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A hybrid scheme that utilizes MPI for distributed memory parallelism and OpenMP for
shared memory parallelism is presented. The work is motivated by the desire to achieve
exceptionally high Reynolds numbers in pseudospectral computations of fluid turbulence
on emerging petascale, high core-count, massively parallel processing systems. The hybrid
implementation derives from and augments a well-tested scalable MPI-parallelized
pseudospectral code. The hybrid paradigm leads to a new picture for the domain decom-
position of the pseudospectral grids, which is helpful in understanding, among other
things, the 3D transpose of the global data that is necessary for the parallel fast Fourier
transforms that are the central component of the numerical discretizations. Details of
the hybrid implementation are provided, and performance tests illustrate the utility of
the method. It is shown that the hybrid scheme achieves good scalability up to �20,000
compute cores with a maximum efficiency of 89%, and a mean of 79%. Data are presented
that help guide the choice of the optimal number of MPI tasks and OpenMP threads in
order to maximize code performance on two different platforms.

Published by Elsevier B.V.
1. Introduction

Fluid turbulence arises from interactions at all spatial and temporal scales, and is therefore the quintessential petascale
application. The Reynolds number Rv, which measures the strength of the nonlinearity in turbulent fluid systems, determines
the number of degrees of freedom (d.o.f.) required to resolve all spatial scales, which increases as R9=4

v (in the Kolmogorov
framework [11,10] of homogeneous and isotropic turbulence). For geophysical flows, Rv is often greater than 108, suggesting
the need to evolve the geo-fluid equations with greater than 1018 grid points, if completely accurate computations of turbu-
lent geophysical flows are to be realized without resorting to modeling of unresolved scales. This approach to computing
fluid flows in which all spatial and temporal scales are resolved is called direct numerical simulation (DNS). If the goal is
to simulate geophysical flows accurately, such computations must be carried out at exascale resolutions, which are not cur-
rently feasible. But petascale resolutions are just now becoming available, that can accommodate resolutions of 1015 grid
points, corresponding to Rv � 107, which still allows for sufficient scale separation to study physically relevant complex tur-
bulent flows.

Pseudospectral methods provide a very useful tool to study the problem because of their computational efficiency and
high order numerical convergence. Attention is often focused on a 2p-periodic box domain in order to study scale interaction
as it allows the use of fast spectral transforms that have a computational complexity of �N log(N) instead of �N2, where N is
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the linear resolution. For studies of homogeneous and isotropic turbulence, this choice is entirely consistent because the do-
main preserves the underlying translational and rotational invariance of the physics. But the approach is useful as well for
studies of anisotropic or inhomogeneous turbulence, which broadens its usefulness. On the periodic domain, the Fourier ba-
sis is optimal, and the pseudospectral discretization [1,7,8] is preeminent due to the effectiveness of the fast Fourier trans-
form (FFT) in converting from physical to spectral space, and back again. The pseudospectral method [13] has thus been used
extensively in studies of computational fluid dynamics (CFD) including turbulence, with references too numerous to cite.
This method has the added advantage of capturing accurately the interaction of multiple scales with little or no numerical
dissipation or dispersion. This is clearly an important property for the numerics if we wish to quantify small scale dissipative
effects that arise in the context of nonlinear turbulent interactions.

Pseudospectral methods, however, require global spectral transforms, and, therefore, are hard to implement in distrib-
uted memory environments. This has been labeled a crucial limitation of the method until domain decomposition tech-
niques arose that allowed computation of serial FFTs in different directions in space (local in memory) after performing
transpositions. One of these methods is the 1D (slab) domain decomposition (see e.g., [2]), that enables multidimensional
FFTs to be parallelized effectively using the Message Passing Interface (MPI). However, these methods are often limited in
the number of compute cores that can be used, and generalizations to larger core counts using solely MPI are often expensive
or hard to tune as transpositions require all-to-all communications. Also, multi-dimensional transforms of some non-Fourier
basis, such as spherical harmonics, cannot be parallelized using this technique. In the present work, a hybrid (MPI–OpenMP)
scheme is described that builds upon the existing domain decomposition scheme that has been shown to be effective for
parallel scaling using MPI alone. We leverage this existing domain decomposition method in constructing a hybrid MPI–
OpenMP model using loop-level OpenMP directives and multi-threaded FFTs. The implementation is intended to address
several concerns. It addresses the multi-level architectures of emerging platforms, and it is also designed to be portable
to a variety of systems, with the expectation that it will provide scalability and performance without detailed knowledge
of network topology or cache structure.

The idea of such loop-level, or implicit, parallelization in concert with MPI is not new. To date, these have generally been
attempted on small core count systems, and the pure MPI scheme is found to outperform the hybrid schemes. In the context
of CFD applications, it was found that on core counts up to 256 the overall elapsed time (for a finite element solver) was
better for the pure MPI scheme than for the hybrid, even though the hybrid approach showed improved communication
times in some cases [17]. A hybrid approach was taken in an implementation of a parallel 3D FFT algorithm [15] that suc-
ceeded in reducing the number of cache misses in the algorithm on an SMP system. But this approach was again tested only
on a small core count platform, and considered the FFT algorithm alone, without the full fluid solver. To the best of our
knowledge, the scheme described herein is the first published implementation of a hybrid model in a pseudospectral CFD
context that has been attempted on high core count systems, and found to scale well.

In the following sections we present a new hybrid implementation. We begin first with a description (Section 2) of the
numerical method and the underlying domain decomposition scheme. In Section 3 the hybrid model is presented, and a
new domain decomposition picture is offered for viewing the distribution of work on multicore nodes. We also discuss in
this section the implementation of the loop-level parallelization. Benchmarks are provided in Section 4, where we also con-
sider the overhead and performance of the OpenMP parallelization, and the scalability of the full hybrid formulation. Finally,
in Section 5, we offer some concluding remarks on lessons learned and our expectations for future hybrid performance on
petascale systems.
2. The pseudo-spectral method and the underlying domain decomposition

All of the work in this paper will be based on simulations of the incompressible Navier–Stokes equations:
@tuþ u � ru ¼ �rpþ mr2u; ð1Þ
r � u ¼ 0; ð2Þ
where u is the velocity, the kinematic viscosity is m, and the pressure p can be viewed as a Lagrange multiplier used to satisfy
the incompressibility constraint (Eq. (2)). These equations are solved using a pseudo-spectral method [1,7,8,14], in which
each component of u is represented as a truncated (Galerkin) expansion in terms of the Fourier basis, and the nonlinear term
is computed in physical space and then transformed using the fast Fourier transform (FFT), to spectral space. The nonlinear
term plus pressure term are computed in such a way that the velocity is projected onto a divergence-free space, in order to
satisfy (Eq. (2)). Details of this projection, and of the dealiasing required by the action of the nonlinear term, are not central to
the discussion and can be found elsewhere [1,14], as can additional details of the discretization and parallelization of the
scheme using solely MPI [6].

The key piece of any pseudospectral method, particularly for parallel computing, is the multidimensional Fourier trans-
form algorithm. An efficient parallel implementation of this algorithm is essential for attaining high Reynolds numbers in
turbulent hydrodynamics simulations, which is of chief concern here. We focus on a 3D Fourier transform of a scalar (or vec-
tor component) field of size N3, with N grid points in each coordinate direction of the 2p-periodic domain. The distribution of
real space points can be viewed as a cubic array of N3 real numbers. In the underlying domain decomposition each compute
core receives a ‘‘slab’’ of size N � N �M node points, where M = N/NMPI, and NMPI is the number of MPI tasks (processes). This
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Fig. 1. Underlying 1D (slab) domain decomposition for pseudo-spectral method (left). Each compute core works on a slab of size N � N �M, where M = N/
NMPI. The FFT is done by first doing the FFTs locally in each slab, in the directions specified by the arrows, yielding partially transformed data of size (N/
2 + 1) � N �M. Then, an all-to-all communication is done to transpose the data globally (right), so that the remaining 1D FFT can be done in the direction
specified by the arrow. The data for this step is stored in a cube of size P � N � N, with each core computing the FFT locally in a slab of size P = (N/2 + 1)/NMPI.
Figure adapted from [6].

Fig. 2. Communication pattern for the all-to-all MPI communication to perform the transposition in the parallel FFT. Loops are executed in which point-to-
point MPI communication (non-blocking send and receive) are performed with increasing stride between MPI tasks, until all communications are
performed. In the hybrid case, each MPI task can spawn several threads, and the communication is handled by the master thread.
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is referred to as a 1D domain decomposition because the distribution to MPI tasks occurs in one direction only; this decom-
position is visualized in Fig. 1. Fourier transforms are performed locally in the direction of the arrows on the slab owned by
an MPI task. The partially transformed (complex) data resides in a cube of size (N/2 + 1) � N �M. In visualizing the data cube,
it appears that the array size has decreased. But this array is now complex, and its size results from the fact that a Fourier
transform of real data u(x) satisfies ûðkÞ ¼ �û�ð�kÞ (where the asterisk denotes complex conjugate), and therefore only half
the complex numbers need to be stored; the amount of data is still the same as in the original data cube, however. To com-
pute the (complex) transform in the remaining direction, an all-to-all communication is carried out in order to transpose the
global data cube, and decompose it into slices of size P � N � N, where P = (N/2 + 1)/NMPI. Non-blocking MPI communication
is used for the all-to-all exchange. This communication allows the transform to be carried out in the remaining direction
(seen on the right in Fig. 1) locally on each task. Besides using non-blocking calls, it is important to make the communication
in an ordered way that ensures communication balance. In [2], a list of all possible pairs of MPI tasks is created to this end.
Such a list may create problems for large core counts, and as a result here we implement the scheme shown in Fig. 2. Local
FFTs are computed using the open source FFTW package [5,4].

The 1D domain decomposition has been shown in a production run to scale efficiently up to 2048 cores for resolutions up
to 20483 [12], and, when properly implemented, minimizes the number of all-to-all communications that must be done to
complete the transpose. However, it also limits the number of cores to the maximum number of MPI tasks that can be used,
which is the linear resolution of the run, N. In practice, departures from linear scaling are observed before reaching N MPI
tasks (e.g., when the thickness of a slab is one or two grid points, as in Fig. 6, nthd = 1 curve), as the ratio of computing
to communication time decreases. We address these issues in Sections 3 and 4.
3. Implementation of the hybrid scheme

The growing tendency for petascale platforms is toward a hierarchical shared-memory node structure with each node
having multiple sockets, each with increasing numbers of compute cores with shared or separate caches, and which may
be encapsulated within a non-uniform memory access (NUMA) domain within the node. This hierarchical design seems
especially suited to a multilevel domain decomposition scheme that can be optimized for the hierarchical hardware [9].
In order to address these emerging system designs, and to rectify the limitation in the underlying slab-only pseudo-spectral
domain decomposition strategy of Section 2, which prevents scaling to core counts beyond the number of MPI tasks (with
maximum equal to the linear resolution of the problem), we use OpenMP to further parallelize each MPI task. In this scheme,
the MPI processes provide a coarse-grain parallelization using the slab domain decomposition described above, but OpenMP
loop-level constructs and multi-threaded FFTs are applied within each MPI task to provide an inner level of parallelization.
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Fig. 3 illustrates the two-level parallelization scheme. Each MPI task is parallelized by distributing work among a number
of threads (T0. . .T3 in the figure), in possibly two different ways. This work distribution is provided by constructing parallel
regions at the loop level using OpenMP directives. From the point of view of the outer level of parallelization, the multidi-
mensional FFT discussed in Section 2 does not change. The MPI communication for the transpose takes place outside of the
OpenMP parallel regions in master only mode of hybrid computing. To show specific inner-level parallelization and to pres-
ent the origin of the two different ways to look at the decomposition, we provide here a code fragment showing the use of
OpenMP directives in carrying out the transpose within a slab, crucial for computing the FFT. We focus on this particular
algorithm because of its importance for the performance of the parallel FFT and also because it provides a good opportunity
to highlight an important feature of the code:

!Multi-threaded FFTs are computed

!All-to-all MPI communication handled by the master thread

!Transposition is now done locally:

!$ omp parallel do if ((iend-ibeg)/csize.ge.nthd) private (jj,kk,i,j,k)

DO ii = ibeg,iend,csize

!$omp parallel do if ((iend-ibeg)/csize.lt.nthd) private (kk,i,j,k)

DO jj = 1,N,csize

DO kk = 1,N,csize

DO i = ii,min(iend,ii + csize-1)

DO j = jj,min(N,jj + csize-1)

DO k = kk,min(N,kk + csize-1)

out (k,j,i) = c1(i,j,k)

END DO

END DO

END DO

END DO

END DO

END DO

Here, the indices ibeg and iend indicate the starting and stopping indices that define the slab for the initial domain decom-
position of the data cube. The quantity csize refers to the cache-size, which is tunable. The outer loop is distributed among
threads if the number of planes comprising the slab is greater than or equal to the number of threads, nthd, times the cache-
size of each thread. The use of this directive suggests a decomposition scheme like that illustrated in Fig. 3(b). If the number
of planes is less than nthd⁄csize, then the inner loop is parallelized, which provides a domain decomposition scheme rep-
resented by Fig. 3(c). In this way, we minimize the effect of a potential load imbalance.

This example not only shows explicitly how loop-level parallelization is achieved, but also demonstrates one of the ways
in which effective cache utilization is achieved in the local transposition of data by using a technique often referred to as
‘‘cache-blocking.’’ The three outer loops ensure that the data handled by the inner loops is small enough to fit in cache. Since
the cache size is tunable, this procedure for cache-optimization does not depend on whether the thread cache is shared or
separate. It has been recognized [9] that the hybrid multi-level domain decomposition scheme may be especially valuable
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Fig. 3. Schematic of the new two-level domain decomposition strategy. (a) The 1D domain decomposition now acts as a coarse-grain MPI-based domain
decomposition step. (b) and (c) A single slab (owned by a single MPI task) is further parallelized in one of two ways by loop-level OpenMP directives that
distribute different ‘‘chunks’’ of the slab to different threads (here, labeled T0. . .T3) to be worked on, speeding up the MPI task. Multi-threaded FFTs are also
used in each slab.
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when taking cache optimization into account. All other loops in the code are modified with similar OpenMP directives,
although most do not need to implement cache-blocking and the csize dependency. As a result, the remaining loops are par-
allelized as

!$omp parallel do if ((iend-ibeg).ge.nthd) private(j,k)

DO i = ibeg,iend

!$omp parallel do if ((iend-ibeg).lt.nthd) private(k)

DO j = 1,N

DO k = 1,N

!Operations over arrays with indices ordered as A(k,j,i)

END DO

END DO

END DO

The reason for this is that, unlike in the case of the transpose, most of the other loops load long lines of contiguous data into
cache directly because they have no mixed-index dependencies; the transpose requires special treatment because of the
dependence of a given block of memory on other non-contiguous blocks. Note that in all cases, the loops are ordered—like
the above code fragment—so that the largest index range keeps the cache lines full. Only a few loops in the code (mostly
associated with computation of global quantities or spectra which require reductions) have to be parallelized using the
OpenMP ATOMIC directive.

In both examples, the choice of parallelizing the outer or middle loops based on workload per MPI task can be replaced
by a COLLAPSE clause in OpenMP 3.0. This clause can be used to parallelize nested loops such as the ones shown above
with only one OpenMP parallel directive. Both solutions have been benchmarked on different platforms and we observe
similar timings. As a result, given the fact that the COLLAPSE clause is only available in compilers that support the new
OpenMP standard, we use the approach described above to ensure portability of the code; it is also used in the following
tests.

Besides the loop-level parallelism, the FFTs in each slab are also parallelized using the multi-threaded version of the FFTW
libraries. MPI calls and I/O calls are only executed by the master thread in each MPI task. One of the additional benefits of the
hybrid scheme presented here is that, by reducing the number of MPI tasks, we reduce not only the number of MPI calls, but
we also spread out the MPI tasks more widely, improving network bandwidth, and we reduce the number of MPI buffers
required to carry out communication. This also allows us to use parallel MPI I/O in environments with tens of thousands
of cores, as the number of MPI tasks is a fraction of the total number of cores used. We will present cases where these con-
siderations become significant in Section 4 where we provide performance results for the scheme.
4. Scalability and performance

A variety of tests have been performed to characterize the overhead, performance and scalability of the new hybrid do-
main-decomposition method. Tests were conducted primarily on two platforms: the bluefire system at the National Center
for Atmospheric Research (NCAR), and the kraken system at the National Institute for Computational Sciences (NICS). The
bluefire platform is an IBM Power 575 system, with 128 compute nodes, each of which contains 16 sockets with Power6 pro-
cessors with 2 cores each. The compute nodes are interconnected with InfiniBand; each node has eight 4X InfiniBand double
data rate (DDR) links. The kraken system is a Cray XT5 with 8256 compute nodes. Each compute node has two six-core AMD
Opteron processors for a total of 99,072 cores. The compute nodes are interconnected with a 3D torus network (SeaStar). All
of the tests discussed here operate in benchmark mode, for which no output other than timings are produced, and all solve
Eqs. (1) and (2) for about 50 timesteps. Benchmark mode is used in order to remove the variability in times introduced by the
I/O subsystem(s) operating with different throughput depending on problem size and user-defined output volume and fre-
quency. However, we note that in production mode, we see increases in the run time of about 10% for typical output volume
and frequency. Times are measured using the FORTRAN cpu_time routine, and the OpenMP routine omp_get_wtime. Tim-
ings presented below measure only the average time per timestep for the main time-advance loop; the initialization time
(including the configuration of FFTW) is not included.

In the first series of tests, we consider the overhead and performance of OpenMP. The first test thus considers a single MPI
task, and variable number of threads nthd with a fixed linear resolution of N = 256. The results are presented in Fig. 4. The
performance for 1 and 2 threads is comparable for both platforms. After this, bluefire communicates out-of-socket, and its
scaling decreases. As the core counts increase for this platform (e.g., as for the Power7 system) this drop-off may not be
as severe. For kraken, there are 6 cores per socket and shared memory access becomes nonuniform over HyperTransport™
between the sockets, but we still see reasonably good scaling to about 7 threads, after which the scaling decreases markedly.
Moreover, the departures from the ideal scaling observed in kraken while computing in-socket seem to be associated mainly
with the hardware (e.g., nonuniform access, saturation of the memory bandwidth, or cache contention) and not specifically
with OpenMP overhead; from Fig. 4 the curve giving the inverse timings (or unnormalized speedups) for the single thread,
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multiple MPI tasks (the triangles) follows closely the curve for the single MPI task, multiple threads (stars). For each of these
curves, we can define the parallel efficiencies for a run with run time T on Nc cores as,
Fig. 5.
and the
� ¼ NcT
Nc0 T0

; ð3Þ
with respect to a reference run on Nc0 cores with run time T0. Indeed, taking as references the runs at 1 core for each curve,
we compute mean efficiencies up to 6 cores of 57% and 47%, for the single thread multiple MPI tasks and the multiple threads
single MPI task cases respectively, suggesting that, while there is an effect due to the OpenMP threads their performance is
not drastically different from pure MPI in-socket.

In Fig. 5 we present a plot of the cache miss fraction for two sets of runs: those where we vary the number of MPI tasks,
and those where we use a single MPI task, and vary the number of threads. The cache miss fraction is obtained by using the
Integrated Performance Monitoring (IPM) infrastructure on kraken, and examining the Performance Application Program-
ming Interface (PAPI) counters. As is readily seen when using pure MPI, the miss fraction is approximately constant, whereas
when varying the threads, the fraction is approximately constant within a socket, after which the fraction begins a secular
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increase. Interestingly, there is a large jump in the miss fraction most likely caused by cache contention at nthd = 8, which
should at least be partially responsible for the turnover in the performance of the variable thread curve in Fig. 4 (see also
below). We are uncertain exactly what the inherent connection is between this measured cache contention and the NUMA
architecture. Moreover, it should be pointed out that PAPI and IPM were originally intented for single-core, MPI-only appli-
cations. Caution must be exercised when interpreting some counters in hybrid programs on multi-core platforms.

In order to examine effects of OpenMP overhead on bluefire results more closely, we compare two runs at different res-
olutions, one at N = 256, and one at N = 512 for a series of thread counts. These results are given in Fig. 6. In each plot the
symbols refer to the same nthd, and the total number of compute cores, Nc, is varied by changing the number of MPI tasks.
The MPI tasks were bound to cores (using ‘‘processor binding’’), and symmetric multi-threading (SMT) was disabled. The first
observation is that, for N = 256, the gains as nthd is increased (for any fixed number of MPI tasks) are roughly the same as the
ones reported in Fig. 4 for only 1 MPI task. However, better improvements are observed for large numbers of MPI tasks; un-
der this condition there are cases for which using nthd = 2 gives better timings than nthd = 1 using the same total number of
cores (e.g., compare the triangle and the square at Nc = 256 on the left in Fig. 6). Increasing the number of threads further
does not give substantial speed-ups. This is observed more clearly in the N = 512 runs. In this case, the slope of the series
with nthd = 2 is greater than that for nthd = 1, indicating better gains with thread count (in-socket) as the size of the prob-
lem is increased.

Focusing on the 1- and 2-thread runs in Fig. 6, we see that the differences in speedup (or run time) in going from 1 to 2
threads decreases as the grid resolution increases. This suggests that there is a roughly fixed cost to the thread overhead
whose relative magnitude can be reduced by increasing the work load. Then, as the thread count is increased to place them
out-of-socket, extra costs, such as cache contention or memory bandwidth, appear (although for fixed number of threads,
very good scaling is found with increasing number of MPI tasks). This trend can be further observed by considering runs
at even larger grid resolution. Table 1 shows the efficiency, (Eq. (3)), with reference runs at Nc0 ¼ N=2 and nthd = 1. The data
shown refer to a case where each slab in the domain decomposition is one grid point thick, which, according the discussion
at the end of Section 2, represents a worst-case scenario. Nevertheless, for a fixed number of cores Nc = N, the efficiency is
best if two threads are used instead of one, and as resolution is increased efficiency improves. If Nc = 2N and four threads
are used, efficiency also increases but is at most �0.4 for N = 1024.

These results suggest that a hybrid approach may be most useful for large enough simulations in environments with large pro-
cessor counts and when a large number of cores is available in the same socket. To verify this we consider the scaling to high core
counts on kraken. For these runs, we set N = 1536, N = 3072, and N = 4096, with nthd = 6 or 12. At these resolutions, simu-
lations with 1 thread cannot be executed as there is not enough memory per core in kraken to allocate the arrays. Several
simulations at lower resolution (N = 512) were done to explore configuration parameters. This mainly involved NUMA op-
tions in the compiler (PGI), different binding configurations, MPI environment settings, and distribution of tasks among
cores. We observed no substantial differences in the timings when changing the job distribution. Binding processors when
nthd = 6 using the run command instead of NUMA options in the compiler was found to be best, although by a small margin
(�5%). The implementation of MPI on kraken can also be configured to do fast copies in memory of the data when sending
and receiving large messages. This gives a substantial speed up of the code (8–10%) but was found to require large amounts
of memory that created problems at the highest resolutions. As a result, to compare on an equal footing, the runs described
below were compiled with �O2 optimization, without using fast memory copy in MPI, and using the run command
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Table 1
Efficiency of runs with N linear resolution in bluefire, taking as reference runs with
Nc0 ¼ Nc=2 cores and nthd = 1 threads.

N NMPI = N, nthd = 1 NMPI = N, nthd = 2

256 0.54 0.59
512 0.58 0.65

1024 0.63 0.66
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aprun �n $NMPI �S 1 �d $OMP_NUM_THREADS executable

for the nthd = 6 runs, and the run command

aprun �n $NMPI �d $OMP_NUM_THREADS executable

for nthd = 12. In the former case, the �S 1 option tells aprun to bind one MPI process per socket, and NMPI refers to the total
number of MPI processes. All cores in a given node in these runs are fully populated when nthd > 1. It should be noted that in
the runs for which the most aggressive optimization options can be used (e.g., if enough memory is available), improvements
in the times of up to 20% were found.

The results are shown graphically in Fig. 7 where we provide both a lin–lin (top) and a log–log (bottom) plot of unnor-
malized speedup vs. total core count, Nc. We see that good speedup is achieved up to �20,000 cores, but there are differences
between the 6- and 12-thread cases. First note that the nthd = 12 in both problem sizes appears to maintain linear scaling,
whereas the nthd = 6 does not. However, 6-thread cases have higher speedups than the 12-thread cases at lower core counts,
and then saturate, becoming smaller than or equal to the nthd = 12 runs. The cross-over point occurs when the number of
MPI tasks approaches the linear grid resolution at the same total core count, as noted at the end of Section 2 in the reference
to Fig. 6. The higher speedup of the 6-thread runs at lower Nc is not surprising considering Fig. 4, since we see that when
using a single MPI task for 12-threads, the threads beyond about 7 do not contribute significantly to speedup, probably
due to cache contention (Figs. 4 and 5, and following discussion).

In Table 2 we provide the parallel efficiencies (Eq. (3)) for all runs at both problem resolutions. We see in general that for
both problems sizes, the peak efficiencies can be reasonably high. The nthd = 12 runs have nearly the same mean efficiency,
but from our data we cannot make this claim for the nthd = 6 runs. We compute that the speedup for the N = 1536 runs are
higher for the nthd = 6 runs than for the nthd = 12 runs, until the number of MPI tasks reaches the linear grid resolution
(fourth row in Table 2), at which time the former saturates.

We have examined the performance plateau of the nthd = 6 runs in somewhat more detail by instrumenting the code for
use with IPM on kraken, which enables us to distinguish between computation and communication costs. We find that the
largest component of communication costs, by far, are the MPI_Wait states, used for asynchronous send and receive (syn-
chronization or barriers are a negligible contribution) during the all-to-all communication required for the data transposition
in the parallel FFT. Hence, we provide in Table 3 the percent of total time accounted for by communication, and that ac-
counted for, in particular, by the MPI_Wait state for a variety of the runs represented in Fig. 7. As we see from this data,
the communication cost for all grid resolutions increases with the number of MPI tasks, NMPI, and most of this cost is due
to cores waiting for the asynchronous all-to-all communication to complete. The percentage of total communication at
the largest NMPI is insensitive to both the thread count and whether there are one or two MPI tasks per compute node (seen
in the last three rows of the N = 1536 runs in Table 3), and is nearly constant. Comparison of rows 4 and 5 with row 1 also
shows that the placement of the MPI tasks does not seem to be the determining factor in the communication cost. However,
it is clear that the MPI_Wait time increases with the number of MPI tasks, as can be seen by comparing rows 2 and 4 for
N = 1536 in Table 3, which show a remarkable jump in communication cost due to MPI_Wait conditions at the same total
core count. A similar jump is seen in the N = 3072 runs in comparing rows 8 and 10 or rows 9 and 11, respectively, confirm-
ing at larger workload the increase in communication cost as the number of MPI tasks increases. Thus, the hybrid approach
can decrease the communication time, and improve performance, by decreasing the number of MPI tasks that must commu-
nicate all-to-all, and, hence, increasing the effective network bandwidth for each MPI task. The increase in the MPI_Wait
times in rows 1, 4, and 5 of Table 3 also makes explicit the likely reason for the departures from linear scaling in the pure
MPI case, as stated at the end of Section 2, when NMPI = N. We note, however, that there is no dramatic plateau in the
N = 3072 curve of Fig. 7 for the six thread runs. This is likely due to the increased work load, such that the relative commu-
nication time is smaller, as can be seen, for example, by comparing rows 6 and 10 or rows 7 and 9 in the same table. But the
increased communication cost with the number of MPI tasks can still be seen in the higher grid resolution case by comparing
the slope of the unnormalized speedup curves (Fig. 7 bottom), for which the slope of the 6-thread curve is smaller than that
for the 12-thread curve.

The amount of data transferred during any one send and receive in the all-to-all communication step decreases as NMPI

increases, as does the work load per MPI task (and a given nthd). But the plateau for the six thread, N = 1536 curve cannot be
due entirely to network latency because the twelve thread curve continues to scale, and it has the same amount of work per
MPI task. Thus, the reason for the increase in communication cost with number of MPI tasks per node may also be due to MPI
resource contention between the two NUMA nodes (hex-core sockets) within that node.



Table 2
Efficiency, �, of kraken runs with N = 1536 and 3072 linear grid resolution, taking as reference runs with Nc0 ¼ Nc=2 cores and
same number of threads. Note that we cannot compute � for the first run in each series. Mean efficiency is computed for a
series using all computed � for that series.

N nthd = 6 nthd = 12

Nc � Nc �

1536 1152 – 2304 –
2304 0.82 4608 0.81
4608 0.86 9216 0.66
9216 0.57 18,432 0.89

Mean 0.75 0.79

3072 4608 – 4608 –
9216 0.58 9216 0.80
18,432 0.71 18,432 0.75

Mean 0.69 0.78
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Fig. 7. Inverse run times for two sets of runs on kraken. The squares and crosses represent the timings for a N = 1536 run using 6 and 12 threads,
respectively. The triangles and diamonds represent the same for a run size of N = 3072. We plot the data in two ways so as to be as explicit as possible
regarding the results. Top: Lin–lin plot of inverse time vs. number total core count. Bottom: Log–log plot of inverse time vs. total core count. Note the
tendency toward a cross-over in performance at about Nc = 10,000, where the nthd = 12 configuration outperforms the nthd = 6 configuration, similar to
the behavior of the nthd = 2 for N = 256 in Fig. 6.
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Table 3
Breakdown of the total communication cost of several runs for a problem size of N on kraken using IPM. ‘‘# nodes’’ is the number of 2-hex-core socket nodes
used; ‘‘% comm’’ refers to the percentage of total run time comprising communication; and ‘‘% MPI_Wait’’ is the percentage of total run time comprising the
MPI_Wait state. Note that the total core count is just the product of NMPI and nthd.

N NMPI nthd # nodes % comm % MPI_Wait

1536 256 1 128 45 38
256 6 128 57 49
128 12 128 44 33

1536 1 128 81 77
1536 1 768 79 72
1536 6 768 82 75
1536 12 1536 76 64

3072 768 12 768 53 43
1536 12 1536 64 52
1536 6 768 70 60
3072 6 1536 76 65
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These results are consistent with the findings in bluefire, but the larger core count and cores-per-socket in kraken allow us
to obtain significant additional gains using the hybrid approach on the latter system. We conclude that if the workload per
MPI process becomes too small—in particular, if the NMPI approaches the linear grid resolution—it is better to use more
threads even if this places threads out-of-socket.
5. Discussion and conclusion

We have presented a hybrid MPI–OpenMP model for a pseudo-spectral CFD code. Beginning with an underlying ‘‘slab’’
domain decomposition adequate for parallelization by MPI, we have shown how the basic method is modified by loop-level
parallelization to create a two-level parallelization scheme. The new level of parallelization can be thought of as modifying
the underlying domain decomposition scheme, and we have pointed out precisely how this has been done depending on the
size of the problem, number of threads, and number of MPI tasks.

The hybrid code has been tested primarily on two systems: the IBM Power6 system bluefire at NCAR, and the Cray XT5
system kraken at NICS. We have tested the thread overhead and performance, and found limitations of small socket core
counts in bluefire, and observed cache contention in-node at the largest core counts on kraken. For low core counts, we have
also discovered that there is a resolution threshold, N, below which the thread overhead manifests itself more clearly on
bluefire and reduces scalability. In terms of large core counts, our results show good scalability up to about 20,000 cores
on the kraken system. For large enough problems, we find the best scalability when the number of threads is 12 (one MPI
process per compute node). On the other hand, we find that the performance time and speedup is better when nthd = 6, until
the workload per MPI process is large enough, roughly that obtained by approaching the linear resolution of the grid, at
which point, the performance time is better for the case where nthd = 12. This plateauing of the six-thread performance
may be a result ultimately of resource contention by MPI. Nevertheless, for a given MPI/OpenMP configuration, and a given
resolution, we find that the results are consistent from run-to-run, with little fluctuation in terms of scalability or run time.

The hybrid scheme presented allows us to scale to reasonably high core counts, and, perhaps most importantly, it allows
the method to overcome the major limitation of using a slab-only decomposition pure-MPI scheme, namely, the inability to
utilize a number of compute cores greater than the linear grid resolution of the problem. Furthermore, we have shown that
the relative cost of communication increases with the number of MPI tasks, and that the hybrid scheme enables us to reduce
this number. We would, therefore expect that for a given work load per MPI task, the hybrid scheme would clearly win out
over the pure MPI version in terms of compute time. Unfortunately, while our results show that the hybrid scheme can be
competitive, and cost nothing more than the pure MPI slab domain decomposition, we do not see a clear ‘‘win’’ for this
scheme on the systems we have tested. We have seen that there is significant cache contention in the multithreaded case,
particularly when the threads are placed out-of-socket. It may be that cache contention or memory bandwidth will nearly
always prevent the hybrid scheme from outperforming the pure-MPI method as the number of cores per socket continues to
grow.

Our experimentation has suggested a number of ways in which to improve the compute time of kraken runs. Perhaps the
most important of these involve configuring the MPI environment. For the large message sizes we are using, setting the MPI
environment variable MPICH_FAST_MEMCPY yields an 8–10% speedup over runs that do not use it, but it requires signifi-
cantly more buffer memory. This increase in buffer requirements can prevent the code at large resolutions from fitting into
memory, and must be considered carefully before attempting a production run. As an example, for N = 4096 using this con-
figuration, we could only execute the code using 24,576 cores and 6 threads, and any other distribution using the same or
smaller number of cores and changing the number of threads failed because of insufficient memory. We have not attempted
larger resolution runs yet, but we note that the memory issue addressed here will become more of a concern the larger N
becomes.
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The hybrid scheme introduced here is not the only way in which to decompose the pseudo-spectral grid. An alternative is
to retain a pure MPI model as in [16]. In this model, the domain decomposition takes the form of ‘‘pencils’’ which yield a 2D
(N2) distribution among MPI processes, and OpenMP is not required. This technique is also found to scale well [3] to large
core counts, although severe fluctuations in performance are observed even within a given compute core-domain mapping.
The pure MPI model does not suffer from effects of thread overhead (thread re-starts and synchronization) that we observe
in smaller resolution runs, nor from potential problems with compiler optimizations that may arise when OpenMP is used
[9]. Nevertheless, the hybrid method described here can be applied to non-Fourier basis spectral methods which may be
impossible to parallelize with the 2D distribution (e.g., spherical harmonics). As pointed out in Section 3, our hybrid method
offers a two-level parallelization method that may be more effective in mapping the domain to the hierarchical architectures
that are now emerging, and better suited for environments with multiple cores per socket. The hybrid scheme may also aid
in the MPI memory problems mentioned above, in that fewer MPI processes require less buffer memory. We intend in the
future to continue testing this method to higher resolution as accessibility to a larger number of compute cores becomes
more readily available. Since the code described here integrates the Navier–Stokes or magnetohydrodynamics equations
when coupling to a magnetic field, including rotation, the hybrid scheme we have developed will prove useful in a variety
of geophysical and astrophysical phenomena. And finally, we note that this approach works well even if the aspect ratio of
the computational domain is not equal to unity.
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