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ON THE SYMPLECTIC CURVATURE FLOW FOR LOCALLY

HOMOGENEOUS MANIFOLDS

JORGE LAURET AND CYNTHIA WILL

Dedicated to the memory of our dear friend Sergio Console.

Abstract. Recently, J. Streets and G. Tian introduced a natural way to evolve an
almost-Kähler manifold called the symplectic curvature flow, in which the metric, the
symplectic structure and the almost-complex structure are all evolving. We study in
this paper different aspects of the flow on locally homogeneous manifolds, including
long-time existence, solitons, regularity and convergence. We develop in detail two large
classes of Lie groups, which are relatively simple from a structural point of view but
yet geometrically rich and exotic: solvable Lie groups with a codimension one abelian
normal subgroup and a construction attached to each left symmetric algebra. As an
application, we exhibit a soliton structure on most of symplectic surfaces which are Lie
groups. A family of ancient solutions which develop a finite time singularity was found;
neither their Chern scalar nor their scalar curvature are monotone along the flow and
they converge in the pointed sense to a (non-Kähler) shrinking soliton solution on the
same Lie group.

1. Introduction

There is a natural way to evolve an almost-Kähler manifold (M,ω, g, J) which has
recently been introduced by J. Streets and G. Tian in [ST2] and is called the symplectic
curvature flow (or SCF for short):

(1)





∂
∂tω = −2p,

∂
∂tg = −2p1,1(·, J ·) − 2Rc2,0+0,2,

where p is the Chern-Ricci form of (ω, g) and Rc is the Ricci tensor of g. The equation
for the symplectic form is in direct analogy with Kähler-Ricci flow, the term −2p1,1(·, J ·)
in the equation for the metric guarantees that compatibility is preserved and the term
−2Rc2,0+0,2, being geometrically very natural, yields to the (weak) parabolicity of the
flow. The evolution of J follows from the formula ω = g(J ·, ·) (see (5)). Unlike the anti-
complexified Ricci flow (see [LeW]), where ω remains fixed in time, and unlike some flows
for hermitian manifolds studied in the literature like hermitian curvature flow (see [ST1]),
pluriclosed flow (see [ST3]) or Chern-Ricci flow (see [TW]), in which J is fixed along the
flow, in SCF the three structures are indeed evolving. This certainly makes very difficult
the study of any basic property of the flow. A flow unifying SCF and pluriclosed flow is
studied in [D] and a result on stability of Kähler-Einstein structures is given in [S].

Our aim in this paper is to explore some aspects of the SCF on the class of locally
homogeneous almost-Kähler manifolds, in order to exemplify and provide some evidence
for eventual conjectures in the general case (we refer to [P, L6, F] for further work on
homogeneous SCF). More precisely, we are interested in the SCF evolution of compact
almost-Kähler manifolds (M,ω, g) whose universal cover is a Lie group G and such that
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if π : G −→ M is the covering map, then π∗ω and π∗g are left-invariant (e.g. invariant
structures on solvmanifolds and nilmanifolds). A solution on M is therefore obtained by
pulling down the corresponding solution on the Lie group G, which by diffeomorphism
invariance stays left-invariant and so equation (1) becomes an ODE for a compatible pair
(ω(t), g(t)), where ω(t) is a closed non-degenerate 2-form on the Lie algebra g of G and
g(t) is an inner product on g for all t. Notice that short-time existence (forward and
backward) and uniqueness of the solutions are therefore guaranteed, say on a maximal
interval of time (T−, T+) containing 0, T± ∈ R ∪ {±∞}. We therefore study, more in
general, left-invariant solutions on Lie groups which may or may not admit a cocompact
discrete subgroup.

An almost-Kähler manifold (M,ω, g) will flow self-similarly along the SCF, in the sense
that

(ω(t), g(t)) = (ctϕ(t)
∗ω, ctϕ(t)

∗g), for some ct > 0, ϕ(t) ∈ Diff(M),

if and only if the Chern-Ricci form and Ricci tensor of (ω, g) satisfy




p = cω + LXω,

p1,1(·, J ·) + Rc2,0+0,2 = cg + LXg,
for some c ∈ R, X ∈ χ(M) (complete).

In analogy to the terminology used in Ricci flow theory, we call such structure (ω, g) a SCF-
soliton and we say it is expanding, steady or shrinking, if c < 0, c = 0 or c > 0, respectively.
The following natural open questions were our main motivation: Does every symplectic
Lie group (G,ω) admit a compatible metric g such that (ω, g) is a SCF-soliton? Is a
SCF-soliton structure unique up to equivalence and scaling? Are all nonflat SCF-solitons
on Lie groups steady or expanding? Note that the last question is related to the long-time
existence of SCF solutions.

The following two large classes of Lie groups have been studied in detail. We believe that
some of the results obtained in the present paper might also be useful in other problems
on almost-Kähler geometry, specially those involving Chern-Ricci or Ricci curvature.

1.1. Almost abelian solvmanifolds. In Section 4, we attach to each (2n−1)×(2n−1)-
matrix of the form

A =




a v

0 A1


 , a ≥ 0, v ∈ R

2n−2, A1 ∈ sp(n− 1,R),

a left-invariant almost-Kähler structure on a 2n-dimensional Lie group denoted by GA.
The Lie algebra of GA has an orthonormal basis {e1, . . . , e2n} such that n := 〈e1, . . . , e2n−1〉
is an abelian ideal, ad e2n|n = A, and the fixed symplectic form and almost-complex
structures are respectively given by

ω = e1 ∧ e2n + ω1, J =




0 0 −1

0 J1 0

1 0 0



,

where {ei} denotes the dual basis and ω1 = g(J1·, ·) is the nondegenerate 2-form on
n1 := 〈e2, . . . , e2n−1〉 used to define the Lie algebra sp(n−1,R) above. Any almost-Kähler
Lie group with a codimension-one abelian normal subgroup is equivalent to (GA, ω, g) for
some matrix A as above. The structure is Kähler if and only if v = 0 and A1 ∈ su(n− 1).
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After giving some criteria for the equivalence between these structures, we compute
their Chern-Ricci and Ricci tensors in terms of A, which is actually the only datum that
is varying in this construction. We then study the existence, uniqueness and structure of
solitons among this class, which turn out to be all expanding if nonflat.

Theorem 1.1. Assume that v = 0.

(i) If A is either semisimple or nilpotent, then the symplectic Lie group (GA, ω) admits
a compatible metric g such that the almost-Kähler structure (ω, g) is a SCF-soliton.
The condition for (GA, ω, g) being a SCF-soliton is respectively given by A normal
and

[A, [A,At]] = −
(
|[A,At]|2/|A|2

)
A.

(ii) If A is neither nilpotent nor semisimple, then the Lie group GA does not admit
any (algebraic) SCF-soliton.

(iii) The SCF evolution is equivalent to the ODE for A = A(t) given by

A′ = −1
2((trA)

2 + trS(A)2)A+ 1
2 [A, [A,A

t]]− trA
2 [A,At].

(iv) Any solution (ω(t), g(t) is immortal (i.e. T+ = ∞) in this class.
(v) The quantity |[A,At]|2/|A|4 is strictly decreasing along the flow, unless the solution

is a SCF-soliton.
(vi) Any accumulation point A+ of the set {A(t)/|A(t)| : t ∈ [0,∞)} gives rise to a

limit soliton (GA+ , ω, g). If A0 is not nilpotent, then A+ is a normal matrix having
the same eigenvalues as A0 up to scaling.

Exactly five 4-dimensional symplectic Lie groups admit a lattice, giving rise to the
compact symplectic surfaces which are solvmanifolds. They all admit a SCF-soliton, and
since they all have a codimension one abelian normal subgroup, we use the results obtained
for almost abelian solvmanifolds described above to study their SCF evolution in Section
5.1, including the convergence behavior.

1.2. LSA construction. In order to search for SCF-solitons beyond the solvable case,
we considered in Section 6 a construction attaching to each n-dimensional left-symmetric
algebra (LSA for short; see (40)) an almost-Kähler structure on a 2n-dimensional Lie
group (see [By, AS, O] for further information on this construction).

We fix an euclidean symplectic vector space (g⊕ g, ω, g, J), where g is an inner product
making the two copies of the vector space g orthogonal and J =

[
0 I
−I 0

]
. Now for each

LSA structure on g, define the Lie algebra g⋉θ g with Lie bracket

[(X,Y ), (Z,W )] := ([X,Z]g, θ(X)W − θ(Z)Y ) ,

where [X,Y ]g := X ·Y −Y ·X is the corresponding Lie bracket on g and θ(X) := −L(X)t.
Here L(X) denotes LSA left-multiplication by X ∈ g. The almost-Kähler Lie algebra
(g ⋉θ g, ω, g) is therefore completely determined by the LSA structure. We first prove
some criteria on the equivalence between these structures and then compute their Chern-
Ricci and Ricci curvature in terms of θ, which is the only datum varying here.

The SCF on this class is equivalent to the ODE for θ = θ(t) given by

θ′(X) = θ((P1 + S)X) + [θ(X), P t
1 − S], ∀X ∈ g,

where P =
[
P1 0
0 P t

1

]
and Ricac =

[
S 0
0 −S

]
are respectively the Chern-Ricci operator (i.e.

p = ω(P ·, ·)) and the anti-J-invariant part of the Ricci operator Ric (i.e. Ricac =
1
2(Ric+J Ric J)).
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Theorem 1.2. Let G denote the 8-dimensional Lie group with Lie algebra defined as above
for the Lie algebra g = u(2) with LSA structure coming from the identification g = H with
the quaternion numbers.

(i) There is a family of ancient solutions on G (i.e. T− = −∞). Each one of them
develops a finite time singularity T+ <∞ (see Example 6.15).

(ii) The Chern scalar curvature tr p of any of the solutions in part (i) is always positive
and, as t→ T+, tr p→ ∞ after attaining a global minimum. The scalar curvature
R is always negative, attains a global maximum and R → −∞, as t → T+. In
particular, neither tr p nor R are monotone along the flow.

(iii) G admits a non-Kähler shrinking SCF-soliton (ω, g) (see Example 6.11) with Chern-
Ricci form, Ricci operator and scalar curvature given respectively by

p = 20ω, Ric = Diag(−100, 92, 92, 92,−244,−52,−52,−52), R = −224.

(iv) Each ancient solution from part (i) converges in the pointed sense to the shrinking
SCF-soliton structure in (iii), and backward, they converge to expanding SCF-
solitons on certain solvable Lie groups.

Remark 1.3. Along the way, we found negative Ricci curvature metrics on the Lie group
G in the above theorem which are new in the literature as far as we know (compare with
[NN]).

1.3. Homogeneous symplectic surfaces. According to the classification obtained in
[O], there are fourteen 4-dimensional Lie groups admitting a left-invariant symplectic
structure (see Table 1). They are all solvable, some of them are actually continuous
families of groups and many of them admit more than one symplectic structure. We have
found in Section 5 a (unique) SCF-soliton on each of these symplectic Lie groups, with the
exception of only four cases. For two of them we were able to prove the non-existence of
(algebraic) solitons. The SCF-soliton almost-Kähler structures and their respective Chern-
Ricci and Ricci operators are given in Table 2. They are all expanding solitons if nonflat
and are static (i.e. p = cω and Rcac = 0) if and only if they are Kähler-Einstein. The last
equivalence was proved for any compact static almost-Kähler structure of dimension 4 in
[ST2, Corollary 9.5].

Acknowledgements. We are very grateful to an anonymous referee for helpful observations.

2. Preliminaries and notation

Let g be a real vector space. The following notation will be used for g the tangent space
TpM at a point of a differentiable manifold, as well as for the underlying vector space of
a Lie algebra. We consider an almost-hermitian structure (ω, g, J) on g, that is, a 2-form
ω and an inner product g such that if

ω = g(J ·, ·),
then J2 = −I. The above formula is therefore equivalent to g = ω(·, J ·).

The transposes of a linear map A : g −→ g with respect to g and ω are respectively
given by

g(A·, ·) = g(·, At·), ω(A·, ·) = ω(·, Atω ·), Atω = −JAtJ,

and if p : g × g −→ R is a bilinear map, then their complexified (or J-invariant) and
anti-complexified (or anti-J-invariant) components are defined by

A = Ac +Aac, Ac := 1
2(A− JAJ), Aac := 1

2 (A+ JAJ),

and p = pc + pac, where

pc = p1,1 := 1
2(p(·, ·) + p(J ·, J ·)), pac = p2,0+0,2 := 1

2(p(·, ·) − p(J ·, J ·)).
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Let (M,ω, g, J) be a 2n-dimensional almost-Kähler manifold (i.e. dω = 0). The Chern
connection is the unique connection ∇ on M which is hermitian (i.e. ∇ω = 0, ∇g = 0,
∇J = 0) and its torsion satisfies T 1,1 = 0. In terms of the Levi Civita connection D of g,
the Chern connection is given by

∇XY = DXY + 1
2(DXJ)JY ;

in particular, ∇ = D if and only if (M,ω, g, J) is Kähler. The Chern-Ricci form p = p(ω, g)
is defined by

p(X,Y ) =

n∑

i=1

g(R(X,Y )ei, Jei) =
√
−1

n∑

i=1

g(R(X,Y )Zi, Zi),

where R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ] is the curvature tensor of ∇ and

{e1, . . . , en, Je1, . . . , Jen}
is a local orthonormal frame for g with corresponding local unitary frame

Zi := (ei −
√
−1Jei)/

√
2, Zi := (ei +

√
−1Jei)/

√
2.

The Chern-Ricci form is always closed, locally exact and in the Kähler case p equals the
Ricci form Rc(J ·, ·). By Chern-Weil theory, its cohomology class equals [p] = 2πc1(M,J),
where c1(M,J) ∈ H2(M,R) is the first Chern class.

The Chern-Ricci form p of a left-invariant almost-hermitian structure (ω, g, J) on a Lie
group with Lie algebra g is given by

(2) p(X,Y ) = −1
2 tr J ad [X,Y ] + 1

2 tr ad J [X,Y ], ∀X,Y ∈ g.

(See [V, Proposition 4.1] or [P]). Remarkably, p only depends on J . Since p is exact, there
exists a unique Z ∈ g such that

p(X,Y ) = g([X,Y ], JZ) = ω(Z, [X,Y ]),

and the Chern-Ricci operator P defined by p = ω(P ·, ·) equals
(3) P = adZ + (adZ)tω .

(See [F, (2.3)]).

3. Symplectic curvature flow

Let (M,ω, g, J) be an almost-Kähler manifold of dimension 2n, i.e. an almost-hermitian
manifold such that dω = 0. With Kähler-Ricci flow as a motivation, it is natural to evolve
the symplectic structure ω in the direction of the Chern-Ricci form p, but since in general
p 6= pc, one is forced to flow the metric g as well in order to preserve compatibility. The
following evolution equation for a one-parameter family (ω(t), g(t)) of almost-Kähler struc-
tures has recently been introduced by Streets-Tian in [ST2] and is called the symplectic
curvature flow (or SCF for short):

(4)





∂
∂tω = −2p,

∂
∂tg = −2pc(·, J ·) − 2Rcac,

where p is the Chern-Ricci form of (ω, g) and Rc is the Ricci tensor of g. SCF-solutions
preserve the compatibility and the almost-Kähler condition (recall that dp = 0). The
almost-complex structure evolves as follows:

(5)
∂

∂t
J = −2JP ac − 2J Ricac = −2JP ac + [Ric, J ],
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where Ric denotes the Ricci operator of the metric g (i.e. Rc = g(Ric ·, ·)) and P the
Chern-Ricci operator (i.e. p = ω(P ·, ·)). We note that if J0 is integrable, i.e. (ω0, g0)
Kähler, then J = J0, Rc

ac = 0 and pc(·, J ·) = Rc for all t and so SCF becomes precisely
the Kähler-Ricci flow for g(t).

3.1. SCF on Lie groups. Our aim in this paper is to study the SCF evolution of compact
almost-Kähler manifolds (M,ω, g) whose universal cover is a Lie group G and such that if
π : G −→M is the covering map, then π∗ω and π∗g are left-invariant. This is in particular
the case of invariant structures on a quotient M = G/Γ, where Γ is a cocompact discrete
subgroup of G (e.g. solvmanifolds and nilmanifolds). A solution onM is therefore obtained
by pulling down the corresponding solution on the Lie group G, which by diffeomorphism
invariance stays left-invariant and so it can be studied on the Lie algebra or infinitesimal
level as an ODE.

Any almost-Kähler structure on a Lie group with Lie algebra g which is left-invariant
is determined by a pair (ω, g), where ω is a non-degenerate 2-form on the Lie algebra g

that is closed, i.e.

(6) ω([X,Y ], Z) + ω([Y,Z],X) + ω([Z,X], Y ) = 0, ∀X,Y,Z ∈ g,

and g is an inner product on the underlying vector space g compatible with ω (i.e. if
ω = g(J ·, ·), then J2 = −I). Two almost-Kähler structures (g1, ω1, g1) and (g2, ω2, g2) are
called equivalent if there is a Lie algebra isomorphism ϕ : g1 −→ g2 such that ω1 = ϕ∗ω2

and g1 = ϕ∗g2.
Since all the tensors involved are determined by their value at the identity of the group,

the SCF equation (4) on M , or on the covering Lie group G, becomes an ODE system of
the form

(7)





d
dtω = −2p,

d
dtg = −2pc(·, J ·) − 2Rcac,

where p = p(ω, g) ∈ Λ2g∗ and Rcac = Rcac(ω, g) ∈ S2g∗. Thus short-time existence
(forward and backward) and uniqueness of the solutions are always guaranteed.

Given a left-invariant almost-hermitian structure (ω0, g0) on a simply connected Lie
group G, one has that

(8) (ω, g) = h∗(ω0, g0) := (ω0(h·, h·), g0(h·, h·)) ,
is also almost-hermitian for any h ∈ GL(g), and conversely, any almost-hermitian structure
on g is of this form. Moreover, the corresponding Lie group isomorphism

h̃ : (G,ω, g) −→ (Gµ, ω0, g0), where µ = h · [·, ·] := h[h−1·, h−1·],
is an equivalence of almost-hermitian manifolds. Here [·, ·] denotes the Lie bracket of
the Lie algebra g and so µ defines a new Lie algebra (isomorphic to (g, [·, ·])) with same
underlying vector space g. We denote by Gµ the simply connected Lie group with Lie
algebra (g, µ).

In this way, if we fix a compatible pair (ω0, g0) on a vector space g of dimension 2n, then
each left-invariant almost-hermitian structure on each 2n-dimensional simply connected
Lie group can be identified with a point in the variety L of 2n-dimensional Lie algebras
defined by

L := {µ ∈ Λ2g∗ ⊗ g : µ satisfies the Jacobi condition}.
We denote by Sp(ω0) the subgroup isomorphic to Sp(n,R) of GL(g) (≃ GL2n(R)) given
by those elements preserving ω0 (i.e. ϕ∗ω0 = ω0) and by sp(ω0) its Lie algebra, which is
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isomorphic to sp(n,R) and given by the maps A ∈ gl(g) such that AtJ0 + J0A = 0. If

U(ω0, g0) := Sp(ω0) ∩O(g0),

where O(g0) denotes the subgroup of orthogonal maps (i.e. ϕ∗g0 = g0), then U(ω0, g0) is
isomorphic to the unitary group U(n). Recall that the map h in (8) is unique only up to
left-multiplication by elements in U(ω0, g0).

Note that GL(g)-orbits in L are precisely Lie isomorphism classes. We are interested
in this paper in the algebraic subset L(ω0) ⊂ L of those Lie brackets for which the fixed
2-form ω0 is closed (see (6)), i.e. on those points which are almost-Kähler.

Recall that two symplectic Lie algebras (g1, ω1) and (g2, ω2) are said to be isomorphic
if ω1 = ϕ∗ω2 for some Lie algebra isomorphism ϕ : g1 −→ g2. Therefore, from the varying
Lie brackets viewpoint, Sp(ω0)-orbits in L(ω0) are precisely the isomorphism classes of
symplectic Lie algebras

{(g, µ, ω0) : µ ∈ L(ω0)} .
On the other hand, by (8), U(ω0, g0)-orbits in L(ω0) are the equivalence classes of the
almost-Kähler structures

{(g, µ, ω0, g0) : µ ∈ L(ω0)} .
It also follows that, given µ ∈ L(ω0), the orbit Sp(ω0) · µ also parameterizes the set of all
left-invariant metrics on Gµ which are compatible with ω0.

Example 3.1. If ω0 = e1 ∧ e2n + · · · + en ∧ en+1 and the only nonzero bracket of µ0 ∈ L
is µ0(e1, e2) = e3, then µ0 ∈ L(ω0) and is isomorphic to h3 ⊕ R

2n−3 as a Lie algebra,
where h3 denotes the 3-dimensional Heisenberg algebra. As an almost-Kähler structure,
(Gµ0 , ω0, g0) is equivalent to (H3 × R) × R

2n−4, where H3 × R is the universal cover of
the Kodaria-Thurston manifold. It is easy to prove that L(ω0) ∩GL(g) · µ0 = Sp(ω0) · µ0
(i.e. (g, µ0) admits a unique symplectic structure up to isomorphism). Moreover, it is
proved in the first example in [L2, Section 3] that Sp(ω0) · µ0 = U(ω0, g0) · µ0, from which
follows that the Lie group (H3 ×R)×R

2n−4 admits a unique left-invariant almost-Kähler
structure up to equivalence for any n ≥ 2. Consequently, the solution starting at this
structure will be self-similar for any curvature flow on almost-Kähler manifolds invariant
by diffeomorphisms.

3.2. Bracket flow. In view of the parametrization of left-invariant almost-Kähler struc-
tures as points in the variety L(ω0) ⊂ L described in the above section, it is natural to
study the dynamical system determined by SCF on L(ω0).

Consider for a family µ(t) ∈ Λ2g∗⊗g of brackets the following evolution equation, called
the bracket flow:

(9)
d

dt
µ = δµ(Pµ +Ricacµ ), µ(0) = [·, ·],

where Pµ,Ric
ac
µ ∈ End(g) are respectively the Chern-Ricci and Ricci operators of the

almost-hermitian manifold (Gµ, ω0, g0) and δµ : End(g) −→ Λ2g∗ ⊗ g is defined by

(10) δµ(A) := µ(A·, ·) + µ(·, A·) −Aµ(·, ·), ∀A ∈ End(g).

The bracket flow leaves the variety L(ω0) invariant (i.e. (Gµ(t), ω0, g0) is almost-Kähler
for all t) and has been proved in [L6] to be equivalent to the SCF.

Theorem 3.2. [L6, Theorem 5.1] For a given simply connected almost-Kähler Lie group
(G,ω0, g0) with Lie algebra g, consider the families of almost-Kähler Lie groups

(G,ω(t), g(t)), (Gµ(t), ω0, g0),
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where (ω(t), g(t)) is the solution to the SCF-flow starting at (ω0, g0) and µ(t) is the bracket
flow solution starting at the Lie bracket [·, ·] of g. Then there exist Lie group isomorphisms
h(t) : G −→ Gµ(t) (i.e. µ(t) = h(t) · [·, ·]) such that

(ω(t), g(t)) = h(t)∗(ω0, g0), ∀t.
Moreover, the isomorphisms h(t) can be chosen as the solution to the following systems of
ODE’s:

(i) d
dth = −h(P +Ricac) = −h(P ac +Ric), h(0) = I.

(ii) d
dth = −(Pµ +Ricacµ )h = −(P ac

µ +Ricµ)h, h(0) = I.

The maximal interval of time existence (T−, T+) is therefore the same for both flows,
as it is the behavior of any kind of curvature and so regularity issues can be addressed on
the bracket flow.

The above theorem has also the following application on convergence, which follows
from [L4, Corollary 6.20] (see [L6, Section 5.1] for further information on convergence).

Corollary 3.3. Let µ(t) be a bracket flow solution and assume that ckµ(tk) → λ, for
some nonzero ck ∈ R and a subsequence of times tk → T±. Then, after possibly passing to

a subsequence, the almost-Kähler manifolds
(
G, 1

c2
k

ω(tk),
1
c2
k

g(tk)
)
converge in the pointed

(or Cheeger-Gromov) sense to (Gλ, ω0, g0), as k → ∞.

We note that the limiting Lie group Gλ in the above corollary might be non-isomorphic,
and even non-homeomorphic, to G (see Examples 4.19 and 6.15).

3.3. Self-similar solutions. In the general case, an almost-Kähler manifold (M,ω, g)
will flow self-similarly along the SCF, in the sense that

(ω(t), g(t)) = (c(t)ϕ(t)∗ω, c(t)ϕ(t)∗g),

for some c(t) > 0 and ϕ(t) ∈ Diff(M), if and only if




p(ω, g) = cω + LXω,

pc(ω, g)(·, J ·) + Rcac(ω, g) = cg + LXg,

for some c ∈ R and a complete vector field X on M . In analogy to the terminology used
in Ricci flow theory, we call such (ω, g) a soliton almost-Kähler structure and we say it is
expanding, steady or shrinking, if c < 0, c = 0 or c > 0, respectively. On Lie groups, it
is natural to consider a SCF-flow solution to be self-similar if the diffeomorphisms ϕ(t)
above are actually Lie group automorphisms (this is actually a stronger condition, see
[L6, Example 9.1]). It is proved in [L6, Section 7] that this is equivalent to the following
condition: we say that an almost-Kähler structure (ω, g) on a Lie algebra g is a SCF-soliton
if for some c ∈ R and D ∈ Der(g),

(11)





P = cI + 1
2(D − JDtJ),

P c +Ricac = cI + 1
2 (D +Dt).

The following condition, suggested by the relationship between the SCF and the bracket
flow given in Theorem 3.2,

(12) P +Ricac = cI +D,

is sufficient to get a SCF-soliton (see [L6, Proposition 7.4]) and an almost-Kähler structure
for which this holds will be called an algebraic SCF-soliton, in analogy to the case of
homogeneous Ricci solitons (see [LL1, Section 3] or [J2]). The bracket flow solution starting
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at an algebraic SCF-soliton is simply given by µ(t) = (−2ct + 1)−1/2[·, ·] and hence they
are precisely the fixed points and only possible limits, backward and forward, of any
normalized bracket flow solution c(t)µ(t). In particular, if in Corollary 3.3 one actually
has that ctµ(t) → λ, as t→ T±, then the pointed limit (Gλ, ω0, g0) is an algebraic soliton.
The absence of certain chaotic behavior for the bracket flow would imply that any SCF-
soliton is actually algebriac (see [L6, Section 7.1]).

If an almost-Kähler structure (ω, g) satisfies that

(13)





P = c1I +D1,

Ricac = c2I +D2,

for some ci ∈ R, Di ∈ Der(g), then (ω, g) is an algebraic SCF-soliton with c = c1 + c2 and
D = D1 +D2. We call these structures strongly algebraic SCF-solitons. So far, all known
examples of SCF-solitons are of this kind.

Lemma 3.4. Let (G,ω, g) be a unimodular almost-hermitian Lie group such that Ricac =
cI +D for some c ∈ R and D ∈ Der(g). Then,

cR = tr (Ricac)2,

where R = trRic is the scalar curvature of (G, g).

Proof. Since Ricac = cI + D anti-commute with J , we obtain that Dac = cI + D and
Dc = −cI. This implies that

(14) trRicD = trRicDc + trRicDac = −c tr Ric + tr (Ricac)2,

and so the lemma follows from the fact that trRicD = 0 when g is unimodular (see e.g.
[LL2, Remarks 2.4, 2.7]). �

It is well known that if g is unimodular and ω is closed, then g must be solvable (see
[LM]), and any left-invariant metric g on a solvable Lie group has R ≤ 0, with equality
R = 0 holding if and only if g is flat.

Corollary 3.5. Any unimodular strongly algebraic SCF-soliton (G,ω, g) as in (13) with
g nonflat has c2 ≤ 0, and c2 = 0 if and only if Ricac = 0.

Lemma 3.4 is no longer true if g is not unimodular, counterexamples can be easily found
among the classes of structures studied in the next sections (see e.g. the soliton on r2 in
Table 2). Anyway, formula (14) can always be used in the non-unimodular case.

4. Almost abelian solvmanifolds

We study in this section the SCF and its solitons in a class of solvable Lie algebras
which is relatively simple from the algebraic point of view but yet geometrically rich and
exotic.

Let (G,ω, g) be an almost-Kähler Lie group with Lie algebra g and assume that g has a
codimension-one abelian ideal n. These Lie algebras are sometimes called almost-abelian
in the literature (see e.g. [Bo, CM]). It is easy to see that there exists an orthonormal
basis {e1, . . . , e2n} such that

n = 〈e1, . . . , e2n−1〉, ω = e1 ∧ e2n + ω1, J =




0 0 −1

0 J1 0

1 0 0



,
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where {ei} denotes the dual basis, ω1 is a nondegenerate 2-form on n1 := 〈e2, . . . , e2n−1〉
and ω1 = g(J1·, ·). We fix in what follows the orthonormal basis {ei} and the 2-form ω,
thus obtaining a fixed euclidean symplectic vector space (g, ω, g) which can be identified
with R

2n.
Recall from Section 3.1 the notation Sp(ω), sp(ω) and U(ω, g). We also use this notation

for the 2-form ω1 above and obtain Sp(ω1), sp(ω1) and U(ω1, g1), where g1 = g|n1 , which
are respectively isomorphic to Sp(n− 1,R), sp(n− 1,R) and U(n − 1).

Each of these Lie algebras is therefore determined by the (2n − 1)× (2n− 1)-matrix

A := ad e2n|n,
and so it will be denoted by µA. Thus µA is always solvable, n is always an abelian ideal
(which is the nilradical of µA if and only if A is not nilpotent) and µA is nilpotent if and
only if A is a nilpotent matrix. It is easy to check that µA is isomorphic to µB if and only
if A and B are conjugate up to a nonzero scaling.

Proposition 4.1. Any almost-Kähler Lie algebra with a codimension-one abelian ideal is
equivalent to

(g, µA, ω, g), A =




a vt

0 A1


 ,

for some a ≥ 0, v ∈ R
2n−2 and A1 ∈ sp(ω1) ≃ sp(n− 1,R) (i.e. At

1J1 + J1A1 = 0).

Proof. By using that the only nonzero Lie brackets are the ones involving e2n, it is easy
to see that ω is closed (see (6)) if and only if

ω(Aei, ej)− ω(Aej , ei) = 0, ∀i, j 6= 2n,

which is equivalent to Ae1 ∈ Re1 and ω1(A1·, ·) + ω1(·, A1·) = 0. Thus A1 ∈ sp(ω1) and
Ae1 = ae1 for some a ∈ R, which can be assumed nonnegative by changing to the basis
{e1, . . . ,−e2n} if necessary. �

Remark 4.2. It can be assumed that J1 =

[
0 −I
I 0

]
, in which case

sp(ω1) =

{[
B C
D −Bt

]
: Ct = C, Dt = D

}
.

The almost-Kähler Lie algebra (g, µA, ω, g) in Proposition 4.1 determines a left-invariant
almost-Kähler structure on the corresponding simply connected Lie group GµA

, which will
be denoted by (GµA

, ω, g).
Let µB be another Lie algebra as above, where

B =




b wt

0 B1


 , b ≥ 0, w ∈ R

2n−2, B1 ∈ sp(ω1).

Proposition 4.3. Let A, B be two matrices as above and assume that neither is nilpotent.

(i) The symplectic Lie algebras (g, µA, ω) and (g, µB , ω) are isomorphic if and only if
there exists α 6= 0, ϕ1 ∈ Sp(ω1) and u ∈ n1 such that

b = αa, B1 = αϕ1A1ϕ
−1
1 , w = α2(ϕt

1)
−1

(
v + (At

1 − aI)J1ϕ
−1
1 u

)
.
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(ii) The almost-Kähler structures (GµA
, ω, g) and (GµB

, ω, g) are equivalent if and only
if b = a and there exists ϕ1 ∈ U(ω1, g1) ≃ U(n − 1) such that

B1 = ϕ1A1ϕ
−1
1 (B1 = ±ϕ1A1ϕ

−1
1 if a = b = 0), w = ϕ1v.

Proof. To prove part (i), we first recall from Section 3.1 that these symplectic Lie algebras
are isomorphic if and only if µB = ϕ · µA for some ϕ ∈ Sp(ω). It is easy to see by using
that ϕ leaves n invariant (notice that n is the nilradical of both Lie algebras as A and B
are not nilpotent), that such a ϕ must have the form

ϕ =




α α(J1ϕ
−1
1 u)t β

0 ϕ1 u

0 0 α−1



, for some α, β ∈ R, u ∈ R

2n−2, ϕ1 ∈ Sp(ω1).

Condition µB = ϕ · µA is now equivalent to B = αϕ|nA(ϕ|n)−1, from which part (i) easily
follows.

We now prove part (ii). Since the structures are equivalent if and only if there exists
ϕ ∈ U(ω, g) such that µB = ϕ · µA, we obtain from part (i) that ϕ has the form above
with β = 0, u = 0, α = ±1 and ϕ1 ∈ U(ω1, g1). Thus a = b since a, b ≥ 0 and α = −1 is
only allowed when a = b = 0, concluding the proof. �

Remark 4.4. It follows that if

Aα :=




αa α2v

0 αA1


 , α > 0,

then (GµAα
, ω, g) is equivalent to the almost-Kähler Lie group (GµA

, ω, gα), where gα is

the inner product defined by gα(e1, e1) = α2, gα(e2n, e2n) = α−2, gα(e1, e2n) = 0 and
gα(ei, ej) = δij for all 2 ≤ i, j ≤ 2n− 1. In the case v = 0, µAα = αµA and (GµAα

, ω, g) is

also equivalent to the almost-Kähler Lie group (GµA
, α−2ω,α−2gα).

Example 4.5. If n = 3 and A, B are defined by taking a = b = 0, v = w = 0 and

(15) A1 =

[
0 0
0 0

0 0
0 1

0 0
0 0

0 0
0 0

]
, B1 =

[
0 0
0 0

0 0
0 −1

0 0
0 0

0 0
0 0

]
,

then the Lie algebras µA and µB are isomorphic but the symplectic Lie algebras (g, µA, ω)
and (g, µB , ω) are not. Indeed, A1 and B1 are GL4(R)-conjugate but they belong to
different Sp(2,R)-conjugacy classes.

It follows from [A, (8)] that the Ricci operator of (GµA
, g) is given by

(16)

Ric =




1
2 [A,A

t]− aS(A) 0

0 − trS(A)2




=




−a2 + 1
2 |v|2 (12A1v − av)t 0

1
2A1v − av 1

2 [A1, A
t
1]− 1

2vv
t − aS(A1) 0

0 0 −a2 − 1
2 |v|2 − trS(A1)

2



,
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and a straightforward computation shows that its anti-J-invariant part is
(17)

Ricac =




1
2

(
|v|2 + trS(A1)

2
) (

1
4A1v − a

2v
)t

0

1
4A1v − a

2v
1
2 [A1, A

t
1]− aS(A1)− 1

2(vv
t)ac J1

(
1
4A1v − a

2v
)

0
(
J1

(
1
4A1v − a

2v
))t −1

2

(
|v|2 + trS(A1)

2
)



.

The scalar curvature of (GµA
, g) is therefore given by

R = −a2 − trS(A)2 = −2a2 − 1
2 |v|

2 − trS(A1)
2.

By using (2), it is straightforward to obtain that the Chern-Ricci operator of (GµA
, ω, g)

is given by

(18) P =




−a2 −
(
1
2A

t
1v + av

)t
0

0 0 −J1
(
1
2A

t
1v + av

)

0 0 −a2



,

and thus the Chern scalar curvature is trP = −2a2.
We note that the following conditions are equivalent:

• (GµA
, ω, g) is Kähler.

• Ricac = 0.
• v = 0 and At

1 = −A1 (i.e. A1 ∈ su(n− 1)).
• R = trP .
• (GµA

, ω, g) is either equivalent as an almost-Kähler manifold (not as a Lie group) to
RH2×R

2n−2, where RH2 denotes the 2-dimensional real hyperbolic space (a > 0)
or to the euclidean space R

2n (a = 0).

The equivalence between the first and third conditions above also follows from Propo-
sition 4.1 and [LR, Lemma 6.1].

4.1. SCF-solitons. We now explore necessary and sufficient conditions on the matrix A
to obtain a SCF-soliton (GµA

, ω, g).

Theorem 4.6. Let (GµA
, ω, g) denote the almost-Kähler structure defined as in Proposi-

tion 4.1.

(i) If A is not nilpotent, then µA is an algebraic SCF-soliton if and only if v = 0 and
A1 is normal, if and only if A is normal.

(ii) If v = 0, then µA is an algebraic SCF-soliton if and only if either A is normal or
A is nilpotent (i.e. a = 0 and A1 nilpotent) and

(19) [A1, [A1, A
t
1]] = −|[A1, A

t
1]|2

|A1|2
A1.

Remark 4.7. It is easy to check that all the (non-flat) SCF-solitons obtained in this
theorem are strongly algebraic and expanding. Indeed, if A is normal then c1 = −a2
c2 = −1

2 trS(A1)
2 and so c = −(a2 + 1

2 trS(A1)
2), and in the case when A is nilpotent,

P = 0 and Ricac = c2I +D2 for c2 = c = −1
2

(
|[A1,At

1]|2
|A1|2 + trS(A1)

2
)
.

Proof. We first prove part (i). Since a linear map D : g −→ g is a derivation of µA if and
only if its image is contained in n and [D|n, A] = 0 (recall that n is the nilradical of g when
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A is not nilpotent), we obtain from (17) and (18) that P +Ricac −cI is a derivation of µA
for some c ∈ R if and only if c = −a2 − 1

2

(
|v|2 + trS(A1)

2
)
and

A1v =2av,(20)

(At
1)

2v +A1A
t
1v − 2aAt

1v =
(
3
2 |v|

2 + trS(A1)
2 + 2a2

)
v,(21)

[A1, [A1, A
t
1]]− a[A1, A

t
1] =[A1, (vv

t)ac].(22)

By multiplying scalarly equation (21) by v and J1v and using (20) we respectively obtain,

|At
1v|2 =

(
3
2 |v|

2 + trS(A1)
2 + 2a2

)
|v|2,(23)

−4a〈At
1v, J1v〉 =0,(24)

If a 6= 0, then 〈At
1v, J1v〉 = 0 by (24) and thus At

1v = 2av + w with w orthogonal to
{v, J1v}. This implies that A1J1v = −2aJ1v − J1w and thus

trS(A1)
2|v|2 ≥ 8a2|v|2 + |w|2 > 4a2|v|2 + |w|2 = |At

1v|2,
which contradicts equation (23) unless v = 0. It follows that A1 is normal by multiplying
scalarly equation (22) by A1.

We therefore assume that a = 0. By using that (vvt)acv = 1
2 |v|2v, (vvt)acJv = −1

2 |v|2Jv
and (vvt)ac vanishes on the orthogonal complement of {v, Jv}, one obtains

(25) tr [A1, A
t
1](vv

t)ac = |At
1v|2.

It now follows from (22), (25) and (23) that

|[A1, A
t
1]− vvt|2 =− 〈A1, [A1, [A1, A

t
1]]〉 + |v|4 − 2〈A1A

t
1, vv

t〉+ 2〈At
1A1, vv

t〉
=− trAt

1[A1, (vv
t)ac] + |v|4 − 2|At

1v|2

=tr [A1, A
t
1](vv

t)ac + |v|4 − 2|At
1v|2

=− |At
1v|2 + |v|4

=−
(
3
2 |v|

2 + trS(A1)
2
)
|v|2 + |v|4

=(−1
2 |v|

2 − trS(A1)
2)|v|2,

and therefore v = 0 and A1 is normal.
To prove part (ii), we can assume that A is nilpotent by part (i). Since v = 0 P +Ricac

has a block diagonal form and so it is easy to check that D := P +Ricac−cI is a derivation
of µA for some c ∈ R if and only if [D, ad e2n] = 〈De2n, e2n〉 ad e2n, which is equivalent to
[A1, [A1, A

t
1]] being a scalar multiple of A1. The multiple can be computed by multiplying

scalarly by At
1, concluding the proof. �

Example 4.8. By defining

Ar :=




1 0

0
rI 0
0 −rI


 ,

we obtain, in any dimension ≥ 4, a one-parameter family of pairwise non-equivalent ex-
panding SCF-solitons (GµAr

, ω, g) (see Theorem 4.6, (i)) with

P =




−1 0 0
0 0 0
0 0 −1


 , Ricac =




−(n− 1)r2 0 0

0
−rI 0
0 rI

0

0 0 −(n− 1)r2


 .

We note that actually the Lie algebras µAr are pairwise non-isomorphic.
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Example 4.9. Consider the almost-Kähler structure (GµA
, ω, g) with a = 0, v = 0 and

A1 =

[
0 0
C 0

]
, Ct = C.

It is straightforward to check that the soliton condition (19) in Theorem 4.6, (ii) holds for

A1 if and only if C3 = trC4

trC2C. We can assume, up to isometry, that C is diagonal (see the
proof of Proposition 4.3). In that case, (GµA

, ω, g) is an algebraic SCF-soliton if and only
if any diagonal entry of C is either equal to 0, 1 or −1 (compare with Example 4.5).

In what follows, we study under what conditions on A the symplectic Lie group (GµA
, ω)

admits a compatible left-invariant metric such that the corresponding almost-Kähler struc-
ture is a SCF-soliton. According to the observation made at the end of Section 3.1 that
Sp(ω) ·µA parameterizes the set of all compatible metrics on (GµA

, ω) and Proposition 4.3,
(i), this is equivalent to the existence of a matrix B satisfying the conditions in the propo-
sition and such that µB is a SCF-soliton. We note that the uniqueness up to equivalence
of the SCF-soliton metric can be analyzed by using Proposition 4.3, (ii).

The following corollary of Theorem 4.6, (i) therefore follows from the fact that a matrix
is semisimple (always understood over the complex numbers) if and only if it is conjugate
to a normal matrix.

Corollary 4.10. If A is neither nilpotent nor semisimple, then the Lie group GµA
does

not admit any algebraic SCF-soliton.

We now give some existence results for SCF-solitons.

Proposition 4.11. If v = 0 and A is semisimple, then the symplectic Lie group (GµA
, ω)

admits a compatible metric g such that the almost-Kähler structure (ω, g) is an algebraic
SCF-soliton. Moreover, any other algebraic SCF-soliton (ω̃, g̃) on GµA

such that the sym-
plectic structure ω̃ is isomorphic to ω is equivalent to (ω, g) up to scaling.

Remark 4.12. The uniqueness statement in the proposition does not imply that there is a
unique algebraic SCF-soliton g on (GµA

, ω) up to equivalence (see Remark 4.4).

Proof. If A is semisimple then A1 is a semisimple element in sp(ω1) and it is well-known
that so there exists ϕ1 ∈ Sp(ω1) such that ϕ1A1ϕ

−1
1 is normal. This implies that ϕ · µA is

a an algebraic SCF-soliton, where ϕ ∈ Sp(ω) is defined by ϕ|{e1,e2n} = id, ϕ|n1 = ϕ1 (see
Theorem 4.6, (ii)).

The uniqueness up to equivalence and scaling follows from the fact that the subset of
normal matrices in the Sp(ω1)-conjugacy class of A1 consists of a single U(ω1, g1)-orbit.
Indeed, if µB = ψ · µA with ψ ∈ Sp(ω) is another algebraic SCF-soliton, then from
Proposition 4.3, (i) we obtain that b = αa and B1 = αψ1A1ψ

−1
1 . In particular B is not

nilpotent and hence w = 0 and B1 is normal by Theorem 4.6, (i). This implies that
there exists h1 ∈ U(ω1, g1) such that B1 = αh1ϕ1A1ϕ

−1
1 h−1

1 and thus µB is equivalent to
αϕ ·µA (see Proposition 4.3, (ii)), which is by Remark 4.4 equivalent to the almost-Kähler
structure (α−2ϕ∗ω,α−2ϕ∗g) on GµA

, concluding the proof. �

The case v = 0 and A nilpotent is more involved, we shall need some results from [J1]
on geometric invariant theory concerning moment maps for real representations of real
reductive Lie groups (see e.g. [L3, Appendix] for more information).

Proposition 4.13. If v = 0 and A is nilpotent, then the symplectic Lie group (GµA
, ω)

admits a compatible metric g such that the almost-Kähler structure (ω, g) is an algebraic
SCF-soliton.
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Proof. It is known that condition (19) holds for a nilpotent matrix A1 if and only if A1

is a critical point of the functional square norm of the moment map F (B) := |m(B)|2.
Here m : gl2n−2(R) −→ sym(2n − 2) is the moment map for the GL2n−2(R)-action by

conjugation on gl2n−2(R) and is given by m(B) = [B,Bt]
|B|2 . It follows from [L1, Theorem

4.2] (see also [J1, Proposition 5.4]) that each nilpotent conjugacy class contains a critical
point whose k × k-Jordan blocks are given by




0 b1

0
. . .
. . . bk−1

0


 , bi =

√
i(k − i).

These special matrices are the minima of F on the conjugacy class. From the general
theory of moment maps we know that critical points of F are unique up to the action of
the maximal compact subgroup O(2n − 2) of GL2n−2(R).

Following the notation of [J1], we take

G = GL2n−2(R), V = gl2n−2(R), H = Sp(n− 1,R), W = sp(n − 1,R).

By [J1, Theorem 3.1] we have that the intersection of the GL2n−2(R)-conjugacy class of
each A1 ∈ sp(n − 1,R) with sp(n − 1,R) is a finite union of Sp(n − 1)-orbits (more than
one in general, see e.g. (15)). Moreover, it follows from [J1, Corollary 3.4] that each of
these Sp(n− 1,R)-conjugacy classes contains a unique up to U(n− 1)-conjugation critical

point Ã1 of the Sp(n − 1,R)-moment map, which coincides with the GL2n−2(R)-moment

map on sp(n − 1) and so Ã1 satisfies condition (19). Since µ
Ã1

= ϕ · µA for a suitable

ϕ ∈ Sp(ω) we conclude that (GµA
, ω) admits an algebraic SCF-soliton by Theorem 4.6,

(ii), as was to be shown. �

4.2. Dimension 4. We now consider the almost abelian case when dim g = 4, i.e. n = 2.
If {e1, . . . , e4} is the canonical basis of g ≡ R

4, then we fix

ω = e1 ∧ e4 + e2 ∧ e3, J =

[ −1
−1

1
1

]
.

Since the 2× 2 matrix A1 is symplectic if and only if trA1 = 0 (see Proposition 4.1), the
matrices A have the form

(26) A =



a b c
0 d e
0 f −d


 , a, b, c, d, e, f ∈ R.

It follows from Theorem 4.6, (i) that if A is not nilpotent, then µA is an algebraic
SCF-soliton if and only if A has one of the following two forms:



a 0 0
0 d e
0 e −d


 ,



a 0 0
0 0 e
0 −e 0


 .

Lemma 4.14. The Lie algebras r4,0 and r4,−1 (see Table 1) do not admit any algebraic
SCF-soliton.

Proof. These Lie algebras are isomorphic to µA, where A is respectively given by


1 0 0
0 0 1
0 0 0


 ,



1 0 0
0 −1 1
0 0 −1


 .



16 JORGE LAURET AND CYNTHIA WILL

The result therefore follows from Corollary 4.10, as these matrices are neither semisimple
nor nilpotent. �

Any other 4-dimensional symplectic Lie algebra isomorphic to a µA does admit an
algebraic SCF-soliton which has been explicitly given in Table 2. This follows from a
direct application of Theorem 4.6 and Propositions 4.11, 4.13, with the only exception of
n4.

4.3. Bracket flow. We study in this section bracket flow evolution of almost-Kähler
structures (GµA

, ω, g) (see Section 3.2). We first introduce the following notation for each
matrix A as in Proposition 4.1:

QA := PµA
+RicacµA

, λA := δµA
(QA) , r := 1

4A1v − a
2v, c := 1

2A
t
1v + av,

α1 := −a2 + 1
2(|v|

2 + trS(A1)
2), α2 := −a2 − 1

2(|v|
2 + trS(A1)

2).

It follows from (17) and (18) that

(27) QA =




α1 rt − ct 0

r Q1 J1(r − c)

0 (J1r)
t α2



,

where Q1 :=
1
2 [A1, A

t
1]− aS(A1)− 1

2(vv
t)ac, and a straightforward computation gives

λA(e1, ei) =a〈r, J1ei〉e1, ∀i 6= 1, 2n,(28)

λA(ei, ej) =− 〈r, J1ei〉(vje1 +A1ej) + 〈r, J1ej〉(vie1 +A1ei), ∀i, j 6= 1, 2n,(29)

λA(e2n, e1) =
(
−1

2(2a
2 + |v|2 + trS(A1)

2)a+ 〈r, v〉
)
e1 +A1r − ar,(30)

λA(e2n, ei) =− 1
2 (2a

2 + |v|2 + trS(A1)
2)Aei + [A,Q]ei,

=
〈
−(|v|2 + trS(A1)

2)v +Q1v + a(r − c)−At
1(r − c), ei

〉
e1(31)

− 1
2 (2a

2 + |v|2 + trS(A1)
2)A1ei + [A1, Q1]ei − vir, ∀i 6= 1, 2n.

In order to get an invariant family under the bracket flow d
dtµA = λA, we need to have

λA = µB for some matrix B of the same form as A in Proposition 4.1 for all t, that is,
λA(n1, n1) = 0 (see (28) and (29)) and λA(e2n, e1) ∈ Re1 (see (30)). Note that conditions
λA(e2n, n) ⊂ n and adλA

e2n|n1 ∈ sp(ω1) automatically hold (see (31)). When v = 0 this
clearly holds and the evolution will be studied below.

We therefore assume that v 6= 0. If r 6= 0 then a = 0 by (28), and since the vectors
−vjei + viej , 2 ≤ i, j ≤ 2n − 1, generate the orthogonal complement v⊥ of v it follows

from (29) that r ∈ RJ1v. Moreover, (29) implies that A1v
⊥ = 0 if r 6= 0, and so µA

is isomorphic to h3 ⊕ R
2n−3 as a Lie algebra and (GµA

, ω, g) is equivalent to its unique
almost-Kähler structure (see Example 3.1).
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On the other hand, if r = 0, then the four equations above give that λ = µB and the
bracket flow equation for A = A(t) would become

a′ =− 1
2(2a

2 + |v|2 + trS(A1)
2)a,(32)

v′ =− (2a2 + 5
4 |v|

2 + trS(A1)
2)v + 1

2A1A
t
1v +

1
2(A

t
1)

2v − aAt
1v,(33)

A′
1 =− 1

2(2a
2 + |v|2 + trS(A1)

2)A1 + [A1, Q1](34)

=− 1
2(2a

2 + |v|2 + trS(A1)
2)A1 +

1
2 [A1, [A1, A

t
1]]

− a
2 [A1, A

t
1]− 1

2 [A1, (vv
t)ac],(35)

Unfortunately, condition r = 0, which is equivalent to A1v = 2av, is not invariant under
this ODE system and hence we need to consider smaller subsets to get invariant families
under the bracket flow in the case v 6= 0.

Proposition 4.15. The family
{
µA : a = 0, A1v = 0, At

1v = 0
}
is invariant under the

bracket flow, which becomes equivalent to

v′ =− (54 |v|
2 + trS(A1)

2)v,

A′
1 =− 1

2(|v|2 + trS(A1)
2)A1 +

1
2 [A1, [A1, A

t
1]].

Remark 4.16. The Chern-Ricci operator P vanishes for any structure in this family as
r = c = 0. Thus the SCF-evolution reduces to the anti-complexified Ricci flow (i.e. the
symplectic structure remains fixed).

Proof. The evolution equations for v and A1 follow from (33) and (35), respectively. By
using them, it is straightforward to compute the evolution of the vectors A1v and At

1v to
show that they remain zero in time, concluding the proof. �

Proposition 4.17. The family {µA : a = 0, A1v = 0, A2
1 = 0} is invariant under the

bracket flow, which becomes equivalent to

v′ =− (54 |v|2 + trS(A1)
2)v + 1

2A1A
t
1v,

A′
1 =− 1

2(|v|
2 + trS(A1)

2)A1 +
1
2 [A1, [A1, A

t
1]]− 1

2 [A1, (vv
t)ac].

Remark 4.18. Each Lie algebra in this family is either 2-step (At
1v = 0) or 3-step nilpotent

(At
1v 6= 0). The Chern-Ricci operator P does not vanish in the 3-step case; however, P is

always a derivation and so the SCF-evolution also reduces to the anti-complexified Ricci
flow as for the above family. It is easy to see that the SCF-solutions given in [L6, Example
9.4] belong to this family.

Proof. The evolution equations for v and A1 follow from (33) and (35), respectively. It is
then easy to compute the evolution of the vector A1v and the matrix A2

1 to conclude that
they remain zero in time, concluding the proof. �

4.4. The case v = 0. The subset {µA : v = 0} is invariant under the bracket flow, in the
sense that any bracket flow solution starting at one of these structures has the form µA(t).
Since for each t the Lie algebra µA(t) is isomorphic to the starting point µA0 , we have that

A(t) = c(t)H(t)A0H(t)−1, for some c(t) > 0, H(t) ∈ GL2n−1(R).

The corresponding spectra (i.e. the unordered set of complex eigenvalues) therefore satisfy

(36) Spec(A(t)) = c(t) Spec(A0), ∀t.
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It follows from (32) and (35) that the bracket flow is equivalent when v = 0 to the ODE
system for a = a(t) and A1 = A1(t) given by

(37)





a′ = −(a2 + 1
2 trS(A1)

2)a,

A′
1 = −(a2 + 1

2 trS(A1)
2)A1 +

1
2 [A1, [A1, A

t
1]]− a

2 [A1, A
t
1].

By using that a = trA and trS(A)2 = a2 + trS(A1)
2, this system can be written as a

single equation for A = A(t) as follows,

(38) A′ = −1
2(a

2 + trS(A)2)A+ 1
2 [A, [A,A

t]]− trA
2 [A,At].

This equation differs from the bracket flow [A, (7)] used by Arroyo to study the Ricci
flow for Riemannian manifolds (GµA

, g) only in the coefficient that multiplies A, which is
− trS(A)2 in that case. One therefore obtains, with identical proofs as in [A], that the
solutions A(t) to (38) and the corresponding SCF-solutions (ω(t), g(t)) on the solvable Lie
group GµA0

satisfy the following properties:

• A(t) and hence the SCF-solution (ω(t), g(t)) are defined for t ∈ (T−,∞) since |A(t)|
is strictly decreasing unless A(t) ≡ A0 (i.e. A

t
0 = −A0). (See [A, Proposition 3.4]).

• The (scaling invariant) quantity

|[A,At]|2
|A|4

is strictly decreasing along the flow, unless µA0 is an algebraic SCF-soliton (see

Theorem 4.6, (ii)). This implies that any limit B = lim
tk→∞

A(tk)
|A(tk)| gives rise to an

algebraic SCF-soliton µB . (See [A, Lemma 3.6 and Corollary 3.7]).

• There is always a subsequence tk → ∞ such that if ck := |A(tk)|−1, then the

almost-Kähler manifolds
(
G, 1

c2
k

ω(tk),
1
c2
k

g(tk)
)
converge in the pointed sense to an

algebraic SCF-soliton (GµB
, ω0, g0), as k → ∞, where B is any accumulation point

of {A(t)/|A(t)| : t ∈ [0,∞)} (see Corollary 3.3).

• If trA2
0 ≥ 0, then the SCF-solution (ω(t), g(t)) is type-III, in the sense that there

is a constant C > 0 (which in this particular case depends only on the dimension
n but in general it may depend on the solution) such that

|R(ω(t), g(t))| + |Rm(g(t))| ≤ C

t
, ∀t ∈ (0,∞),

where R and Rm respectively denote the curvature tensors of the Chern and the
Levi-Civita connections. (See [A, Proposition 3.14]; recall that we also have that
d
dt trS(A)

2 ≤
(
trS(A)2

)2
).

• The Chern scalar curvature trP = −2a2 and the scalar curvature R = −a2 −
trS(A)2 are both increasing and go to 0 as t → ∞.

• In the unimodular case (i.e. a = 0), A(t)
|A(t)| converges, as t→ ∞, to a matrix B such

that µB is an algebraic SCF-soliton. (See [A, Lemma 4.1]).
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g Lie bracket 2− form constraint

R
4 (0, 0, 0, 0) ω = e1 ∧ e2 + e3 ∧ e4 −

rh3 (0, 0, 12, 0) ω = e1 ∧ e4 + e2 ∧ e3 −

rr3,0 (0, 12, 0, 0) ω = e1 ∧ e2 + e3 ∧ e4 −

rr3,−1 (0, 12,−13, 0) ω = e1 ∧ e4 + e2 ∧ e3 −

rr′
3,0 (0, 13,−12, 0) ω = e1 ∧ e4 + e2 ∧ e3 −

r2r2 (0, 12, 0, 34) ωα = e1 ∧ e2 + α e1 ∧ e3 + e3 ∧ e4 α ≥ 0

r′
2

(0, 0, 13 + 24, 14− 5

3
· 23) ω = e1 ∧ e3 + e2 ∧ e4 −

n4 (0, 41, 42, 0) ω = e1 ∧ e2 + e3 ∧ e4 −

r4,0 (41, 43, 0, 0) ω± = e1 ∧ e4 ± e2 ∧ e3 −

r4,−1 (41, 43− 42,−43, 0) ω = e1 ∧ e3 + e2 ∧ e4 −

r4,−1,λ (41,−42, λ · 43, 0) ω = e1 ∧ e2 + e3 ∧ e4 −1 ≤ λ < 1

r4,λ,−λ (41, λ · 42,−λ · 43, 0) ω = e1 ∧ e4 + e2 ∧ e3 −1 < λ < 0

r′
4,0,λ (41, λ · 43,−λ · 42, 0) ω± = e1 ∧ e4 ± e2 ∧ e3 0 < λ

d4,1 (41, 0, 12 + 43, 0)
ω1 = e1 ∧ e2 − e3 ∧ e4 −

ω2 = e1 ∧ e4 + e2 ∧ e3 −

d4,2
(2 · 41,−42, 12+ 43, 0) ω1 = e1 ∧ e2 − e3 ∧ e4 −

(2 · 41,−42, 2 · 12 + 43, 0) ω± = e1 ∧ e4 ± e2 ∧ e3 −

d4,λ (λ · 41, (1− λ) · 42, 12 + 43, 0) ω = e1 ∧ e2 − e3 ∧ e4 λ ≥ 1

2
, λ 6= 1, 2

d′
4,λ

(√
λ
2

· 41 + 1√
λ
· 42,

√
λ
2

· 42−
1√
λ
· 41,

√
λ · 12 +

√
λ · 43, 0

) ω± = ±(e1 ∧ e2 − e3 ∧ e4) λ > 0

h4 (1
2
· 41 + 42, 1

2
· 42, 12 + 43, 0) ω± = ±(e1 ∧ e2 − e3 ∧ e4) −

Table 1. Classification of 4-dimensional symplectic Lie algebras [O]

4.5. Compact quotients. The Lie group GµA
admits a lattice (i.e. a cocompact discrete

sugbroup) if and only if

σeαAσ−1 ∈ SL2n−1(Z),

for some nonzero α ∈ R and σ ∈ GL2n−1(R) (see [Bo, Section 4]). In that case, a lattice
is given by

Γ = exp
(
σ−1

Z
2n−1

⋊ Zαe2n
)
.

Moreover, if Spec(A) ⊂ R (i.e. µA is completely solvable), then two of these lattices differ
by an automorphism of GµA

if and only if σeαAσ−1 is conjugate to τeβAτ−1 or its inverse
in GL2n−1(Z) (see [Hu, Theorem 2.5]). We refer to [CM] for a complete study of lattices
on 6-dimensional almost abelian groups, including results on formality and half-flatness of
invariant and non-invariant symplectic structures on the corresponding compact quotients.
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We have found in Section 5 a (strongly algebraic) SCF-soliton on any symplectic struc-
ture on unimodular Lie groups of dimension 4, thus showing that any 4-dimensional com-
pact solvmanifold G/Γ does admit a SCF-soliton. The next example shows that this is no
longer true in dimension 6.

Example 4.19. By setting a = 0, v = 0 and

A1 =




0 0 1 0
0 log λ 0 0
0 0 0 0
0 0 0 − log λ


 ∈ sp(2,R), λ = 3+

√
5

2 ,

we obtain a symplectic Lie group (GµA
, ω) which does not admit any algebraic SCF-soliton,

as A is neither nilpotent nor semisimple (see Corollary 4.10). On the other hand, there
exists σ ∈ GL4(R) such that

σeAσ−1 =




1 0 1 0
0 2 0 1
0 0 1 0
0 1 0 1


 ∈ SL4(Z),

and so Γ = exp
(
σ−1

Z
4
⋊ Ze6

)
is a lattice of GµA

.

Concerning the SCF-solution starting at the almost-Kähler structure (GµA
, ω, g) in the

example above, it is straightforward to prove that the family

A1 =




0 0 b 0
0 a 0 0
0 0 0 0
0 0 0 −a


 ∈ sp(2,R), a, b ∈ R,

is invariant for the bracket flow equation (see (37))

A′
1 = −1

2 trS(A1)
2)A1 +

1
2 [A1, [A1, A

t
1]],

which becomes the following ODE system for the variables a(t), b(t):




a′ = −(a2 + 1
4b

2)a,

b′ = −(a2 + 5
4b

2)b.

By a standard qualitative analysis, we obtain long-time existence (i.e. T+ = ∞) for
all these SCF-solutions and that (a, b) → (0, 0), as t → ∞, from which follows that
(GµA

, ω(t), g(t)), with A as in Example 4.19, converges to the euclidean space (R6, ω0, g0)
in the pointed sense, as t→ ∞. Note that P ≡ 0 and the scalar curvature R = − trS(A1)

2

is strictly increasing and converges to 0 as t → ∞.
Furthermore,

lim
t→∞

A(t)/|A(t)| = B := 1√
2




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1


 ∈ sp(2,R),

and thus pointed convergence of (GµA
, c(t)ω(t), c(t)g(t)) toward the (strongly algebraic)

SCF-soliton (GµB
, ω0, g0) (see Theorem 4.6, (ii)) follows for c(t) = |A(t)|2 (see Corollary

3.3), which is isometric to rr3,−1 × R
2, where rr3,−1 is the SCF-soliton given in Table 2.
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g ω
P Ricac

Obs.

c1 D1 c2 D2

R
4 e1 ∧ e2 + e3 ∧ e4 c1 −c1I c2 −c2I flat

rh3 e1 ∧ e4 + e2 ∧ e3 0 0 −
5
4

(1, 3
4
, 7
4
, 3
2
) −

rr3,0 e1 ∧ e2 + e3 ∧ e4 −1 (0, 0, 1, 1) 0 0 K

rr3,−1 e1 ∧ e4 + e2 ∧ e3 0 0 −1 (0, 1, 1, 2) −

rr′3,0 e1 ∧ e4 + e2 ∧ e3 0 0 0 0 flat

r2r2 ω0 = e1 ∧ e2 + e3 ∧ e4 −1 0 0 0 K-E

r′2 e1 ∧ e3 + e2 ∧ e4 −
2
3

0 4
9

(0, 0,− 8
9
,− 8

9
) −

n4 e1 ∧ e2 + e3 ∧ e4 0





0 0

0 −
1
2

−
1
2

0

0 0



 −
5
4

(1, 3
2
, 2, 1

2
) −

r4,−1,λ e1 ∧ e2 + e3 ∧ e4 −λ2 (λ2, λ2, 0, 0) −(1 + λ2) Aλ −

r4,λ,−λ e1 ∧ e4 + e2 ∧ e3 −1 (0, 1, 1, 0) −λ2 Bλ −

r′4,0,λ e1 ∧ e4 ± e2 ∧ e3 −1 (0, 1, 1, 0) 0 0 K

d4,1

e1 ∧ e2 − e3 ∧ e4 −
3
2

0
−

1
4

(− 3
4
, 5
4
, 1
2
, 0)

−

e1 ∧ e4 + e2 ∧ e3 −2 (0, 2, 2, 0) −

d4,2

e1 ∧ e2 − e3 ∧ e4 −
3
2

0 −
9
4

(− 3
4
, 21

4
, 9
2
, 0) −

e1 ∧ e4 + e2 ∧ e3 −6 (0, 6, 6, 0)
0 0

K

e1 ∧ e4 − e2 ∧ e3 −2 (0, 2, 2, 0) −

d4,λ e1 ∧ e2 − e3 ∧ e4 −
3
2

0 −(λ−
1
2
)2 Cλ K-E (λ = 1

2
)

d′4,λ ±(e1 ∧ e2 − e3 ∧ e4) −
3
2

0 0 0 K-E

Table 2. SCF-solitons in dimension 4

Remark 4.20. We note that GµB
also admits a lattice, say Λ. It would be very useful

to understand what kind of convergence one obtains for the sequence of compact almost-
Kähler manifolds (GµA

/Γ, c(t)ω(t), c(t)g(t)) toward (GµB
/Λ, ω0, g0), as t → ∞. Notice

that GµB
/Λ is compact and not homeomorphic to GµA

/Γ, thus pointed convergence can
not hold for any subsequence. The diameters of (GµA

/Γ, g(t)) might go to infinity, in
which case only pointed Gromov-Hausdorff convergence may be expected.
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5. SCF-solitons in dimension 4

We now study the existence problem for SCF-solitons on 4-dimensional Lie groups. We
have listed in Table 1 all the symplectic structures up to isomorphism on 4-dimensional
Lie algebras according to the classification obtained by Ovando in [O]. We have changed

the basis {ei} used in [O] in only three cases: for r′2 we took {e1,
√

5
3e2,−

√
5
3e3, e4}

instead, for ω± on d4,2 we used {e1,
√
2e2,

1√
2
e3, e4}, and for ω± on d′4,λ, our basis is

{e1, e2, 1√
λ
e3,

1√
λ
e4}. The notation we have used in Table 1 for Lie brackets can be

understood from the example of h4 in the last line, whose Lie bracket is described as
(12 · 41 + 42, 12 · 42, 12 + 43, 0) and means

[e4, e1] =
1
2e1, [e4, e2] = e1 +

1
2e2, [e4, e3] = e3, [e1, e2] = e3.

We have found a strongly algebraic SCF-soliton on each symplectic structure on a 4-
dimensional Lie group, with the exception of the following four cases:

(r2r2, ωα), α > 0, (r4,0, ω±), (r4,−1, ω), (h4, ω±).

We were able to prove the non-existence of an algebraic SCF-soliton only in the cases
of (r4,0, ω±) and (r4,−1, ω) (see Lemma 4.14). The SCF-soliton almost-Kähler structures
and their respective Chern-Ricci and Ricci operators are given in Table 2 as diagonal
matrices with respect to the orthonormal basis {e1, e2, e3, e4} (except n4), together with
the constants ci and the derivations Di such that P = c1I + D1 and Ricac = c2I + D2.
We note that they are all expanding SCF-solitons since c = c1 + c2 < 0, with the only
exception of the flat structure rr′3,0. Most of these solitons were obtained by either direct
computation or by using the structure results for almost abelian solvmanifolds given in
Theorem 4.6, with the exception of r′2, where the LSA construction considered in Section
6.2 was crucial.

In the last column we specify when the metric is Kähler-Einstein (K-E), only Kähler
(K) or flat (i.e. isometric to R

4). Recall that such structures are all Kähler-Ricci solitons.
In some cases, in order to simplify the description of the derivations in Table 2, we have

introduced the following notation:

Aλ := (1 + λ2 − λ, 1 + λ2 + λ, 2(1 + λ2), 0), Bλ := (2λ2, λ2 − λ, λ2 + λ, 0),

Cλ := (λ2 − 3λ+ 5
4 , λ

2 + λ− 3
4 , 2(λ

2 − λ) + 1
2 , 0).

Remark 5.1. A SCF-soliton (G,ω, g) in Table 2 is static (i.e. p = cω and Rcac = 0,
or equivalently, its SCF-evolution is (ω(t), g(t)) = (−2ct + 1)(ω, g)) if and only if it is
Kähler-Einstein. This has been proved for any compact static almost-Kähler structure of
dimension 4 in [ST2, Corollary 9.5].

5.1. Compact symplectic surfaces. It follows from the classification given in Table 1
that there are exactly five (simply connected) solvable Lie groups of dimension 4 admitting
a left-invariant symplectic structure which also admit a lattice (i.e. compact discrete sub-
group), giving rise to the compact symplectic surfaces which are solvmanifolds. Their Lie
algebras are: R4 (Complex tori), rh3 (Primary Kodaira surfaces), rr3,−1, rr

′
3,0 (Hyperellip-

tic surfaces) and n4. We refer to [H] for a comparison with compact complex surfaces which
are solvmanifolds. Recall that rr3,−1 and n4 do not admit invariant complex structures.

According to Table 2, they all admit a SCF-soliton which is steady in the flat cases R4

and rr′3,0 and expanding in the other three cases.
Since each of these five Lie algebras admits a codimension one abelian ideal, it follows

from Section 4.2 that any left-invariant almost-Kähler structure on them is equivalent to
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(GµA
, ω, g) for some

(39) A =



0 b c
0 d e
0 f −d


 , b, c, d, e, f ∈ R.

It is easy to check that

µA ≃





R
4 A = 0;

rh3 d2 + ef = 0, db+ fc = 0, eb− dc = 0, A 6= 0;
rr3,−1 d2 + ef > 0;
rr′3,0 d2 + ef < 0;
n4 d2 + ef = 0, (db+ fc, eb− dc) 6= (0, 0),

and the Chern-Ricci and Ricci operators can be computed by using (18) and (17), respec-
tively:

P =




0 − db+fc
2

− eb−dc
2

0

0 0 eb−dc
2

0 − db+fc
2

0


 ,

Ricac =




d2+ b2+c2

2
+

(e+f)2

4
db+ce

4
bf−dc

4
0

db+ce
4

e2−f2

2
− b2−c2

4
d(f−e)− bc

2
bf−dc

4

bf−dc
4

d(f−e)− bc
2

f2−e2

2
+ b2−c2

4
− db+ce

4

0 bf−dc
4

− db+ce
4

−d2− b2+c2

2
− (e+f)2

4


 .

Each of the following five matrices A provides a SCF-soliton on the corresponding Lie
group in the order we are using:



0 0 0
0 0 0
0 0 0


 ,



0 0 0
0 0 1
0 0 0


 ,



0 0 0
0 1 0
0 0 −1


 ,



0 0 0
0 0 −1
0 1 0


 ,



0 1 0
0 0 1
0 0 0


 .

As an application of Section 4.3, for each starting almost-Kähler structure (GµA
, ω, g)

with A as in (39), we obtain that A(t)/|A(t)| converges to one of the soliton matrices B
above such that GµA

and GµB
are isomorphic, that is, the one with same eigenvalues as A

up to scaling. Thus pointed convergence of (GµA
, c(t)ω(t), c(t)g(t)) toward the (strongly

algebraic) SCF-soliton (GµB
, ω, g) follows for c(t) = |A(t)|2 (see Corollary 3.3).

Remark 5.2. It would be interesting to know if this gives rise to (pointed) Gromov-
Hausdorff convergence for the corresponding compact quotients.

6. LSA construction

All SCF-solitons we have found in Sections 4 and 5 are on solvable Lie groups and
moreover, they are all expanding in the nonflat case (see Remark 4.7 and Table 2). For
the Ricci flow, it is well known that any shrinking homogeneous Ricci soliton is trivial,
in the sense that it is finitely covered by a product of a compact Einstein homogeneous
manifold with a euclidean space (see [PW]), and any steady homogeneous Ricci soliton
is necessarily flat. However, it is an open question whether any expanding homogeneous
Ricci soliton is isometric to a left-invariant metric on a solvable Lie group, which is now
known to be essentially equivalent to Alekseevskii’s Conjecture (see e.g. [LL2, AL, JP]
and the references therein).
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In this section, in order to search for SCF-solitons beyond the solvable case, we shall
study a construction attaching to each n-dimensional left-symmetric algebra an almost-
Kähler structure on a 2n-dimensional Lie group (see e.g. [By, AS, O] for further infor-
mation on this construction). Our search succeeded in finding a shrinking SCF-soliton on
the Lie algebra u(2)⋉H (see Example 6.11) and an expanding SCF-soliton on gl2(R)⋉R

4

(see Example 6.14).
A left-symmetric algebra (LSA for short) structure on a vector space g is a bilinear

product · : g× g −→ g satisfying the condition

(40) X · (Y · Z)− (X · Y ) · Z = Y · (X · Z)− (Y ·X) · Z, ∀X,Y,Z ∈ g.

(From now on, the phrase ‘for all X,Y,Z ∈ g’ will be understood in any formula containing
X,Y,Z). This implies that

(41) [X,Y ]g := X · Y − Y ·X,
is a Lie bracket on g and if L(X) : g −→ g denotes LSA left-multiplication by X (i.e.
L(X)Y = X · Y ), then L is a representation:

L([X,Y ]g) = L(X)L(Y )− L(Y )L(X).

We now show how each LSA structure on g determines an almost-Kähler structure on
g⊕ g. Consider the representation θ : g −→ End(g) given by

(42) θ(X) := −L(X)t,

where L(X)t denotes the transpose of the map L(X) with respect to an inner product
〈·, ·〉 on g, which will be considered fixed from now on, and define the Lie algebra g ⋉θ g

with Lie bracket

(43) [(X,Y ), (Z,W )] := ([X,Z]g, θ(X)W − θ(Z)Y ) .

Note that by (41) and (42), [·, ·]g is determined by θ as follows,

(44) [X,Y ]g = −θ(X)tY + θ(Y )tX.

Consider also the almost-complex structure J : g⊕ g −→ g⊕ g defined by

J(X,Y ) := (Y,−X), i.e. J =

[
0 I
−I 0

]
.

On the right we are writing J as a matrix in terms of the basis {(ei, 0)}∪{(0, ei)}, where
{ei} is any orthonormal basis of g. Such basis of g⊕ g will be fixed and used without any
further mention, e.g. to write operators as matrices. A 2-form ω on g ⊕ g can therefore
be defined by

ω := g(J ·, ·), where g := 〈·, ·〉 ⊕ 〈·, ·〉,
or equivalently,

ω = −
n∑

i=1

(ei, 0) ∧ (0, ei),

where {ei} denotes the dual basis of {ei}.
The almost-hermitian Lie algebra (g⋉θg, ω, g) is therefore completely determined by the

LSA structure, as θ and [·, ·]g are so and the whole ‘linear algebra’ data (i.e. (g⊕ g, ω, g))
has been fixed. Moreover, it is easy to see that condition (44) is equivalent to dω = 0.
Summing up,

Proposition 6.1. Any LSA structure on g defines an almost-Kähler Lie algebra

(g ⋉θ g, ω, g).
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Remark 6.2. If we define a Lie bracket [·, ·]∗ on g ⊕ g as in (43) by using the same [·, ·]g
but the representation θ∗(X) = L(X) = −θ(X)t instead of θ, then what we obtain is a
hermitian Lie algebra

(g⋉θ∗ g, J, g),

i.e. J is integrable. Together, the corresponding complex manifold (Gθ∗ , J) and the
symplectic manifold (Gθ, ω) form a weak mirror pair, i.e. their associated differential
Gerstenhaber algebras are quasi-isomorphic (see e.g. [CLP]).

Remark 6.3. The left-invariant affine connection on the corresponding Lie group ∇ :
g× g −→ g defined by

∇XY := X · Y = −θ(X)tY,

is flat (i.e. ∇[X,Y ]g = [∇X ,∇Y ]) and torsion free (i.e. [X,Y ]g = ∇XY −∇YX).

Remark 6.4. We will assume in what follows that (0, g) is invariant by any element of
Aut(g ⋉θ g) for all the LSA structures considered. This for example holds when the
abelian ideal (0, g) is the nilradical of g⋉θ g.

Proposition 6.5. Two symplectic Lie algebras (g⋉θ1 g, ω) and (g⋉θ2 g, ω) are isomorphic
if and only if there exists ψ ∈ GL(g) such that

(45) L2(ψX) = ψL1(X)ψ−1, ∀X ∈ g,

i.e. the corresponding LSA structures are isomorphic.

Proof. If (45) holds, then it is easy to check that ϕ =

[
ψ 0
0 (ψt)−1

]
is a Lie algebra

isomorphism between g⋉θ1 g and g⋉θ2 g. Since ϕ ∈ Sp(ω), we obtain that the symplectic
Lie algebras are also isomorphic.

Conversely, due to our assumption (see Remark 6.4), any isomorphism between the

Lie algebras has the form ϕ =

[
ϕ1 0
ϕ3 ϕ2

]
, which implies that ϕ1[·, ·]g1 = [ϕ1·, ϕ1·]g2 and

θ2(ϕ1X) = ϕ2θ1(X)ϕ−1
2 . But since ϕ ∈ Sp(ω) we have that ϕ2 = (ϕt

1)
−1, from which

condition (45) easily follows for ψ = ϕ1. �

In much the same way, we obtain the following criterium for equivalence.

Proposition 6.6. Two almost-Kähler structures (g ⋉θ1 g, ω, g) and (g ⋉θ2 g, ω, g) are
equivalent if and only if there exists an orthogonal map ψ ∈ O(g, 〈·, ·〉) such that

(46) L2(ψX) = ψL1(X)ψ−1, ∀X ∈ g.

Example 6.7. Consider on g = gl2(R) the basis

e1 = [ 0 1
0 0 ] , e2 = [ 0 0

1 0 ] , e3 =
[
1 0
0 −1

]
, e4 = [ 1 0

0 1 ] ,

whose Lie bracket relations are

[e1, e2] = e3, [e3, e1] = 2e1, [e3, e2] = −2e2,

and the one-parameter family of LSA structures defined for any α ≥ 0 by

Lα(e1) =

[
0 0 −1 1+α
0 0 0 0
0 (1+α)/2 0 0
0 1/2 0 0

]
, Lα(e2) =

[
0 0 0 0
0 0 1 1−α

−(1−α)/2 0 0 0
1/2 0 0 0

]
,

Lα(e3) =

[
1 0 0 0
0 −1 0 0
0 0 α 1−α2

0 0 1 −α

]
, Lα(e4) =

[
1+α 0 0 0
0 1−α 0 0
0 0 1−α2 −α(1−α2)

0 0 −α 1+α2

]
.
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It is proved in [Bu] that these LSA structures are pairwise non-isomorphic and henceforth,
according to Proposition 6.5, (g⋉θα g, ω) is a family of pairwise non-isomorphic symplectic
Lie algebras. Actually, the Lie algebras g ⋉θα g, α ≥ 0 are pairwise non-isomorphic, as
it is easy to check that the spectrum of Lα(e4) is an invariant and equals {1 ± α, 1 ± α}.
Notice that α = 0 corresponds to the usual multiplication of matrices in gl2(R), and is
the only one associative among the family. In order to obtain the complete classification
of LSA structures on gl2(R) up to isomorphism, an extra one-parameter family and two
more (isolated) structures must be added (see [Bu, Theorem 3] and [Ba, Section 5.1]).

6.1. Chern-Ricci and Ricci curvature. We compute in this section the Chern-Ricci
operator P and the anti-J-invariant Ricci operator Ricac for the almost-Kähler structure
(g⋉θ g, ω, g) from Proposition 6.1.

We first define A,A∗ ∈ g by

A :=

n∑

i=1

θ(ei)ei, A∗ := −
n∑

i=1

θ(ei)
tei =

n∑

i=1

ei · ei.

By a straightforward computation, one obtains that the Chern-Ricci form p vanishes on
both g-summands and

(47) p((X, 0), (0, Y )) = −1
2〈θ(X)Y,A∗〉+ 1

2 tr adg θ(X)Y + 1
2 tr θ(θ(X)Y ).

The Chern-Ricci operator P therefore leaves invariant each g-summand. More precisely,

Lemma 6.8. P =

[
P 0
0 P t

]
, where P ∈ End(g) is defined by

(48) P = 1
2 adg (A

∗ −A) + 1
2θ(A

∗ −A)t.

Remark 6.9. If Z := 1
2 (A

∗ − A), then P ∈ End(g ⊕ g) satisfies P = adZ + (adZ)tω (see
(3)) and P ∈ End(g) is given by

P = −R(Z),
where R denotes LSA right-multiplication (i.e. R(X)Y = Y ·X).

Proof. It follows from (47) and (44) that

〈P (X, 0), (Y, 0)〉 =p((X, 0), (0,−Y ))

=1
2 〈θ(X)Y,A∗〉 − 1

2 tr adg θ(X)Y − 1
2 tr θ(θ(X)Y )

=1
2 〈θ(X)Y,A∗〉 − 1

2 tr adg θ(X)Y − 1
2

∑
〈θ(θ(X)Y )tei, ei〉

=1
2 〈θ(X)Y,A∗〉 − 1

2 tr adg θ(X)Y − 1
2

∑
〈−[θ(X)Y, ei]g + θ(ei)

tθ(X)Y, ei〉
=1

2 〈θ(X)Y,A∗〉 − 1
2 tr adg θ(X)Y + 1

2 tr adg θ(X)Y − 1
2〈θ(X)Y,A〉

=〈θ(X)Y, 12 (A
∗ −A)〉 = 〈Y, θ(X)t 12 (A

∗ −A)〉
=〈Y,−[X, 12(A

∗ −A)]g + θ(12(A
∗ −A))tX〉

=〈Y,
(
1
2 adg (A

∗ −A) + 1
2θ((A

∗ −A))t
)
X〉,

which proves formula (48). The formula for P ∈ End(g ⊕ g) follows from the fact that
P tω = P , concluding the proof. �

Remark 6.10. It can be proved in much the same way that the Chern-Ricci operator of
the hermitian structure (g⋉θ∗ g, ω, g), which is the weak mirror image of (g⋉θ g, ω, g) (see

Remark 6.2), is given by P =

[
P 0
0 P

]
, where P = P t ∈ End(g) is defined by

〈PX, Y 〉 = − tr θ∗(θ∗(X)Y ) = − trL(X · Y ).
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In the following computation of the Ricci curvature we are not assuming that ω is closed
(i.e. condition (44)). The Ricci operator Ric of (g ⋉θ g, g) can be computed by using for
example [L5, Section 2.3], which gives

Ric =

[
Ricg−Cθ − S(adgHθ) 0

0 1
2

∑
[θ(ei), θ(ei)

t]− S(θ(H))

]
,(49)

=

[
Mg − 1

2Bg − Cθ − S(adgH) 0
0 1

2

∑
[θ(ei), θ(ei)

t]− S(θ(H))

]
,

where Ricg is the Ricci operator of (g, 〈·, ·〉), Cθ is the positive semi-definite operator given
by

〈CθX,Y 〉 = trS(θ(X))S(θ(Y )),

S(E) := 1
2(E + Et) denotes the symmetric part of an operator E, Mg is defined by

trMgE = −1
4〈δ[·,·]g(E), [·, ·]g〉 (see (10)) and Bg is the Killing form of g relative to 〈·, ·〉 (i.e.

tr adgX adg Y = 〈BgX,Y 〉). Here H ∈ g is defined by 〈H,X〉 = tr adX , or equivalently,

H := Hg +Hθ, 〈Hg,X〉 = tr adgX, 〈Hθ,X〉 = tr θ(X).

Thus the scalar curvature equals

R =Rg −
∑

trS(θ(ei))
2 − tr adgHθ − tr θ(H),(50)

=− 1
4 |[·, ·]g|

2 − 1
2 trBg −

∑
trS(θ(ei))

2 − |H|2,
where Rg is the scalar curvature of (g, 〈·, ·〉).

Furthermore, the anti-J-invariant component of Ric is therefore given by

(51) Ricac =

[
S 0
0 −S

]
,

where
S = 1

2 Ricg−1
2Cθ − 1

2S(adgHθ)− 1
4

∑
[θ(ei), θ(ei)

t] + 1
2S(θ(H)).

It is easy to check that H = A when ω is closed, from which follows that the Chern scalar
curvature is given by

trP = 〈A,A∗〉 − |A|2,
(recall from Remark 6.9 that trP = 2 tr adZ = 2〈H,Z〉 = 2〈A, 12(A∗ − A)〉) and conse-
quently, trP = 0 when g⋉θ g is unimodular.

6.2. SCF-solitons. We first note that a simple way to obtain a SCF-soliton of the form
(g ⋉θ g, ω, g) is when both P and S are multiples of the identity (see Examples 6.11 and
6.14 for an explicit application). Indeed, if P = qI and S = rI, q, r ∈ R, then

Ricac =

[
rI 0
0 −rI

]
= rI +

[
0 0
0 −2rI

]
∈ RI +Der(g⋉θ g),

and thus the almost-Kähler structure (g ⋉θ g, ω, g) is a (strongly algebraic) SCF-soliton
with c = q + r (see (13)).

We have seen in Section 3.1 that given a symplectic Lie algebra (g, ω), the set of all
compatible metrics can be identified with the orbit Sp(ω) · [·, ·]. In the case (g⋉θ g, ω), in
order to explore the existence of SCF-solitons, we can vary the LSA structure by

(52) Lϕ(X) := ϕL(ϕ−1X)ϕ−1,

[
ϕ 0
0 ϕ−1

]
∈ Sp(ω), ϕ ∈ GL(g), ϕt = ϕ.

The corresponding Lie bracket [·, ·]ϕ on g⊕ g defined in (43) is therefore defined in terms
of its components ([·, ·]ϕ)g = ϕ[ϕ−1·, ϕ−1·]g and θϕ(X) = ϕ−1θ(ϕ−1X)ϕ. Recall that



28 JORGE LAURET AND CYNTHIA WILL

(g⋉θ g, ω) and (g⋉θϕ g, ω) are isomorphic as symplectic Lie algebras (see Proposition 6.5)

and that if in addition ϕ ∈ O(g, 〈·, ·〉) (i.e. ϕ2 = I), then the almost-Kähler structures
(g⋉θ g, ω, g) and (g⋉θϕ g, ω, g) are equivalent (see Proposition 6.6).

Example 6.11. We consider the Lie algebra g = u(2) with (orthonormal) basis

e1 =
[
i 0
0 i

]
, e2 =

[
0 −1
1 0

]
, e3 =

[
i 0
0 −i

]
, e4 =

[
0 i
i 0

]
,

and Lie bracket
[e2, e3] = 2e4, [e2, e4] = −2e3, [e3, e4] = 2e2.

If we identify g with the quaternion numbers H via {e1 = 1, e2 = i, e3 = j, e4 = k}, then
the (associative) product on H is an LSA structure defining the above Lie bracket. By
considering the variation

ϕt =

[
t
1
1
1

]
, t > 0,

we obtain the following one-parameter family of LSA structures:

Lt(e1) =
1
t I, Lt(e2) =

[
0 −t
1/t 0

0 −1
1 0

]
, Lt(e3) =

[
−t 0
0 1

1/t 0
0 −1

]
, Lt(e4) =

[
0 −t
−1 0

0 1
1/t 0

]
,

which define the same Lie bracket as above. The Chern-Ricci operator of the corresponding
almost-Kähler structure (g⋉θt g, ω, g) is given, according to (48), by

Pt =
−5+3t2

2t2
I, i.e. pt =

−5+3t2

2t2
ω,

as it is easy to see that A = −4
t e1 and A∗ = (1t −3t)e1. It is also straightforward to obtain

that

Ricgt =

[
0
2
2
2

]
, Cθt = Diag

(
4
t2
, (1−t2)2

2t2
, (1−t2)2

2t2
, (1−t2)2

2t2

)
,

Ht = Hθt = −4
t e1, S(θt(Ht)) =

4
t2
I, and

∑
[θt(ei), θt(ei)

t] = Diag
(
3(1−t4)

t2
, 1−t4

t2
,−1−t4

t2
,−1−t4

t2

)
.

We now use formula (49) to get

Rict = Diag
(
− 4

t2
, −1+6t2−t4

2t2
, −1+6t2−t4

2t2
, −1+6t2−t4

2t2
,−5+3t4

2t2
, −9+t4

2t2
, −9+t4

2t2
, −9+t4

2t2

)
.

Remark 6.12. It is worth pointing out that (g ⋉θt g, g) has negative Ricci curvature (i.e.

Rict < 0) if and only if t2 < 3−
√
8.

The anti-J-invariant part of Rict (see (51)) is therefore given by

Ricact =

[
St 0
0 −St

]
, St = Diag

(
−3+3t4

4t2
, 4+3t2−t4

2t2
, 4+3t2−t4

2t2
, 4+3t2−t4

2t2

)
.

Thus St is a multiple of the identity if and only if t2 = 11
5 . More precisely, for t0 =

√
11
5 ,

we obtain that

Pt0 = 4
11I, Ricact0 =

[
72
55I 0
0 −72

55I

]
= 72

55I +

[
0 0
0 −144

55 I

]
∈ RI +Der(g⋉θt0

g).

This implies that the almost-Kähler structure (g⋉θt0
g, ω, g) is a (strongly algebraic) SCF-

soliton with c = 92
55 > 0, that is, a shrinking SCF-soliton. We note that this structure is

not Kähler (Ricact 6= 0), the Ricci operator is given by

Rict0 = 1
55 Diag(−100, 92, 92, 92,−244,−52,−52,−52)

and the scalar curvature equals Rt0 = −224
55 . A family of SCF-solutions containing this

soliton is studied in Example 6.15.
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Remark 6.13. By using a standard computational program, we found out that this SCF-
soliton is the only one (up to isometry) satisfying S = rI among all variations of the form
ϕ = Diag(a, b, c, d).

Example 6.14. The usual matrix multiplication on g = gl2(R) gives rise to an LSA struc-
ture defining the usual Lie bracket, which in the (orthonormal) basis

e1 = [ 1 0
0 1 ] , e2 =

[
0 −1
1 0

]
, e3 =

[
1 0
0 −1

]
, e4 = [ 0 1

1 0 ] ,

is given by

[e2, e3] = 2e4, [e2, e4] = −2e3, [e3, e4] = −2e2.

If we consider the variation

ϕs,t =

[
s
t
1
1

]
, s, t > 0,

then the corresponding two-parameter family of LSA structures is defined by

Ls,t(e1) =
1
s I, Ls,t(e2) =




0 −s/t2

1/s 0
0 −1/t
1/t 0


 ,

Ls,t(e3) =

[
s 0
0 −t

1/s 0
0 −1/t

]
, Ls,t(e4) =

[
0 s
t 0

0 1/t
1/s 0

]
,

and the Lie bracket on g changes to

[e2, e3]s,t =
2
t e4, [e2, e4]s,t = −2

t e3, [e3, e4]s,t = −2te2.

By a straightforward computation one obtains that

Ps,t =
(
− 5

2s2 + 1
2t2 − 1

)
I, Ss,t =




− 3
4s2

+
s2

4t4
+
s2

2
3t2

2 − s2

2t4
+

2
s2

−3t2

2 − s2

2 +
2
s2−3

−3t2

2 − s2

2 +
2
s2

−3



.

It follows that Ss,t is a multiple of the identity if and only if

s2 =
6t4

1− t2
, f(t) := −108t8 + 36t6 − 97t4 − 22t2 + 11 = 0,

and since f(0) = 11 and f(1) = −180, there exists t0 ∈ (0, 1) such that f(t0) = 0

(t0 ∼ 0.49). By setting s0 :=

√
6t40
1−t20

(∼ 0.68), we obtain the expanding (strongly algebraic)

SCF-soliton (g ⋉θs0,t0
g, ω, g) with c ∼ −3.61, P = qI (q ∼ −4.24) and S = rI (r ∼ 0.63).

We note that this SCF-soliton has negative Ricci curvature:

Rics0,t0 ∼ Diag(−8.46,−0.43,−9.95,−9.95,−9.73,−1.70,−11.21,−11.21).

6.3. Bracket flow. In this section, in order to study the SCF-evolution of almost-Kähler
structures of the form (g⋉θ g, ω, g), we consider the bracket flow (9) and use Theorem 3.2.
According to (43), the Lie bracket of g⋉θ g is determined by λ := [·, ·]g and θ and so any
bracket flow solution µ = µ(t) will be given by a pair

µ(t) = (λ(t), θ(t)).

By using that

P +Ricac =

[
P + S 0

0 P t − S

]
,
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it is easy to see that the bracket flow equation µ′ = δµ(P + Ricac) is equivalent to the
system 




λ′ = δλ(P + S),

θ′(X) = θ((P + S)X) + [θ(X), P t − S], ∀X ∈ g.

It follows from Theorem 3.2 that ω remains closed relative to µ(t), that is,

λ(X,Y ) = −θ(X)tY + θ(Y )tX, ∀t,
from which follows that the bracket flow is equivalent to the single equation for θ given by

(53) θ′(X) = θ((P + S)X) + [θ(X), P t − S], ∀X ∈ g,

where λ is defined in terms of θ as above (recall that P and S depend on θ and λ). Indeed,
if Q1 := P + S and Q2 := P t − S, then λ evolves by

λ′(X,Y ) =− θ′(X)t(Y ) + θ′(Y )t(X)

=− θ(Q1X)tY − [Qt
2, θ(X)t]Y + θ(Q1Y )tX + [Qt

2, θ(Y )t]X

=λ(Q1X,Y ) + λ(X,Q1Y )−Q1λ(X,Y )

− θ(Y )t(Q1 +Qt
2)X + θ(X)t(Q1 +Qt

2)Y + (Q1 +Qt
2)λ(X,Y ),

and since Q1 +Qt
2 = 2P and P = −R(Z) (see Remark 6.9), the LSA condition yields

λ′(X,Y ) =δλ(Q1)(X,Y ) + 2 (Y · PX −X · PY + P (X · Y − Y ·X))

=δλ(Q1)(X,Y ) + 2
(
− Y · (X · Z) +X · (Y · Z)− (X · Y ) · Z + (Y ·X) · Z

)

=δλ(Q1)(X,Y ).

Example 6.15. For g = u(2) as in Example 6.11, consider the two-parameter family of
almost-Kähler structures (g⋉θa,b g, ω, g), where

θa,b(e1) = aI, θa,b(e2) =

[
0 a

−b2/a 0
0 −b
b 0

]
,

θa,b(e3) =

[
a 0
0 b

−b2/a 0
0 −b

]
, θa,b(e4) =

[
0 a
−b 0

0 b
−b2/a 0

]
,

and so the corresponding Lie bracket on u(2) is given by

λa,b(e2, e3) = 2be4, λa,b(e2, e4) = −2be3, λa,b(e3, e4) = 2be2.

We note that this family corresponds to the variation ϕ = Diag(−1/a, 1/b, 1/b, 1/b).
If we denote by Θa,b(X) the right-hand side of bracket flow equation (53), then it is

easy to compute that

Θa,b(e1) = αI, Θa,b(e2) =

[
0 α
γ 0

0 −β
β 0

]
,

Θa,b(e3) =

[
α 0
0 β

γ 0
0 −β

]
, Θa,b(e4) =

[
0 α
−β 0

0 β
γ 0

]
,

where

α := −13
4 a

3 + 3
2ab

2 + 3
4b

4/a, β := −1
2a

2b+3b3− 1
2b

5/a2, γ := −9
4ab

2− 9
2b

4/a+ 7
4b

6/a3.
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This implies that the family is invariant under the bracket flow if and only if (−b2/a)′ = γ
follows from a′ = α and b′ = β, which can be checked in a straightforward way. The
bracket flow on the family of almost-Kähler structures (g ⋉θa,b g, ω, g) therefore becomes
the following ODE system for a = a(t), b = b(t):

(54)





a′ = −13
4 a

3 + 3
2ab

2 + 3
4b

4/a,

b′ = −1
2a

2b+ 3b3 − 1
2b

5/a2.

We can assume, up to equivalence, that a, b > 0. Note that the shrinking SCF-soliton
found in Example 6.11 belongs to the family; namely, it is contained in the straight line

b =
√

11
5 a, on which the equation becomes a′ = ca3 for c = 92

55 . By a standard qualitative

analysis, one can obtain the following information on these SCF-solutions:

• They all develop a finite-time singularity (T+ < ∞) and converge asymptotically

to the SCF-soliton solution
(
a(t),

√
11
5 a(t)

)
, a(t) = (−2ct+ 1)−1/2, t ∈ (−∞, 1

2c).

• They are all ancient solutions (i.e. T− = −∞).

• For the solutions above the soliton (i.e. b >
√

11
5 a), we have that the Chern scalar

curvature trP = (−20a2 + 12b2) is always positive, it comes from +∞, attains
a global minimum and then goes to +∞, as t → T+. On the other hand, the
solutions below the soliton always increase trP from −∞ toward +∞.

• The scalar curvature R = −43a4+18a2b2−3b4

2a2
is always negative and goes from −∞

to −∞, reaching a global maximum for any solution.

We now analyze the convergence behavior. It is easy to see that

lim
t→T+

4√
11

(a, b)√
a2 + b2

=

(√
5
11 , 1

)
,

and thus pointed convergence of a subsequence (Ga0,b0 , ckω(tk), ckg(tk)) toward the SCF-
soliton (G√

5
11 ,1

, ω, g) follows for some ck > 0 (see Corollary 3.3), for any starting almost-

Kähler structure (Ga0,b0 , ω, g), a0, b0 > 0.

Concerning backward convergence, we have that if b <
√

11
5 a, then

lim
t→−∞

(a, b)√
a2 + b2

= (1, 0).

It is easy to see that g⋉θ1,0 g is a solvable Lie algebra with nilradical isomorphic to h7, the
7-dimensional Heisenberg algebra. Moreover, (g⋉θ1,0 g, ω, g) is an expanding SCF-soliton
with

P1,0 = −5
2I, Ricac1,0 = −3

4I +D,

where D := 1
4 Diag(0, 11, 11, 11, 6,−5,−5,−5) ∈ Der(g ⋉θ1,0 g), and negative Ricci curva-

ture
Ric1,0 =

1
2 Diag(−8,−1,−1,−1,−5,−9,−9,−9).

On the other hand, for b >
√

11
5 a we obtain,

lim
t→−∞

(a, b)

b2/a
= (0, 1),

and hence a
b2
θa,b → θ∞, as t → −∞, where the only nonzero coefficients of θ∞ are

θ∞(e2)e1 = −e2, θ∞(e3)e1 = −e3 and θ∞(e4)e1 = −e4. This implies that g ⋉θ∞ g is a
nilpotent Lie algebra and (g⋉θ∞ g, ω, g) is an expanding SCF-soliton, which is equivalent
to (GµA

, ω, g) as in Example 4.9 with C = I.
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