingularization obtained by applying this process

to each cusp of XΓ.
If we apply the previous process to M = a−1 and M = a−1n, where n is a

positive integer, since the two lattices are homothetic, each choice of basis for a−1

gives a basis for a−1n and we get an holomorphic map between the respective affine
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spaces given by sending (u, v) to (un, vn). This map is well behaved under gluing
which gives a map

π : ZΓ((n),a) → ZΓ(OK ,a).

Remark 2.2. Let E be a component of a cusp resolution of ZΓ((n),a) and E′ its
image under π. It is clear from the above description that the map between E and
E′ induced by π has degree n and is totally ramified.

2.3. Algebraic Surfaces. Projective non-singular algebraic surfaces X with van-
ishing irregularity, namely with H1(X,OX) = 0, are divided in four types, one of
them being of general type. For reasons that will become clear later, it is this kind
of surfaces the ones we need to work with.

Remark 2.3. If c ( OK is an integral ideal in OK with c2 6= (2) and c2 6= (3) then
XΓ(c,a) has no elliptic points (see [vdG88] page 109). In particular, in these cases,
the surfaces ZΓ(c,a) and YΓ(c,a) are the same.

Before stating the surface classification, let us give a quick review of genus theory.
Inside the narrow class group of K (or strict class group), there is a particular
subgroup, called principal genus, made of squares (which is clearly well defined
since all squares are totally positive). The genus of an ideal can be thought as the
class the ideal represents in the quotient of the narrow class group by the principal
genus.

The original formulation of genus theory (due to Legendre and Gauss) is the
following: there is a bijection (actually an isomorphism) between the narrow class

group of Q(
√
D) and equivalence classes of binary quadratic forms of discriminant

D. The genus of a binary quadratic form is the set of values it represents in
(Z/D)×. Using the Chinese Reminder Theorem, it is enough to understand the
elements represented modulo each prime (or prime power) divisor p of D. There
is a sign attached to p which tells (when p is odd) whether the form represents
squares modulo p or not, so each genus can be represented by a list of signs indexed
by primes. See for example [Cox89] for a nice introduction and exposition of the
subject.

Theorem 2.4. The Hilbert modular surface YΓ(OK ,a) is rational for

• D = 5, 8, 12, 13, 17, 21, 24, 28, 33, 60 if a is in the principal genus.
• D = 12 if a is not in the principal genus.

Proof. This is Theorem 3.3 of [vdG88], Chapter VII p. 166. �

Theorem 2.5. The Hilbert modular surface YΓ(c,a), with c 6= OK and a in the
genus γ is of general type except in the following cases:

D N c γ D N c γ
5 {4, 5} + 8 {2, 4} +
12 {2, 3, 4, 6} +,+ 12 {2, 3} −,−
13 {3} + 17 {2} +
21 {3} −,− 24 {2} −,−
24 {3} +,+ 28 {2} +,+
28 {3} −,− 33 {2} −,−

Furthermore, if D > 500, then YΓ(OK ,a) is of general type as well.
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Proof. This is just part of Theorem 3.4 of [vdG88], p. 167, where a general classi-
fications is given. �

Recall the following definition.

Definition 2.6. A smooth surface S is called a minimal surface if for any smooth
surface S′, any morphism S → S′ that is birational is an isomorphism.

From Castelnuovo’s contractibility theorem, a minimal model of a smooth surface
can be obtained by contracting exceptional curves, i.e. rational curves with self
intersection number −1. We have the following result.

Proposition 2.7. Assume that YΓ(c,a) is of general type and that YΓ(OK ,a) is not
rational. If N c ≥ C, with

C = 3

 h∑
i=1

∑
j

(bi,j − 2)

 ,

where the first sum is over ideal class representatives [bi] of OK and the bi,j are the
self-intersection numbers of the components of the cusp desingularization at bi (see
Appendix A), then YΓ(c,a) is minimal.

Proof. The statement corresponds to the first case of Theorem 7.19 of [vdG88], p.
184. �

Remark 2.8. This gives an effective bound for the level c needed for the Hecke/Sturm
bounds (of sections 4 and 5). It will become clear that the smaller N c we take,
the better the bound gets, so we will say a few more words on how to improve this
norm.

Recall the definition of the Hirzebruch-Zagier cycles (which correspond to the
modular curves inside the Hilbert modular surfaces). A matrix B in M2(K) is
called skew-hermitian if Bt = −B′, where the superscript t means the transpose.
Let a ∈ OK be an ideal of norm A. A skew-hermitian form B is called integral with
respect to a if it is of the form

B =

(
a
√
D λ

−λ′ b
A

√
D

)
,

with a, b ∈ Z and λ ∈ a−1. The integral form B is called primitive if it is not
divisible by a natural number greater than 1, i.e. if B is not of the form mB̃,
with B̃ integral with respect to a and m > 1. If we denote by C(N) the set of
skew-hermitian, integral with respect to a, primitive matrices of determinant N/A,
then the cycle FN is defined by

(1) FN =
⋃

B∈C(N)

{
(z1, z2) ∈ H2 ∪ P1(K) : (z2 1)B

(
z1

1

)
= 0

}
.

Abusing the notation, we will also denote by FN the divisor on any modular
surface obtained as the closure of the image of FN . It will be clear from the context
in which surface we consider the curves FN .

The following conjecture is stated as Conjecture (7.13) in [vdG88].

Conjecture 2.9. If YΓ(OK ,a) is not rational, then the canonical divisor can be
written as a rational positive linear combination of resolution curves and the divisors
FN .
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Remark 2.10. When a is in the genus of OK or (
√
D), this conjecture is known in

the following cases

(1) When YΓ(OK ,a) is not of general type.
(2) [Her87, Her89] When D ≡ 1 (mod 8) and either

(a) there is a divisor a of D with a 6≡ 1 (mod 8);
(b) there are two integers n,m > 0 with m ≡ 7 (mod 8) and D = (m2 −

8)/n2.
(3) [Fre03] When D 6≡ 1 (mod 8).

Assume now that YΓ(c,a) is of general type and YΓ(OK ,a) is not rational. We want
to improve our criterion for minimallity of YΓ(c,a) assuming that Conjecture 2.9 is
true for YΓ(OK ,a). By Proposition 7.18 of [vdG88] (p. 183), if E is an exceptional
curve in YΓ(c,a), then its image in YΓ(OK ,a) is also exceptional. If Conjecture 2.9
is true for YΓ(c,a), the exceptional curves in this surface are components of the
divisors FN . Therefore any exceptional curve in YΓ(c,a) is also a component of a
divisor FN . If for example 6 | c, then the components of the curves FN have genus
greater than 1 (see for example [Shi94], formula (1.6.4), page 23) and are therefore
not exceptional, hence the surface YΓ(c,a) is minimal for this level. Actually we can
do a little better.

Theorem 2.11. Assume that YΓ(OK ,a) is not rational and Conjecture 2.9 is true
for this surface. If n ≥ 3 is an integer and YΓ((n),a) is of general type, then YΓ((n),a)

is minimal.

Proof. Recall that ZΓ(OK ,a) is the resolution of the cusps of XΓ(OK ,a) but without
resolving the elliptic points which is a Q-variety. By Remark 2.3, YΓ((n),a) agrees
with ZΓ((n),a) and hence we get the following diagram

YΓ((n),a)

π

��
YΓ(OK ,a)

f // ZΓ(OK ,a),

where f is the resolution at the elliptic points.
We need to show that there are no exceptional curves on YΓ((n),a). Assume that

there is such an exceptional curve A. Let C ′ be its image in ZΓ(OK ,a) and C the
strict transform of C ′ in YΓ(OK ,a). As we mentioned previously, by Proposition 7.18
of [vdG88], the curve C is exceptional. By Theorem 7.11 of [vdG88] (p. 181), C
(hence A) is a component of a divisor FN for N = 1, 2, 3 or 4 (and 9 if 3 | D).

We will show that A · A < −1 contradicting the assumption. To this end we
start by computing the self-intersection of C ′. We have the relation

C ′ · C ′ = f∗(C ′) · f∗(C ′).

Using the desingularization of the components of FN given in [vdG88] (page 169),
we get the following cases:
• The case N = 1: The curve C ′ goes through an elliptic point of order 2 and an
elliptic point of order 3. While computing the desingularization at the order 2 point,
we get a P1 with self-intersection −2 and while computing the desingularization of
elliptic point of the order 3 we get a P1 with self-intersection −3 (see Figure (2)
in [vdG88], page 169). Let E2 and E3 be these two exceptional divisors. We can
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write f∗(C ′) = C + aE2 + bE3. Since f∗(C ′) · E2 = f∗(C ′) · E3 = 0, we get

f∗(C ′) = C +
1

2
E2 +

1

3
E3.

Therefore

f∗(C ′) · f∗(C ′) = C · C + C · E2 +
2

3
C · E3 +

1

4
E2 · E2 +

1

9
E3 · E3 = −1

6
.

• The case N = 2: The curve C ′ goes through an elliptic point of order 2.
While computing the desingularization at the order 2 point, we get a P1 with self-
intersection −2 (see Figure (3) in [vdG88], page 169). Let E2 be the exceptional
divisor, so f∗(C ′) = C + aE2. Since f∗(C ′) · E2 = 0, we get that a = 1

2 , and

f∗(C ′) · f∗(C ′) = C · C + C · E2 +
1

4
E2 · E2 = −1

2
.

• The case N = 3: Since YΓ(OK ,a) is not rational, D 6= 12. Then the curve C ′

goes through an elliptic point of order 3. While computing the desingularization at
the order 3 point, we get a P1 with self-intersection −3. Let E3 be the exceptional
divisor, then f∗(C ′) = C + bE3. Since f∗(C ′) · E3 = 0, we get that b = 1

3 , and

f∗(C ′) · f∗(C ′) = C · C +
2

3
C · E3 +

1

9
E3 · E3 = −2

3
.

• The case N = 4: Since YΓ(OK ,a) is not rational, D 6= 8. If 2 | D, then the
situation is the same as the case N = 2. If D ≡ 1 (mod 8) then C ′ does not go
through any elliptic point, hence the self intersection is −1. If D ≡ 5 (mod 8)
then the curve C ′ goes through two elliptic points of order 3. While computing
the desingularization at the two order 3 points, we get two copies of P1 with self-
intersection −3. Let E3 and E′3 be the exceptional divisors. Then f∗(C ′) = C +
1
3E3 + 1

3E
′
3, and

f∗(C ′) · f∗(C ′) = C · C +
2

3
C · (E3 + E′3) +

1

9
(E3 · E3 + E′3 · E′3) = −1

3
.

• The case N = 9: Again we use D 6= 12. If 3 - D, then the curve C ′ does not go
through any elliptic point. If 3 | D, and D 6= 105, then C ′ goes through an elliptic
point of order 3, so the blow up gives a P1 with self intersection number −3 (see
the first Figure of [vdG88] page 170), so we are in the same situation as the case
N = 3.

If D = 105, the picture is similar, but in this case some components are not
disjoint any more. Even though, the same computation applies.

Let g denote the degree of π and d the degree of the morphism induced by
π between the modular curve A and its image C ′. Since the morphism π is not
ramified over C ′, the preimage of C ′ consists on c = g/d curves which are translates
of A,

π∗(C ′) · π∗(C ′) = gC ′ · C ′ and π∗(C ′) · π∗(C ′) ≥ cA ·A.
Therefore

A ·A ≤ dC ′ · C ′.
Note that d = [PSL2(Z) : Γ(n)], where Γ(n) is the classical congruence subgroup.
Since n ≥ 3, d > 6 and A ·A < −1. Thus A is not exceptional. �

Remark 2.12. It is clear that if YΓ((n),a) is a minimal surface of general type and
m is a positive integer, then YΓ((mn),a) is also a minimal surface of general type.
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Summary 2.13. The following holds:

• If YΓ(OK ,a) is not rational and

n ≥

√√√√√3

 h∑
i=1

∑
j

(bi,j − 2)

,
then YΓ((n),a) is a minimal surface of general type.
• If YΓ(OK ,a) is not rational and satisfies Conjecture 2.9 (see Remark 2.10)

then YΓ((n),a) is a minimal surface of general type for n ≥ 3.
• If D = 5, 8, 12, 13, 17, 21, 24, 28, 33, 60 and a is in the principal genus or
D = 12 and a is not in the principal genus, then YΓ(OK ,a) is rational so
this section results do not apply. These cases will be treated separately in
Appendix B.

3. Hilbert modular forms

In this section we recall the definition and basic properties of Hilbert modular
forms.

Definition 3.1. Let Γa be a congruence subgroup, and k1 and k2 be integers such
that k1 ≡ k2 (mod 2). A holomorphic function G : H2 → C is called a Hilbert

modular form of weight k = (k1, k2) for the group Γa if for all γ =

(
a b
c d

)
∈ Γa

one has, for each z = (z1, z2) ∈ H2,

(2) G(γz) = (cz1 + d)k1(c′z2 + d′)k2G(z).

If k is an integer and G is a modular form of weight k = (k, k), we will call it
a modular form of parallel weight k. We will denote by Mk(Γa) the space of all
modular forms of weight k and by Mk(Γa) the space of all modular forms of parallel
weight k.

Let G be a Hilbert modular form of weight (k1, k2). It admits a Fourier expansion
in each cusp. Since all the cusps are conjugate to the infinity cusp (possibly altering
the ideals) by an element of PSL2(K), we will just recall the case of the infinity cusp.
Since Γa is a congruence group, the isotropy group of the cusp (1 : 0) contains some
G(M,V ) (since for example for Γ(c, a) it equals G(a−1c, U2

OK ,c
)). The modularity

condition implies that, if m ∈M and ε ∈ UOK ,c then

G(z1 +m, z2 +m′) = G(z1, z2),(3)

G(ε2z1, ε
′2z2) = ε−k1ε′

−k2G(z1, z2).(4)

The periodicity condition (3) implies that G admits the Fourier expansion

G =
∑
ξ∈M∨

aξ exp(2πi(ξz1 + ξ′z2)),

where M∨ is the set of ξ ∈ K such that Tr(mξ) ∈ Z for all m ∈M . Let M∨+ denote
the set of totally positive elements of M∨. Then the holomorphicity of G implies
that the only non-zero coefficients aξ of the above expansion are a0 and aξ with
ξ ∈M∨+ . Hence

G =
∑

ξ∈M∨+∪{0}

aξ exp(2πi(ξz1 + ξ′z2)).
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The modularity equation (4) implies that the coefficients of the Fourier expansion
satisfy the condition

(5) aξε2 = εk1ε′k2aξ for all ε ∈ UOK ,c.

In particular, if G is of parallel weight 2k then aξε2 = aξ.
By means of the Fourier expansion, we see that every modular form determines

a holomorphic function in an analytic neighborhood of each cusp.

Definition 3.2. (1) A Hilbert modular form G is called a cusp form if, for
each cusp, the coefficient a0 of the Fourier expansion of G is zero. We
denote by Sk(Γ) ⊂Mk(Γ) the space of modular cusp forms of weight k and
by S2k(Γ) ⊂M2k(Γ) the space of modular cusp forms of parallel weight 2k.

(2) Let G be a Hilbert modular form of parallel weight 2k for the group Γ(c, a)
and ci a cusp of XΓ(c,a). Let Si be the resolution divisor of ci in YΓ(c,a).
The modular form G determines a holomorphic function f in an analytic
neighborhood Ui of Si (as explained in [vdG88], Chapter II, section 1).
We say that G vanishes with order at least a at the cusp ci if the divisor
div(f) − aSi is effective in Ui. We will write ordci G = a if G vanishes at
the cusp ci with order a but does not vanish with order a+ 1.

The vanishing of a Hilbert modular form at a cusp can be read from the Fourier
expansion. For simplicity we will treat only the case of the infinity cusp. Let
{Aj}j∈J be a set of representatives under the action of V , of the corners of the
convex hull of M+ (see Section 2.2).

Lemma 3.3. Let G be a modular form of parallel weight 2k for a congruence
subgroup Γa and

G =
∑

ξ∈M∨+∪{0}

aξ exp(2πi(ξz1 + ξ′z2)),

its Fourier expansion at the infinity cusp. Then

ordc1 G = inf{Tr(ξAj) | j ∈ J, aξ 6= 0}.
Thus, G vanishes with order a at the infinity cusp if and only if aξ = 0 for all
ξ ∈M∨+ ∪ {0} such that there is a j ∈ J with Tr(ξAj) < a.

Proof. By (5), the vanishing condition for the coefficients of the Fourier expansion
is equivalent to the condition aξ = 0 for all ξ ∈ M∨+ ∪ {0} such that there is a
j ∈ Z with Tr(ξAj) < a. Let Aj , Aj+1 be a totally positive basis of M as in Section
2.2. To this basis, there is associated a local analytic chart of a piece of the cusp
resolution. Let u, v be the local coordinates of this chart. The divisors u = 0
and v = 0 correspond to components of the cusp resolution divisor. With these
coordinates, the Fourier expansion of G, is given by

G(u, v) =
∑

ξ∈M∨+∪{0}

aξu
Tr(ξAj)vTr(ξAj+1).

Thus, the lemma follows directly from the definition of order of vanishing at a
cusp. �

From the lemma, it is clear that a modular form is a cusp form if and only if it
vanishes at each cusp with order one.

Let G ∈M2(Γ) be a modular form of parallel weight 2. Then ωG = Gdz1∧dz2 is
a Γ-invariant differential form on H2. Thus, it defines a differential form on Γ\H2,
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hence on an open subset of YΓ. It can be seen ([vdG88, Ch 3. §3]) that ωG can be
extended to a differential form on YΓ that is regular on the resolution divisors of
the elliptic fixed points and has at most logarithmic poles at the resolution divisors
of the cusps. This gives us the identifications

S2(Γ)
'−→ H0(YΓ,O(KYΓ

)), M2(Γ)
'−→ H0(YΓ,O(KYΓ

+ S)),

where KYΓ is the canonical divisor of YΓ and S =
∑
Si is the sum of the resolution

divisors of all the cusps.
From the above identifications one can derive the following result.

Proposition 3.4. Let Γ be a congruence subgroup, {c1, . . . , ch} the set of cusps of
XΓ, Si the resolution divisor of ci on YΓ and S =

∑
Si. Fix integers 1 ≤ i0 ≤ h,

a, s ≥ 0. Then we can identify the space of all modular forms for Γ of parallel
weight 2k, vanishing order at least s at all the cusps and at least a+ s at the cusp
i0 with the space of global sections H0(YΓ,O(kKYΓ

+ (k − s)S − aSi0)).

4. Hecke Bound

In this section we will derive a Hecke type bound for Hilbert modular forms for
the group Γ(OK , a). We will assume that D > 0 is such that Z := ZΓ(OK ,a) is
not rational. Choose n ≥ 3 satisfying the conditions of Summary 2.13, so Zn :=
ZΓ((n),a) is a minimal surface of general type.

Let S be the cusp resolution divisor on Z. We order the cusps of XΓ(OK ,a) as ci,
i = 1, . . . , h and we decompose S as

S =

h∑
i=1

Si,

where Si is the resolution divisor over the cusp ci.
For each i = 1, . . . , h, let bi,j ≥ 2 be the integers that appear while comput-

ing the desingularization of the cusp ci of XΓ(OK ,a) as explained in Appendix A
where, following the Appendix notation, bi,j is the bj obtained while computing the
desingularization of the cusp ci. Let 1 ≤ i0 ≤ h.

Theorem 4.1 (Hecke bound). With the previous hypothesis on D and n, let G be a
Hilbert modular form of parallel weight 2k for Γ(OK , a) and suppose that ordci G ≥ s
for i = 1, . . . , h and ordci0 G ≥ r + s, with

(6) r >
4knζK(−1)∑
j(bi0,j − 2)

− s

(∑h
i=1

∑
j(bi,j − 2)∑

j(bi0,j − 2)

)
.

Then G is zero.

Before proving the theorem we recall some known results. Since, by hypothesis
n is big enough (see Summary 2.13), Zn does not have elliptic points, hence it is
already smooth. Let π : Zn → Z be the projection and d its degree. Let c′ be the
number of cusps of XΓ((n),a) that are over a cusp of XΓ(OK ,a). By [vdG88, Lemma
5.2, Chapter IV] and its proof

(7) d = n2c′[U2
OK

: U2
OK ,(n)].

For each i′ = 1, · · · , hc′, let b′i′,j be the integers that appear in the cusp desin-
gularization process of XΓ((n),a). Let ci′ be a cusp of XΓ((n),a) over a cusp ci of
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XΓ(OK ,a). Then the sequence (b′i′,j)j is a repetition of [U2
OK

: U2
OK ,(n)] times the

sequence (bi,j)j . Therefore

(8)

c′h∑
i′=1

∑
j

(2− b′i′,j) =
d

n2

h∑
i=1

∑
j

(2− bi,j).

Let S′ be the cusp resolution divisor of Zn and, for i = 1, . . . h, let S′i be the sum
of the resolution divisor of all the cusps on Zn over ci. By Remark 2.2 we have

(9) π∗(S) = nS′ and π∗(Si) = nS′i.

By the geometry of the cusp resolutions (see Appendix A) we have

Si · Sl =

{∑
j(2− bi,j) if i = l,

0 if i 6= l.

From this, using equation (9), we deduce

(10) S′i · S′l =

{
d
n2

∑
j(2− bi,j) if i = l,

0 if i 6= l.

Proposition 4.2. For each i there is a j with bi,j > 2. In particular the denomi-
nators in Theorem 4.1 are different from zero.

Proof. We are led to prove that Si · Si < 0. Let X be a non-singular projective
surface and let r be the rank of its Neron-Severi group. The intersection product
gives a pairing on the Neron-Severi group with signature (1, r − 1) by the Hodge
index theorem. The claim follows from the following.

Claim: let Y be a projective surface and f : X → Y be a dominant morphism
with X a non-singular surface. Let p ∈ Y and let D = f−1(p). If E is a divisor on
X whose support is contained in D then E · E < 0.

Let H ′ be an ample divisor of Y not going through p. Let H be the inverse
image of H ′ under f . Then

(11) H ·H > 0 and H · E = 0.

In particular H and E are independent as elements in the Neron-Severi group. If
E · E ≥ 0 then on the 2-dimensional subspace 〈H,E〉 the intersection product is
not negative, but a form of signature (1, r − 1) cannot have such a subspace. �

Let KZn be the canonical divisor of Zn. Since each divisor Si is a cycle of rational
curves, it has arithmetic genus 1. Then the adjunction formula implies that

(12) (KZn + S′i) · S′i = 0, (KZn + S′) · S′ = 0.

Therefore

(13) KZn · S′i =
d

n2

∑
j

(bi,j − 2), KZn · S′ =
d

n2

h∑
i=1

∑
j

(bi,j − 2).

Moreover, by [vdG88, Chapter IV, Theorem 2.5] (page 64), [vdG88, Chapter IV,
Theorem 1.1], (pp. 59) and equation (8),

(14) KZn ·KZn = 2 Vol(Zn)+
d

n2

h∑
i=1

∑
j

(2−bi,j) = 4dζK(−1)+
d

n2

h∑
i=1

∑
j

(2−bi,j).
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Proof of Theorem 4.1. Since G is a Hilbert modular form of parallel weight 2k
that vanishes with order s at every cusp and with order r + s at the cusp ci0 , by
Proposition 3.4, it determines a global section of O(k(KZn + S′) − snS′ − rnS′i0).
Since Zn is a minimal surface of general type, KZn is NEF. Hence, if G 6= 0, the
intersection number KZn · (k(KZn + S′)− snS′ − rnS′i0) must be non-negative. If
we prove that this number is negative, we are done. Using equations (13) and (14),
we obtain

(15) KZn · (k(KZn + S′)− snS′ − rnS′i0)

= d

4kζk(−1) +
s

n

h∑
i=1

∑
j

(2− bi,j) +
r

n

∑
j

(2− bi0,j)


proving the Theorem. �

By virtue of Lemma 3.3, we can state the same result in terms of Fourier expan-
sions. For simplicity we will treat only the case of the infinity cusp. Assume that
we have numbered the cusps in such a way that the infinity cusp is c1. The lattice
corresponding to the isotropy group of the infinity cusp is M = a−1 and the group
of units V equals U2

OK
. Let {Aj}j∈J be a set of representatives under the action of

U2
OK

of the corners of the convex hull of (a−1)+.

Corollary 4.3. With the same hypothesis on D and n, let G be a Hilbert modular
form of parallel weight 2k for Γ(OK , a) which vanishes with order s at all the cusps.
Let r be an integer with

r >
4knζK(−1)∑
j(b1,j − 2)

− s

(∑h
i=1

∑
j(bi,j − 2)∑

j(b1,j − 2)

)
.

Suppose that the Fourier expansion of G at the infinity cusp is

G =
∑

ξ∈(a−1)∨+∪{0}

aξ exp(2πi(ξz1 + ξ′z2)).

If aξ = 0 for all ξ ∈ (a−1)∨+ ∪ {0} such that there is a j ∈ J with Tr(ξAj) < r + s,
then G = 0.

Remark 4.4. Although both Theorem 4.1 and Corollary 4.3 are stated for forms
vanishing with order s at all cusps, the two usual cases are s = 0 for a general
Hilbert modular form and s = 1 for a cusp form.

Remark 4.5. The bound we got in Theorem 4.1 relies on the choice of an auxiliary
positive integer n such that Zn is a minimal surface of general type, and there is
a dependence of n in the formula. We can think of this dependence in a somehow
different way. We need to construct a NEF divisor in some surface. What we did
was to start with a parallel weight 2k Hilbert modular form G for Γ(OK , a) and
considered its pullback to Zn, where we can identify a NEF divisor, namely the
canonical divisor. But we can do the opposite, recall the following result concerning
NEF divisors under maps.

Lemma 4.6. Let π : X → Y be a surjective generically finite map between surfaces.
Let D ⊂ Y be a Cartier divisor. Then D is a NEF divisor if and only if π∗(D) is
a NEF divisor.
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This implies that we can do the computations in “level 1”. Take any (rational)
divisor D in Z1 whose pullback to Zn is the canonical divisor and compute the
intersection numbers with it (which of course gives the same bound). Thus, the
dependence on n does not come from where we compute the intersection numbers
but from where we can identify a NEF divisor.

Thus, there are two ways for getting a better bound in some particular cases:

(1) If one can compute the cone of NEF divisors, one can make the same
computations for each generator of the NEF cone to get the best bound.

(2) If YΓ(OK ,a) is of general type (which happens for example if D > 500), one
can compute its minimal model, and take as NEF divisor any divisor D in
ZΓ(OK ,a) whose pullback to the minimal model is the canonical divisor to
get a bound with “n = 1”.

5. Sturm bound

To make the computation of the previous section work over a finite field, we need
to use the integral structure of the Hilbert modular surface. Such structure comes
from their moduli interpretation and has been developed in [Rap78], [Cha90] and
[Pap95], see also the book [Gor02].

Let D > 0 be a fundamental discriminant. Let a be a fractional ideal, n ≥ 3 a
positive integer and ζn a primitive n-th root of unity. Consider the modular surface
YΓ((n),a) and let S′ be the cusp resolution. The first input we need is the existence
of a nice regular model of YΓ((n),a).

Theorem 5.1. There exist a smooth, proper scheme YΓ((n),a) over Z[1/(Dn), ζn],
such that

YΓ((n),a) ×
Z[1/(Dn),ζn]

Spec(C) = YΓ((n),a).

In particular YΓ((n),a) is regular and flat over Z[1/(Dn), ζn]. Moreover, there is a
relative normal crossing divisor S ′ of YΓ((n),a) whose restriction to YΓ((n),a) is S′.

Proof. See [Cha90] Theorem 3.6, [Rap78] Théorème 5.1 and Corollaire 5.3. and
[Pap95] Theorem 2.1.2. �

The second input we need is the q-expansion principle. Let K be the canonical
divisor of YΓ((n),a) and let K be the relative canonical divisor of YΓ((n),a). Let R be
a subalgebra of C that contains Z[1/(Dn), ζn]. We will denote by YΓ((n),a),R, KR

and S ′R the objects obtained after extending scalars to R. We know that a modular
form of parallel weight 2k determines a section of OYΓ((n),a)

(k(K + S′)).

Theorem 5.2. Let G be a Hilbert modular form of parallel weight 2k for Γ((n), a),
and let

G =
∑

ξ∈(na−1)∨+∪{0}

aξ exp(2πi(ξz1 + ξ′z2)),

be its Fourier expansion at a cusp. Then the form G determines a section of
OYΓ((n),a),R(k(KR + S ′R)) if and only if aξ ∈ R for all ξ ∈M∨+ ∪ {0}.

Proof. See [Cha90] Theorem 4.3 and [Rap78] Théorème 6.7. �

Finally we need to know that the fibers of YΓ((n),a) are also minimal surfaces.
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Proposition 5.3. Let O be a Dedekind domain contained in C that contains
Z[1/(Dn), ζn]. Let p ⊂ O be a prime ideal and let k(p) be an algebraic closure

of the residue field k(p). Denote Y
Γ((n),a),k(p)

= YΓ((n),a) ×k(p)
Z[1/(Dn),ζn]

. If YΓ((n),a) is

a minimal surface of general type then the same is true for Y
Γ((n),a),k(p)

.

Proof. This follows from [KU85] Theorem 9.1 and Lemma 9.6. We would like
to thank Professor Qing Liu for answering our question in mathoverflow. (http:
//mathoverflow.net/questions/70942) �

We now assume that D and n satisfy furthermore the hypothesis of the previous
section and we use the notations of that section. Again, for simplicity we state the
result for the infinity cusp.

Theorem 5.4 (Sturm bound). Let O ⊂ C be a ring of integers of a number field.
Let G be a Hilbert modular form of parallel weight 2k for Γ(OK , a), which vanishes
with order s at all cusps. Suppose that the Fourier expansion of G at the infinity
cusp c1 is

G =
∑

ξ∈(a−1)∨+∪{0}

aξ exp(ξz1 + ξ′z2),

with aξ ∈ O for all ξ ∈ (a−1)∨+ ∪ {0}. Let p ⊂ O be a prime ideal such that p - Dn
and let r be an integer with

r >
4knζK(−1)∑
j(b1,j − 2)

− s

(∑h
i=1

∑
j(bi,j − 2)∑

j(b1,j − 2)

)
.

If aξ ∈ p for all ξ ∈ (a−1)∨+∪{0} such that there is a j ∈ J with Tr(ξAj) < r+s,
then aξ ∈ p for all ξ ∈ (a−1)∨+ ∪ {0}.

Proof. With the same argument as in the proof of the classical Sturm theorem,
we can assume without loss of generality that Z[1/(Dn), ζn] ⊂ O. We consider
the regular model YΓ((n),a) of YΓ((n),a) provided by Theorem 5.1. As before, we
denote by YΓ((n),a),O the model over Spec(O) obtained after base change. Since
G is a modular form for Γ(OK , a) it is also a modular form for Γ((n), a). By the
q-expansion principle (Theorem 5.2) the modular form G determines a section of
OYΓ((n),a),O

(k(KO+S ′O)), that we denote also by G. The vanishing hypothesis imply
that, when we restrict G to Y

Γ((n),a),k(p)
we obtain a global section of

OY
Γ((n),a),k(p)

(k(K
k(p)

+ S ′
k(p)

)− snS ′
k(p)
− rnS ′

i0,k(p)
).

By Proposition 5.3 the canonical divisor K
k(p)

is NEF. Since intersection numbers

are preserved by specialization, from equation (15) we deduce that

K
k(p)
· (k(K

k(p)
+ S ′

k(p)
)− snS ′

k(p)
− rnS ′

i0,k(p)
) < 0

Therefore the restriction of G to Y
Γ((n),a),k(p)

is zero, proving the result. �

6. General weights and levels.

Although the main results of the previous sections are stated only for modular
forms of level Γ(OK , a) and parallel weight (2k, 2k), they can be generalized to
any congruence subgroup Γa and any weight (k1, k2) satisfying the parity condition

http://mathoverflow.net/questions/70942
http://mathoverflow.net/questions/70942
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k1 ≡ k2 (mod 2) using exactly the same tricks as for classical modular forms.
Assume that n satisfies the hypothesis of Theorem 4.1.

Let Γa be a congruence subgroup, (k1, k2) a weight satisfying the previous parity
condition. Let {Aj}j∈J be a set of representatives under the action of U2

OK
, of the

corners of the convex hull of (a−1)+ as in Section 2.2.

Theorem 6.1. Let G be a modular form of weight (k1, k2) for Γa which vanishes
with order s at all the cusps. Suppose that the Fourier expansion of G at the infinity
cusp is

G =
∑

ξ∈M∨+∪{0}

aξ exp(2πi(ξz1 + ξ′z2)).

for an appropriate lattice M ⊂ a−1. Let

r >
(k1 + k2)n[Γ(OK , a) : Γa]ζK(−1)∑

j(b1,j − 2)
− s

(∑h
i=1

∑
j(bi,j − 2)∑

j(b1,j − 2)

)
be an integer. If aξ = 0 for all ξ ∈ M∨+ ∪ {0} such that there is a j ∈ J with
Tr(ξAj) < r + s, then G = 0.

Proof. Assume first that k1 = k2 = 2k. Let H(z1, z2) be the Hilbert modular form
given by

H(z1, z2) =
∏

α∈Γ\Γ(OK ,a)
α6∈Γ

G(z1, z2)|2k[α],

where the product is taken over coset representatives of Γ(OK , a) modulo Γa (acting
on the left) not in the trivial class.

The form G(z1, z2)H(z1, z2) is a form of weight 2k[Γ(OK , a) : Γa] for Γ(OK , a),
so we can apply the Hecke bound of section 4 to it. There is an integer N such that
Γ((N), a) ⊂ Γa and N(a−1) ⊂M , thus we can write the Fourier expansion of G as

G(z1, z2) =
∑

ξ∈ 1
N (a−1)∨+∪{0}

aξ exp(2πi(ξz1 + ξ′z2)).

Since Γ((N), a) is a normal subgroup of Γ(OK , a), the function H(z1, z2) is a mod-
ular form for it. Thus it has a Fourier expansion

H(z1, z2) =
∑

ξ∈ 1
N (a−1)∨+∪{0}

bξ exp(2πi(ξz1 + ξ′z2)).

The product of this two Fourier expansions is

∑
η∈(a−1)∨+

 ∑
ξ,η−ξ∈ 1

N (a−1)∨+∪{0}

aξbη−ξ

 exp(2πi(ηz1 + η′z2)).

In principle, the exterior sum should run over elements in 1
N (a)∨+, but since we

know that GH is a modular form for Γ(OK , a), all the other terms are zero.
Note that since η−ξ � 0 (or zero), η−ξ ≥ 0 and η′−ξ′ ≥ 0, so Tr(ξm) ≤ Tr(ηm)

for m ∈ a−1
+ . In particular, if aξ = 0 for all the elements in the hypothesis, the

coefficients of G(z1, z2)H(z1, z2) are all zero for all η with Tr(ηAj) ≤ r+ s for some
j ∈ J and the result follows from Corollary 4.3.
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For general weights (k1, k2), it is enough to apply the previous case to the form
G(z1, z2)G(z2, z1), which has parallel weight k1 +k2 (even) and vanishes with order
2s at all the cusps and with order 2r + 2s at the infinity cusp. �

Remark 6.2. The same statement and proof gives Sturm bound holds for general
weights and level.

Remark 6.3. As in the classical case, one can obtain for forms in Mk(Γ0(c, a), χ)
(i.e. forms with a character) the same bound as the one for forms in Mk(Γ0(c, a)),
by using Buzzard’s trick. If ord(χ) denotes the order of χ, then we consider
G(z1, z2)ord(χ), which vanishes with order ord(χ)s at all cusps and ord(χ)s+ord(χ)r
at the infinity cusp, but is a form for Γ0(c, a), so the values of ord(χ) cancels in the
formula.

Remark 6.4. If in the Hecke/Sturm bound we fix the level and let the weight grow,
the number of elements of the Fourier expansion to check equality/congruence grows
quadratically with the weight since we have to search for elements in a cone whose
trace grows linearly in the weight. If we stick to parallel weight forms, it is known
that the same happens with the dimension of such modular forms spaces. This
implies that the bound we got is the best possible up to a constant (depending only
on the level and the base field).

Remark 6.5. When the narrow class number is greater than 1, one can relate mod-
ular forms for the different subgroups PGL+

2 (OK , a) (varying a) using the action of
the Hecke operators. This allows to take the number of coefficients needed to check
congruences/equality of modular forms to be the minimum between all the ideals,
but they need not be the ones with smaller trace. See the Remark 7.1.

7. Examples

We apply the main results of this article to different examples of real quadratic
fields. All computation were done using the mathematical software [PAR12] and
some code written by ourselves. We chose fields that have: trivial narrow class
group, trivial class group but non-trivial narrow class group and non-trivial class
group respectively.

7.1. The case Q(
√

29). The class number and the narrow class number of Q(
√

29)
are both 1. The discriminant is 29 6≡ 1 (mod 8), hence Conjecture 2.9 holds and
we can take n = 3 for the Hecke/Sturm bound. Table 7.1 contains the information
of the desingularization process applied to the principal ideal as explained in Ap-
pendix A (specially RemarkA.1). The abbreviation S.I. of the table stands for self
intersection number. With this information, equation (6) of Theorem 4.1 reads

r >
2 · 2k · 3 · 1

5 · 2
− s =

6k

5
− s.

Let G(z1, z2) ∈M2k(SL2(OQ(
√

29))) with Fourier expansion

G(z1, z2) =
∑

ξ∈( 1√
29

Z+( 1
2 + 1

2
√

29
)Z)+

aξ exp(2πi(ξz1 + ξ′z2)).

If aξ = 0 for all ξ that satisfy Tr(mξ) ≤ 6k
5 , with m any of the five vertices then

G(z1, z2) is the zero form. For cusp forms of parallel weight 2, the vector space of
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A1

A2
A3

A4

A5

Label Point S.I.

A1 1 −7

A2
7−
√

29
2 −2

A3 6−
√

29 −2

A4
17−3

√
29

2 −2

A5 11− 2
√

29 −2

Table 7.1. Infinity cusp desingularization for Γ(OQ(
√

29), 1)

which has dimension 1, the bound says it is enough to check elements with trace 1.
The first vertex gives the five non-equivalent points

(16) ξ =
1

2
± 1

2
√

29
,

1

2
± 3

2
√

29
,

1

2
+

5

2
√

29
.

The second vertex, the third vertex, the fourth and the fifth vertex give the point
ξ = 1

2 + 5
2
√

29
. In particular, the five Fourier coefficients indexed by the elements

listed in (16) determine whether the form is zero or not.
For different values of k, we computed the number of elements that satisfy

Tr(mξ) ≤ 6k
5 with m any of the five vertices of the desingularization. By The-

orem 4.1, such quantity is the number of Fourier coefficients needed to determine
whether a form in S2k(SL2(OQ(

√
29))) is zero or not. The information is summarized

in Table 7.2 which also contains the dimension of S2k(SL2(OQ(
√

29))).

2k 20 30 40 50 100 150 200 300
Number of Elts 390 855 1500 2326 9151 20477 36302 81453

Dimension 92 212 381 602 2451 5552 9902 22352

Table 7.2. Number of coefficients versus dimension for S2k(SL2(OQ(
√

29)))

7.2. The case Q(
√

11). The class number of Q(
√

11) is 1 while the narrow class
number is 2. Generators for the narrow class group are the principal ideal and the
fractional ideal (

√
11)−1. Since D = 44 6≡ 1 (mod 8), Conjecture 2.9 holds and we

can take n = 3. Table 7.3 contains the information of the desingularization process
applied to the principal ideal as explained in Appendix A (specially RemarkA.1).
The abbreviation S.I. of the table stands for self intersection number. With this
information, equation (6) of Theorem 4.1 reads

r >
4k · 3 · 7

12 · 6
− s =

7k

6
− s.

Let G(z1, z2) ∈M2k(Γ(OQ(
√

11), 1)) with Fourier expansion

G(z1, z2) =
∑

ξ∈( 1
2Z+ 1

2
√

11
Z)+

aξ exp(2πi(ξz1 + ξ′z2)).

If aξ = 0 for all ξ that satisfy Tr(mξ) ≤ 7k
6 , with m any of the six vertices, then

G(z1, z2) is the zero form.
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A1

A2

A3

A4

A5

A6

Label Point S.I.

A1 1 −8

A2 4−
√

11 −2

A3 7− 2
√

11 −2

A4 10− 3
√

11 −8

A5 73− 22
√

11 −2

A6 136− 41
√

11 −2

Table 7.3. Infinity cusp desingularization for Γ(OQ(
√

11), 1)

2k 20 30 40 50 100 150
Number of Elts 792 1836 3312 5220 20532 45936

Dimension 212 492 888 1402 5718 12952

Table 7.4. Number of coefficients versus dimension for S2k(Γ(OQ(
√

11), 1))

For cusp forms of parallel weight 2, the vector space of which has dimension 2, the
bound says it is enough to check elements with trace 1. The first vertex gives the
seven non-equivalent points

1

2
± 3

2
√

11
,

1

2
± 1√

11
,

1

2
± 1

2
√

11
,

1

2
.

The second and the third vertices give the point 1
2 + 3

2
√

11
. The fourth vertex gives

the points

1

2
+

3

2
√

11
, 2 +

13

2
√

11
,

7

2
+

23

2
√

11
, 5 +

33

2
√

11
,

13

2
+

43

2
√

11
, 8 +

53

2
√

11
,

19

2
+

63

2
√

11
.

The last two vertices give the point 19
2 + 63

2
√

11
. Note that since the elements 19

2 + 63
2
√

11

and 1
2 −

3
2
√

11
differ by an even power of the fundamental unit, there are only twelve

conditions to check.
For different values of k, we computed the number of elements that satisfy

Tr(mξ) ≤ 7k
6 with m any of the six vertices of the desingularization. By Theo-

rem 4.1, such quantity is the number of Fourier coefficients needed to determine
whether a form in S2k(Γ(OQ(

√
11), 1)) is zero or not. The information is summarized

in Table 7.4 which also contains the dimension of S2k(Γ(OQ(
√

11), 1)).

7.2.1. The subgroup Γ(OQ(
√

11), (
√

11)−1). Table 7.5 contains the information of

the desingularization process applied to the ideal (
√

11)−1 . With this information,
equation (6) of Theorem 4.1 reads

r >
7k

3
− s.

Let G(z1, z2) ∈M2k(Γ(OQ(
√

11), (
√

11)−1)) with Fourier expansion

G(z1, z2) =
∑

ξ∈( 1
2Z+

√
11
2 Z)+

aξ exp(2πi(ξz1 + ξ′z2)).
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Point S.I. Point S.I.
3√
11

+ 1 −5 − 3√
11

+ 1 −5
2√
11

+ 1 −2 − 13√
11

+ 4 −2
1√
11

+ 1 −2 − 23√
11

+ 7 −2

1 −2 −3
√

11 + 10 −2
− 1√

11
+ 1 −2 − 43√

11
+ 13 −2

− 2√
11

+ 1 −2 − 53√
11

+ 16 −2

Table 7.5. Infinity cusp desingularization for Γ(OQ(
√

11), (
√

11))

2k 20 30 40 50 100 150
Number of Elts 1657 3780 6487 10267 40717 92401

Dimension 213 493 889 1403 5719 12953

Table 7.6. Number of coefficients versus dimension for S2k(Γ(OQ(
√

11), (
√

11)−1))

If aξ = 0 for all ξ that satisfy Tr(mξ) ≤ 7k
3 , with m any of the twelve vertices then

G(z1, z2) is the zero form. For cusp forms of parallel weight 2, the vector space of
which has dimension 3, the bound says it is enough to check elements with trace 1
or 2. There are 18 such elements which can be easily computed.

For different values of k, we computed the number of elements that satisfy
Tr(mξ) ≤ 7k

3 with m any of the twelve vertices of the desingularization. By The-
orem 4.1, such quantity is the number of Fourier coefficients needed to determine
whether a form in S2k(Γ(OQ(

√
11), (
√

11)−1)) is zero or not. The information is sum-

marized in Table 7.6 which also contains the dimension of S2k(Γ(OQ(
√

11), (
√

11)−1)).

Remark 7.1. Hecke operators do not act on the surface YΓ(OQ(
√

11),1), but do act (as

correspondences) on the product YPGL+
2 (OQ(

√
11),1)×YPGL+

2 (OQ(
√

11),(
√

11)−1), i.e. they

act on pairs of Hilbert modular forms where the first component is invariant under
PGL+

2 (OQ(
√

11), 1) and the second one under PGL+
2 (OQ(

√
11), (
√

11)−1) (such pairs

of forms correspond to automorphic forms over Q(
√

11); a good introduction to the
subject is the book [Gar90], where the relation between automorphic forms and
Hilbert modular forms is well explained and the definition and main properties of
Hecke operators is given). A form in Mk(PGL+

2 (OQ(
√

11), (
√

11)−1)) can be thought

as an automorphic form supported only in one component.
Let p11 denote the prime ideal generated by

√
11. The Hecke operator Tp11

sends a form F supported in Mk(PGL+
2 (OQ(

√
11), (
√

11)−1)) to a form supported in

Mk(PGL+
2 (OQ(

√
11), 1)). Furthermore, if

F (z1, z2) =
∑

ξ∈M∨+∪{0}

aξ exp(2πi(ξz1 + ξ′z2)).

then

Tp11(F )(z1, z2) =
∑

ξ∈M∨+∪{0}

(
11aξ + a ξ

11

)
exp(2πi(ξz1 + ξ′z2)).
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A1

A2

A3

A4

A5

A6

Label Point S.I.

A1 1 −8

A2 4−
√

10 −2

A3 7− 2
√

10 −2

A4 10− 3
√

10 −2

A5 13− 4
√

10 −2

A6 16− 5
√

10 −2

Table 7.7. Infinity cusp desingularization for Γ(OQ(
√

10), 1)

Assume that the form F (z1, z2) is not in the kernel of the Hecke operator Tp11

(which is usually the case). Then if the Fourier coefficients aξ and a ξ
11

, with ξ

in the Hecke/Sturm set for the trivial class are all zero/congruent to zero, then
the form F (z1, z2) itself is the zero form. In this way one can restrict only to the
principal class and deduce from it the other ones. Also one can hope to get better
bounds comparing the different narrow class group classes.

It is an interesting problem to study the action of the Hecke operators and see
how one can improve our Hecke/Sturm bound for general real quadratic fields.

7.3. The case Q(
√

10). This is the first real quadratic field with non-trivial class
group. The class group has order 2 and the two representatives can be taken as 1
and

〈
2,
√

10
〉

(the unique prime ideal dividing 2). The discriminant of such field
is D = 40 6≡ 1 (mod 8), hence Conjecture 2.9 holds and we can take n = 3 for
the Hecke/Sturm bound. Table 7.7 contains the information of the desingulariza-
tion process applied to the principal ideal as explained in Appendix A. With this
information, equation (6) of Theorem 4.1 reads

r >
2 · 2k · 3 · 7

6 · 6
− s6 + 4

6
=

7k

3
− 5s

3
.

Let G(z1, z2) ∈M2k(Γ(OQ(
√

10), 1)) with Fourier expansion

G(z1, z2) =
∑

ξ∈( 1
2Z+ 1

2
√

10
Z)+

aξ exp(2πi(ξz1 + ξ′z2)).

If aξ = 0 for all ξ such that Tr(mξ) ≤ 7k
3 , with m any of the six vertices then

G(z1, z2) is the zero form. For cusp forms of parallel weight 2, the vector space of
which has dimension 1, the bound says it is enough to check elements with trace 1.
The first vertex gives the non-equivalent points

ξ =
−2

2
√

10
+

1

2
,
−1

2
√

10
+

1

2
,

1

2
,

1

2
√

10
+

1

2
,

2

2
√

10
+

1

2
,

3

2
√

10
+

1

2
.

All the other ones give the point ξ = 3
2
√

10
+ 1

2 .

For different values of k, we computed the number of elements that satisfy
Tr(mξ) ≤ 7k

3 with m any of the six vertices of the desingularization. By Theo-
rem 4.1, such quantity is the number of Fourier coefficients needed to determine
whether a form in S2k(Γ(OQ(

√
10), 1)) is zero or not. The information is summarized

in Table 7.8 which also contains the dimension of S2k(Γ(OQ(
√

10), 1)).
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2k 20 30 40 50 100 150
Number of Elts 1518 3570 6486 9918 40716 91350

Dimension 212 492 888 1402 5718 12952

Table 7.8. Number of coefficients versus dimension for S2k(Γ(OQ(
√

10), 1))

A1

A2

A3

A4

Label Point S.I.

A1 2 −4

A2 4−
√

10 −3

A3 10− 3
√

10 −2

A4 16− 5
√

10 −3

Table 7.9. Infinity cusp desingularization for Γ(OQ(
√

10),
〈
2,
√

10
〉
)

By the same classical translation, working with the cusp
〈
2,
√

10
〉

is equivalent

to work with the infinity cusp for the group of level
〈
2,
√

10
〉
. Table 7.9 contains the

information of the desingularization process applied to the prime ideal
〈
2,
√

10
〉
.

With this information, equation (6) of Theorem 4.1 reads

r >
2 · 2k · 3 · 7

4 · 6
− s6 + 4

4
=

7k

2
− 5s

2
.

Let G(z1, z2) ∈M2k(Γ(OK ,
〈
2,
√

10
〉
)) with Fourier expansion

G(z1, z2) =
∑

ξ∈( 1
4Z+ 1

2
√

10
Z)+

aξ exp(2πi(ξz1 + ξ′z2)).

If aξ = 0 for all ξ such that Tr(mξ) ≤ 7k
2 , with m any of the four vertices then

G(z1, z2) is the zero form. For cusp forms of parallel weight 2, the vector space of
which has dimension 1, we need to check the elements with trace 1 or 2. The first
vertex gives the non-equivalent points (up to units squared)

ξ =
1

4
,

1

4
+

1

2
√

10
,

1

4
− 1

2
√

10
,

1

2
− 1√

10
,

1

2
− 1

2
√

10
,

1

2
,

1

2
+

1√
10
,

1

2
+

1

2
√

10
,

1

2
+

3

2
√

10
.

The first three points have trace 1, while the others trace 2. The second vertex
gives the points

ξ =
1

4
+

1

2
√

10
,

1

2
+

3

2
√

10
,

1

4
,

1

2
+

1√
10
,

3

4
+

2√
10
, 1 +

3√
10
,

where the first two elements give trace 1 while the others trace 2. The third vertex
gives the points

ξ =
1

2
+

3

2
√

10
,

1

4
+

1

2
√

10
, 1 +

3√
10
,

7

4
+

11

2
√

10
,
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2k 20 30 40 50 100 150
Number of Elts 2244 5304 9384 14964 60204 135720

Dimension 212 492 888 1402 5718 12952

Table 7.10. Number of coefficients versus dimension for S2k(Γ(OQ(
√

10),
〈
2,
√

10
〉
))

where the first one corresponds to trace 1 and the other to trace 2. Note that the
last element is equivalent to 1

4 −
1

2
√

10
. The last vertex gives the points

ξ =
1

2
+

3

2
√

10
,

7

4
+

11

2
√

10
, 1 +

3√
10
,

9

4
+

7√
10
,

7

2
+

11√
10
,

19

4
+

15√
10
,

where the first two elements correspond to trace 1 and the others to trace 2. The
last two elements are equivalent to the elements 1

2 −
1√
10

and 1
4 respectively, so we

need to check 12 coefficients.
For different values of k, we computed the number of elements that satisfy

Tr(mξ) ≤ 7k
2 with m any of the 4 vertices of the desingularization. By Theorem 4.1,

such quantity is the number of Fourier coefficients needed to determine whether a
form in S2k(Γ(OQ(

√
10),

〈
2,
√

10
〉
)) is zero or not. The information is summarized

in Table 7.10 which also contains the dimension of S2k(Γ(OQ(
√

10),
〈
2,
√

10
〉
)).

Appendix A. Computing the cusp desingularization

In this appendix we recall how to compute the resolution divisor of a cusp of a
Hilbert modular surface. The isotropy group of any cusp for Γ(c, a) is conjugate
to a group of the form G(M,V ), where M ⊂ K is an OK-module and V ⊂ U+

K is
a subgroup of finite index. As a transformation group G(M,V ) = M o V . The
geometry of the resolution divisor only depends on M and V .

To compute the desingularization of the cusp we first need a reduced oriented
basis of M .

An oriented basis of M is a Z-basis M = 〈α, β〉 such that det
(
α β
α′ β′

)
> 0. To

an oriented basis we can associate the indefinite binary quadratic form Q(x, y) =
1

N(M) N(αx+ βy), where N(M) indicates the content of the form N(αx+ βy), i.e.

the rational number which makes Q(x, y) an integral primitive form.
If λ is a totally positive element, multiplication by λ sends oriented bases of

M to oriented bases of λM , but clearly 〈α, β〉 and 〈λα, λβ〉 have the same qua-
dratic form attached. Choosing a different oriented basis gives an SL2(Z)-equivalent
form, hence we get a bijection between the narrow class group of K and SL2(Z)-
equivalence classes of integral primitive indefinite binary quadratic forms of dis-
criminant D.

Following [vdG88], we call a form ax2 + bxy + cy2 of discriminant D reduced if

(17) 0 <
b−
√
D

2a
< 1 <

b+
√
D

2a
.

Thus, using strict SL2(Z) equivalence, one can reduce any indefinite integral
binary quadratic form of discriminant D to a reduced one. In other words, starting
from an oriented basis of M one gets an oriented basis of the form 1

aMred = λ
aM =(

b+
√
D

2a

)
Z + Z (λ is a generator of the quotient of the reduced ideal by M).
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Remark A.1. This notion of a reduced form is not universal. For example, in
Cohen’s book (see ([Coh93] Definition 5.6.2) a reduced indefinite integral binary
quadratic form satisfies

0 ≤
√
D − b
2|a|

< 1 <

√
D + b

2|a|
.

Starting fromQ(x, y) one can use Cohen’s algorithm ([Coh93] Algorithm 5.6.5 which
is for example implemented in [PAR12]) to get a Cohen-reduced form. Note that we
can always take as reduced form one with a > 0 (by Proposition 5.6.6 of [Coh93])
and remove the previous absolute value. If we apply the change of variables given
by the matrix ( 1 1

0 1 ), which sends b to b+ 2a, we get a reduced form in the sense of
(17).

Once we have computed the reduced basis for λM , we consider the set of totally
positive elements (λM)+ as a subset of R2 and its convex hull in R2. The points
of (λM)+ that belong to the boundary of its convex hull are Ak, k ∈ Z, with

A−1 = w0 :=
b+
√
D

2a
, A0 = 1, Ak+1 := bkAk −Ak−1,

where the numbers bk, for k ≥ 0, are defined recursively by

bk := dwke and wk+1 :=
1

bk − wk
.

The sequence {bk} (and {wk} also) is periodic with some period r. We extend the
definition of bk to k ∈ Z using this periodicity.

Now we add the multiplicative structure. Let ε be a generator of U2
OK

. It acts
on the sequence {Ak} with a finite number of representatives. Then for all k ∈ Z,

Ak = ε±νAk+r,

where ν = 1 if the fundamental unit of K has norm −1 and ν = 2 otherwise.

If we want to compute the boundary of M+, then we just multiply the previous
process by a (the norm of the reduced ideal) times a generator of the quotient
M/Mred

Let r̃ = r · ν · [U2
OK

: V ]. Then the cusp resolution attached to G(M,V ) is
completely described by the period r̃ and the numbers bk. Namely, the resolution
divisor consists of r̃ lines Sk, k ∈ Z/r̃ (each one isomorphic to P1) which satisfy:

• S2
k = −bk if r̃ ≥ 2.

• Let n,m be integers, n 6= m and r̃ ≥ 3. Then:
– If n 6≡ m± 1 (mod r̃), Sn ∩ Sm = ∅.
– If n ≡ m± 1 (mod r̃), Sn ∩ Sm is one point.

• If r̃ = 1, then S0 is singular and S2
0 = −b0 + 2.

• If r̃ = 2, then S0 and S1 are non-singular and intersect in 2 points.

Appendix B. Rational case

Recall that YΓ(OK ,a) is rational for D = 5, 8, 12, 13, 17, 21, 24, 28, 33, 60 and a in
the principal genus, or for D = 12 and a not in the principal genus. The purpose of
this appendix is to give a Sturm bound for some of these cases. If c is an integral
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ideal such that YΓ(c,a) or a blow down of it, is a minimal surface of general type we
still get the Hecke/Sturm bound

a >
4k[Γ(c, a) : Γ(OK , a)]ζk(−1)∑

j(bi0,j − 2)
− s

(∑h
i=1

∑
j(bi,j − 2)∑

j(bi0,j − 2)

)
,

where the numbers bi,j are the ones appearing in the cusp desingularization process
of YΓ(c,a), or that of its blow down. Here is a summary of the ideals c which give a
minimal surface of general type for some values of D:

• D = 5: c = 3 ([vdG88] Example 7.5 p. 179). There are ten non-equivalent
cusps, each one resolved by a cycle (3, 3, 3, 3).
• D = 8: c = p7 a prime ideal or norm 7 ([vdG88] page 196). There are eight

cusps, each one resolved by a cycle (4, 2, 4, 2, 4, 2).
• D = 13, c = 2 (see [vdGZ77] page 197) gives a surface of general type with

the components of F1 as the unique exceptional curves. There are 5 cusps,
each one in the minimal model is resolved by a cycle (2, 2, 3, 2, 2, 3, 2, 2, 3) .
• D = 17: c = 2 (see [vdG88], page 198) gives a surface of general type with

the components of F1 as the unique exceptional curves. There are 9 cusps,
each one resolved in the minimal model by a cycle (2, 2, 3, 3, 3) .

• D = 21: c = 2 (Theorem 3 of [vdGZ77]) gives a surface of general type
with the components of F1 as the unique exceptional curves. There are 5
cusps, each one resolved in the minimal model by a cycle (5, 5, 5, 5, 5, 5) .

• If D = 24: c = p2, the prime ideal of norm 2 (see [vdG78] page 166) gives a
surface of general type with the components of F1 as the unique exceptional
ones. There are 3 non-equivalent cusps, each one resolved in the minimal
model by a cycle (2, 2, 2, 3, 2, 2, 2, 3) .

• D = 12 and a not in the principal genus: c = 2 ([vdG88] page 197) gives a
minimal surface of general type. There are 3 cusps, each one resolved by a
cycle (2, 3).

With these data, we get the following Hecke bounds for Hilbert modular form
of parallel weight k, level Γ(c, a) and vanishing with order s at all cusps:

D 5 8 12 13 17 21 24

a 1 1
√

3 1 1 1 1

a > 48k − 10s 14k
3 − 8s 4k − 3s 40k

3 − 5s 4k − 9s 40k
9 − 5s 12k − 3s
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[vdG78] G. van der Geer. Hilbert modular forms for the field Q(
√

6). Math. Ann., 233(2):163–

179, 1978.
[vdG88] Gerard van der Geer. Hilbert modular surfaces, volume 16 of Ergebnisse der Mathematik

und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-

Verlag, Berlin, 1988.
[vdGZ77] G. van der Geer and D. Zagier. The Hilbert modular group for the field Q(

√
13). Invent.

Math., 42:93–133, 1977.

ICMAT (CSIC-UAM-UCM-UC3), C/ Nicolás Cabrera 13-15, 28049 Madrid, Spain

E-mail address: jiburgosgil@gmail.com
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