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Given a Lie algebra g, let p(g) and ppni(g) be the minimal dimension of a faithful
representation and nilrepresentation of g, respectively. In this paper, we give u(g) and
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1. Introduction

In this paper, Lie algebras and representations are finite-dimensional over a field
K of characteristic zero. Ado’s theorem states that every Lie algebra has a finite-
dimensional faithful representation [14, p. 202]. So, given a Lie algebra g, let

p(g) = min{dim V : (7, V) is a faithful representation of g},
and additionally, if g is nilpotent let
pnit(g) = min{dim V' : (w1, V) is a faithful nilrepresentation of g}.

In general, it is very difficult to determine u(g) and it is also hard to obtain
suitable estimations for u(g). More generally, to give faithful representations of
nilpotent Lie algebras is a challenging problem in the theory of finite-dimensional
Lie algebras ([4, 8]) which is related to another well-known problems, such as Mil-
nor’s Conjecture (see [2, 16]). Some results on p can be found in [2, 5, 7, 13, 18, 19].
An upper bound for u(g) is given in [6] for any finite-dimensional complex Lie
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Table 1. p and ppy for all nilpotent Lie algebras of

dim = 6.

De Graaf’s classification 0o il
Lg,3, Le,a, Le,5, Le,s 4 5
Le,1, Le,2, Le,s, Le,7, Le,10, L6,11,L6,12, Ls,13 5 5

Le,20, Le,21(€), Le,22(¢), L¢,23, Le,25, Le,26

Le,9
Lg,14, Le,15, Le,16, Le,17, Le,18
Lﬁylg(e) if /—e € K*

Le,19(€) if /—€ ¢ K*
Le,24(c) if /e € K*
Lg,24 (e) if /e ¢ K*

(=2 B N B = A
[ S S 2 =)

algebras. In particular, it is known that p(g) < \/df’TEQdimg for any nilpotent Lie

algebra g (see for instance [3]) and if dim g < 7 then u(g) < dimg+1 [2, Lemma 6].

Many authors have tried to determine minimal faithful representations for low-
dimensional nilpotent Lie algebras starting from a known classification of nilpotent
Lie algebras. For instance in [15], u is computed by the Lie algebras of dimension
< 4. Faithful representations of nilpotent Lie algebras of dimension 5 are given in
[10] but the minimality problem was studied independently in [1]. On the other
hand, a faithful representation was given for each indecomposable nilpotent Lie
algebras of dimension 6 in [11] but the minimality problem is not addressed in this.

Our purpose is to give p and py; for each nilpotent Lie algebra of dimension
< 6 over any field K of characteristic zero. In fact, we give a minimal faithful
representation and minimal faithful nilrepresentation for this family of Lie algebras.
Throughout the paper, we use the classification of nilpotent Lie algebras up to
dimension 6 by De Graaf [9]. According to the notation used in [9], the values of u
and py; of all Lie algebras of dimension 6 are given in Table 1.

The problems that occur in the 7-dimensional nilpotent Lie algebra are similar
to the 6-dimensional case, except for the number of Lie algebras. For instance, the
set of the 7-dimensional complex nilpotent Lie algebras can be seen as six curves
of pairwise nonisomorphic nilpotent Lie algebras and 148 complex nilpotent Lie
algebras (see [12]).

2. Preliminaries

We recall some results that will be needed throughout the paper.

If g is a nilpotent Lie algebra and (my, V') is a nilrepresentation of g, let 7 :
g®K — gl(V) be the linear mapping given by (X, a) = 7 (X)+al where I is the
identity map on V. It is easy to see that if (mny, V) is a faithful nilrepresentation
then (m,V) is a faithful representation of g so

(9 & K) < pnin(g)- (2.1)
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On the other hand, it follows from [7, Theorems 2.1 and 2.2] that if g is nilpotent
and the center 3(g) such that 3(g) C [g, g] then

1(9) = pinit(9)- (2.2)

Let us now summarize well-known results on p.

Proposition 2.1. Let g be a Lie algebra of finite dimension over a field K of
characteristic zero.

(1) If g is an abelian Lie algebra then pu(g) = [2¢/dimg—1] and pnu(g) =
r2y/dimg] (see [3, 13, 17, 19]).

(2) If g is a filiform Lie algebra then u(g) img and if dimg < 10 then u(g) =
dim g (see [3]). We also have pni(g) = pu(g) (see (2.2)).

(3) If g is a nilpotent Lie algebra then (g @ K) < pnu(g) and if 3(g) < [g,9] then

(g & K) = p(g) (see (2.1) and (2.2)).

In the remainder of this section, we summarize the results obtained in [1, 18]
for the Lie algebras of dimension 5.

The following list contains the classification of all nilpotent Lie algebras of
dimension 5.

>d
(g

(1) Ls, is the abelian Lie algebra of dimension 5

(2) L572 : [X17X2} = Z1

(3) L573 N [X17X2} = Xg, [Xl,Xg] = Zl

(4) L574 N [X17X2} = Zl, [Xg,X4] Zl

(5) L55 N [X17X2} ZXg,[Xl,Xg] :Z17[X27X4] =Z1.

(6) Lsg: [X1,X2] = X3, [X1, X3] = X4, [ X1, X4] = Z1, [ X2, X3] = Z1.
(7) L577 N [X17X2} ZXg,[Xl,Xg] :X47[X17X4} =Z1.

(8) L578 N [X17X2} = Zl, [Xl,Xg] = Zl.

(9) L5’9 . [X],XQ} = X3, [Xl,Xg] = Zl, [XQ,X?,] = Zz.

Tables 2 and 3 contain a minimal faithful representation and a minimal faith-
ful nilrepresentation for each nilpotent Lie algebra of dimension 5 and in the last
column contains the necessary reference for the lower bound of p and py,j. For
example, where it says “by Engel’s Theorem” means that if (w,V) is a faithful
nilrepresentation of Ls ; (or Lg ;) there exists a basis B of V such that [7(X)]p is
a strictly upper triangular matrix for all X € Ls ;. Therefore, since dim L5 ; = 5
(or dim Lg ; = 6), we obtain pni(Ls ;) > 4.

In Table 3 all the Lie algebras, except Ls 3, verify that 3(g) C [g, g]. From (2.2)

we have yini(g) = p(g).
The matrices appearing in the tables are given by

T (Z i X + ZZiZi + ZaiAi)7
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Table 2. Lie algebras such that p < pni-
g Lnil M Faith. nilrep. Faith. rep. Ref.
0 0 aq a as r T
00 0 as as . 0oaas
Ls1 5 4 00 0 0 O Lo fa 65 Proposition 2.1(1)
0 0 aq
0 0 O 0 0 0 0 0 a
0O 0 O 0 0 L 1
0 x1 z1 a1 a2 r e
0 0 x 0 0 o o 8
Ls.2 5 4 0 0 0 0 0 . 2 [18], since Lg 2 is L3 2 ® Lo.1
s 0 0 a1 0 s s s
0 0 0 0 0 0 0 0 a
0 0 0 0 0 L 2]
Table 3. Lie algebras such that p = pni-
g o Faithful nilrepresentation Ref.
0 z1 z3+ a1 —2z
0 0 xTo —x3 + aj ..
Ls3 4 0 0 0 o Proposition 2.1(3)
0 0 0 0
0 x1 x3 21
L 4 0 0 0w By Engel’s th h Lsa) >4
5,4 0 0 0 y Engel’s theorem, we have puyi1(L5,4) >
0o 0 0 0
0 1 —x4 21
L 4 0 0 e s By Engel’s th h Lsa) >4
5,5 0 0 0 y Engel’s theorem, we have i1 (Ls,a) >
0o 0 0 0
0 z1 %12 —%13 Z1
0 0 1 0 Ty .
Lss 5 0 o0 0 z1 z3 Proposition 2.1(2)
0o 0 0 0 To
0o 0 0 0 0
0 =z 0 0 zZ1
0 0 Xy 0 Tq
Ls7 5 0 0 0 z1 z3 Proposition 2.1(2)
0o 0 0 0 a2
0o 0 0 0 0
0 x1 2z1 22
Lss 4 8 8 $02 $03 By Engel’s Theorem, we have piyi(Ls,4) > 4
0o 0 0 0
0 0 %$2 7%563 z2
0 0 =z 0 zZ1
Lsog 5 00 O 21 z3 Remark 2.1
0 0 0 0 T2
0 0 0 0 0

such that {Z1,...,2Z,, A1,..., A, } is a basis of 3(g), {Z1,...,Z,} is a basis of 3(g) N
[g,9] and {A1,..., A} is a basis of a linear complement of 3(g) N [g, g] in 3(g).

Remark 2.1. If pni(Lsg) =

4 we obtain dim[L579, [L5797L579H < 1. But

dim[L579, [L5797L579H = 27 therefore /Lnﬂ(L579) Z 5
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3. Minimal Faithful Representations for the Nilpotent Lie
Algebras of Dimension 6

Let us now recall De Graaf’s classification of the nilpotent Lie algebras of dimension
6 (see [9]).

(1) L¢j=Ls;j@Kforall j=1,...,9.

(2) Lﬁ’lo : [Xl,XQ] = Xg, [Xl,Xg,] = Zl, [X4,X5} = Zl.

(3) Lot : [X1,Xo] = X3,[X1,X3] = Xy, [X1, Xy] = 21,[X0, X3] = Z1,[Xo,
X5} = Z.

(4) L6712 : [Xl,Xg] = X3, [X17X3] = Xy, [X17X4} =7, [XQ,X5] = 7.

(5) Loz @ [X1,Xo] = X3,[X1, X3] = X5, [Xo, Xu] = X5, (X4, X5] = Z1, [Xs,
X;d = 7.

(6) Loaa @ [X1,Xo] = X5, (X0, Xp] = Xy, [X1, X4] = X5, [Xo, X5] = X5, [Xo,
X5} =7, [Xg,X4] =—7.

(7) Loas @ [X1,Xo] = X35, (X0, X3] = Xy, [Xa1, X4] = X5, [Xo, X5] = X5, [X,
X5} =7, [XQ,X4] = 7.

(8) Leje @ [X1,Xo] = X3, [X1, X3] = Xy, [Xa, Xu] = X5, [Xo, X5] = Z1, [Xs,

X)) = 7.
(9) Lea7 : [X1,Xo] = X3, (X1, X3] = Xy, [X1, Xy] = X5,[X1,X5] = Z1,[Xo,
X3] = 7).

(10) Lgs @ [X1, Xo] = X3, [X1, X3] = Xu, [ X0, Xu] = X5, [X4, X5] = Z4.
(11) Leo(e) & [X1,Xo] = Xu, [Xi1, X5] = X5,[Xo, Xu] = Z1,[X5, X5] = €.
Isomorphism: Lg 19(€) = Lg,19(0) if and only if there is @ € K* such that

€ = a?d.
(12) Le,20 : [ X1, Xo] = X4, [ X1, X3] = X5, [X1, X5] = Z1, [ X2, Xu] = Z1.
(13) Leoi(e) : [X1,Xo] = X3,[X1,X3] = Xu, [ X0, X3] = X5,[X1,X4] =

Z1,[ X2, X5] = €Z1. Isomorphism: Lg 21(€) = Lg21(0) if and only if there is
o € K* such that e = a?6.

(14) Le22(e) = [X1,Xo] = Z1,[ X1, X3] = Zo, [ X2, X4] = €25,[X3,Xy] = Z;. Iso-
morphism: Lg2(€) = Lg22(d) if and only if there is @ € K* such that

€ = a?s.
(15) Lg,2s : [X1,Xo] = X3, [ X1, X3] = Z1, [ X1, X4] = 2o, [ X2, X4| = Z1.
(16) Leoale) : [X1,Xo] = X3,[X1,X3] = Z1,[X1,Xys] = €Z,[X0, X3] =

Zs, [ X2, X4] = Z1. Isomorphism: Lg24(€) = Lg24(9) if and only if there is
o € K* such that e = a?6.

(17) L6’25 . [Xl,XQ] = Xg, [Xl,Xg,] = Zl, [Xl,de = ZQ.

(18) L6,26 . [Xl,Xg] = Zl, [Xl,Xg] = Z27 [Xz,Xg} = Zg.

Since dim L ; = 6 and by Engel’s Theorem, we obtain pimi(Leg ;) > 4 for j =
..., 26.
It is easy to see that 3(Le ;) C [Le,j, Le ;] for j = 10,...,26. From (2.2) we have

4 < ,u(L(;J) = Unil(Lﬁ,j) fOI‘j = 107,26 By other hand, L6,j = L57j o K for
j=1,...,9. From Tables 2 and 3, we obtain 4 < u(Ls ;) < pu(Lg ;) for j=1,...,9.

1

)
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It follows that
4 § N(L&j) and 4 S ,unil(Le,j) (3].)

forall j=1,...,26.

3.1. Minimal faithful representation and minimal faithful
nilrepresentation

Tables 4 and 5 contain a minimal faithful representation and a minimal faithful
nilrepresentation for each Lie algebra Lg j, 7 = 1,...,26. The last column contains
the necessary reference for the lower bound of 1 and pi,5. The matrices in the tables
are given by

T (Z x; X+ Z 2 2; + Z aiAi)7

where {Z1,...,Z4, A1,..., Ay }isabasisof 3(g), {Z1, ..., Z,} is a basis of 3(g)N[g, g]
and {A1,..., A} is a basis of a linear complement of 3(g) N [g, g] in 3(g).

In Table 5, all the Lie algebras, except the Lie algebras L¢ 1, Ls 2, Ls,s and Lg 7,
verify that 3(g) C [g, g] and so, from (2.2), we have uni(g) = u(g).

Table 4. Lie algebras such that p < pni-

g Un [ Faith. nilreps. Faith. reps. Ref.
-2
8 %1 xg:al . erla %2 az ®1 x3+a —22
2 3 ! 0 a2 o —z34+a1| Eq. (3.4)
Les 5 4 [0 0 0 z1 B 0 0 a x Eq. (3.1
0 0 0 0 0 00 2 ! q. (3.1)
0 o 0 0 0 a2
0 1 x2 z1 a1
aq 1 xro zZ1
0 0 0 23 O
0 a1 0 3 Eq. (3.4)
Les 5 4 0 0 0 a4 O
000 0 0 0 8 8 P Eq. (3.1)
00 0 0 0 !
0 1 —xa z1 a1
aq xrq —X4 zZ1
0 0 ] xr3 0
0 Eq. (3.4
Les 5 4 00 0 2 0 0 0 om Eq (3 1)
00 0 0 0 O S q. (3.1)
00 0 0 O a
0 1 z1 z2 a1
aq 1 zZ1 )
Les 5 4 o0 0T oo 0 a1 @ a3 Eq. (3.4)
’ 00 0 0 0 8 8 a a0 Eq. (3.1)
00 0 0 0 !
1 _1
0 0 3z2 3T3 22 a1 a1 0 Ltas —laz oz
0 0 0 0
Iea 6 5 0 0 0601 o 2 0 0 a1 0 21|  Corollary 3.1
6.9 00 O 0 z2 0 0 0 @ 1 T3] Proposition 2.1(3)
0 0 0 ai T2
0 0 0 0 0 0 0 0 0 0 a
00 0 0 0 0 .
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Table 5. Lie algebras such that pu = pni.

g o Faith. nilreps. Ref.
o 0 aq a ag_
0 0 aq as ae
Le,1 5 00 0 0 O Proposition 2.1(1)
0 0 O 0 0
0 0 0 0 0]
[0 0 z1 z1 a1
0 0 0 a as
L672 5 00 0 =z2 O [18], since L672 is L372 D L371
0 0 O 0 0
o o 0 0 o]
0 z1 3z2 x4+ a1 —3z1
0O 0 xq T3 —2x4 + ay
L s 5 0 0 0 T2 —z3 Proposition 2.1(3)
0o 0 0 0 T
0o 0 0 0 0
0 z1 0 z4+ay —3z1
0 0 =z x3 —2x4 + ay
Le,7 5 0 0 0 T2 —z3 Proposition 2.1(3)
0 0 0 0 T
0 0 0 0 0
0 xz 0 x4 =z
0 0 Xy 0 T3
Lg,10 5 0 0 0 0 =2 Eq. (3.4)
0 0 0 0 x5
0 0 0 0 0
[0 T 2 —5 zZ1
0 0 X T2 Taq
Le,11 5 0O 0 0 =z a3 Eq. (3.4)
0 0 0 0 T
o o 0o o0 o
0 =z 0 —Ts 21
0 0 ] 0 Tq
Lg,12 5 0O 0 O T T3 Eq. (3.4)
0 0 0 0 T2
o o o o 0]
0 z1 —x4 0 Z1
0 0 1 —T4 Ts
Lg,13 5 0 0 0 T T3 Eq. (3.4)
0 0 0 0 T2
0 0 0 0 0
[0 zo —x3 0 0 zZ1
0 0 T1  sT2 —3x3 s
Lg,14 6 b 0 0 T 0 T4 Proposition 2.1(2)
0 0 0 0 T1 z3
0 0 0 0 0 T
o 0o o 0 0 0]
o Xy %$2 0 - %I;; Zl_
0 0 x1 $x2 —gx3 s
Le,15 6 0 0 0 z1 0 T4 Proposition 2.1(2)
0o 0 0 0 T1 z3
0o 0 0 0 0 T2
lo 0o o 0 0 0|

(Continued)
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Table 5. (Continued)

g m Faith. nilreps. Ref.
0 %$2 7%$3 %$4 7%565 Z1
0 0 T 0 0 T5
Le 6 0 0 0 1 0 x4 Proposition 2.1(2
6,16 0 0 0 0 1 iy P ( )
0 0 0 0 0 To
0 0 0 0 0 0
0 x1 0 %12 —%Ig Z1
0 0 =z 0 0 x5
Le 6 0 0 0 = 0 x4 Proposition 2.1(2
6,17 0 0 0 0 1 s P ( )
0 0 0 0 0 To
0 0 0 0 0 0
0 =z O 0 0 =z
0 0 = 0 0 x5
. 0 0 0 x 0 x4 .
Le,18 6 0 0 0 0 =z s Proposition 2.1(2)
0 0 0 0 0 x2
0 0 0 0 0 0
__1 1 _ __2
0 v=etr T @ ®e T T V=t Proposition 3.1; if there
L €) 4 0 0 1 T4+ V_€xs exists a € K* such that
6’19( ) 0 0 0 xo + /—e€x3 9
0 0 0 0 €=«
0 x1 T4 x5 z1
0 0 =z x; 0 Proposition 3.1;
5 0 0 0 0 —ax if e £ —a?
0 0 0 0 —exs for all a € K*
0 0 0 0 0
0 1 0 x4 21
0 0 =1 z2 x5
LG,QQ 5 0o 0 0 0 x3 Eq. (3.4)
0 0 0 0 —z
0 0 0 0 0
[0 —x1 + x2 (e + 1)xs —x4 — €x5 321 ]
0 0 z1 — (e + 2)x2 T3 —2x4 + ey
Le21(e) 5 |0 0 0 e —x3 Eq. (3.4); if e #0
0 0 0 0 2xo + 1
L0 0 0 0 0 i
0 —x1 +2zo+x3 —23— 24 — x5 T4 — Tj 3z1 ]
0 0 T2 —T3 T4 — Ts
5 0 0 0 x1 + 2 —xs3 Eq (34), if e =0.
0 0 0 0 1
L0 0 0 0 0 |
0 x1 x4 21 22
0 O 0 x2 3
Lg22(e) 5 0 0 0 z3 ex2 Eq. (3.4)
0 0 0 0 0
0 0 0 0 0
0 1 —x4 22 21
0 0 x1 0 T3
L6123 5 0o 0 0 Tr1 T2 Eq. (3.4)
0 0 0 0 0
0 0 0 0 0
Coroll 3.2; if th ist;
Le2a(e) 5 Remark 3.1 orollary 3.2; if there exists

o € K such that € = a?
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Table 5. (Continued)

g m Faith. nilreps. Ref.
0 x2 =z x3 —221 —2z9
0o 0 0 0 —2x4 0
6 0 0 0 wo —xz3 —emy Corollary 3.2; if € # a?
0 0 0 © z1 T2 for all « € K
0o 0 0 0 0 0
0 0 0 0 0 0
0 ] xr3 221 z2
0 0 a2 T3 T4
Lg,25 5 0o 0 0 —z1 O Eq. (3.4)
0o 0 0 0 0
0o 0 0 0 0
0 0 ] Z1 z2
0 0 ) 0 z3
Lg 26 5 0 0 0 =z2 =x3 Eq. (3.4)
0 0 O 0 0
0O 0 O 0 0

Remark 3.1. For space reasons, we give a minimal faithful representation of the
Lie algebra Lg 24(€) (if there exists a € K such that € = o?) in this remark:

[0 Veri+a2  (—e+/e)ra (BVe—1)z (—Ve+ 1)z
+(3e —1)a3 + (3 =€)z +(—ve+ 1)z

0 0 1+ 2 (—e+ 4y — 1)zy + 223 (—e+1)xy

0 0 0 —x1 + X2 T+ T

0 0 0 0 0

0 0 0 0 0 ]

The faithful representation of L 19(€), Lg,21(€) and Lg 24(€) was obtained using
Maple.

3.2. Computing p and pni of Leo(€) for e € K

A basis of the Lie algebra Lg 19(€) is B = {X1, X2, X3, X4, X5, Z1} which is such
that the brackets are given by

(X1, Xo] =Xu, [X1,X3]=X5, [Xo,Xu]l=2Z1, [X35,Xs5]=¢€¢Z1. (3.2)

The Lie algebras Lg 19(€) and Lg 19(d) are isomorphic if and only if there exists
o € K* such that
€ = a?0. (3.3)
Now we prove the following result.
Proposition 3.1. Let K be a field of characteristic # 2 then
pmit (Le,19(€)) = {4 Yok o
7 5 ifVa €K :e# —a?
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Proof. Let m : Lg 19(€) — gl(5) be a linear map defined by
0 1 T4 XTp Z1
5 0 0 x2 a3 0
™ (me +21Z1> =0 0 0 0 -
i=1 0 0 0 —exs
0 0 0 0

It is easy to check that (m1,K®) is a faithful representation for all ¢ € K. Then
Unil(L6,19(€)) < 5 for all € € K.
Let mg : Lg19(—1) — gl(4) be a linear map given by

0 zo4+x3 —x4— 25 221
> 0 0 T T4 — Ts
i X AR 7.
2 ;x taa 0 0 0 o — T3
0 0 0 0

By a straightforward calculation we have (mo, K*) a faithful representation. Hence
tnil(Le,19(—1)) <4 and from (3.1), we obtain

nit(Le,19(—1)) = 4.

The Lie algebra Lg 19(—1) is isomorphic to Lg 19(€) if and only if there is a« € K* such
that € = —a?. Therefore, if € # —a? for all a € K*, we obtain 5 < ini(Le 19(€)).
O

Suppose that fimii(Le,;) = 4. By Engel’s Theorem, we have Lg ; = n4(K) and by
Proposition 3.1 we obtain Lg j = Lg 19(€) for some € € K. From [9], with j = 19, it
follows that,

5 < pnit(Le,5)- (34)

3.3. The lower bound of pnin for Le,g and Lg24(€) for all e € K

The aim of this subsection is to prove the following results.

Theorem 3.1. Let n € N and let g be a Lie subalgebra of n,(K) isomorphic to
Ley then n > 6.

Theorem 3.2. Let ¢ € K,n € N and let g be a Lie subalgebra of n,(K) isomorphic
to Lg 24(€). Then

(1) n =5, if there evists o € K such that e = o and
(2) n>6, ife=a? for all « € K.

Let B = {X1,X9,X3,X4,Z1,2Z5} be a basis of Lg24(e) such that the only
nonzero brackets are

(X1, Xo] = X3, [X1,X3] =21, [Xo,X3]= 2o,
(X1, X4] = €Zy, [Xo,X4| =24

1650191-10
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The Lie algebra b generated by the set {X1, X2, X3, Z1, Z5} is a Lie subalgebra of
Lg,24(¢) isomorphic to Ls 9. On the other hand, Lgg = L5 9 @ Lq,1 then Ls g is an
ideal of Lg g of codimension 1.

Let V be a vector space of dimension 3 and let W be a subspace of V of
dimension 2. If B = {vy, v2, v3} is a basis of V' then, by a straightforward calculation
using linear algebra, it follows that W has a basis given by one of the following ways:

(1) {v1 + avs,va + busg} with a,b € K;
(2) {v1 + cvo,v3} with ¢ € K;

(3) {v2,v3}.

In order to prove Theorems 3.1 and 3.2 we need the following results. By £;;
we denote the n x n matrix with a 1 on position (7, j) and zeros elsewhere.

Lemma 3.1. Let h be a Lie subalgebra of ns(K) isomorphic to Lsg. Then the
center 3(h) is given by one of the following ways

(1) 3(h) = spang{E14 + cEas, E15} with ¢ € K;
(2) 3(b) = spang{Fas, E15}.

Proof. Since h is a Lie subalgebra of ns(K) isomorphic to Ls g, we have 3(h) =
[0, [h,b]] and dim3(h) = 2. Hence 3(h) C spang{E14, Eos, E15} then a basis of 3(h)
is given by one of the following ways

(1) {E14 + aF15, Fas + bE15} with a, be K;
(2) {E14 + cFEos, E15} with ¢ € K;
(3) {Eas, Es}

If the center is 3(h) = spang{E14 + aE15, Eas + bF15}, it follows that

0 0 w13 714 @15
0 0 w23 x24 @25
f] - 0 0 0 T34 35| T4 € K
0 0 O 0 0
0 0 O 0 0

Therefore b is k-step nilpotent Lie algebra with k < 2, which contradicts that b is
isomorphic to Ls g. |

Lemma 3.2. Let h be a Lie subalgebra of ns(K) isomorphic to Lsg. Let X; =
[mij]1§i<j§5>X2 = [yij]1§i<j§5 S 115(K) such that the set

{X17 X27 X?n Z17 ZZ} g nS(K)
is a basis of b that verified [X1, Xo] = X3, [X1, X3] = Z1 and [X2, X3] = Zs.

(1) If 3(h) = spang{E14 + cEa5, E15} with ¢ # 0 then ysq # 0,203 = %x% and
y23(T12Y34 — T34Y12) # 0.
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(2) If 3(h) = spang{E14, E15} then (yi12723 — T12y23)(T34Y35 — T35Y34) 7# 0.
(3) If 3(h) = spang{Eoas, Ers} then (x2sy12 — T12y23)(T34Y35 — T35y34) # 0.

Proof. Since Xg = [X17X2}7Z1 = [X17X3} and Z2 = [XQ,Xg], we get

0 0 O ay ag 0 0 O bl bz
0 00 0 a3 0 0 0 0 b3
Zi=10 0 0 0 O and Z;=({0 0 0 0 O
000 0 O 00 0 0 O
0 00 0 O 00 0 0 O

with
a; = 9012(9023y34 - y239034) - ($12y23 - y12$23)$34,
as = x12(223Y35 + T24Yas — Y2335 — Y24T45) + T13(T34Ya5 — Y34T45)
- $35($12y23 - y12$23) - m45(m12y24 + T13Y34 — Y12%24 — y13m34),
a3z = 9023(9034y45 - y349045) - m45(x23y34 - y23m34),
by = y12($23y34 - y23x34) - y34(m12y23 - y12x23),
by = y12($23y35 + X2aYas — Y23T35 — y249045) + y13(9c34y45 - y349045)

- y35(m12y23 - y12$23) - y45(m12y24 + T13Y34 — Y12T24 — y13x34)7

by = y23(x34y45 - y34m45) — Yas (9023y34 - y23m34).

(1) Let ¢ # 0, if 3(h) = spang{E14 + c¢F25, F15}, we obtain

mi2 MmMi3 Mi4 mis

0
0 0 mo3 mos o
f] - 0 0 0 msy mss 1M € K
0 0 0 0 C Mi2
0 O 0 0 0

Therefore

(1) @45 = cr12, Yas = cy12 and
(2) Zy,7Z5 € spang{E14 + cFa5, E15}.

By item (a), we obtain
ap = $12($23y34 - y23m34) - $34($12y23 - y12x23),
as = C($23($34y12 - y34m12) - $12($23y34 - y23x34)),
by = y12($23y34 - y23m34) - y34(9012y23 - y12$23)7
bs = C(y23 (m34y12 - y34x12) - y12($23y34 - y23m34)).
Since ¢ # 0 and by item (b), we have az = ca; and bs = ca;. It follows that
x12(%23Y34 — Y23x34) = 0,
y12(T23Y34 — Y23234) = 0.
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By a straightforward calculation, we have the only solution that it makes the set

{Z1,Z5} a linearly independent set i.e. y34 # 0 and xo3 = %mm. Since

0 0 O al an 0 0 O bl bQ
0 0 0 0 car 00 0 0 e
Zi=10 0 0 0 O and Z;=|(0 0 0 O 0|,
000 0 O 00 0 0 O
000 0 O 00 0 0 O

we have det [le Zﬂ # 0 with

a2 = $12($23y35 — Y23%35 + CT24Y12 — cy24x12) + cx13 (m34y12 - y34m12)
- 9035@121/23 - y12$23) - cx12(x12y24 + T13Y34 — Y12%24 — y13x34),

by = y12(T23Y35 — Y23T35 + CT24Y12 — CY24%12) + cy13(T3aY12 — Y347 12)
- y35(x12y23 - y129023) - cy12(fc12y24 + Z13Y34 — Y12T24 — y13m34).

Therefore

det [al az] _ —2y93(Ysaz12 — T34Y12)%a

by by 31342 7& 0

with a = cy34(y24m12 + T13Y34 — T34Y13 — 3524912) + y23($35y34 - $34y35)~
(2) If ¢ =0 and 3(h) = spang{E14, E15}, we get

mi2 M1z Miga M5

0
0 0 mo3 mog mos
hC 0 0 0 m34 M35 | :Mij € K
0 0 0 0 0
0 0 0 0 0

Hence z45 = ys5 = 0, thus ag = b3 = 0. Since the set {Z1, Z>} is linearly indepen-
dent, we obtain det [le Z;] # 0 with

{a2 = 9012@231/35 - y23m35) - x35(x12y23 - y12x23),
by = y12(9023y35 - y239035) - y35(x12y23 - y129023)~

It follows that det |:le Z;] = 2(y12.’E23 - .’E12y23)2(.’£34y35 — 1‘35]/34) 75 0.
(3) Analysis similar to that in the proof of (2) shows that

(Y1223 — T12Y23)* (23435 — T35Y34) 7 0.

The proof is now completed. O

Lemma 3.3. Let h be a Lie subalgebra of ns(K) isomorphic to Lsg. Let X; =
[mij]1§i<j§5>X2 = [yij]1§i<j§5 c 115(K) such that the set

{X17X27 X?n Z17 Z2} - n5(K)
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is a basis of § that verified (X1, Xo] = X3, [X1,X3] = Z1, [ X2, X3] = Z2 and let
X4 = [aijli<i<j<s € n5(K) be nonzero matriz such that [Xs, X4] = 0.

(1) If Z],ZQ,[X],X;L],[XQ,X;L} S spanK{E14 + CE25,E15} and 45 — Ca12 then

a12 = azs = azs = 0 and ags = —carz L2
(2) ’Lf Zl,ZQ, [Xl,de, [XQ,X;L} S spanK{E%,Els} and a1 = 0 then a3 — 34 =

45 = 0.

Proof. (1) If Z1,Zy € K{E14 + cEss5, E15}, we get

0 miz miz mis  Mmis

0 mo3g mog mos

0 0 m34 M35 | 1 Mij € K
0 0 0 Ccmi2

0 0 0 0

for every ¢ € K. We first assume that ¢ # 0. By Lemma 3.2(1), we get

h C

o O o O

0 w12 13 T4 15

0 w12 v13 Y14 Y5
0 0 %9034 T4 T2s 0 0 w23 You Y25
Xi=1p o y340 vay s |0 X2= (0 0 0 gz yss
0 0 0 0  cxo 0 O 0 0 cyio
0 0 0 0 0 0 0 0 0 0
and
Yo3(T12y34 — T34Y12) 7 0. (3.5)
Since 0 = [X3, X4] = [[X1, X2, X4], we obtain
(1) asa 22 (ysaw12 — 234y12) = 0,
(2) a23c(yzaziz — x34Y12) = 0,
(3) ass 22 (ysaw12 — w3ay12) + a13c(ysa®iz — @3ayr2) — apm = 0 with m =
2c(z12y24 — Y1224) + c(T13Y34 — Y13734) + 222 (235934 — T34Y35)-

Y3a

Since [Xa, X4] € spang{F14 + cFEa5, E15}, we have

(1) yi2a23 — a12y23 = 0.

From (a), (b), (d) and (3.5), we obtain ags = ags = aj2 = 0. Finally, by (c¢) and
Eq. (3.5), it follows that a5 + ca3 = 0.

Y34
Now assume ¢ = 0. From Lemma 3.2(2), we obtain

(y12723 — T12Y23)* (T34Y35 — T35Y34) # 0. (3.6)
Since [X1, X4], [X2, X4] € spang{FE14, E15}, we have the following equations

Ti2a23 — a12%23 = 0, Y12a23 — a12y23 =0,

To3a34 — G23%34 = 0, Y23a34 — G23y34 = 0,

Tozagzs — az3x35 = 0, Y23azs — azzyss = 0.

From Eq. (3.6), we get a12 = ag3 = asq = ags = 0.
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(2) Analysis similar to that in (1) with ¢ = 0 shows that a15 = as3 = azqs =0
and the proof is complete. O

Proposition 3.2. Let h be a Lie subalgebra of ns(K) isomorphic to Ls . Let X; =
[mij]1§i<j§5>X2 = [yij]1§i<j§5 S 115(K) such that the set

{X1, X2, X3, 21, Z5} C ns(K)
is a basis of h that verified [ X1, Xo] = X3, [ X1, X3] = Z1,[ X2, X3] = Z3 and let X4 €
n5(K) such that [X;, X4] =0 fori=1,2,3. Then X4 € spang{ X1, Xo, X3, 71, Z>}.
Proof. From Lemma 3.1, we have the center 3(h) given by any of the following

ways:

(1) 3(h) = spang{E14 + cFEa5, F15} with ¢ € K;
(2) 3(b) = spang{Eas, Ei5}.

We first assume (1). If ¢ # 0, by Lemmas 3.2(1) and 3.3(1), we get

0 z12 13 T4  T15 0 Yo Y13 Y4 Yis
0 0 yﬁmgzx To4 T2 0 0 w23 You Yos
Y34
Xl = 0 0 0 T34 T35 |’ X2 =10 0 0 Y34 Yss |
0 0 0 0 cxra 00 0 0 ey
0 0 0 0 0 0 0 0 0 0
Y23 (Ysax12 — T34y12) # 0 (3.7)
0 0 aiz aia ais
0 0 0 a4 azs
and Xy = |0 0 0 0 —casg2t|. From [X71, X4] = [X2, X4] = 0, we obtain the
00 0 0 0
00 0 0 0
following equations:
(1) a2ax12 — a13234 = 0;
(2) a2ay12 — a13y34 = 0;
(3) (a5 — cara)w1z — ars (528 — 55) = 0;
(4) (a5 — cara)yiz — arg (2L — y55) = 0.

Y23

From items (a), (b) and from Eq. (3.7), we obtain a3 = a4 = 0. Hence, from items
(¢), (d) and from Eq. (3.7) we have

0 0 O a4 ails
0 0 O 0 Ca14
Xy=1(0 0 0 O 0
0 0 0 O 0
0 0 0 O 0
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If ¢ = 0, by Lemmas 3.2(2) and 3.3(1), we get

0 w12 w3 T4 15 0 y12 w13 w14 Y15
0 0 @3 woa 25 0 0 w23 w2u Yos
Xi=1(0 0 0 w314 w35, Xo= |0 0 0 yz4a ¥ss5/,
00 0 0 0 00 0 0 0 (3.8)
0 O 0 0 0 0 0 0 0 0
(y129€23 - $12y23)(9€34935 - $35Z/34) #0
0 0 aiz aia ais
0 0 0 a4 azs
and Xy = [0 0 0 0 0 |. From [X1,Xy4] = [X2, X4] = 0, we obtain the fol-
00 0 0 0
00 0 0 0

lowing equations
T12024 — a13734 = 0, T12a25 — a13735 = 0,
Y12a24 — a13Yy3s = 0,  y12a25 — a13yss = 0.

By Eq. (3.8), it is not difficult to see that

0 0 O a14 Q15
0 0 0 O 0
X4=1(0 0 0 0 0
0 00 O 0
0 0 0 O 0

(2) Analysis similar to that in (1) with ¢ = 0 shows that

0 0 0 O a5
0 0 0 O a5
X4=|0 0 0 0 0],
0 0 00 O
00 00 O
and the proposition is proved. O

Proposition 3.3. Let € € K and let h be a Lie subalgebra of ns(K) isomorphic to
L5’9. Let X1 == [xij]lgi<jg5,X2 == [yij}1§i<j§5 S 115(K) such that the set

{X17X27 X?n Zlv ZQ} - 115(K)

is a basis of b that verified [X1,X2] = X3, [X1,X3] = Z1, [X2, X3] = Zo. Let
X4 € n5(K) such that

(1) {X1, X2, X3, X4, Z1, Zo} is linearly independent and
(2) [X17X4} = €Z27 [X27X4} = Zl, [Xg,X4] = [Zj7X4} = 0 fOT’j = 172

Then there ezists a € K such that a® — e = 0.
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Proof. From Lemma 3.1, we have the center 3(h) given by one of the following

ways:

(1) 3(b) = spang{E14 + cEas, E15} with ¢ € K;

(2) 3(h) = spang{Eas, E15}.

We first assume (1). If ¢ # 0, by Lemmas 3.2(1) and 3.3(1), we get

0 =z T13 T14 T15
Y23
0 0 y—$34 To4 T2
34
X1 = 0 0 0 T34 I35
0 0 0 0 CT12
0 O 0 0 0
y23(Y3a212 — 234Y12) # 0
0 0 a3 a4 ais
0 0 0 a4 azs
and Xy, = |0 0 0 0 —calgz%
00 0 0
00 0 0 0

a13Ys34 = ($12y23 -

13034 = 6(9012y23 -

Y34

Y3a

w)

w)

T34,

Y34

0 w12 y13 w14 Y15

0 0 w23 wou 25

0 0 0 ysa yss |,

0 0 0 0 eyl 39
0 0 0 0 0

. From [XQ,X;L} = Zl, [Xl,de = EZQ, we

(1) a2aw12 — a13734 = —A13T34 — A247T12,
(2) a24y12 — a13Y34 = —@13Y34 — G24Y12,
3)
(4)

By (a), (b) and Eq. (3.9), we have as4 = 0. By (¢), (d) and Eq. (3.9), we obtain

xr
€= —3%.

y
Ife= 0, by Lemmas 3.2(2) and 3.3(1), we have

[0 212 x13 %14
0 0 X233 T24
X1 =10 0 0 T34
0 0 0 0
0 0 0 0

(y129023 - 90121/23)(90341135 - x35y34) #0

a1z aia ais
0 a2a azs
0 0 0
0 0 0

0 0 0 0

following equations

0
0
and X4 = 0
0

[= NNl

0 w12 v13 Y14 Y15

0 0 o3 wou W25

0 0 0 wysa yss|,

00 0 0 0 (3.10)
0 0 0 0 0

. From [X17X4} = €Z2, [XQ,X4] = Zl, we obtain the

T12024 — Q13734 = €(y12(9023y34 - y239034) - ($12y23 - y12$23)y34),
T120a25 — A13T35 = €(y12(9023y35 - y239035) - ($12y23 - y12$23)y35),
Y1224 — A13Y34 = 9012($23y34 - y23m34) - ($12y23 - y12x23)x34,
Y12a25 — A13Y35 = 9012($23y35 - y23m35) - ($12y23 - y129023)9035~
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By Eq. (3.10), we verify computationally that {X7, Xo, X3, X4, Z1, Zo} C n5(K) is
a linearly independent set if there exists a € K such that a? — e = 0.

(2) Analysis similar to that in (1) with ¢ = 0 shows that {X;, Xs, X3,
X4, 71,72} C n5(K) is linearly independent if there exists a € K such that

a? — e = 0. It completes the proof. O

Proof of Theorem 3.1. Since g is a Lie algebra isomorphic to Lg 9, we have

(1) n>5, by Eq. (3.4) and

(2) there exists a basis {Xi, X5, X3, X4, 71,22} of g such that [X;,Xs] =
Xg,[Xl,Xg] = Z17[X27X3} = ZQ and [X“X;d = [Zj7X4} =0 for i = 172,3
and j =1,2.

By Proposition 3.2, we obtain n > 6. O

Proof of Theorem 3.2. Since g is a Lie algebra isomorphic to Lg 24(€), we have

(1) n>5, by Eq. (3.4) and

(1) there exists a basis {Xi, X, X3, X4, 721,22} of g such that [X;,Xs] =
X3, [X1,X3] = 21,[X2, X3] = Zo and [X1,Xy] = €2, [X2,X4] = Z; and
[X4,Zj} =0 fOI’j = 1,2.

If n = 5, by Proposition 3.3, there exists a € K such that a? — ¢ = 0. It completes
the proof. O

By Theorems 3.1 and 3.2, we easily obtain the following corollaries.
Corollary 3.1. punii(Leg) > 6.

Corollary 3.2. Let € € K then

5 ifdaeK:e=a?
ni L Z )
pinit(Le,24(€)) {6 if € # a? for all « € K.
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