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We theoretically investigate the interband transitions and quantum kinetics induced by light carrying orbital
angular momentum, or twisted light, in bulk semiconductors. We pose the problem in terms of the Heisenberg
equations of motion of the electron populations, and interband and intraband coherences. Our theory extends
the free-carrier semiconductor Bloch equations to the case of photoexcitation by twisted light. The theory is
formulated using cylindrical coordinates, which are better suited to describe the interaction with twisted light
than the usual Cartesian coordinates used to study regular optical excitation. We solve the equations of motion
in the low excitation regime, and obtain analytical expressions for the coherences and populations; with these,
we calculate the orbital angular momentum transferred from the light to the electrons and the paramagnetic and
diamagnetic electric current densities.
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I. INTRODUCTION

Since the seminal work by Allen et al.1 in 1992, there has
been a steady increase of interest in the theory, experiments,
and applications of light carrying orbital angular momentum
�OAM�, or twisted light �TL�.2 Studies in this area span sev-
eral subfields of physics, such as research on the classical/
quantum properties of TL,3–6 its generation,7 and the interac-
tion of TL with atoms/molecules8–11 and Bose-Einstein
condensates.12 At the same time, the interaction of general
inhomogeneous light beams with solids is becoming an ac-
tive field of research too.13–15

Recently, we laid down the basic theoretical elements to
study the interaction of semiconductors and insulators with
confined beams of twisted light.16 We obtained the optical
transition-matrix elements of the TL-electron interaction and
studied the transfer of orbital angular momentum using a
simple, perturbative wave-function approach. That approach
was adequate as a first theoretical step but it has a number of
limitations. Being a single-particle theory, is has the draw-
back of not taking into account the Pauli exclusion in the
photoexcitation of multiple electrons, and furthermore, it
leaves out the electron-electron interaction effects. Thus, a
more complete theoretical treatment of the interband excita-
tion by twisted light of solids is called for.

In this paper we develop a set of “twisted-light-
generalized semiconductor Bloch equations” �TL-SBE� from
the Heisenberg equations of motion of the populations and
coherences of the photoexcited electrons. This theory is valid
for pulsed or CW twisted-light beams and takes fully into
account the inhomogeneous profile of the beam as well as
the transfer of momentum from the light to the electrons in
the plane perpendicular to the beam’s propagation direction.
As long as excitonic phenomena are not targeted, the Cou-
lomb interaction does not play an essential role in the basic
physics of band-to-band optical transitions, and for that rea-
son we will limit ourselves, for the time being, to a free-
carrier formulation of the theory. From a practical point of
view, we mention that the free-carrier theory is already in-
volved enough to merit a separate presentation, obviously as

a first step in a program that aims at obtaining and solving,
first the mean-field TL-SBE, and later the same equations
with collision terms.17 Collision terms describe the scattering
processes undergone by the photoexcited electrons, namely,
electron-electron, electron-phonon, and electron-impurity
scattering. Collision terms in the relaxation-time approxima-
tion can be added straightforwardly to our theory in order to
describe qualitatively those scattering processes and a nu-
merical solution of the resulting equations of motion would
allow us to explore the influence of collisions on the effects
described here. We leave this numerical treatment for future
work, which will include, besides collisions, the study of
strong and pulsed TL excitation. Finally, notice that while we
concentrate here on bulk systems, our theory can easily be
applied to two-dimensional systems excited at normal inci-
dence.

Usually, the optical excitation in bulk systems is theoreti-
cally dealt with by assuming that the system is a cube, quan-
tizing the electrons using Cartesian coordinates and taking, at
the right moment in the derivation, the limit of large system
size. For symmetry reasons, this method allows straightfor-
ward calculations in the case of excitation with plane-wave
light. However, it leads to a cumbersome formulation in the
case of excitation by twisted light. This is clearly so because
the twisted-light beam has an inherently cylindrical nature.
In two previous works on the interacion of TL with quantum
dots18 and quantum rings,19 the cylindrical nature of the TL
beams was handled conveniently by also using cylindrical
coordinates in the description of the electronic states. In the
theory presented here for bulk systems, we take advantage of
this simple but key idea. We imagine the solid as a cylinder,
quantize the electron states in cylindrical coordinates, and
finally take the limit of large system; we rely on the fact that
bulk properties are then independent of the geometry of the
solid. We keep, naturally, the required microscopic structure
of the Bloch wave functions in order to characterize the va-
lence and conduction band states: the periodic parts of the
Bloch states are approximated by their values at zero crystal
momentum, a common practice known as effective-mass ap-
proximation. The use of cylindrical rather than Cartesian co-
ordinates allowed us to decouple the Heisenberg equations of
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motion according to values of the electron angular momen-
tum, which greatly reduces the complexity of the problem.
Using these generalized TL-SBE we predict the kinetics of
electrons, show the occurrence of electric currents with com-
plex profiles, and demonstrate the transfer of OAM from the
light beam to the electrons.

The paper is organized as follows. The TL vector potential
and the system Hamiltonian are given in Sec. II. Section III
presents the generalized TL-SBE in terms of cylindrical elec-
tron states, the partial decoupling of the equations of motion,
and the perturbative solution. The electron quantum kinetics
is analyzed with the help of the electric current and trans-
ferred angular momentum in Sec. IV. Conclusions are given
in Sec. V.

II. SYSTEM AND TWISTED LIGHT

In this work we consider a direct-gap semiconductor or
insulator and study interband transitions caused by illumina-
tion with a beam of twisted light. We assume that the light’s
frequency is such that mainly band-to-band transitions occur
so that exciton creation is unimportant. Under this regime it
is satisfactory to formulate our theory not including the Cou-
lomb interaction between carriers. Thus, our theory can de-
scribe the electrons’ kinetics, from irradiation to a fraction of
picoseconds—to avoid strong deviation due to
decoherence—in a large number of physical systems, from
semiconductors having band gap of a fraction of 1 eV �e.g.,
InSb with 0.23 eV� through several electron volts �e.g., GaN
with 3.5 eV�, up to insulators having larger gaps, provided
that the frequency of the twisted field is tuned above the
energy band gap; this requires the use of twisted fields in the
near-infrared to UV spectrum, which does not constitute an
experimental difficulty. We are particularly interested in
characterizing the transfer of angular momentum between
the TL and the electrons, and describing what the electron
distribution looks like as a result of the photoexcitation. Al-
though several valence bands may be involved in interband
optical transitions, here we consider for simplicity a two-
band model. The generalization of the theory to the case with
more than one valence band involved is straightforward.

The vector potential of the TL beam in the Coulomb
gauge is given by20

A�r,t� = A0ei�qzz−�t����Jl�qrr�eil� � i�z
qr

qz
Jl�1�qrr�ei�l�1���

+ c.c. �1�

with the polarization vectors given by ��= x̂� iŷ
=e�i��r̂� i�̂� and c.c. denoting the complex conjugate. In
Eq. �1�, the radial profile of the beam is given, for concrete-
ness, by Bessel functions, Jl�qrr� and Jl�1�qrr�—an alterna-
tive formulation would use Laguerre-Gaussian modes
instead.6

The light-matter interaction is described using the
minimal-coupling Hamiltonian, whose dominant contribu-
tion �for moderate field intensities� comes from the linear
term p ·A. If the TL beam is such that qr�qz, which is veri-
fied for usual sizes of the beam’s waist, the largest coupling

term comes from the transverse component of A�r , t�, and
we only need to consider

A�r,t� � ��A0Jl�qrr�ei�qzz−�t�eil� + c.c. = A�+��r,t� + A�−��r,t�
�2�

with �=�.
The lowest order light-matter interaction Hamiltonian is

hI = −
q

me
p · A�r,t�

= −
q

me
p · �A�+��r,t� + A�−��r,t��

= hI
�+� + hI

�−� �3�

with p the momentum operator, and me and q the mass and
charge of the electron. �Note that the me appearing in this
equation is the bare electron mass and not the effective
mass.� We emphasize that, unlike most work in light-matter
interaction, we must keep the spatial variation in the field, in
order to capture the relevant physics. Thus, Eq. �3� encodes
all multipoles, as is clearly seen from the Power-Zinau-
Woolley transformation.21

The complete electronic Hamiltonian in second quantiza-
tion for the general multiband case is

H = �
b�

	b�ab�
† ab� + �

b�,b���

	b���
hI
b��ab���
† ab�,

where b ,b� denote energy bands, such as heavy hole, light
hole, conduction, etc., � is a collective index of quantum
numbers appropriate for the problem at hand, and a† /a are
creation/annihilation operators.

III. FREE-CARRIER SEMICONDUCTOR BLOCH
EQUATIONS

A. General equations of motion

Let us consider the operator 
̂b���,b�=ab���
† ab�. The equa-

tion of motion for this operator in the Heisenberg picture is

i�
d

dt

̂b���,b� = �
̂b���,b�,H� . �4�

For concreteness, we take one type of circularly polarized
light, either �+ or �−. While, say, �+ light connects both light
holes and heavy holes to conduction band states, these two
processes remain independent of each other during the evo-
lution under the Hamiltonian that we are considering. Then,
for circularly polarized light, we can accurately describe the
electron kinetics under the optical excitation within a two-
band model. We now specialize Eq. �4� to a two-band case
by considering the evolution of the three types of operators

̂c��,c�, 
̂v��,v�, and 
̂v��,c�, where v �c� stands for the chosen
valence �conduction� band. After expanding the commutators
and assuming that the interaction hI connects only valence-
to conduction-band states, the equations of motion become

G. F. QUINTEIRO AND P. I. TAMBORENEA PHYSICAL REVIEW B 82, 125207 �2010�

125207-2



i�
d

dt

̂c��,c� = �c�,c��
̂c��,c� + �

�1

	c�
hI
v�1�
̂c��,v�1

− 	v�1
hI
c���
̂v�1,c�, �5�

i�
d

dt

̂v��,v� = �v�,v��
̂v��,v� + �

�1

	v�
hI
c�1�
̂v��,c�1

− 	c�1
hI
v���
̂c�1,v�, �6�

i�
d

dt

̂v��,c� = �c�,v��
̂v��,c� + �

�1

	c�
hI
v�1�
̂v��,v�1

− 	c�1
hI
v���
̂c�1,c�, �7�

where �b�,b���=	b�−	b���.
In what follows we work with the equations of motion of

the expectation values of the operators 
̂


c,��� = 	
̂c��,c�� ,


v,��� = 	
̂v��,v�� ,


v��,c� = 	
̂v��,c�� , �8�

where the average 	 . . . � is taken over the initial state of the
material. These expectation values represent populations
when they have repeated indices and quantum coherences
when they are off-diagonal matrix elements. Notice that in
Eqs. �5�–�7� we keep the intraband coherences, which are
essential in the TL excitation process. These coherences are
usually left out of the theory when the vertical transition
approximation is made.

B. Electronic states in cylindrical coordinates

The semiconductor Bloch equations for bulk systems are
usually formulated in the basis of electronic Bloch states
given by


bk�r� = 	r
bk� =
1

L3/2eik·rubk�r� , �9�

where b is the band index, k is the crystal momentum, and L
is the linear size of the system. In principle, this basis set
could be used as well in our treatment of TL-excited systems
but one finds that it is not a convenient choice. To see this, let
us recall the interband matrix element of the TL-matter in-
teraction Hamiltonian given in Ref. 16

	ck�
hI
�+�
vk� = − �− i�l q

me

A0�t�
L

1

qr
��r,qr

��z,qz
ei� l��� · pcv�e−i�t,

where �=k�−k has an azimuthal angle � and its projection
in the x-y plane has length �r, and pb�b

= �1 /a3��cd
3xub�

� �r�p̂ub�r�. After inserting this matrix ele-
ment �and its complex conjugate� into Eqs. �5�–�7�, one im-
mediately realizes that a single state in the valence �conduc-
tion� band is connected to a multitude of states in the
conduction �valence� band having any angle �; pictorially,

this has been represented by us in Ref. 16 by a conelike
excitation in momentum representation. Thus, the equations
are almost completely coupled—with the exception of the z
component—and even the perturbation-theory solution looks
complicated and hard to interpret.

As anticipated in the introduction, there are compelling
reasons to adopt a different basis set for the electrons in the
solid: �i� the symmetry exhibited by the vector potential Eq.
�2�; �ii� �bulk� properties are the same for a box- or cylinder-
shaped solid, in the large-system limit; and �iii� optical exci-
tations are well described in a band-edge or effective mass
approximation. Therefore, we adopt cylindrical states to treat
the electrons; their wave functions and energies are �see Ap-
pendix�


bkm�r� = NJm�krr�eim�eikzzub�r� ,

	bkm =
�2

2mb
� �kr

2 + kz
2� + �bcEg, �10�

where k represents the quantum numbers 
kz ,kr� with
kz=2�n /H and kr=rms /L.22 H and L are the height and ra-
dius of the cylinder, respectively, rms is the sth root of the
Bessel function of order m, the normalization constant N
depends on 
m, s�, and n is an integer. In this basis set, the
light-matter interaction matrix elements read

	ck�m�
hI
�+�
vkm� = �ckr�m�,vkrm

e−i�t�l,m�−m�qz,kz�−kz
,

	vk�m�
hI
�−�
ckm� = �ckrm,vkr�m�

� ei�t�−l,m�−m�−qz,kz�−kz
, �11�

where

�b�kr�m,bkrm
= − q

me
A0�pb�b · ���N�N�0

LdrrJl�qrr�

� Jl+m�kr�r�Jm�krr� .

In order to derive the TL-generalized SBE, we specialize
Eqs. �5�–�7� to cylindrical states, for which the composite
quantum index is �= 
kz ,kr ,m�. The plan is to write the equa-
tions of motion only for those components of 
 which are
effectively coupled among themselves. In this way, we sepa-
rate the evolution on the whole Hilbert space into that of
dynamically uncoupled subspaces. Thus, we proceed by first
writing down the equation of motion of a population or an
intraband coherence, say, of the valence band. It can be seen
that if the semiconductor is initially in its noninteracting
ground state �it is universally accepted in the SBE literature
to assume the absence of Coulomb correlations in the unex-
cited material� we only need to consider cases with

kz�=kz ,m�=m�, since all other coherences remain zero at all
times.19 Thus we write
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i�
d

dt

vkzkr�m,kzkrm

= �vkzkrm,kzkr�m
vkzkr�m,kzkrm

+ ei�t�
kr�

�ckr�m+l,vkrm
�


vkzkr�m,ckz+qzkr�m+l

− e−i�t�
kr�

�ckr�m+l,vkrm

ckz+qzkr�m+l,vkzkrm

.

�12�

We see that 
vkzkr�m,kzkrm
gets coupled to an interband coher-

ence 
vkzkr�m,ckz+qzkr�m+l and 
ckz+qzkr�m+l,vkzkrm
, with all values kr�

of the radial quantum number, but with just 
kz ,m� and

kz+qz ,m+ l� for the other two quantum numbers. The
Heisenberg equation for these interband coherences is

i�
d

dt

vkzkr�m,ckz+qzkrm+l

= �ckz+qzkrm+l,vkzkr�m
vkzkr�m,ckz+qzkrm+l

+ e−i�t�
kr�

�ckrm+l,vkr�m
vkzkr�m,kzkr�m

− e−i�t�
kr�

�ckr�m+l,vkr�m
ckz+qzkr�m+l,kz+qzkrm+l �13�

with 
v��,c�=
c�,v��
� . Inspection of this equation reveals that

the interband coherence is coupled back to the initial
valence-band coherence �Eq. �12�� and additionally to a
conduction-band coherence or population, whose equation of
motion is

i�
d

dt

ckz+qzkr�m+l,kz+qzkrm+l

= �ckz+qzkrm+l,kz+qzkr�m+l
ckz+qzkr�m+l,kz+qzkrm+l

+ e−i�t�
kr�

�ckz+qzkr�m+l,vkzkr�m
ckz+qzkr�m+l,vkzkr�m

− ei�t�
kr�

�ckz+qzkrm+l,vkzkr�m
�


vkzkr�m,ckz+qzkrm+l. �14�

This equation couples the population or intraband coherence

ckz+qzkr�m+l,kz+qzkrm+l to interband coherences which evolve ac-
cording to Eq. �13�. It is clear that the system of equations is
closed in the subspaces of fixed 
kz ,m� and 
kz+qz ,m+ l�,
and the complexity of the problem has been drastically re-
duced, compared to the system of equations found in the case
of Bloch states for a cubic bulk material. We may say that
our procedure is equivalent to a block diagonalization. At
this stage, the problem is highly tractable by computational
techniques since the only unconstrained variable is kr.

C. Low-excitation regime

Equations �12�–�14� in all their generality are not ame-
nable to analytical treatment. However, in the case of low
photoexcitation, an analytical perturbative approach is pos-
sible and gives us the basic physical insight that we are look-

ing for. We now pursue this approach but work initially with
the system of Eqs. �5�–�7� instead of Eqs. �12�–�14� since the
former are more general and also notationally simpler than
the latter. We solve the system to lowest order in the vector
potential, that is, we first solve Eq. �7� assuming that the
zeroth-order intraband elements are 
v,���=���,� and

c,���=0, and then solve Eqs. �5� and �6� using the first-order
solution of Eq. �7�. The equation of motion for the interband
polarization 
v��,c� becomes

�i�
d

dt
− �	c� − 	v����
v��,c�

�1� = 	c�
hI
v��� . �15�

For a monochromatic electromagnetic field turned on at t
=0 the solution in the rotating-wave approximation reads


v��,c�
�1� �t� = Yc�,v���t�	c�
hI

�+�
v��� �16�

with

Yc�,v���t� = −
1 − e−i��	c�−	v���−���t/�

�	c� − 	v��� − ��
.

Inserting 
v��,c�
�1� in the equations for the intraband coherence,

Eqs. �5� and �6�, we obtain


c,��,�
�2� �t� = −

i

�
e−i�	c�−	c���t/��

�1

	c�
hI
�+�
v�1�	v�1
hI

�−�
c���

��
0

t

dt�ei�	c�−	c���t�/��Yc��,v�1

� �t�� − Yc�,v�1
�t��� ,


v,��,�
�2� �t� = ���,� −

i

�
e−i�	v�−	v���t/��

�1

	v�
hI
�−�
c�1�

�	c�1
hI
�+�
v����

0

t

dt�ei�	v�−	v���t�/�

��Yc�1,v���t�� − Yc�1,v�
� �t��� . �17�

For example, the conduction-band populations reduce to


c,�,�
�2� �t� =

2

�
�
�1


	c�
hI
�+�
v�1�
2

�	c� − 	v�1
− ���2

�
1 − cos��	c� − 	v�1
− ���t/��� , �18�

where one sees that their time evolution is slow with fre-
quencies close to the detuning. As for the products of matrix
elements, in our problem, with �= 
kz ,kr ,m�, a simple calcu-
lation using Eqs. �11� yields

	c�
hI
�+�
v�1�	v�1
hI

�−�
c���

= �ckrm,vk1rm1
�ckr�m,vk1rm1

�
�m�,m�kz,kz�

�m1,m−l�k1z,kz−qz
,

	v�
hI
�−�
c�1�	c�1
hI

�+�
v���

= �ck1rm1,vkrm
� �ck1rm1,vkr�m�m�,m�kz,kz�

�m1,m+l�k1z,kz+qz

�19�

in agreement with the decoupling of Eqs. �12�–�14�, showing
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that the second-order process involves an intermediate state
�1 which can only differ from the initial state by �l and �qz
in the quantum numbers m and kz, respectively. Note that the
interband coherence is of order O�A�r , t�1�, while the popu-
lations and intraband coherences are of order O�A�r , t�2�, as
indicated with superscripts. Finally, the time behavior of
each component is clearly discernible: while the interband
coherence oscillates at the frequency of the TL field, the
populations and intraband coherences do it typically at tera-
hertz frequencies associated with interband Rabi flops and
intraband energy differences.

IV. ELECTRON QUANTUM KINETICS

The solutions to Eqs. �12�–�14� are the building blocks for
constructing mean values of observables of interest. In the
standard theory of optical transitions, where the light is as-
sumed to be a plane wave and the dipole approximation is
made, once the time- and momentum-dependent density ma-
trix is obtained, one calculates the macroscopic optical po-
larization and from it, for example, the optical
susceptibility.23 Under those assumptions, the macroscopic
polarization is just a spatially uniform, time-dependent, func-
tion.

By contrast, if the inhomogeneities of the field are taken
into account �e.g., finite beam waist and oscillatory depen-
dence in the propagation direction�, the electronic variables
acquire an intricate space dependence. The excitation of sol-
ids by TL beams also produces a space-dependent carrier
kinetics which requires local variables for its description. In
order to visualize the pattern of motion of the photoexcited
electrons, we calculate in this Section the spatially inhomo-
geneous electric current density. Another useful variable, the
transferred angular momentum, is instead a global magnitude
that characterizes the TL-material interaction. Here we cal-
culate their dynamics up to second order in the field ampli-
tude.

In the calculations that follow, we will study separately
the contributions to the angular momentum and the electric
current made by the interband coherences, on the one hand,
and by the populations and intraband coherences, on the
other. This separation is conceptually useful because the in-
terband coherence contributions are fast �femtosecond� oscil-
lations around a null value of the current or angular momen-
tum, analogously to what happens with the interband
polarization, while the population or intraband-coherence
contributions come from slower �picosecond� processes in
which a net transfer of momentum from light to matter oc-
curs. The latter are related to the photon-drag effect,24,25

which is now generalized to incorporate a rotational drag in
the plane perpendicular to the propagation direction, due to
the “slow” transfer of angular momentum. Furthermore, as
we will see below, the lowest-order contributions for inter-
band and intraband processes are of first and second order in
the light field, respectively.

An investigation of the transfer of orbital angular momen-
tum and the generation of paramagnetic currents in semicon-
ductors and insulators was presented by us in a previous
publication.16 In that study we employed a simple wave-

function approach, which was limited to describe the single-
particle dynamics. Our current theoretical analysis uses the
formalism of the Heisenberg equations of motion for popu-
lations and coherences, which fully accounts for the Pauli
exclusion in the multielectron excitation process, and has the
advantage that it can be extended to include electron-electron
interaction. In what follows, we analyze with this tool the
transfer of orbital angular momentum and the generation of
electric currents, including the diamagnetic term—missing in
our previous study.

A. Transfer of angular momentum

Since the TL beam carries angular momentum around the
z axis, we focus on the corresponding quantity for electrons

L̂z�t� = �
b�b���

	b���
l̂z
b��ab���
† �t�ab��t� , �20�

where l̂z=−i���. We split the matrix-element integral

	b���
l̂z
b�� into an integral on the unit cell and a sum over
lattice sites. Naturally, care must be taken when operating
with −i��� on the envelope, �km�r�=NJm�krr�eim�eikzz, and
on the periodic, ub�r�, parts of the wave function 
bkm�r�.
We obtain

	b�k�m�
l̂z
bkm� = �kz�,kz
�mm��kr�,kr

��bb��m + �z,b�b�

+ �1 − �bb��Lb�k�m�,bkm,

where

Lb���,b� =� d3r ���
� �r����r�r � pb�b
z �21�

and this integral is over the whole crystal. We note that the
quantity �z,b�b does not depend on the OAM of light, and so
we disregard it from now on. Next, we split the angular
momentum into interband �coherence� and intraband �popu-
lation and coherence� contributions, and use the
perturbation-theory solutions of Eqs. �16� and �17�.

Interband-coherence contribution. After taking the mean
value of the angular momentum operator �written in second-
quantization notation in Eq. �20�� on the initial state, we
identify the component of the electronic angular momentum
driven by the interband coherence as

Lz
�coh��t� = �

k�m�km

2R�Lvk�m�,ckm
vk�m�,ckm
�1� �t�� . �22�

We note that Lvk�m�,ckm contains the factor �kz�,kz
, while


vk�m�,ckm
�1� �t� contains the factor �kz,kz�+qz

. This mismatch,
which renders a vanishing Lz

�coh�, comes from dropping the
dipole approximation in the calculation of the interband co-
herence, and, at the same time, considering that the solid is
infinite in extent �in Eq. �21��. To be consistent, one needs to
consider the system as a thin slice of semiconductor perpen-
dicular to the z axis, having a width much smaller than the
wavelength of the light. As a consequence, if the slice is
located at z0, �kz�,kz

is replaced by exp�i�kz−kz��z0� and we
obtain
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Lb�k�m�,bkm = i�fkr�m�,krm
ei�kz−kz��z0

���−1,m−m�p−,b�b − �1,m−m�p+,b�b�

with fkr�m�,krm
=N�N�drr2Jm��kr�r�Jm�krr� and p�,b�b

= x̂ ·pb�b� iŷ ·pb�b. Then, we may succinctly state that
Lb�k�m�,bkm���1,m−m�. Inspection of the coherence,
Eq. �16�, and matrix elements, Eq. �11�, shows that

vk�m�,ckm

�1�
��l,m−m�. Thus, we conclude that at this level there

is a transfer of angular momentum back and forth between
the light beam and the electrons if and only if 
l
=1. We
emphasize that, on time average, there is no net transfer of
angular momentum to the material system, unless the tempo-
ral shape of the electromagnetic pulse is asymmetric.26

Population and intraband-coherence contribution. The
component of angular momentum driven by the populations
and intraband coherences reads

Lz
�pop��t� = �

km

�m�
vkm,km
�2� �t� + 
ckm,km

�2� �t�� .

In order to correctly interpret this expression, we recall that
the TL photoexcitation process connects the valence-band
subspace of fixed 
kz ,m� with the conduction-band subspace
of fixed 
kz+qz ,m+ l�; thus, an imbalance population in the
conduction band is produced. This asymmetry between
populations in both bands with respect to the quantum num-
ber m brings about a net angular momentum acquired by the
electrons, which we refer to as rotational photon drag. In
contrast to Lz

�coh��t�, Lz
�pop��t� has no restrictions on the values

of l that cause a transfer of angular momentum and its time
average yields a nonzero value.

B. Induced currents

Next we will obtain the photoinduced currents produced
by the irradiation with TL. The general expressions of the
electric current in second quantization notation are as fol-
lows. The more standard, paramagnetic, current density is
given by ĵ�p��x , t�=−iq� / �2me�limx�→x��−���
†�x� , t�
�x , t�
and the diamagnetic term is given by ĵ�d��x , t�
=−q /meA�r , t�
†�x , t�
�x , t�.27 We apply these expressions
to our problem, and after some algebraic manipulation, we
obtain, for the paramagnetic term

ĵ�p��r,t� = − i
q�

2me
�

b�k�m�
bkm

�
b�k�m�
� �r� � 
bkm�r�

− 
bkm�r� � 
b�k�m�
� �r��ab�k�m�

† �t�abkm�t� �23�

and for the diamagnetic term:

ĵ�d��r,t� = −
q

me
A�r,t� �

b�k�m�
bkm


b�k�m�
� �r�
bkm�r�

� ab�k�m�
† �t�abkm�t� . �24�

In what follows both contributions will be studied in detail.

The simplification of the expressions will proceed in a simi-
lar manner to the calculation of the transferred angular mo-
mentum. However, at a certain point we will make use of a

space average �Ā= �1 /a3��celld
3rA� in order to eliminate ir-

relevant microscopic �intracell� details.

1. Paramagnetic-current density

Now we work out the expression �23� by replacing the
wave functions from Eq. �10�. We apply the gradient opera-
tor on the envelope and periodic parts of the Bloch wave
function, perform space average, take mean value over the
initial state, and split the result into interband coherence and
population, and intraband-coherence contributions.

Interband-coherence contribution. The interband-
coherence contribution to the current density is given by

j̄�coh��r,t� =
2q

me
�

k�m�
km

R�pvcN�NJm��kr�r�Jm�krr�

� ei�kz−kz��zei�m−m���
vk�m�,ckm
�1� �t�� .

With the help of Eqs. �11� and �16� we simplify this expres-
sion to

j̄�coh��r,t� =
2q

me
R�pvce

iqzzeil� �
kr�kr

kzm

N�N

� Jm−l�kr�r�Jm�krr�
vkz−qzkr�m−l,ckzkrm
�1� �t�� .

The main feature of this expression is that it contains a sum
over products of space- and time-dependent functions. The
time dependence presents two distinct scales, as mentioned
before: a rapid oscillation related to the frequency � of the
light beam and a slower one that is related to the detuning.

To describe the electric-current patterns in the plane per-
pendicular to the z axis, we disregard the slow time evolution
and focus on the space- and time-dependent quantity
R�pvce

i�qzz+l�−�t�Jm−l�kr�r�Jm�krr��, see Fig. 1. We can see that
the current density and the angular momentum at this level
are consistent with each other. To see this, let us take as an
example a TL field having circular polarization �+= x̂+ iŷ.
From the usual selection rule for the absorption of a photon,
a nonvanishing light-matter matrix element requires
pcv= p0�x̂− iŷ�. Since pvc=pcv

� = p0�x̂+ iŷ�, we see from Eq.
�22� that a nonvanishing angular momentum will appear only
if l=−1; in this case the current pattern reflects this fact,
presenting a “circulation” around the beam axis. On the con-
trary, if the beam is tuned to l=+1 and �+, the current forms
a pattern that does not “flow” around the axis. As we move
along the z axis for fixed time, we observe the wave nature of
the x-y plane current �Fig. 2�. For fixed z, the wave nature is
revealed as time evolves. For different values of l, the elec-
tric current develops more complex patterns, which mimic
the complex structure of the electric field of a TL beam. In
the case of 
l
�1, there appear more than one off-centered
vortices, as illustrated in Fig. 3.
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From the above we can extract some general features of
j̄�coh��r , t�. Driven by the interband coherence, it oscillates in
time, with zero mean, at the frequency of the EM field, and
presents complex spatial patterns that are related to the pe-
culiar electric field of the TL beam. For special cases, the
spatial pattern displays a circulation �of microscopic origin
and not to be confused with a macroscopic excursion of the
electrons around the beam axis� related to the nonvanishing
coherence contribution of angular momentum calculated in
Sec. I.

Population and intraband-coherence contribution. The
population and intraband-coherence contribution to the para-
magnetic current is given by

j̄�pop��r,t� = − i
q�

2me
�

k�m�
km


��k�m�
� �r� � �km�r�

− ��km�r� � �k�m�
� �r����
ck�m�,km

�2� �t� + 
c → v� ,

where 
ck�m�,km
�2� �t� is given by Eqs. �17� and �19�, and


c→v� stands for a similar term replacing c by v. The intra-
band current in the direction of �̂ is

j̄�
�pop��r,t� =

q�

me
�
kr�kr

mkz

N�Nm
1

r
Jm�kr�r�Jm�krr�

�
ckr�kzm,krkzm
�2� �t� + 
c → v� . �25�

Given that the electrons excited by the TL beam occupy
initially a portion of the valence band that is symmetric with
respect to the � point of the Brillouin zone, we have disre-
garded the contribution to j̄�

�pop��r , t� coming from the holes
left behind, and kept only the current produced by the imbal-
ance of electrons in the conduction band. The parameter l
does not appear explicitly, but it enters 
ckr�kzm,krkzm

�2� �t�, since

an electron leaving a state with 
v ,m� goes to a state with

c ,m+ l�.

2. Diamagnetic current density

Starting from Eq. �24�, we perform a space average and
obtain for the diamagnetic term

j�d��r,t� = −
q

me
A�r,t� �

kr�kr

kzm

N�NJm�kr�r�Jm�krr�

�
ckr�kzm,krkzm
�2� �t� + 
c → v� .

We point out the following features of the diamagnetic cur-
rent density: �i� it arises from populations and intraband co-
herences in each band; �ii� its vectorial character is given by
the polarization of the light; �iii� it is of third order in the

X

Y

FIG. 1. �Color online� First-order paramagnetic current for light
with l=1 and polarization �−. The center of the plot coincides with
the beam axis. The factor Jm−l�kr�r�Jm�krr� is drawn in dashed �red�
line.

q.z�0 q.z�Π�2

q.z�Π q.z�3Π�2

FIG. 2. �Color online� First-order paramagnetic current for light
with l=1. The center of each plot coincides with the beam axis.
Each panel pictures a different slice along the z axis, showing the
wave nature and space variation of the pattern.

X

Y

FIG. 3. �Color online� First-order paramagnetic current for light
with l=2. The center of the plot coincides with the beam axis. The
space pattern is more complex than in the l=1 case and exhibits
circulation around off-axis centers.
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vector potential amplitude; �iv� it does not arise from an
imbalance of the conduction-band population �it is not pro-
portional to m as j̄�

�pop��r , t�, see Eq. �25��; �v� its time evo-
lution is given by the slow evolution of 
c

�2��t� and the fast
oscillation of the field A�r , t�.

V. CONCLUSIONS

We developed a theory of the band-to-band transitions
induced by twisted light �light carrying orbital angular mo-
mentum� in bulk semiconductors. We posed the problem of
the light-matter interaction in terms of Heisenberg equations
of motion for the populations and quantum coherences of a
two-band semiconductor model, as customarily done. We
found that the resulting system of equations is greatly sim-
plified when the envelope electron wave functions are repre-
sented in cylindrical coordinates, instead of using the usual
�Cartesian� Bloch state representation. This simplification is
due to the decoupling of the system of equations in sub-
systems determined by the orbital angular momentum of
electrons. Though nonstandard for the bulk case, our choice
of basis states is, on the one hand, perfectly admissible and,
on the other, it proves to be the best choice from a math-
ematical point of view. It is admissible because the material
properties are unaffected by surface effects in the limit of a
bulk/large system. It is the right choice since it provides the
highest symmetry compatibility between the twisted-light
vector potential and the electron states.

Despite the achieved simplification, the evolution of the
different relevant physical quantities under the excitation by
a time-dependent pulse must be computed via numerical
analysis of the equations of motion. This task is left for fu-
ture work; instead, we showed here analytical results in the
low-excitation or perturbative regime. With the solutions for
the populations and quantum coherences, we confirmed on
more solid grounds our previous findings, i.e., that the opti-
cal excitation will generate electric currents and that there
will be a transfer of orbital angular momentum from the light
beam to the electrons. Our analysis of the electric current and
electron’s orbital angular momentum showed that two quali-
tatively different contributions enter both observables; they
may be termed microscopic and macroscopic contributions.
The microscopic contribution relates to the interband coher-
ence and mimics the behavior of the electric field; from this
and other reasons, it parallels the induced polarization of a
semiconductor in the presence of plane waves, as tradition-
ally studied using the vertical-transition assumption. On the
other hand, the macroscopic contribution signals a net trans-
fer of OAM from the field to the electrons, and it parallels
the photon-drag effect. We showed that the electric current
exhibits a high degree of spatial complexity due to the inho-
mogeneous nature of the twisted-light beam. Additionally,
we have calculated and briefly analyzed the diamagnetic cur-
rent, not addressed in our previous study.
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APPENDIX: PARTICLE IN A HOLLOW CYLINDER

We present the complete derivation of the electronic states
in cylindrical coordinates, starting from the well-known so-
lution of the Schrödinger equation without potential

−
�2

2m
�2��r� = E��r� ,

where the Laplacian in cylindrical coordinates is

�2f =
1

r

�

�r
�r

� f

�r
� +

1

r2

�2f

��2 +
�2f

�z2 .

Consider a solution of the separable form ��r�
=R�r�����Z�z�; replacing into the Schrödinger equation, we
get

−
�2

2m
� 1

R

1

r

�

�r
�r

�R

�r
� +

1

�

1

r2

�2�

��2 +
1

Z

�2Z

�z2� = E ,

which yields

� 1

R

1

r

�

�r
�r

�R

�r
� +

1

Z

�2Z

�z2� +
1

�

1

r2

�2�

��2 = − �2,

where 2m
�2 E=�2. Then

� 1

R
r

�

�r
�r

�R

�r
� +

r2

Z

�2Z

�z2 + �2r2� +
1

�

�2�

��2 = 0,

which splits to

1

R
r

�

�r
�r

�R

�r
� +

r2

Z

�2Z

�z2 + �2r2 = m2,

1

�

�2�

��2 = − m2.

The second equation has solution �=A1eim�+A2e−im�. The
remaining equation is

1

R

1

r

�

�r
�r

�R

�r
� + �2 −

m2

r2 +
1

Z

�2Z

�z2 = 0.

This is again separable

1

R

1

r

�

�r
�r

�R

�r
� + �2 −

m2

r2 = �2,

1

Z

�2Z

�z2 = − �2

with solution Z=Bei�z, and equation

1

R
r

�

�r
�r

�R

�r
� + ��2 − �2�r2 − m2 = 0

and developing the derivatives
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r2d2R

dr2 + r
dR

dr
+ ���2 − �2�r2 − m2�R = 0,

which is almost the Bessel differential equation. Defining
x2= ��2−�2�r2 the correct differential equation follows

x2d2R

dx2 + x
dR

dx
+ �x2 − m2�R = 0.

1. Boundary conditions

For Z�z� we use boundary conditions Z�0�=Z�H� and ob-
tain

Z�z� =
1

�H
ei�z,

� =
2�n

H
.

For ����, the periodicity implies

���� = N�eim�,

m = . . . ,− 2,− 1,0,1,2, . . . .

For the radial solution, since it has to be finite at the origin,
the solutions are the Bessel functions of the first kind Jm�x�.
If we demand that Jm�x=��2−�2L�=0, then the sth zero rms
of the Bessel function should be �2= �rms /L�2+�2

Enms =
�2

2m
�� rms

L
�2

+ �2�n

H
�2� ,

�nms�r� = NmsJm���2 − �2r�eim�ei2�n/Hz

with normalization Nms= 2
LJm� �rms�

� 1
2�H and ��� for any ad-

missible solution.

2. Cylinder with a Bravais lattice

In the effective-mass approximation, the complete wave
function is expressed as the product of an envelope �nms�r�

and a periodic u�r� function. Then, the Schrödinger equation
reads

−
�2

2m
u�r��2�nms�r� −

�2

2m
�nms�r��2u�r�

−
�2

m
���nms�r�� · ��u�r�� + U�r���nms�r�u�r��

= E��r�u�r� ,

where U�r� is the lattice potential. Since we have already
solved the problem of the free particle without u�r�, we
know that − �2

2m�2�nms�r�=Enms
�0� �nms�r�. Dividing by �nms�r�

and grouping terms we get

−
�2

2m
�2u�r� + U�r�u�r� −

�2

m

��nms�r� · �u�r�
�nms�r�

= �E − Enms
�0� �u�r� .

This is an equation for u�r� �since we already know the
functional form of �nms�r��. We ask that u�r�=u�r+R�, with
R a lattice vector, so we can regard the region of integration
as the unit cell. Then, if �nms varies slowly in the unit cell,
we see ��2 /m��nms�r�−1���nms�r�� · ��u�r�� as a perturba-
tion. This is simply the k ·p approximation in a different
coordinate system. To lowest order we have

−
�2

2m
�2u�r� + U�r�u�r� = �Eu�r�

and from here one obtains u�r� as usual. Therefore, we take
the eigenfunctions as a product of envelope and periodic
functions while the energy is that of the envelope corrected
by the energy gap and the effective mass

Ebnms =
�2

2mb
��� rms

L
�2

+ �2�n

H
�2� + �bcEg,

�bnms�r� =
Nr

�2�H
Jm��rms/L�r�eim�ei2�n/Hzub�r� ,

where H is the height and L the radius of the cylinder.
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