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1. Introduction

In this paper, Lie algebras and representations are finite-dimensional over a field
K of characteristic zero. Ado’s theorem states that every Lie algebra has a finite-
dimensional faithful representation [14, p. 202]. So, given a Lie algebra g, let

µ(g) = min{dimV : (π, V ) is a faithful representation of g},
and additionally, if g is nilpotent let

µnil(g) = min{dimV : (πnil, V ) is a faithful nilrepresentation of g}.
In general, it is very difficult to determine µ(g) and it is also hard to obtain

suitable estimations for µ(g). More generally, to give faithful representations of
nilpotent Lie algebras is a challenging problem in the theory of finite-dimensional
Lie algebras ([4, 8]) which is related to another well-known problems, such as Mil-
nor’s Conjecture (see [2, 16]). Some results on µ can be found in [2, 5, 7, 13, 18, 19].
An upper bound for µ(g) is given in [6] for any finite-dimensional complex Lie
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Table 1. µ and µnil for all nilpotent Lie algebras of

dim = 6.

De Graaf’s classification µ µnil

L6,3, L6,4, L6,5, L6,8 4 5
L6,1, L6,2, L6,6, L6,7, L6,10, L6,11,L6,12, L6,13 5 5
L6,20, L6,21(ε), L6,22(ε), L6,23, L6,25, L6,26

L6,9 5 6
L6,14, L6,15, L6,16, L6,17, L6,18 6 6

L6,19(ε) if
√−ε ∈ K

∗ 4 4

L6,19(ε) if
√−ε /∈ K

∗ 5 5

L6,24(ε) if
√

ε ∈ K
∗ 5 5

L6,24(ε) if
√

ε /∈ K
∗ 6 6

algebras. In particular, it is known that µ(g) < 3√
dim g

2dim g for any nilpotent Lie
algebra g (see for instance [3]) and if dim g ≤ 7 then µ(g) ≤ dim g+1 [2, Lemma 6].

Many authors have tried to determine minimal faithful representations for low-
dimensional nilpotent Lie algebras starting from a known classification of nilpotent
Lie algebras. For instance in [15], µ is computed by the Lie algebras of dimension
≤ 4. Faithful representations of nilpotent Lie algebras of dimension 5 are given in
[10] but the minimality problem was studied independently in [1]. On the other
hand, a faithful representation was given for each indecomposable nilpotent Lie
algebras of dimension 6 in [11] but the minimality problem is not addressed in this.

Our purpose is to give µ and µnil for each nilpotent Lie algebra of dimension
≤ 6 over any field K of characteristic zero. In fact, we give a minimal faithful
representation and minimal faithful nilrepresentation for this family of Lie algebras.
Throughout the paper, we use the classification of nilpotent Lie algebras up to
dimension 6 by De Graaf [9]. According to the notation used in [9], the values of µ

and µnil of all Lie algebras of dimension 6 are given in Table 1.
The problems that occur in the 7-dimensional nilpotent Lie algebra are similar

to the 6-dimensional case, except for the number of Lie algebras. For instance, the
set of the 7-dimensional complex nilpotent Lie algebras can be seen as six curves
of pairwise nonisomorphic nilpotent Lie algebras and 148 complex nilpotent Lie
algebras (see [12]).

2. Preliminaries

We recall some results that will be needed throughout the paper.
If g is a nilpotent Lie algebra and (πnil, V ) is a nilrepresentation of g, let π :

g⊕K → gl(V ) be the linear mapping given by π(X, a) = πnil(X)+aI where I is the
identity map on V . It is easy to see that if (πnil, V ) is a faithful nilrepresentation
then (π, V ) is a faithful representation of g so

µ(g ⊕ K) ≤ µnil(g). (2.1)
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On the other hand, it follows from [7, Theorems 2.1 and 2.2] that if g is nilpotent
and the center z(g) such that z(g) ⊆ [g, g] then

µ(g) = µnil(g). (2.2)

Let us now summarize well-known results on µ.

Proposition 2.1. Let g be a Lie algebra of finite dimension over a field K of
characteristic zero.

(1) If g is an abelian Lie algebra then µ(g) = �2√dim g − 1� and µnil(g) =
�2√dim g� (see [3, 13, 17, 19]).

(2) If g is a filiform Lie algebra then µ(g) ≥ dim g and if dim g < 10 then µ(g) =
dim g (see [3]). We also have µnil(g) = µ(g) (see (2.2)).

(3) If g is a nilpotent Lie algebra then µ(g ⊕ K) ≤ µnil(g) and if z(g) ⊆ [g, g] then
µ(g ⊕ K) = µ(g) (see (2.1) and (2.2)).

In the remainder of this section, we summarize the results obtained in [1, 18]
for the Lie algebras of dimension 5.

The following list contains the classification of all nilpotent Lie algebras of
dimension 5.

(1) L5,1 is the abelian Lie algebra of dimension 5.
(2) L5,2 : [X1, X2] = Z1.
(3) L5,3 : [X1, X2] = X3, [X1, X3] = Z1.
(4) L5,4 : [X1, X2] = Z1, [X3, X4] = Z1.
(5) L5,5 : [X1, X2] = X3, [X1, X3] = Z1, [X2, X4] = Z1.
(6) L5,6 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = Z1, [X2, X3] = Z1.
(7) L5,7 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = Z1.
(8) L5,8 : [X1, X2] = Z1, [X1, X3] = Z1.
(9) L5,9 : [X1, X2] = X3, [X1, X3] = Z1, [X2, X3] = Z2.

Tables 2 and 3 contain a minimal faithful representation and a minimal faith-
ful nilrepresentation for each nilpotent Lie algebra of dimension 5 and in the last
column contains the necessary reference for the lower bound of µ and µnil. For
example, where it says “by Engel’s Theorem” means that if (π, V ) is a faithful
nilrepresentation of L5,j (or L6,j) there exists a basis B of V such that [π(X)]B is
a strictly upper triangular matrix for all X ∈ L5,j. Therefore, since dim L5,j = 5
(or dimL6,j = 6), we obtain µnil(L5,j) ≥ 4.

In Table 3 all the Lie algebras, except L5,3, verify that z(g) ⊆ [g, g]. From (2.2)
we have µnil(g) = µ(g).

The matrices appearing in the tables are given by

π
(∑

xiXi +
∑

ziZi +
∑

aiAi

)
,
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Table 2. Lie algebras such that µ < µnil.

g µnil µ Faith. nilrep. Faith. rep. Ref.

L5,1 5 4

2
664

0 0 a1 a2 a3
0 0 0 a4 a5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
775

2
64

a1 0 a2 a3
0 a1 a4 a5
0 0 a1 0
0 0 0 a1

3
75 Proposition 2.1(1)

L5,2 5 4

2
664

0 x1 z1 a1 a2
0 0 x2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
775

2
64

a1 x1 z1 0
0 a1 x2 0
0 0 a1 0
0 0 0 a2

3
75 [18], since L5,2 is L3,2 ⊕ L2,1

Table 3. Lie algebras such that µ = µnil.

g µ Faithful nilrepresentation Ref.

L5,3 4

2
64

0 x1 x3 + a1 −2z1
0 0 x2 −x3 + a1
0 0 0 x1
0 0 0 0

3
75 Proposition 2.1(3)

L5,4 4

2
64

0 x1 x3 z1
0 0 0 x2
0 0 0 x4
0 0 0 0

3
75 By Engel’s theorem, we have µnil(L5,4) ≥ 4

L5,5 4

2
64

0 x1 −x4 z1
0 0 x1 x3
0 0 0 x2
0 0 0 0

3
75 By Engel’s theorem, we have µnil(L5,4) ≥ 4

L5,6 5

2
6664

0 x1
1
2x2 − 1

2x3 z1

0 0 x1 0 x4
0 0 0 x1 x3
0 0 0 0 x2
0 0 0 0 0

3
7775 Proposition 2.1(2)

L5,7 5

2
664

0 x1 0 0 z1
0 0 x1 0 x4
0 0 0 x1 x3
0 0 0 0 x2
0 0 0 0 0

3
775 Proposition 2.1(2)

L5,8 4

2
64

0 x1 z1 z2
0 0 x2 x3
0 0 0 0
0 0 0 0

3
75 By Engel’s Theorem, we have µnil(L5,4) ≥ 4

L5,9 5

2
6664

0 0 1
2x2 − 1

2 x3 z2

0 0 x1 0 z1
0 0 0 x1 x3
0 0 0 0 x2
0 0 0 0 0

3
7775 Remark 2.1

such that {Z1, . . . , Zq, A1, . . . , Ar} is a basis of z(g), {Z1, . . . , Zq} is a basis of z(g)∩
[g, g] and {A1, . . . , Ar} is a basis of a linear complement of z(g) ∩ [g, g] in z(g).

Remark 2.1. If µnil(L5,9) = 4 we obtain dim[L5,9, [L5,9, L5,9]] ≤ 1. But
dim[L5,9, [L5,9, L5,9]] = 2, therefore µnil(L5,9) ≥ 5.
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3. Minimal Faithful Representations for the Nilpotent Lie
Algebras of Dimension 6

Let us now recall De Graaf’s classification of the nilpotent Lie algebras of dimension
6 (see [9]).

(1) L6,j = L5,j ⊕ K for all j = 1, . . . , 9.
(2) L6,10 : [X1, X2] = X3, [X1, X3] = Z1, [X4, X5] = Z1.
(3) L6,11 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = Z1, [X2, X3] = Z1, [X2,

X5] = Z1.

(4) L6,12 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = Z1, [X2, X5] = Z1.
(5) L6,13 : [X1, X2] = X3, [X1, X3] = X5, [X2, X4] = X5, [X1, X5] = Z1, [X3,

X4] = Z1.
(6) L6,14 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X5, [X2,

X5] = Z1, [X3, X4] = −Z1.
(7) L6,15 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X5, [X1,

X5] = Z1, [X2, X4] = Z1.
(8) L6,16 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X2, X5] = Z1, [X3,

X4] = −Z1.
(9) L6,17 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = Z1, [X2,

X3] = Z1.
(10) L6,18 : [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = Z1.
(11) L6,19(ε) : [X1, X2] = X4, [X1, X3] = X5, [X2, X4] = Z1, [X3, X5] = εZ1.

Isomorphism: L6,19(ε) ∼= L6,19(δ) if and only if there is α ∈ K
∗ such that

ε = α2δ.
(12) L6,20 : [X1, X2] = X4, [X1, X3] = X5, [X1, X5] = Z1, [X2, X4] = Z1.
(13) L6,21(ε) : [X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5, [X1, X4] =

Z1, [X2, X5] = εZ1. Isomorphism: L6,21(ε) ∼= L6,21(δ) if and only if there is
α ∈ K

∗ such that ε = α2δ.
(14) L6,22(ε) : [X1, X2] = Z1, [X1, X3] = Z2, [X2, X4] = εZ2, [X3, X4] = Z1. Iso-

morphism: L6,22(ε) ∼= L6,22(δ) if and only if there is α ∈ K
∗ such that

ε = α2δ.
(15) L6,23 : [X1, X2] = X3, [X1, X3] = Z1, [X1, X4] = Z2, [X2, X4] = Z1.
(16) L6,24(ε) : [X1, X2] = X3, [X1, X3] = Z1, [X1, X4] = εZ2, [X2, X3] =

Z2, [X2, X4] = Z1. Isomorphism: L6,24(ε) ∼= L6,24(δ) if and only if there is
α ∈ K

∗ such that ε = α2δ.
(17) L6,25 : [X1, X2] = X3, [X1, X3] = Z1, [X1, X4] = Z2.
(18) L6,26 : [X1, X2] = Z1, [X1, X3] = Z2, [X2, X3] = Z3.

Since dimL6,j = 6 and by Engel’s Theorem, we obtain µnil(L6,j) ≥ 4 for j =
1, . . . , 26.

It is easy to see that z(L6,j) ⊆ [L6,j , L6,j] for j = 10, . . . , 26. From (2.2) we have
4 ≤ µ(L6,j) = µnil(L6,j) for j = 10, . . . , 26. By other hand, L6,j = L5,j ⊕ K for
j = 1, . . . , 9. From Tables 2 and 3, we obtain 4 ≤ µ(L5,j) ≤ µ(L6,j) for j = 1, . . . , 9.
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It follows that

4 ≤ µ(L6,j) and 4 ≤ µnil(L6,j) (3.1)

for all j = 1, . . . , 26.

3.1. Minimal faithful representation and minimal faithful

nilrepresentation

Tables 4 and 5 contain a minimal faithful representation and a minimal faithful
nilrepresentation for each Lie algebra L6,j, j = 1, . . . , 26. The last column contains
the necessary reference for the lower bound of µ and µnil. The matrices in the tables
are given by

π
(∑

xiXi +
∑

ziZi +
∑

aiAi

)
,

where {Z1, . . . , Zq, A1, . . . , Ar} is a basis of z(g), {Z1, . . . , Zq} is a basis of z(g)∩[g, g]
and {A1, . . . , Ar} is a basis of a linear complement of z(g) ∩ [g, g] in z(g).

In Table 5, all the Lie algebras, except the Lie algebras L6,1, L6,2, L6,6 and L6,7,
verify that z(g) ⊆ [g, g] and so, from (2.2), we have µnil(g) = µ(g).

Table 4. Lie algebras such that µ < µnil.

g µn µ Faith. nilreps. Faith. reps. Ref.

L6,3 5 4

2
664

0 x1 x3 + a1 −2z1 a2
0 0 x2 −x3 + a1 0
0 0 0 x1 0
0 0 0 0 0
0 0 0 0 0

3
775

2
64

a2 x1 x3 + a1 −2z1
0 a2 x2 −x3 + a1
0 0 a2 x1
0 0 0 a2

3
75 Eq. (3.4)

Eq. (3.1)

L6,4 5 4

2
664

0 x1 x2 z1 a1
0 0 0 x3 0
0 0 0 x4 0
0 0 0 0 0
0 0 0 0 0

3
775

2
64

a1 x1 x2 z1
0 a1 0 x3
0 0 a1 x4
0 0 0 a1

3
75 Eq. (3.4)

Eq. (3.1)

L6,5 5 4

2
664

0 x1 −x4 z1 a1
0 0 x1 x3 0
0 0 0 x2 0
0 0 0 0 0
0 0 0 0 0

3
775

2
64

a1 x1 −x4 z1
0 a1 x1 x3
0 0 a1 x2
0 0 0 a1

3
75 Eq. (3.4)

Eq. (3.1)

L6,8 5 4

2
664

0 x1 z1 z2 a1
0 0 x2 x3 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
775

2
64

a1 x1 z1 z2
0 a1 x2 x3
0 0 a1 0
0 0 0 a1

3
75 Eq. (3.4)

Eq. (3.1)

L6,9 6 5

2
66664

0 0 1
2x2 − 1

2x3 z2 a1

0 0 x1 0 z1 0
0 0 0 x1 x3 0
0 0 0 0 x2 0
0 0 0 0 0 0
0 0 0 0 0 0

3
77775

2
6664

a1 0 1
2x2 − 1

2x3 z2

0 a1 x1 0 z1
0 0 a1 x1 x3
0 0 0 a1 x2
0 0 0 0 a1

3
7775

Corollary 3.1
Proposition 2.1(3)
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Table 5. Lie algebras such that µ = µnil.

g µ Faith. nilreps. Ref.

L6,1 5

2
664

0 0 a1 a2 a3
0 0 a4 a5 a6
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
775 Proposition 2.1(1)

L6,2 5

2
664

0 0 x1 z1 a1
0 0 0 a2 a3
0 0 0 x2 0
0 0 0 0 0
0 0 0 0 0

3
775 [18], since L6,2 is L3,2 ⊕ L3,1

L6,6 5

2
664

0 x1 3x2 x4 + a1 −3z1
0 0 x1 x3 −2x4 + a1
0 0 0 x2 −x3
0 0 0 0 x1
0 0 0 0 0

3
775 Proposition 2.1(3)

L6,7 5

2
664

0 x1 0 x4 + a1 −3z1
0 0 x1 x3 −2x4 + a1
0 0 0 x2 −x3
0 0 0 0 x1
0 0 0 0 0

3
775 Proposition 2.1(3)

L6,10 5

2
664

0 x1 0 x4 z1
0 0 x1 0 x3
0 0 0 0 x2
0 0 0 0 x5
0 0 0 0 0

3
775 Eq. (3.4)

L6,11 5

2
664

0 x1 x2 −x5 z1
0 0 x1 x2 x4
0 0 0 x1 x3
0 0 0 0 x2
0 0 0 0 0

3
775 Eq. (3.4)

L6,12 5

2
664

0 x1 0 −x5 z1
0 0 x1 0 x4
0 0 0 x1 x3
0 0 0 0 x2
0 0 0 0 0

3
775 Eq. (3.4)

L6,13 5

2
664

0 x1 −x4 0 z1
0 0 x1 −x4 x5
0 0 0 x1 x3
0 0 0 0 x2
0 0 0 0 0

3
775 Eq. (3.4)

L6,14 6

2
66666664

0 x2 −x3 0 0 z1

0 0 x1
1
2 x2 − 1

2x3 x5

0 0 0 x1 0 x4

0 0 0 0 x1 x3

0 0 0 0 0 x2
0 0 0 0 0 0

3
77777775

Proposition 2.1(2)

L6,15 6

2
666664

0 x1
1
2x2 0 − 1

2x4 z1

0 0 x1
1
2x2 − 1

2x3 x5

0 0 0 x1 0 x4
0 0 0 0 x1 x3
0 0 0 0 0 x2
0 0 0 0 0 0

3
777775

Proposition 2.1(2)

(Continued)
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Table 5. (Continued)

g µ Faith. nilreps. Ref.

L6,16 6

2
66664

0 1
2 x2 − 1

2x3
1
2x4 − 1

2 x5 z1

0 0 x1 0 0 x5
0 0 0 x1 0 x4
0 0 0 0 x1 x3
0 0 0 0 0 x2
0 0 0 0 0 0

3
77775

Proposition 2.1(2)

L6,17 6

2
66664

0 x1 0 1
2x2 − 1

2 x3 z1

0 0 x1 0 0 x5
0 0 0 x1 0 x4
0 0 0 0 x1 x3
0 0 0 0 0 x2
0 0 0 0 0 0

3
77775

Proposition 2.1(2)

L6,18 6

2
66664

0 x1 0 0 0 z1
0 0 x1 0 0 x5
0 0 0 x1 0 x4
0 0 0 0 x1 x3
0 0 0 0 0 x2
0 0 0 0 0 0

3
77775

Proposition 2.1(2)

L6,19(ε) 4

2
64

0 − 1√−ε
x2 + x3

1√−ε
x4 − x5 − 2√−ε

z1

0 0 x1 x4 +
√−εx5

0 0 0 x2 +
√−εx3

0 0 0 0

3
75

Proposition 3.1; if there
exists α ∈ K

∗ such that
ε = −α2

5

2
664

0 x1 x4 x5 z1
0 0 x2 x3 0
0 0 0 0 −x2
0 0 0 0 −εx3
0 0 0 0 0

3
775

Proposition 3.1;
if ε �= −α2

for all α ∈ K
∗

L6,20 5

2
664

0 x1 0 x4 z1
0 0 x1 x2 x5
0 0 0 0 x3
0 0 0 0 −x2
0 0 0 0 0

3
775 Eq. (3.4)

L6,21(ε) 5

2
664

0 −x1 + x2 (ε + 1)x3 −x4 − εx5 3z1
0 0 x1 − (ε + 2)x2 x3 −2x4 + εx5
0 0 0 x2 −x3
0 0 0 0 2x2 + x1
0 0 0 0 0

3
775 Eq. (3.4); if ε �= 0

5

2
664

0 −x1 + x2 + x3 −x3 − 2x4 − x5 x4 − x5 3z1
0 0 x2 −x3 x4 − x5
0 0 0 x1 + x2 −x3
0 0 0 0 x1
0 0 0 0 0

3
775 Eq. (3.4); if ε = 0.

L6,22(ε) 5

2
664

0 x1 x4 z1 z2
0 0 0 x2 x3
0 0 0 x3 εx2
0 0 0 0 0
0 0 0 0 0

3
775 Eq. (3.4)

L6,23 5

2
664

0 x1 −x4 z2 z1
0 0 x1 0 x3
0 0 0 x1 x2
0 0 0 0 0
0 0 0 0 0

3
775 Eq. (3.4)

L6,24(ε) 5 Remark 3.1
Corollary 3.2; if there exists
α ∈ K such that ε = α2
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Table 5. (Continued)

g µ Faith. nilreps. Ref.

6

2
66664

0 x2 x1 x3 −2z1 −z2
0 0 0 0 −2x4 0
0 0 0 x2 −x3 −εx4
0 0 0 0 x1 x2
0 0 0 0 0 0
0 0 0 0 0 0

3
77775

Corollary 3.2; if ε �= α2

for all α ∈ K

L6,25 5

2
664

0 x1 x3 2z1 z2
0 0 x2 x3 x4
0 0 0 −x1 0
0 0 0 0 0
0 0 0 0 0

3
775 Eq. (3.4)

L6,26 5

2
664

0 0 x1 z1 z2
0 0 x2 0 z3
0 0 0 x2 x3
0 0 0 0 0
0 0 0 0 0

3
775 Eq. (3.4)

Remark 3.1. For space reasons, we give a minimal faithful representation of the
Lie algebra L6,24(ε) (if there exists a ∈ K such that ε = α2) in this remark:


0
√

εx1 + x2 (−ε +
√

ε)x4 (3
√

ε − 1)z1 (−√
ε + 1)z1

+ (3ε − 1)x3 + (3 −√
ε)z2 + (−√

ε + 1)z2

0 0 x1 + x2 (−ε + 4
√

ε − 1)x4 + 2x3 (−ε + 1)x4

0 0 0 −x1 + x2 x1 + x2

0 0 0 0 0

0 0 0 0 0



.

The faithful representation of L6,19(ε), L6,21(ε) and L6,24(ε) was obtained using
Maple.

3.2. Computing µ and µnil of L6,19(ε) for ε ∈ K

A basis of the Lie algebra L6,19(ε) is B = {X1, X2, X3, X4, X5, Z1} which is such
that the brackets are given by

[X1, X2] = X4, [X1, X3] = X5, [X2, X4] = Z1, [X3, X5] = εZ1. (3.2)

The Lie algebras L6,19(ε) and L6,19(δ) are isomorphic if and only if there exists
α ∈ K

∗ such that

ε = α2δ. (3.3)

Now we prove the following result.

Proposition 3.1. Let K be a field of characteristic �= 2 then

µnil(L6,19(ε)) =

{
4 if ∃α ∈ K

∗ : ε = −α2;

5 if ∀α ∈ K
∗ : ε �= −α2.
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Proof. Let π1 : L6,19(ε) → gl(5) be a linear map defined by

π1

(
5∑

i=1

xiXi + z1Z1

)
=




0 x1 x4 x5 z1

0 0 x2 x3 0
0 0 0 0 −x2

0 0 0 0 −εx3

0 0 0 0 0


.

It is easy to check that (π1, K
5) is a faithful representation for all ε ∈ K. Then

µnil(L6,19(ε)) ≤ 5 for all ε ∈ K.
Let π2 : L6,19(−1) → gl(4) be a linear map given by

π2

(
5∑

i=1

xiXi + z1Z1

)
=



0 x2 + x3 −x4 − x5 2z1

0 0 x1 x4 − x5

0 0 0 x2 − x3

0 0 0 0


.

By a straightforward calculation we have (π2, K
4) a faithful representation. Hence

µnil(L6,19(−1)) ≤ 4 and from (3.1), we obtain

µnil(L6,19(−1)) = 4.

The Lie algebra L6,19(−1) is isomorphic to L6,19(ε) if and only if there is α ∈ K
∗ such

that ε = −α2. Therefore, if ε �= −α2 for all α ∈ K
∗, we obtain 5 ≤ µnil(L6,19(ε)).

Suppose that µnil(L6,j) = 4. By Engel’s Theorem, we have L6,j
∼= n4(K) and by

Proposition 3.1 we obtain L6,j
∼= L6,19(ε) for some ε ∈ K. From [9], with j = 19, it

follows that,

5 ≤ µnil(L6,j). (3.4)

3.3. The lower bound of µnil for L6,9 and L6,24(ε) for all ε ∈ K

The aim of this subsection is to prove the following results.

Theorem 3.1. Let n ∈ N and let g be a Lie subalgebra of nn(K) isomorphic to
L6,9 then n ≥ 6.

Theorem 3.2. Let ε ∈ K, n ∈ N and let g be a Lie subalgebra of nn(K) isomorphic
to L6,24(ε). Then

(1) n = 5, if there exists α ∈ K such that ε = α2 and
(2) n ≥ 6, if ε = α2 for all α ∈ K.

Let B = {X1, X2, X3, X4, Z1, Z2} be a basis of L6,24(ε) such that the only
nonzero brackets are

[X1, X2] = X3, [X1, X3] = Z1, [X2, X3] = Z2,

[X1, X4] = εZ2, [X2, X4] = Z1.
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The Lie algebra h generated by the set {X1, X2, X3, Z1, Z2} is a Lie subalgebra of
L6,24(ε) isomorphic to L5,9. On the other hand, L6,9 = L5,9 ⊕ L1,1 then L5,9 is an
ideal of L6,9 of codimension 1.

Let V be a vector space of dimension 3 and let W be a subspace of V of
dimension 2. If B = {v1, v2, v3} is a basis of V then, by a straightforward calculation
using linear algebra, it follows that W has a basis given by one of the following ways:

(1) {v1 + av3, v2 + bv3} with a, b ∈ K;
(2) {v1 + cv2, v3} with c ∈ K;
(3) {v2, v3}.

In order to prove Theorems 3.1 and 3.2 we need the following results. By Eij

we denote the n × n matrix with a 1 on position (i, j) and zeros elsewhere.

Lemma 3.1. Let h be a Lie subalgebra of n5(K) isomorphic to L5,9. Then the
center z(h) is given by one of the following ways

(1) z(h) = span
K
{E14 + cE25, E15} with c ∈ K;

(2) z(h) = span
K
{E25, E15}.

Proof. Since h is a Lie subalgebra of n5(K) isomorphic to L5,9, we have z(h) =
[h, [h, h]] and dim z(h) = 2. Hence z(h) ⊆ span

K
{E14, E25, E15} then a basis of z(h)

is given by one of the following ways

(1) {E14 + aE15, E25 + bE15} with a, b ∈ K;
(2) {E14 + cE25, E15} with c ∈ K;
(3) {E25, E15}.
If the center is z(h) = span

K
{E14 + aE15, E25 + bE15}, it follows that

h ⊆






0 0 x13 x14 x15

0 0 x23 x24 x25

0 0 0 x34 x35

0 0 0 0 0
0 0 0 0 0


 : xij ∈ K




.

Therefore h is k-step nilpotent Lie algebra with k ≤ 2, which contradicts that h is
isomorphic to L5,9.

Lemma 3.2. Let h be a Lie subalgebra of n5(K) isomorphic to L5,9. Let X1 =
[xij ]1≤i<j≤5, X2 = [yij ]1≤i<j≤5 ∈ n5(K) such that the set

{X1, X2, X3, Z1, Z2} ⊆ n5(K)

is a basis of h that verified [X1, X2] = X3, [X1, X3] = Z1 and [X2, X3] = Z2.

(1) If z(h) = span
K
{E14 + cE25, E15} with c �= 0 then y34 �= 0, x23 = y23

y34
x34 and

y23(x12y34 − x34y12) �= 0.
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(2) If z(h) = span
K
{E14, E15} then (y12x23 − x12y23)(x34y35 − x35y34) �= 0.

(3) If z(h) = span
K
{E25, E15} then (x23y12 − x12y23)(x34y35 − x35y34) �= 0.

Proof. Since X3 = [X1, X2], Z1 = [X1, X3] and Z2 = [X2, X3], we get

Z1 =



0 0 0 a1 a2

0 0 0 0 a3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 and Z2 =



0 0 0 b1 b2

0 0 0 0 b3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




with


a1 = x12(x23y34 − y23x34) − (x12y23 − y12x23)x34,

a2 = x12(x23y35 + x24y45 − y23x35 − y24x45) + x13(x34y45 − y34x45)

− x35(x12y23 − y12x23) − x45(x12y24 + x13y34 − y12x24 − y13x34),

a3 = x23(x34y45 − y34x45) − x45(x23y34 − y23x34),

b1 = y12(x23y34 − y23x34) − y34(x12y23 − y12x23),

b2 = y12(x23y35 + x24y45 − y23x35 − y24x45) + y13(x34y45 − y34x45)

− y35(x12y23 − y12x23) − y45(x12y24 + x13y34 − y12x24 − y13x34),

b3 = y23(x34y45 − y34x45) − y45(x23y34 − y23x34).

(1) Let c �= 0, if z(h) = span
K
{E14 + cE25, E15}, we obtain

h ⊆






0 m12 m13 m14 m15

0 0 m23 m24 m25

0 0 0 m34 m35

0 0 0 0 c m12

0 0 0 0 0


 : mij ∈ K




.

Therefore

(1) x45 = cx12, y45 = cy12 and
(2) Z1, Z2 ∈ span

K
{E14 + cE25, E15}.

By item (a), we obtain


a1 = x12(x23y34 − y23x34) − x34(x12y23 − y12x23),

a3 = c(x23(x34y12 − y34x12) − x12(x23y34 − y23x34)),

b1 = y12(x23y34 − y23x34) − y34(x12y23 − y12x23),

b3 = c(y23(x34y12 − y34x12) − y12(x23y34 − y23x34)).

Since c �= 0 and by item (b), we have a3 = ca1 and b3 = ca1. It follows that

x12(x23y34 − y23x34) = 0,

y12(x23y34 − y23x34) = 0.
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By a straightforward calculation, we have the only solution that it makes the set
{Z1, Z2} a linearly independent set i.e. y34 �= 0 and x23 = y23

y34
x34. Since

Z1 =



0 0 0 a1 a2

0 0 0 0 ca1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 and Z2 =




0 0 0 b1 b2

0 0 0 0 cb1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

we have det
[

a1 a2
b1 b2

]
�= 0 with




a2 = x12(x23y35 − y23x35 + cx24y12 − cy24x12) + cx13(x34y12 − y34x12)

− x35(x12y23 − y12x23) − cx12(x12y24 + x13y34 − y12x24 − y13x34),

b2 = y12(x23y35 − y23x35 + cx24y12 − cy24x12) + cy13(x34y12 − y34x12)

− y35(x12y23 − y12x23) − cy12(x12y24 + x13y34 − y12x24 − y13x34).

Therefore

det
[
a1 a2

b1 b2

]
=

−2y23(y34x12 − x34y12)2a
y34

2
�= 0

with a = cy34(y24x12 + x13y34 − x34y13 − x24y12) + y23(x35y34 − x34y35).
(2) If c = 0 and z(h) = span

K
{E14, E15}, we get

h ⊆






0 m12 m13 m14 m15

0 0 m23 m24 m25

0 0 0 m34 m35

0 0 0 0 0
0 0 0 0 0


 : mij ∈ K




.

Hence x45 = y45 = 0, thus a3 = b3 = 0. Since the set {Z1, Z2} is linearly indepen-
dent, we obtain det

[
a1 a2
b1 b2

]
�= 0 with

{
a2 = x12(x23y35 − y23x35) − x35(x12y23 − y12x23),
b2 = y12(x23y35 − y23x35) − y35(x12y23 − y12x23).

It follows that det
[

a1 a2
b1 b2

]
= 2(y12x23 − x12y23)2(x34y35 − x35y34) �= 0.

(3) Analysis similar to that in the proof of (2) shows that

(y12x23 − x12y23)2(x34y35 − x35y34) �= 0.

The proof is now completed.

Lemma 3.3. Let h be a Lie subalgebra of n5(K) isomorphic to L5,9. Let X1 =
[xij ]1≤i<j≤5, X2 = [yij ]1≤i<j≤5 ∈ n5(K) such that the set

{X1, X2, X3, Z1, Z2} ⊆ n5(K)
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is a basis of h that verified [X1, X2] = X3, [X1, X3] = Z1, [X2, X3] = Z2 and let
X4 = [aij ]1≤i<j≤5 ∈ n5(K) be nonzero matrix such that [X3, X4] = 0.

(1) If Z1, Z2, [X1, X4], [X2, X4] ∈ span
K
{E14 + cE25, E15} and a45 = ca12 then

a12 = a23 = a34 = 0 and a35 = −ca13
y34
y23

;
(2) if Z1, Z2, [X1, X4], [X2, X4] ∈ span

K
{E25, E15} and a12 = 0 then a23 = a34 =

a45 = 0.

Proof. (1) If Z1, Z2 ∈ K{E14 + cE25, E15}, we get

h ⊆






0 m12 m13 m14 m15

0 0 m23 m24 m25

0 0 0 m34 m35

0 0 0 0 cm12

0 0 0 0 0


 : mij ∈ K




for every c ∈ K. We first assume that c �= 0. By Lemma 3.2(1), we get

X1 =




0 x12 x13 x14 x15

0 0
y23

y34
x34 x24 x25

0 0 0 x34 x35

0 0 0 0 cx12

0 0 0 0 0



, X2 =



0 y12 y13 y14 y15

0 0 y23 y24 y25

0 0 0 y34 y35

0 0 0 0 cy12

0 0 0 0 0




and

y23(x12y34 − x34y12) �= 0. (3.5)

Since 0 = [X3, X4] = [[X1, X2], X4], we obtain

(1) a34
y23
y34

(y34x12 − x34y12) = 0,
(2) a23c(y34x12 − x34y12) = 0,
(3) a35

y23
y34

(y34x12 − x34y12) + a13c(y34x12 − x34y12) − a12m = 0 with m =
2c(x12y24 − y12x24) + c(x13y34 − y13x34) + y23

y34
(x35y34 − x34y35).

Since [X2, X4] ∈ span
K
{E14 + cE25, E15}, we have

(1) y12a23 − a12y23 = 0.

From (a), (b), (d) and (3.5), we obtain a34 = a23 = a12 = 0. Finally, by (c) and
Eq. (3.5), it follows that a35

y23
y34

+ ca13 = 0.
Now assume c = 0. From Lemma 3.2(2), we obtain

(y12x23 − x12y23)2(x34y35 − x35y34) �= 0. (3.6)

Since [X1, X4], [X2, X4] ∈ span
K
{E14, E15}, we have the following equations


x12a23 − a12x23 = 0, y12a23 − a12y23 = 0,

x23a34 − a23x34 = 0, y23a34 − a23y34 = 0,

x23a35 − a23x35 = 0, y23a35 − a23y35 = 0.

From Eq. (3.6), we get a12 = a23 = a34 = a35 = 0.
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(2) Analysis similar to that in (1) with c = 0 shows that a13 = a23 = a34 = 0
and the proof is complete.

Proposition 3.2. Let h be a Lie subalgebra of n5(K) isomorphic to L5,9. Let X1 =
[xij ]1≤i<j≤5, X2 = [yij ]1≤i<j≤5 ∈ n5(K) such that the set

{X1, X2, X3, Z1, Z2} ⊆ n5(K)

is a basis of h that verified [X1, X2] = X3, [X1, X3] = Z1, [X2, X3] = Z2 and let X4 ∈
n5(K) such that [Xi, X4] = 0 for i = 1, 2, 3. Then X4 ∈ span

K
{X1, X2, X3, Z1, Z2}.

Proof. From Lemma 3.1, we have the center z(h) given by any of the following
ways:

(1) z(h) = span
K
{E14 + cE25, E15} with c ∈ K;

(2) z(h) = span
K
{E25, E15}.

We first assume (1). If c �= 0, by Lemmas 3.2(1) and 3.3(1), we get

X1 =




0 x12 x13 x14 x15

0 0
y23

y34
x34 x24 x25

0 0 0 x34 x35

0 0 0 0 cx12

0 0 0 0 0




, X2 =




0 y12 y13 y14 y15

0 0 y23 y24 y25

0 0 0 y34 y35

0 0 0 0 cy12

0 0 0 0 0


,

y23(y34x12 − x34y12) �= 0 (3.7)

and X4 =




0 0 a13 a14 a15
0 0 0 a24 a25
0 0 0 0 −ca13

y34
y23

0 0 0 0 0
0 0 0 0 0


. From [X1, X4] = [X2, X4] = 0, we obtain the

following equations:

(1) a24x12 − a13x34 = 0;
(2) a24y12 − a13y34 = 0;
(3) (a25 − ca14)x12 − a13( cx13y34

y23
− x35) = 0;

(4) (a25 − ca14)y12 − a13( cy13y34
y23

− y35) = 0.

From items (a), (b) and from Eq. (3.7), we obtain a13 = a24 = 0. Hence, from items
(c), (d) and from Eq. (3.7) we have

X4 =




0 0 0 a14 a15

0 0 0 0 ca14

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


.
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If c = 0, by Lemmas 3.2(2) and 3.3(1), we get

X1 =




0 x12 x13 x14 x15

0 0 x23 x24 x25

0 0 0 x34 x35

0 0 0 0 0
0 0 0 0 0


, X2 =




0 y12 y13 y14 y15

0 0 y23 y24 y25

0 0 0 y34 y35

0 0 0 0 0
0 0 0 0 0


,

(y12x23 − x12y23)(x34y35 − x35y34) �= 0

(3.8)

and X4 =




0 0 a13 a14 a15
0 0 0 a24 a25
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


. From [X1, X4] = [X2, X4] = 0, we obtain the fol-

lowing equations {
x12a24 − a13x34 = 0, x12a25 − a13x35 = 0,

y12a24 − a13y34 = 0, y12a25 − a13y35 = 0.

By Eq. (3.8), it is not difficult to see that

X4 =



0 0 0 a14 a15

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


.

(2) Analysis similar to that in (1) with c = 0 shows that

X4 =




0 0 0 0 a15

0 0 0 0 a25

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

and the proposition is proved.

Proposition 3.3. Let ε ∈ K and let h be a Lie subalgebra of n5(K) isomorphic to
L5,9. Let X1 = [xij ]1≤i<j≤5, X2 = [yij ]1≤i<j≤5 ∈ n5(K) such that the set

{X1, X2, X3, Z1, Z2} ⊆ n5(K)

is a basis of h that verified [X1, X2] = X3, [X1, X3] = Z1, [X2, X3] = Z2. Let
X4 ∈ n5(K) such that

(1) {X1, X2, X3, X4, Z1, Z2} is linearly independent and
(2) [X1, X4] = εZ2, [X2, X4] = Z1, [X3, X4] = [Zj, X4] = 0 for j = 1, 2.

Then there exists a ∈ K such that a2 − ε = 0.
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Proof. From Lemma 3.1, we have the center z(h) given by one of the following
ways:

(1) z(h) = span
K
{E14 + cE25, E15} with c ∈ K;

(2) z(h) = span
K
{E25, E15}.

We first assume (1). If c �= 0, by Lemmas 3.2(1) and 3.3(1), we get

X1 =




0 x12 x13 x14 x15

0 0
y23

y34
x34 x24 x25

0 0 0 x34 x35

0 0 0 0 cx12

0 0 0 0 0




, X2 =




0 y12 y13 y14 y15

0 0 y23 y24 y25

0 0 0 y34 y35

0 0 0 0 cy12

0 0 0 0 0


,

y23(y34x12 − x34y12) �= 0

(3.9)

and X4 =




0 0 a13 a14 a15
0 0 0 a24 a25
0 0 0 0 −ca13

y34
y23

0 0 0 0 0
0 0 0 0 0


. From [X2, X4] = Z1, [X1, X4] = εZ2, we

obtain the following equations

(1) a24x12 − a13x34 = −a13x34 − a24x12,
(2) a24y12 − a13y34 = −a13y34 − a24y12,
(3) a13y34 = (x12y23 − y12y23x34

y34
)x34,

(4) a13x34 = ε(x12y23 − y12y23x34
y34

)y34.

By (a), (b) and Eq. (3.9), we have a24 = 0. By (c), (d) and Eq. (3.9), we obtain
ε = x2

34
y2
34

.
If c = 0, by Lemmas 3.2(2) and 3.3(1), we have

X1 =



0 x12 x13 x14 x15

0 0 x23 x24 x25

0 0 0 x34 x35

0 0 0 0 0
0 0 0 0 0


, X2 =



0 y12 y13 y14 y15

0 0 y23 y24 y25

0 0 0 y34 y35

0 0 0 0 0
0 0 0 0 0


,

(y12x23 − x12y23)(x34y35 − x35y34) �= 0

(3.10)

and X4 =




0 0 a13 a14 a15
0 0 0 a24 a25
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


. From [X1, X4] = εZ2, [X2, X4] = Z1, we obtain the

following equations


x12a24 − a13x34 = ε(y12(x23y34 − y23x34) − (x12y23 − y12x23)y34),
x12a25 − a13x35 = ε(y12(x23y35 − y23x35) − (x12y23 − y12x23)y35),
y12a24 − a13y34 = x12(x23y34 − y23x34) − (x12y23 − y12x23)x34,

y12a25 − a13y35 = x12(x23y35 − y23x35) − (x12y23 − y12x23)x35.
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By Eq. (3.10), we verify computationally that {X1, X2, X3, X4, Z1, Z2} ⊆ n5(K) is
a linearly independent set if there exists α ∈ K such that α2 − ε = 0.

(2) Analysis similar to that in (1) with c = 0 shows that {X1, X2, X3,

X4, Z1, Z2} ⊆ n5(K) is linearly independent if there exists a ∈ K such that
a2 − ε = 0. It completes the proof.

Proof of Theorem 3.1. Since g is a Lie algebra isomorphic to L6,9, we have

(1) n ≥ 5, by Eq. (3.4) and
(2) there exists a basis {X1, X2, X3, X4, Z1, Z2} of g such that [X1, X2] =

X3, [X1, X3] = Z1, [X2, X3] = Z2 and [Xi, X4] = [Zj , X4] = 0 for i = 1, 2, 3
and j = 1, 2.

By Proposition 3.2, we obtain n ≥ 6.

Proof of Theorem 3.2. Since g is a Lie algebra isomorphic to L6,24(ε), we have

(1) n ≥ 5, by Eq. (3.4) and
(1) there exists a basis {X1, X2, X3, X4, Z1, Z2} of g such that [X1, X2] =

X3, [X1, X3] = Z1, [X2, X3] = Z2 and [X1, X4] = εZ2, [X2, X4] = Z1 and
[X4, Zj ] = 0 for j = 1, 2.

If n = 5, by Proposition 3.3, there exists a ∈ K such that a2 − ε = 0. It completes
the proof.

By Theorems 3.1 and 3.2, we easily obtain the following corollaries.

Corollary 3.1. µnil(L6,9) ≥ 6.

Corollary 3.2. Let ε ∈ K then

µnil(L6,24(ε)) ≥
{

5 if ∃α ∈ K : ε = α2,

6 if ε �= α2 for all α ∈ K.
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