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ABSTRACT: Chrysin and Quercetin are natural polyphenolic compounds which present benefits 

in human health because of their biological properties. These flavonoids also have the capacity to 

complex a wide variety of metallic ions which could affect their bioactivity. In order to assay the 

complexant capacity of flavonoids, the metallic ion Cu(II) was selected. Formation of two 

flavonoids-Cu(II) complexes in ethanolic solutions were studied and both complexes presented 

2:1 L:M stoichiometries. The apparent formation constants for Quercetin-Cu(II) are higher than 

those of Chrysin-Cu(II) ones, suggesting that Quercetin may act as a better analytical reagent 

than Chrysin. A molecular modeling analysis was performed in order to gain insight into the 

spectroscopic properties of the complexes. 
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INTRODUCTION 

Flavonoids are a family of varied polyphenolic compounds widely distributed in nature, with 

physicochemical properties of scientific interest. These compounds present benefits in human 

health because of their biological properties which include activity against HIV1, influenza virus2 

and bacteria3. Flavonoids also show antithrombotic4, anti-inflammatory5, antitumoral6, 

antiallergic7 and antioxidant8 effects. Latest scientific researches confer antioxidant activity of 

flavonoids to their skill for linking with enzymes9, DNA10, as well as quenching reactive oxygen 

species11. Due to this last property several effects on diseases as diabetes12, cancer13, heart 

diseases14, stomachal and duodenal ulcers15, among others, have been described. In particular 

Chrysin or 5,7-dihydroxyflavone, a natural flavone which may be found in propolis and plants16, 

shows several biological properties that includes the reduction of melanoma cell proliferation17. 

From some time, authors have reported flavonoids capacity to complex a wide variety of metallic 

ions18,19. According to these investigations, those flavones with a hydroxyl group on C3 or C5 

are able to form stable metallic complexes, while those with ortho-hydroxylated systems in B-

ring form labile complexes. The biological activity of flavonoids is believed to increase when 

they are coordinated with metallic ions. The experimental results suggest that the metallic ions 

significantly change chemical properties of the free flavonoid, e.g. a decrease of its oxidation 

potentials, furthermore the complexes show higher antioxidant activity compared to the free 

ligands20,21.  

Flavonoids also may be used as analytical reagents for complexing diverse metallic ions. A 

spectrofluorimetric method have been developed for determining trace levels of zinc by means of 

the complex formation between the metallic ion and 3-hydroxyflavone22. Flavonoid complexing 
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capacity may influence on its bioactivity by acting as carriers and regulators of metal 

concentration23. Many researchers have synthetized metal-flavonoid complexes as solid and have 

been able to characterize them by means of spectroscopic data, thermal analysis, among others. 

However, there are few data on the flavonoids ability of complexation in solution and even fewer 

data regarding the thermodynamic study of these complexes, which are important in order to 

characterize them. 

Cu(II) and Fe(II) metallic ions have an important role as cofactors in living systems, and 

according to this, the presence of competitive complexing agents could affect their bioactivity24. 

Studies carried out by Baccan et. al. describe that Rutin and Quercetin are able to complex Fe(II) 

in blood plasma and transfer it to transferrin. Since the complex Quercetin-Fe(II) can traverse 

biologycal membranes it is possible to use this flavone as chelant agent in redistributing-Fe 

therapy25.  

In order to assay the complexant capacity of flavonoids, as stated above, the metallic ion Cu(II) 

was selected. Copper is a transition metal useful due to a wide variety of chemical, physical, 

mechanical and electrical properties. Its compounds are mainly used in agriculture, specially as 

fungicides and insecticides26, but are also used in inkjet printing27, galvanoplastic nucleation28, 

catalysis29, etc. Copper is also essential in the regulation of oxide-reduction reactions, transport 

and in the use of Fe in metabolic processes30. 

The aim of this work is, first, to determine the stoichiometry of the complexes between two 

flavonoids (Quercetin and Chrysin) with Cu(II)  in solution, and afterwards, evaluate their 

apparent stability constants and the thermodynamic parameters associated to the formation 

reaction. Furthermore, the theoretical formation constants of Chrysin-Cu(II) and Quercetin-
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 4

Cu(II) complexes are also evaluated from DFT calculations. It is necessary a computational TD-

DFT study to compare the simulated UV-Vis absorption spectra of the complexes in ethanolic 

solution with the experimental ones. 

 

MATERIALS AND METHODS 

MATERIALS 

The structures and numbering system of the two flavones studied are shown in Figure 1. 

Quercetin and Chrysin were purchased from Sigma. The Cu(II) solutions were obtained 

dissolving the salt CuSO4.5H2O, provided by Merck. Ethanol spectroscopic grade was used as 

solvent in all assays performed. Buffers were prepared using the following drugs: KH2PO4 (p.a 

Berna), Na2HPO4.12H2O (p.a Mallinckrodt), Na2B4O7.10H2O (p.a Merck), KC8H5O4 (p.a 

Tetrahedron). 

 

Figure 1. Chemical structure of Quercetin and Chrysin. 
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APPARATUS AND METHODS 

An Agilent 8454 diode-array spectrophotometer provided with an AGILENT 89090A 

temperature controller was used to record the ligands and their complexes spectra and also to 

measure absorbances required.  

The FT-IR spectra of the free ligands and the metallic complexes were registered in the 4000 – 

400 cm-1 region using a Shimadzu IR Affinity-1 spectrophotometer, with a spectral resolution of 

2 cm-1. Since obtaining of complexes in solid state was not possible, spectra were recorded after 

deposition of the sample solution on the surface of KBr pellets. This procedure has been 

successfully applied for flavonoids metallic complexes31. 

The stoichiometries of the complexes formed were determined using Yoe-Jones method32. This 

spectrophotometric method requires the preparation of a set of solutions varying the ligand 

concentration [L], but keeping constant the metallic ion concentration [M]. The absorbance, A, 

of these solutions is measured at a wavelength where only complex absorbs and used to plot a 

graphic of A vs [L]/[M]. The intersection points between the straight lines of the experimental 

data indicate the ligand:metal L:M molar ratio.  

The apparent formation constant K of the complexes were determined using a graphic linear 

method developed by Debattista et. al.33, which can be applied to both mono and poli nuclear 

complexes. This method only requires the reactants analytical concentration and the absorbances 

of the complex solutions in the equilibrium. These data are used to plot the following expression 

valid for a LnM complex: 

Page 5 of 27

ACS Paragon Plus Environment

Submitted to Journal of Chemical & Engineering Data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6

( )( )
( ) ( ) KAA

ba

ba

AAKbana
bana

jL

j
n
j

r
n
r

rLr
n
r

n
r

j
n
j

n
j

1
.

'..
.

12
1

.
2 −

−

−++
=+

−
−   (1) 

where a is ligand molar concentration, b, metallic ion molar concentration, r and j indicate two 

solutions in equilibrium, A is the reacting solution absorbance meanwhile AL is the absorbance of 

the ligand solution, K is the apparent formation constant and K´=1/K. The apparent formation 
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COMPUTATIONAL DETAIL  

The molecular geometries of Chrysin, Quercetin and its 1:2 complexes with Cu2+ were fully 

optimized using the unrestricted DFT functional UB3LYP 34,35.  For the Cu atom the Los Alamos 

double-ξ (LANL2DZ) effective core potential was implemented and for the rest of the atoms the 

6-31+G(d,p) basis set was used. The vibrational frequencies of the free ligands and the 

complexes were performed for the thermodynamic analysis. No imaginary frequencies were 

found. The solvent effect on the gas-phase optimized structures was analyzed using the 

polarizable continuum model with the integral equation formalism (IEF-PCM) 36 and the UAHF 

radii set were employed to build the solvent cavity. The vertical excitation energies and the 

corresponding absorption wavelengths of the complexes were calculated within the non-

equilibrium time-dependent density functional theory (TD-DFT) framework37. Four functional 

were used in these calculations: the exchange-correlation hybrids B3LYP 34,35, PBE0 38,39 and 

M06 40, and the Long-range corrected functional CAM-B3LYP 41. Finally, the electronic 

transitions were analyzed using Natural Transition Orbitals (NTO)42, which provides a good 
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representation of the electronic transitions in terms of single particles. All the calculations were 

performed with the Gaussian 09 software package43. 

 

RESULTS AND DISCUSSION  

1. SPECTROSCOPIC ANALYSIS 

The formation of two hydroxyflavones–Cu(II) complexes were noticed by yellow color 

intensification of the flavonoid solutions after adding the metallic ion solution. This occurs due 

to a batochromic shift and was confirmed by recording the spectra of the ligand solution and the 

same solution after adding Cu(II) solution (see Figure 2).  

 

Figure 2. Spectra of Quercetin and Quercetin-Cu(II) complex 

 

The UV-Vis absorption spectra of the flavones show two characteristic absorption bands related 

to π →π* transitions in their three-aromatic rings system. The absorption band in the (300-400) 
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nm range is related to B-ring absorption (cinnamoyl system, Band I), while the absorption 

between (250-300) nm corresponds to A-ring absorption (benzoyl system, Band II). In Figure 2 

are shown the spectra obtained for Quercetin solution with and without Cu(II). Band I in 

complex spectrum is shifted to longer wavelength compared to that of the free flavonoid. The 

shifting could be explained considering the increased conjugation of the system caused by a new 

ring formation involving the 3–OH and 4-oxo groups. The new band centered at 400 nm can be 

attributed to the flavonoid-metallic ion complex formation, considering that neither the metallic 

ion nor the ligand absorbs in that wavelength range. The same explanations are useful to describe 

Chrysin-Cu(II) spectra (not shown). In addition, the systems Quercetin-Cu(II) and Chrysin-

Cu(II) show a diminished absorption in this band, which evidence the complex formation.  

Since Quercetin has three possible sites to coordinate with Cu(II) ion, a molecular modeling 

analysis was performed in order to gain insight into the spectroscopic properties of the 

complexes.   

 

2. THERMODYNAMIC STUDIES OF FLAVONOID-CU(II) COMPLEXES 

Stoichiometries of formed complexes were determined by Yoe–Jones method. Both complexes 

exhibited 2:1 ligand:metal molar composition (see Figure 3, A and B Insets). Considering this 

information it is possible to use Debattista et. al. method33 to determine the apparent formation 

constant. Figure 3 shows the plots for both systems studied and Table 1, the determined ln K 

values. 
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Figure 3. A: Equilibrium constant determination at 25 ºC and stoichiometry determination 

(Inset) of Quercetin-Cu(II) complex. B: Example of equilibrium constant determination at 25 ºC 

and stoichiometry determination (Inset) of Chrysin-Cu(II) complex. 

 

Table 1. Apparent formation constant values and thermodynamic parameters of Chrysin-Cu(II) 

and Quercetin-Cu(II) complexes at different temperatures. 

System 
Ln K ∆H 

/ kJ mol-1 

∆S 

/ J mol-1 K-1 15 ºC 20 ºC 25 ºC 30 ºC 

Chrysin-Cu(II) 18.9 19.1 19.4 19.7 39 291 

Quercetin-Cu(II) 20.7 21.0 22.5 22.9 118 582 

Errors of all determination are comprised between 7x10-3 and 8x10-2. 

In order to estimate thermodynamic parameters of the complexation reaction, apparent formation 

constants at different temperatures (15, 20, 25 and 30 ºC) were determined. By means of the 

Vant’ Hoff equation (ln � = 	−	
∆�

		

+ 	�	, with C = integration constant), the standard enthalpy 

and entropy of the process were determined (Figure 4). The thermodynamic data calculated by 

means of the Vant’ Hoff equation are listed in Table 1. 
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The stability constant values for Quercetin-Cu(II) and Chrysin-Cu(II) systems decrease with 

increasing temperature, according to other studied systems44.  

 

Figure 4. Graphical representation of Vant’ Hoff’s equation for Quercetin-Cu(II) complex (A) 

and for Chrysin-Cu(II) complex (B). 

The theoretical formation constants (KCT) of the Chrysin-Cu(II) and the Quercetin-Cu(II) 

complexes were also evaluated from DFT calculations. The ∆Gsol values necessary to calculate 

KCT were obtained using a procedure based on a thermodynamic cycle. For this purpose, the 

following reaction scheme was proposed: 

 

 

In the scheme depicted above, Flavonoid is Chrysin or Quercetin, ∆Ggas and ∆Gsol are the 

Gibbs energy changes of the reaction in gas phase and in ethanolic solution, respectively and 

∆Gsolv is the Gibbs energy change of solvation. The Gibbs energy in gas phase at 298 K 
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(G°298) of all the structures present in the reaction scheme was calculated with the following 

equation45: 


°���	 = � + ���� +	����� − �	�°���      (2) 

where E is the gas phase total energy, ZPVE is the zero-point vibrational energy, Hcorr is the 

thermal correction to enthalpy and S°298 is the entropy at 298 K. In the same way, the ∆Gsolv 

and the Gibbs energy in solution (G°sol) of each structure were calculated using the following 

expressions: 

∆
���� = �� ! − �        (3) 


��� = 
°��� + ∆
����       (4) 

In Eq. (3) EPCM is the total energy in solution calculated with the polarizable continuum model. 

With Eqs (2-4), the ∆Gsol of the complexation reaction (and the corresponding ln KCT) can be 

estimated as the difference between the Gsol of the products and the Gsol of the reactants. From 

the ∆Gsol, the ln KCT can be obtained. 

The optimized geometries of Quercetin-Cu(II) and Chrysin-Cu(II) complexes are illustrated in 

Figure 5. Since Quercetin presents three different chelating sites for Cu(II), three different 

structures of the Quercetin-Cu(II) complex were proposed, where the flavonoid coordinates with 

copper in: i) the 3-OH-4-Oxo group; ii) the 5-OH-4-Oxo group and iii) the cathecolate group. 

The calculated ln KCT for these complexes (and the ∆Gsol) are reported in Table 2. 
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Figure 5. Optimized geometries of Quercetin-Cu(II) and Chrysin-Cu(II) complexes. 

 

Table 2. Gibbs energy changes (in kJ/mol) in gas phase and solution and Formation constants of 

the studied flavonoid-Cu(II) complexes calculated at DFT level of theory.  

 Chrysin-Cu(II) i Quercetin-Cu(II) ii Quercetin-Cu(II) iii Quercetin-Cu(II) 

∆Ggas -8.31 - 18.00 -9.31 3392 

∆Gsol -33.22 -41.03 -43.29 3288 

KCT 6.61x105 1.54x107 3.85x107 2.43x10-58 

Ln KCT 13.40 16.55 17.47 -132.6 
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From these values it can be observed that the predicted stability of Quercetin-Cu(II) is higher 

than the stability of Chrysin-Cu(II), in agreement with the experimental results. Moreover, for 

Quercetin-Cu(II) complex the site iii presents a considerably lower stability than sites i and ii. 

These last two sites, which are similar from a structural point of view, exhibit comparable ln KCT 

values, being the site ii more stable only by 2.26 kJ/mol than site i. For this reason, the DFT 

results suggests that the complexation of Cu2+ by Quercetin takes place in the 3-OH-4-oxo and 5-

OH-4-oxo sites; and the catecholate group is the less effective chelating site under the adopted 

conditions. From the evaluation of the theoretical formation constants, it is not possible to 

establish a preferential site between complexes i and ii since the energy difference is too low. 

 

3. TD-DFT RESULTS 

A computational TD-DFT study was also performed in order to compare the simulated UV-Vis 

absorption spectra of the complexes in ethanolic solution with the experimental ones. For this 

aim, four functional were employed, B3LYP, PBE0, M06 and CAM-B3LYP and the IEF-PCM 

formalism was applied to simulate the solvent effect. In Table 3, the predicted absorption 

wavelengths (λTD-DFT) and the oscillator strengths obtained with this methodology are reported. 

For the Chrysin-Cu(II) complex, the calculated λTD-DFT with the PBE0 functional is very close to 

the experimental value (underestimated by 3 nm), the B3LYP λTD-DFT is moderately well 

predicted, while the λTD-DFT values obtained with the functionals M06 and CAM-B3LYP exhibit 

large errors compared to the experimental λ. In the case of the Quercetin-Cu(II) complex, the 

spectra of the three proposed structures were calculated. These results show very large errors in 

the λTD-DFT for the chelating site iii, indicating this site as the least probable, in agreement with 
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the thermodynamic analysis. Moreover, by examining the calculated λTD-DFT  of sites i and ii, it 

can be seen that the ∆λ values obtained for the former structure are lower than the ∆λ of site ii 

with all the functionals (except the M06). Particularly, the ∆λ of site i complex calculated with 

B3LYP and PBEO are almost the half of the ∆λ values of site ii complex. For this reason, the 

coordination site i seems to be the preferred one for the complexation of Cu(II) by Quercetin in 

ethanol. However, the coordination site ii cannot be completely discarded, and the formation of 

the complex involving this site may occur to some extent. The coexistence of both forms for 

Quercetin metal complexes has been previously reported 46,47. 

 

Table 3. Calculated (λTD-DFT) wavelengths (in nm) for flavonoid-Cu(II) complexes from TD-

DFT/PCM simulations. λ (exp) is the experimental wavelength of the complex, f the oscillator 

strength and ∆λ the difference between the calculated and experimental wavelengths in absolute 

value. 

   B3LYP   PBE0  
Complex λ (exp) λ TD-DFT f ∆λ λ TD-DFT f ∆λ 

        
Chrysin-Cu(II) 395.0 413.1 0.435 18.1 392.0 0.494 3.0 

i-Quercetin-Cu(II) 450.0 455.8 0.490 6.8 433.9 0.924 15.1 

ii-Quercetin-Cu(II) 450.0 435.6 1.099 13.4 419.3 1.182 29.7 

iii-Quercetin-Cu(II) 450.0 478.6 0.775 29.6 735.7 0.129 287 

          M06 
 

CAM-B3LYP 

Complex λ (exp) λ TD-DFT f ∆λ λ TD-DFT f ∆λ 

Chrysin-Cu(II) 395.0 422.2 0.665 27.2 435.6 0.125 40.6 

i-Quercetin-Cu(II) 450.0 430.6 0.815 18.4 399.8 1.337 49.2 

ii-Quercetin-Cu(II) 450.0 435.5 1.144 13.5 385.4 1.458 63.6 

iii-Quercetin-Cu(II) 450.0 502.2 0.723 53.2 422.2 0.2529 26.8 
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The nature of the electronic transitions involved in the UV-Vis absorption bands of the 

complexes were analyzed using Natural Transition Orbitals (NTOs). This approximation 

provides a compact representation of the transition density between the ground and excited states 

in terms of an expansion into single-particle transitions 42, where occupied and unoccupied 

orbitals are referred as “hole” and “electron” respectively. The NTOs were constructed with the 

PBE0 functional, since good results were obtained in the calculation of the complexes absorption 

wavelengths. 

 

Figure 6. Natural Transition Orbitals (NTOs) for the Chrysin-Cu(II) complex in the absorption 

bands at 395 and 271 nm. For each state, the calculated wavelength (λTD-DFT) and the oscillator 

strength f are listed. 

 

The NTOs of the Chrysin-Cu(II) complex (Figure 6) indicates that the absorption band located at 

395 nm (λTD-DFT = 392 nm) the transition correspond to an intraligand charge transfer (ILCT) 

with a small contribution of a metal-to-ligand charge transfer (MLCT). It can be observed that 
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the ILCT takes place from rings A and C of Chrysin to the whole ligand. The other absorption 

band (λexp 271 nm, λTD-DFT = 293 nm) also corresponds to a mixed MLCT/ILCT transition. For 

the Quercetin-Cu(II) complex only sites i and ii were considered in the analysis, taking into 

account the thermodynamic and TDDFT results. The NTOs calculated for the site i Quercetin-

Cu(II) complex (Figure 3) show a main π→π* transition for the band located at 449 nm (λTD-DFT  

= 434 nm). Additionally, a small contribution of a MLCT can be observed. The NTOs for the 

same absorption band calculated for the site ii Quercetin-Cu(II) complex (λTD-DFT  = 419 nm) 

also show that this transition is mainly π→π*. However, in this case a contribution of a ligand-

to-metal charge transfer (LMCT) is also observed. Since the NTO calculations are performed 

under an unrestricted scheme, the α and β spin orbitals are computed separately. However, both 

spin orbitals are almost identical shape and energy for the transitions depicted in Figures 6 and 7, 

except for the Quercetin-Cu(II) absorption band located at 381 nm. In this case, an ILCT/MLCT 

mixed transition is observed for α-spin orbitals (site i at λTD-DFT = 354 nm and site ii at λTD-DFT = 

348 nm). The contribution of the β-spin orbitals is higher than the α-spin and they show an 

important LMCT in both complexation sites (Figure 8). 
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 17

 

Figure 7. Contribution of the α-spin orbitals for the i-Quercetin-Cu(II) and ii-Quercetin-Cu(II) 

complexes in the experimental absorption bands. For each state, the calculated wavelength (λTD-

DFT) and the oscillator strength f are listed. 
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Figure 8. Contribution of the β-spin orbitals for the i-Quercetin-Cu(II) and ii-Quercetin-Cu(II) 

complexes in the experimental absorption bands. For each state, the calculated wavelength (λTD-

DFT) and the oscillator strength f are listed. 

 

4. FT-IR RESULTS 

The FT-IR spectra of the free ligands (Chrysin and Quercetin) and the metallic complexes were 

registered for determining some structural features of these compounds. The formation of the 

Chrysin-Cu(II) complex induces small changes in the spectrum of the flavonoid. The most 

important ones are the ν(C=O) vibration of Chrysin (1611 cm-1) slightly shifted to a higher 

wavenumber in the complex (1616 cm-1) and a band around 619 cm-1 in the Chrysin-Cu(II) 

spectrum disappears in the free ligand. This vibration can be attributed to the Cu-O stretching 

signal. Additionally, the relative intensity of the band at 1275 cm-1 associated with the coupled 
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vibrations ν(C-O) and δ(OH)48 of free Chrysin is weakened in the complex spectrum. This may 

be indicative that in the coordination site the deprotonated form of the flavonoid is involved.  

On the contrary, the complexation of Cu(II) ions by Quercetin induces important changes in the 

vibrational spectrum. The most significant vibrational frequencies of Quercetin and its complex 

are listed in Table 4 and the spectra are depicted in Figure 9. In the IR spectrum of the free 

ligand the sharp bands located at 1667 and 1613 cm-1 are assigned to the stretching modes of 

C=O. In the metallic complex, a broad band appears around 1617 cm-1, indicating the 

participation of this group in the coordination site. The strong band positioned at 1450 cm-1 of 

Quercetin, assigned to the δ(OH) vibrational mode49, notably reduces its intensity; also 

suggesting the involvement of this group in the coordination site. The C–OH in plane 

deformation band observed at 1265 cm-1 in the free flavonoid shifts to 1296 cm-1 in the complex, 

which is usually observed when metal coordination involves the OH group31. The frequency 

values for this band obtained from the vibrational analysis of DFT calculations are 1301 cm-1 

(site i) and 1319 cm-1 (site ii). Finally, a new band (weak) can be found at 620 cm-1 in the 

complex spectrum, associated to the ν(Cu-O) vibrational mode 50. The DFT vibrational 

frequency for this vibration is located at 603 cm-1 (site i) and 662 cm-1 (site ii). These results also 

supports site i as the preferential chelation site for the Quercetin-Cu(II) complex. 

 

Table 4. Selected experimental and theoretical (DFT) vibrational frequencies of Quercetin and 

Quercetin-Cu(II) complex. The DFT frequencies were calculated at the UB3LYP/6-31+G(d,p) 

and LANL2DZ level of theory and they are reported unscaled. 
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 20

    Quercetin Quercetin-Cu(II) Quercetin-Cu(II) DFT  Assignments 

    
  site i site ii  

     
3616-2944 3665-3011 3444  3620 νO-H 

1667 
1617 1578 1578 

νC=O 

1613 νC=O ,  νC2=C3 

1563 1558 1556  1519 νas(C2-C3-C4) 

1265 1296 1301 1319 δipC-OH  

1382 1363 1389  1400 δipC-OH, δipC-H, δO-H 

1450, 1464 ---- ---- ---- δOH , νC-O 

867 879 853 857 α (ring) 

---- 620 603 662 νCu-O   

     
α, planar ring deformation; δ, bending; ν, stretching; as, asymmetric; ip, in-plane. 

 

 

Figure 9. Infrared spectra of Quercetin (A) and its Cu(II) complex (B). The frequency axis is 

broken between 2500 and 2000 cm-1. No important bands have been observed in this region. 
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CONCLUSIONS  

In the present work, formation of two flavonoid-Cu(II) complexes in ethanolic solutions was 

studied. The studied systems were: Quercetin-Cu(II) and Chrysin-Cu(II). Both complexes 

presented 2:1 L:M stoichiometries, determined by Yoe-Jones method. The apparent stability 

constants were evaluated as Debattista et al. described. The standard enthalpy and entrophy 

associated to the formation reaction were determined. These values show that the formation 

reactions are endothermic for both systems. The stability constants were also calculated from 

DFT analysis and they showed a good correlation with the experimental values. The TD-DFT 

calculations reproduces the main features of the analyzed complexes spectra and the results 

suggest that the 3-OH-4-oxo group is the preferred chelating site for Cu(II) ions in Quercetin 

under the adopted conditions. This observation is also supported with the analysis of the FTIR 

spectra. From a NTO analysis it is observed that Cu plays an important role in the UV-Vis 

absorption bands of the flavonoid complexes. The apparent formation constants for Quercetin-

Cu(II) are higher than those of Chrysin-Cu(II) ones, suggesting that Quercetin may act as a better 

analytical reagent than Chrysin.  
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