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Abstract
The statistical mechanics of small clusters (n∼10–50 elements) of harmonic
oscillators and two-level systems is studied exactly, following the microcanonical,
canonical and grand canonical formalisms. For clusters with several hundred
particles, the results from the three formalisms coincide with those found in the
thermodynamic limit. However, for clusters formed by a few tens of elements, the
three ensembles yield different results. For a cluster with a few tens of harmonic
oscillators, when the heat capacity per oscillator is evaluated within the canonical
formalism, it reaches a limit value equal to kB, as in the thermodynamic case, while
within the microcanonical formalism the limit value is kB(1–1/n). This difference
could be measured experimentally. For a cluster with a few tens of two-level
systems, the heat capacity evaluated within the canonical and microcanonical
ensembles also presents differences that could be detected experimentally.
Both the microcanonical and grand canonical formalism show that the entropy is
non-additive for systems this small, while the canonical ensemble reaches the
opposite conclusion. These results suggest that the microcanonical ensemble is the
most appropriate for dealing with systems with tens of particles.

Keywords: few-particle systems, ensembles, specific heat nanoparticles

(Some figures may appear in colour only in the online journal)

1. Introduction

Statistical mechanics has traditionally dealt with systems formed by a large number of par-
ticles (n∼1023); but, at present, experiments can be carried out on clusters with a few tens of
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atoms [1]. This justifies studying the statistical mechanics of systems with few particles and
low energy, and one may even wonder about the equivalence of the different formalisms
when the system is small. Conventional wisdom [2–4] states that the results obtained with the
microcanonical, canonical and grand canonical formalisms coincide in the thermodynamic
limit. However, it is known that no such thing occurs in certain situations, which has gen-
erated an active line of research [5–7]. The examination of such cases has been focused on
models with theoretical interest but with very limited use for modelling experiments. For this
reason, the current paper proposes the study of two models widely used to analyse exper-
imental results: the harmonic oscillator and the two-level system, which can also be inter-
preted as a spin system. The objective here is to evaluate exactly the statistical mechanics for
these two models when they have few particles and, consequently, low energy. This implies
keeping in mind that the energy is quantised, i.e., that the system has an integer number of
energy quanta. Thus, the idea is to calculate statistical properties in terms of the fundamental
constituents of the system: the number of matter particles n and the number of energy quanta
m, using the three usual formalisms of statistical mechanics.

In previous publications [8, 9] some results in this direction were obtained. In this
article the three usual formalisms of statistical mechanics are considered and it is shown that
exact analytic expressions for thermodynamics magnitudes can be found. This is an
interesting and instructive exercise for a graduate course in statistical physics; exact results
are always attractive. And an intriguing question is stated: for systems with few tens of
particles, the canonical and microcanonical formalisms lead to different results that might
be observable in experiments. Perhaps someone might try to find out which formalism is the
right one.

This article is structured as follows: in section 2 the models are described and analysed
within the microcanonical formalism; in section 3 the harmonic oscillator and the two-level
system are analysed within the canonical formalism; in section 4 the relationship between the
canonical and grand canonical formalisms is discussed, and the models are analysed with the
latter; in section 5 results are compared and discussed; and in section 6 some final remarks
are made.

2. Models within the microcanonical ensemble

As already mentioned, the goal of this article is to analyse two models, widely used
throughout the literature, when they are formed by few particles n. Due to such size, the
discrete nature of energy must be taken into account and, therefore, the studied system should
be considered to have m energy quanta. For a system consisting of n harmonic oscillators with
a frequency v, the energy is expressed:

E mhv. 1= ( )

Note that the zero-point energy of the oscillators has not been taken into account. To include
it, a term n ½ hv should be added to (1), but this has no observable consequences. From here
onwards, the units used will be such that hv=1. Thus, the energy is simply the number of
quanta present. In this article, entropy is measured in such units such that kB=1.
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The microcanonical entropy of n oscillators with m energy quanta is [3]:

S n m
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m n
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It is convenient to rewrite (2) avoiding factorials. The usual treatment for this problem is to
use Stirling’s approximation, which is valid for large systems. However, the systems studied
in this article have small n and m, so that a rewritten version of the exact expression (2) will
be used here. To rewrite the formula, it should be kept in mind that: x kln ln .

k

x

1å= =[ !] [ ]
Using this expression for the three factorials that appear in (2) and doing some algebraic
manipulations, that equation can be rewritten as:
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Note that expression (3) is exact, includes no approximations, and is, therefore, appropriate
for dealing with systems with small n and m. Superscript ‘mic’ indicates that the oscillator’s
entropy is evaluated within the microcanonical formalism.

The next step is to obtain the temperature for the cluster of oscillators. This is done
through the well-known thermodynamic expression: 1/T=(∂S/∂E)n. However, it must be
kept in mind that the energy is quantised. As the system has m, m− 1, m− 2, etc., energy
quanta, the derivative cannot be calculated and the expression must be rewritten using finite
differences. The resulting equation is:

T
S n m S n m

1
, , 1 . 4= - -( ) ( ) ( )

A backward finite difference scheme was used for the temperature to be properly defined
even when m=0. By using this scheme, it can be verified that T(m)→0 when m→0. If a
forward difference scheme is used, the temperature differs from zero when there are no energy
quanta, which is physically incorrect.

From (2) and (4), it follows that the temperature for the oscillator in the microcanonical
ensemble is:

T

m n
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It is easy to verify that Tosc
mic→0 when m→0, as expected.

To calculate the chemical potential, the expression used is: μ/T=−(∂S/∂n)E. Again,
given that the number of particles is discrete, the derivative must be replaced by finite
differences:

S n m S n m

S n m S n m

, 1,

, , 1
. 6m = -

- -
- -

( ) ( )
( ) ( )

( )

From (2), (5) and (6), it follows that:
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To calculate the heat capacity, remember C=(∂E/∂T)n. Once again, considering that
the energy only assumes discrete values, the smallest possible change for E is 1, i.e., a system
with m quanta now has (m+1) quanta. Thus, the resulting expression to calculate the heat
capacity is:
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C
T n m T n m

1
, 1 , . 8= + -( ) ( ) ( )

It should be noted that, in this case, a forward difference scheme was used, due to what
occurs when m→0. For oscillators as well as for two-level systems, if a backward difference
scheme is used, then C→−ln [−2− n], i.e., the heat capacity becomes imaginary. When a
forward difference scheme is used, then C→ln [n] for both models.

For the harmonic oscillator, from (5) and (8) it follows that:
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The same type of calculations can be applied to clusters formed by n two-level systems,
where each object can be in a ground state with energy 0 and an excited state with energy ε.
Clearly, this could be considered as spins in a magnetic field where the zero of energy
corresponds to the situation in which the spin is parallel to the field. If there are m particles in
an excited state, this means that there are m energy quanta, i.e.:

E m . 10e= ( )

As in the case of the oscillator, the energy and entropy are measured in such units that ε=1
and kB=1. The microcanonical entropy for the two-level system is given by [3]:
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Like in the previous case, it is convenient to write factorials as logarithmic summations;
reordering terms, the resulting expression is:
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From (4) and (11), it follows that the microcanonical temperature is:
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The chemical potential is obtained from (6) and (11):
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Finally, the heat capacity is obtained from (8) and (13):
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This section thus concludes with the calculations within the microcanonical formalism.
Entropy, temperature, chemical potential and heat capacity have been expressed for a system
formed by quantum harmonic oscillators—equations (3), (5), (7) and (9)—and for a cluster of
two-level systems—equations (12)–(15). Results are exact, without approximations of any
kind. The next step is analysing these two models within the canonical ensemble and
expressing the relevant thermodynamic properties in terms of n and m.
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3. Canonical formalism

This section deals first with the harmonic oscillator within the canonical formalism. It is
known that the partition function of an oscillator in contact with a thermal bath at temperature
T is [2–4]:

Z
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1

1
. 16

tosc 1
=

- -
( )

/

If the oscillators are considered distinguishable (e.g., because they are fixed in a crystal
lattice), then the partitioning function of the cluster is: Z=(Zosc)

n. The energy can be calculated
as [2–4]: E=T2 (∂ ln Z/∂T). And, consequently, the mean energy per oscillator E is:

E
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This gives:
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This is the canonical temperature (indicated with superscript ‘can’) for the cluster of
oscillators, expressed in terms of system constituents, i.e., the n particles and the m quanta.
This expression should be compared with equation (5).

The chemical potential in the canonical ensemble is obtained from: μ=−(∂ (T ln
Z)/∂n)E, which gives:
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This expression is analogous to equation (7).
For the entropy calculation, one should remember [3, 4] the relationship between the

partition function, the Helmholtz free energy F and the entropy: S=−∂F/∂T=∂(T ln Z)/∂T=
ln Z+T (∂ lnZ/∂T). Then:
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Finally, the heat capacity of the oscillators cluster evaluated in the canonical ensemble is:
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Next, let us evaluate a cluster formed by two-level systems within the canonical formalism.
The partition function for one of this object is [2, 3]:

Z e1 . 22T
two

1= + - ( )/

It follows that the mean energy E of the particle is:

E
m

n
1 1 . 23Tcan 1 1= + =-( ) ( )/

Once again, the mean energy is equal to m/n; and the temperature, expressed in terms of the
fundamental constituents of the system, can be evaluated within the canonical ensemble thus:
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From this point onwards, the same formulas used for the harmonic oscillator apply here, using
(24) to replace the temperature. Thus, for a cluster consisting of n two-level systems with m
energy quanta, the following expressions are valid:
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In the next section, the models are analysed within the grand canonical formalism.

4. Grand canonical formalism

The canonical and grand canonical formalisms are closely related, so much so that the
physical properties calculated within the grand canonical formalism can be expressed in terms
of the same properties evaluated within the canonical formalism. These relationships are
briefly mentioned as follows.

The grand partition function Ƶ is connected to the canonical partition function Z through
[3, 4]:

T e Z T n e Z T e Z T, , 1 1 . 28
n

n T

n

n T n T

0 0
1 1Ƶ å åm = = = -m m m

=

¥
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Z1 is the partition function of a single object. In this case, it will be either Zosc given by (16) or
Ztwo given by (22). The properties that are relevant to this work can be obtained from
equation (28) and using the usual formulas of the grand canonical ensemble [2–4]:

E T
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Note that the energy obtained in the grand canonical formalism (superscript ‘gca’)
coincides with that obtained in the canonical formalism. Consequently, by equating that mean
energy with m/n, the temperatures found will be the same in both formalisms. The same
situation happens in the case of the heat capacity, so that:

T T , 30osc
gca

osc
can= ( )

T T , 31two
gca

two
can= ( )

C C , 32osc
gca

osc
can= ( )

C C . 33two
gca

two
can= ( )

To determine the chemical potential, remember that the number of particles in the grand
canonical formalism is calculated as:
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From this, it follows that:
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Then, taking the expression for Zosc given by (16) and taking into account (18) and (30), it
follows that:
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Similarly, for the two-level systems cluster: Ztwo given by (22) is used, and (24) and (31)
are taken into account. This gives:
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Note that, since the volume and pressure are not defined for the analysed models, the
entropy can be expressed generally as: S=E/T – n μ/T. From the above expressions, it
follows that:
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For the harmonic oscillator, this expression and equations (16), (18) and (30) give:
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Similarly, applying (22), (24) and (31)–(38) gives the entropy of the two-level systems
cluster:
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Thus, the calculations proposed at the beginning of the article are completed. Some
thermodynamic properties (T, μ, S, C) have been expressed in terms of the fundamental
constituents of the system: the number of particles n and the number of energy quanta m,
following the microcanonical, canonical and grand canonical formalisms.

5. Analysis and discussion

For easy viewing, results for the harmonic oscillator are shown in table 1, while those for the
two-level systems cluster appear in table 2.

5.1. The three formalisms yield different results for very small systems (n∼10)

Figure 1(a) shows the entropy for a cluster of oscillators (figure 2(a) for the two-level
systems) with n=10 in relation to the number of energy quanta m. Clearly, with such a small
system the results differ significantly according to the formalism used. This can also be said
for the heat capacity, which is shown in figures 1(c) and 2(c).
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Table 1. Thermodynamic properties of a cluster with n harmonic oscillators and m energy quanta evaluated within the microcanonical, canonical
and grand canonical formalisms.
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Table 2. Thermodynamic properties of a cluster with n two-level systems with and m energy quanta evaluated within the usual formalisms.
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With such small sizes, the difference between the results found in the canonical or
microcanonical formalism would be experimentally detectable. For this, the cluster of
quantum oscillators must be related to the Einstein solid [2–4], keeping in mind that such
model is based on the assumption that a solid with n atoms can be thought of as a set of 3n
quantum oscillators. Let us call NA the Avogadro constant; if one mole is considered, i.e. NA

atoms, it is easy to demonstrate that the heat capacity reaches a limit value equal to 3kBNA,
independently of the formalism used. Considering that this article works with such units that
kB=1, then the heat capacity per oscillator tends to the limit value 1 in the thermodynamic
limit. From figures 1(c) (10 oscillators) and (d) (50 oscillators), it can be concluded that the
heat capacity per oscillator tends to the value 1 within the canonical formalism but not within
the microcanonical formalism. That is to say that the calculations using the canonical
ensemble behave as is expected in the thermodynamic limit, even when working with really
small systems (10–50 particles). When the microcanonical ensemble is used, the limit value
for the heat capacity depends on the size of the system, as expected. In the case of a

Figure 1. Thermodynamic properties for a cluster of n quantum oscillators in terms of
the energy quanta m present in the system. The entropy S is considered for two different
sizes in (a) n=10 and (b) n=50. And the heat capacity C is seen in (c) n=10 and
(d) n=50. Calculations have been made using the microcanonical (●), canonical (+)
and grand canonical (◆) formalisms. The text explains that C evaluated within the
grand canonical ensemble coincides with that from the canonical ensemble; for that
reason, only two curves appear in (c) and (d): the upper curve corresponds to the
canonical formalism and the lower curve to the microcanonical one. Note that, in the
canonical formalism, the heat capacity per oscillator tends to 1 for both n=10 and
n=50, which is the behaviour observed in the thermodynamic limit. This does not
occur in the microcanonical ensemble, and the difference, at least for n=10, would be
observable experimentally.
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10-particle system, the difference with the canonical result is of the order of 10%, which is
therefore experimentally verifiable.

A comment on the relations of the canonical and grand canonical formalisms is due. The
entropy is greater in the grand canonical ensemble than in the canonical one as can be seen
from (38) although the temperature is the same—equation (30). This can be intuitively
understood: a system in the grand canonical ensemble can exchange energy and particles
with the reservoir while the same system in the canonical formalism can only exchange
energy. Thus there are more accessible microstates to the system in the first case and,
consequently, the entropy is greater. Notice—see figures 1(a) and 2(a)—that the micro-
canonical entropy is even lower than the canonical one: the system does not interchange
energy and less microstates are accessible. One can say that as the system is more open, the
number of accessible microstates increases and the entropy is greater.

Regarding the chemical potential, there is no simple explanation why it is different in the
three formalisms. As Callen [10] has pointed out, we do not have an intuitive understanding
of the chemical potential as we have of the temperature or the pressure. For this reason the
chemical potential receives little attention in physics teaching [11]. Nevertheless it is inter-
esting to remark a recent result [12]. If the zero-point energy of the oscillators is taken into
account, it is found that μ(T)=0 for T<T* where T* depends on the size of the system

Figure 2. Thermodynamic properties for a cluster of n two-level systems in terms of the
energy quanta m present in the system. The entropy S is considered for two different
sizes in (a) n=10 and (b) n=50. And the heat capacity C is seen in (c) n=10 and
(d) n=50. Calculations have been made using the microcanonical (●), canonical (+)
and grand canonical (◆) formalism. The text explains that C evaluated within the
grand canonical ensemble coincides with that from the canonical ensemble.
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(T*→0 as N→ ∞). This fact might be a sign of a sort of Bose-Einstein condensation in a
finite-size system but the question deserves further discussion among researchers1.

5.2. Equivalence of the ensembles in the thermodynamic limit

The temperature and chemical potential evaluated within the three ensembles are clearly
equivalent in the thermodynamic limit. It would suffice to compare the elements in the first
two rows of tables 1 and 2 to verify that the difference between them is a term of order +/−1
that is irrelevant when n is large.

The equivalence of the entropy and heat capacity within the canonical and grand
canonical ensembles is also clear. The formulas for the heat capacity are the same in both
ensembles and, according to (38), the entropy is: Sgca=Sca+n ln [1+1/n]; therefore, for a
large number of particles, they both coincide.

An equivalence between the formulas for the entropy and heat capacity obtained with the
microcanonical and canonical ensembles is not readily evident, but can be inferred from
figures 1(b), (d), 2(b) and (d) showing the entropy and heat capacity for clusters with n=50
elements. It can be observed that the difference between the results from the two ensembles is
much smaller than in the case of n=10. If the calculations are repeated with a few hundred
particles, the curves become indistinguishable.

5.3. Non-additivity of the entropy

A non-obvious issue is whether the additivity of the entropy, which is a basic axiom of
thermodynamics [10], is satisfied for such small systems. To test this, the relative difference is
quantified for a larger system, with n particles and m energy quanta, against two smaller
systems, with half the particles and quanta. A property ΔSrel is thus defined, given by:

n m
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n m
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In the case of the oscillators, within the canonical formalism the difference is strictly
zero, as can be easily seen from (20):

Srel 0. 42osc
canD = ( )

Through the microcanonical formalism, an analytical formula for the entropy difference
can be found, but it lacks usefulness since it is complicated and makes use of special
functions. It is more useful to evaluate the difference (41) numerically. The result can be seen
in figure 3(a) (upper curve) where ΔSrel is shown in terms of the system size for the case
where m=n. It can be observed that the difference is higher than 10% for a system with 10
particles and drops to ∼2% for n=100.

Regarding the grand canonical ensemble, it can be demonstrated from (39) that:
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1 In [12] a discrete version of the Leibniz integration rule is used to deal with a small number of particles, but the
approach used is this paper—replacing derivatives by finite differences—is straightforward and intuitive. A finite
difference scheme for a few-particle system represents what actually happens: a particle or quanta is added to the
system and one evaluates the change in a thermodynamic magnitude.
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Therefore, Srel 0osc
gcaD  in the thermodynamic limit, as expected. Its behaviour for small

sizes is shown in figure 3(a) (lower curve): for n=10 the difference is ∼6% and it drops
rapidly to 1% for n=100.

In the case of the two-level systems cluster, the results are similar to those of the
oscillator. It becomes immediately clear from (26) and (41) that, within the canonical
ensemble, the relative entropy difference is identically zero for all n and m:

Srel 0. 44two
canD = ( )

Figure 3. Non-additivity of the entropy for small systems. This figure shows the
relative differenceΔSrel between the entropy of a system with n particles and m quanta
and that of two systems with half the elements—see equation (41)—in terms of the size
of the system. Calculations follow the microcanonical (●), canonical (+) and grand
canonical (◆) formalism. For oscillators (a) the case when m=n is shown. For two-
level systems (b) the case m=n/2 is plotted. Note that the entropy cannot be said to be
additive for n=10, i.e., a fundamental assumption of thermodynamics is not verified;
only when the system has a few hundred elements, such an assumption can be
considered valid. It should be highlighted that the canonical formalism does not detect
this characteristic of small systems.
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Within the microcanonical ensemble, an analytical formula can be found for
equation (41), but it is not very useful since it is expressed in terms of the generalised zeta
function. It is more convenient to plot Sreltwo

micD as shown in figure 3(b) (upper curve). It
can be seen that the relative entropy difference is of the order of 14% for n=10 and m=n/
2, and it drops to 3% for a system with 100 particles. Within the grand canonical ensemble
(lower curve of figure 3(b)), the difference decreases rapidly and is lower than 2% for systems
with 100 elements.

In conclusion, it is clear that a fundamental assumption of thermodynamics holds valid
for systems with a few hundred particles, but not so for systems with n<102.

A critical remark should be made here about the canonical formalism. It is undoubtedly
the most used, but perhaps it may oversimplify reality: both the microcanonical and grand
canonical ensembles show that the entropy is non-additive for small systems, whereas the
canonical ensemble does not even detect this characteristic.

5.4. Canonical or microcanonical ensemble?

In this work, certain thermodynamic properties have been expressed in terms of the number of
particles and the number of energy quanta, i.e., the natural variables of the microcanonical
ensemble. The reason for this choice is that particles and energy quanta are the fundamental
constituents in nature; temperature, being a derived property, has not been assigned a central
value. However, to make comparisons with experimental results, it is easier to control the
temperature than the number of energy quanta. For this, m must be expressed as a function of
T from (18) for the oscillators and from (24) for the two-level systems. By replacing m, the
different thermodynamic properties are found as a function of T.

For the oscillators cluster, the following expressions give the heat capacity:
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Figure 4(a) shows the heat capacity in terms of the temperature for a cluster of oscillators
evaluated within both the canonical and microcanonical ensembles. As mentioned above, the
limit value of the heat capacity in the case of the oscillators should be kept in mind. When the
canonical ensemble is used, the heat capacity per oscillator tends to 1, as in the thermo-
dynamic limit. However, in the microcanonical ensemble, the limit value is lower. That
difference is a quantitative measure of the difference between both formalisms and it would
be experimentally verifiable. From (45), it follows that when T→∞, C n 1 .osc

mic  -( )
Therefore, the heat capacity per oscillator goes to (1 − 1/n)kB when normal units are used.
For a system with n=10, the difference reaches 10%, which is detectable with the current
accuracy levels for measuring heat capacities.

For the two-level systems cluster, the expressions for the heat capacity as a function of
temperature are:
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These expressions are plotted in figure 4(b) for n=10. It can be observed that there is a
significant difference between both curves, which might be detected experimentally.

A remark on the different formalisms of statistical mechanics is due. The microcanonical
formalism assumes that the system is isolated, thus E is constant while the canonical one
supposes the system is in contact with a heat reservoir at a given T and the energy fluctuates,
however the average energy E is constant. It is shown that E=E in the thermodynamics
limit, and the other thermal magnitudes take the same value regardless the applied formalism.

Figure 4. Heat capacity as a function of temperature for a cluster of n=10 elements.
(a) shows the case of harmonic oscillators and (b) two-level systems. The heat capacity
has been evaluated within the canonical (solid line) and microcanonical (dashed line)
formalism. For this size, the difference between both ensembles is relevant. Note that
for the oscillators, the canonical heat capacity per oscillator tends to 1, as in the
thermodynamic limit, while the limit value of the microcanonical heat capacity is 0.9.
This difference falls within what can be measured experimentally and, therefore, it
would allow deciding which of the two formalisms is more appropriate for such small
sizes.
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This means that those magnitudes, for example the heat capacity, are independent of the
system environment. In section 3—equations (17) and (23)—it was clear to equate the average
energy from the canonical formalism with m/n which are microcanonical variables. In this
way the mentioned equivalence holds naturally. However heat capacities obtained with both
formalisms are not equivalent for few-particle systems. Does it mean that the heat capacity of
such small systems depends on the environment? From a formal point of view the answer is
affirmative, though one should be cautious with purely mathematical results; experimentalists
should finally decide the question.

As far as this author knows, experiments measuring the heat capacity of a few-particle
system in different environments have not carried out yet, but semiconductor nanostructures
seem to be suitable for performing them. In particular electrons trapped in a harmonic
potential or a quantum well are good candidates. Of course, in this situation the fermionic
properties of electrons should be taken into account [13–15].

6. Final remarks

The first point to highlight is the robustness of conventional statistical mechanics. For systems
with hundreds of particles, the difference between the three ensembles is small, and for a few
thousand particles, the results are totally indistinguishable. Thus, conventional wisdom can be
said to be validated.

However, it is clear that for systems with n<102 particles the three usual formalisms
yield different results, and that such a difference could be detected experimentally. On this
point, figure 4 may be the one deserving more attention in this article.

Regarding the use of the canonical formalism for such small systems, an interesting issue
has been presented here. As stated above, the partition function of a particle Z1 is calculated,
and then the partition function of the total system is considered to be simply Z .n

1 In a sample
with a few particles, this leads to properties such as the heat capacity or entropy per particle to
behave as in the thermodynamic limit. However, the microcanonical ensemble shows that these
properties depend on the number of particles; besides, that is what is observed in the experi-
ments. Therefore, it would seem that the canonical ensemble cannot deal properly with systems
with tens of elements, and the microcanonical one would appear to be more appropriate for this.
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