
Accepted Manuscript

Title: A big-world network in ASD: Dynamical connectivity
analysis reflects a deficit in long-range connections and an
excess of short-range connections.

Authors: Pablo Barttfeld, Bruno Wicker, Sebastián Cukier,
Silvana Navarta, Sergio Lew, Mariano Sigman

PII: S0028-3932(10)00504-X
DOI: doi:10.1016/j.neuropsychologia.2010.11.024
Reference: NSY 3890

To appear in: Neuropsychologia

Received date: 30-7-2010
Revised date: 14-10-2010
Accepted date: 17-11-2010

Please cite this article as: Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew,
S., & Sigman, M., A big-world network in ASD: Dynamical connectivity analysis
reflects a deficit in long-range connections and an excess of short-range connections.,
Neuropsychologia (2010), doi:10.1016/j.neuropsychologia.2010.11.024

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

dx.doi.org/doi:10.1016/j.neuropsychologia.2010.11.024
dx.doi.org/10.1016/j.neuropsychologia.2010.11.024


Page 1 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

1

A big-world network in ASD: Dynamical connectivity analysis reflects a 

deficit in long-range connections and an excess of short-range connections.

Pablo Barttfeld1,2, Bruno Wicker 1,3, Sebastián Cukier1,2, Silvana Navarta1 , Sergio Lew4 

and Mariano Sigman1

1Integrative Neuroscience Laboratory, Physics Department, University of Buenos Aires.  
2Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Buenos 

Aires.
3Mediterranean Institute of Cognitive Neurosciences, Centre National de la Recherche 

Scientifique, Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 

Marseille Cedex 20, France.
4Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad of Buenos Aires

Corresponding author: Pablo Barttfeld

Integrative Neuroscience Laboratory, Physics Department, University of Buenos Aires, 

Buenos Aires, Argentina. 

e-mail:pbarttfeld@fi.uba.ar



Page 2 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

2

Abstract

Over the last years, increasing evidence has fuelled the hypothesis that Autism 

Spectrum Disorder (ASD) is a condition of altered brain functional connectivity. The 

great majority of these empirical studies relies on functional magnetic resonance 

imaging (fMRI) which has a relatively poor temporal resolution. Only a handful of 

studies has examined networks emerging from dynamic coherence at the millisecond 

resolution and there are no investigations of coherence at the lowest frequencies in the 

power spectrum –which has recently been shown to reflect long-range cortico-cortical 

connections. Here we used electroencephalography (EEG) to assess dynamic brain 

connectivity in ASD focusing in the low-frequency (delta) range. We found that 

connectivity patterns were distinct in ASD and control populations and reflected a 

double dissociation: ASD subjects lacked long-range connections, with a most 

prominent deficit in fronto-occipital connections. Conversely, individuals with ASD 

showed increased short-range connections in lateral-frontal electrodes. This effect 

between categories showed a consistent parametric dependency: as ASD severity 

increased, short-range coherence was more pronounced and long-range coherence 

decreased. Theoretical arguments have been proposed arguing that distinct patterns of 

connectivity may result in networks with different efficiency in transmission of 

information. We show that the networks in ASD subjects have less Clustering 

coefficient, greater Characteristic Path Length than controls -indicating that the 

topology of the network departs from small-world behaviour- and greater modularity. 

Together these results show that delta-band coherence reveal qualitative and 

quantitative aspects associated with ASD pathology. 

Running title: Functional EEG connectivity in Autism.

Keywords: Functional connectivity - delta band EEG – resting state - small world 

metrics - Autism Spectrum Disorder. 



Page 3 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

3

1. Introduction 

Autism or Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder 

characterized by a triad of impairments in social interaction, communication, and 

behavioural flexibility (APA, 2000). There is increasing evidence that ASD could be a 

condition of altered brain connectivity (Belmonte et al., 2004; Courchesne & Pierce, 

2005; Just, Cherkassky, Keller, Kana, & Minshew, 2007; Just, Cherkassky, Keller, & 

Minshew, 2004; Markram, Rinaldi, & Markram, 2007; Wicker, 2008). Anatomical 

studies showed that individuals with ASD have smaller and more densely packed 

columns of neuronal cells (Casanova & Trippe, 2009; Casanova, Switala, van Engeland, 

Heinsen, Steinbusch, Hof, Trippe, Stone, Schmitz, 2006; Hughes, 2007). Structural 

MRI studies have reported a reduced corpus callosum (Alexander et al., 2007; Egaas, 

Courchesne, & Saitoh, 1995) and abnormal anatomy and connections of the limbic–

striatal social brain system in ASD (McAlonan et al., 2005). fMRI studies also yielded 

evidence of altered connectivity: connectivity within the frontal lobe seems differently 

organized, and areas such as prefrontal cortex, precuneus/posterior cingulate cortex and 

superior temporal sulcus, appear to be  poorly connected (Just, Cherkassky, Keller, 

Kana, & Minshew, 2007; Just, Cherkassky, Keller, & Minshew, 2004; Kleinhans et al., 

2008; Koshino et al., 2005; Mason, Williams, Kana, Minshew, & Just, 2008; Welchew 

et al., 2005). Recent fMRI studies have moved away from the social and cognitive 

deficit models and looked at the functional connectivity between areas of the so-called 

default mode network (DMN), i.e. networks that become activated at rest (Gusnard & 

Raichle, 2001; Raichle, 2009). Results revealed decreased connectivity between the 

medial prefrontal cortex and precuneus/posterior cingulate cortex (Cherkassky, 2006; 

Di Martino et al., 2009; Weng, 2010). The great majority of the evidence signalling 

functional connectivity as a key aspect of ASD was obtained using fMRI. There is only 

a handful of studies assessing ASD brain connectivity using the other canonical tool to 

study connectivity, electroencephalography (EEG). Abnormal gamma activity has been 

reported in autistic children, interpreted as supporting hypotheses of abnormal 

connectivity (Brown, Gruber, Boucher, Rippon, & Brock, 2005). (Murias, 2008) and 

(Coben, Clarke, Hudspeth, & Barry, 2008) measured connectivity more directly using 

EEG coherence and reported evidence of both under and over-connectivity in different 

frequency bands in ASD populations. Understanding the patterns of connectivity in low 

frequencies -the delta band- remains unexplored. 
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Over the last years, analysis of coherence at low-frequencies has gained great interest. 

Long-range intra-cortical and feedback cortico-cortical connections, which are thought 

to be altered in ASD, are revealed by the slow cortical potentials (SCP) of the EEG (He 

& Raichle, 2009; He, Zempel, Snyder, & Raichle, 2010). Information of the rectified 

power of the SCP, although distinct and dissociable from the raw signal e.g., during 

vigilance tasks (He, Zempel, Snyder, & Raichle, 2010) also correlates with the resting-

state fMRI signal (Lu, 2007).

We investigated whether functional brain networks in EEG are abnormally organized in 

the delta band in ASD, measuring coherence in the raw filtered signals (He & Raichle, 

2009; He, Zempel, Snyder, & Raichle, 2010). We will show that control subjects have 

stronger long fronto-occipital connections, and weaker lateral frontal connections and, 

moreover, that these differences are good predictors of ASD severity. When inspecting 

the impact of this connectivity pattern on the global organization of functional network 

using graph theory measures we observed that ASD present higher Characteristic Path 

Length (L), smaller Clustering Coefficient (C) and higher modularity index (MI), 

resulting in a less efficient brain network (Latora & Marchiori, 2001). 

2. Material and Methods. 

2.1 Participants

Two groups took part in this study. The ASD group included 10 adults with 

high-functioning autism or Asperger’s syndrome (9 men and 1 women; mean age = 

23.8, std = 7.6, Table 1). The individuals with ASD were provisionally accepted into the 

study if they had received a diagnosis of infantile autism or Asperger’s syndrome from 

a child psychiatrist, developmental pediatrician, or licensed clinical psychologist. 

Actual participation required that this diagnosis had been recently confirmed, with each 

subject having met the criteria for ASD within the past 3 years on the basis of the 

revised fourth edition of the Diagnostic and Statistical Manual of Mental Condition 

(APA, 2000) and on the score on the Autistic Diagnostic Observation Schedule-Generic 

(Lord et al., 2000). The IQs were measured with the third edition of the Wechsler Adult 

Intelligence Scale and ranged from 85 to 125 (mean=101.7, SD=14.97). At the time of 

testing, no ASD subject had known associated medical condition. As their mean IQ 
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score was within the normal range, the ASD participants were individually matched to a 

group of 10 typically developing individuals on the basis of sex and chronological age. 

The participants in the control group (9 men, 1 women, mean age = 25.3, std = 

6.54). None of the volunteers had reported history of neurological or psychiatric 

conditions.

2.2 EEG recordings. 

EEG were recorded with a Biosemi ActiveTwo 128 channel 24-bit resolution system, 

with active electrodes (first amplifying stage on the electrode to improve signal to noise 

ratio), digitalized at 512 Hz and low-passed DC-1/5th of the sample rate (-3dB) by a 5th 

order digital sync anti-aliasing filter. There were no additional hardware filters during 

acquisition. 7-minute temporal signals were recorded during an eyes-closed resting 

while subjects sat on a reclining chair in a sound attenuated room with a dim light. 

During the experiment, particpants and EEG recordings were monitored to assure that 

they mantained vigilance and did not fall asleep. After the acquisition, signals were re-

referenced to the average of all electrodes, and  filtered on the delta band (0.5-3.5 Hz, 

~60dB/decade roll-off). The signal was filtered using the function eegfilt.m from the 

EEGLAB toolbox (Delorme & Makeig, 2004). This function implements a two-way

least squares finite impulse response filter. Filter order was calculated as 

3.
3072

_

SamplingRate

Low Cuttoff


Synchronisation between all pair wise combinations of EEG channels were computed 

for all subjects with the Synchronisation Likelihood (SL) method (Montez, Linkenkaer-

Hansen, van Dijk, & Stam, 2006). All the details of the methodology can be found at 

(Montez, Linkenkaer-Hansen, van Dijk, & Stam, 2006). For clarity here we outline the 

critical aspects of the method.

The SL method maps the original data to a set of vectors, essentially resampling the 

data at variable time bins (Lags), referred as embedding vectors. An embedding vector 

has the form:

, , , , 2 , ( 1)( , , , )k i k i k i L k i L k i m LX X X X X  
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Where k is the channel number, i is a sample reference of the raw data, L  is the lag 

and m is the length of the vector, which will determine the dimension of the state space 

to search for similarity. In our analysis L and m  were set to 49 and 22. These values, 

as all the parameters, were set following (Montez, Linkenkaer-Hansen, van Dijk, & 

Stam, 2006). The embedding vectors are then used to localize times series with 

recurrent dynamical themes for each electrode. This is done by measuring the Euclidean 

distance among a fixed reference vector ,k iX  and the set of all embedded vectors ,k jX

that lie in a window around time i (this window was fixed to 3049). From this analysis, 

for each electrode and each value of i , one obtains the set of similar vectors (or 

“recurrences”), arbitrarily defined as the 5% of vectors closest to ,k iX . Then, for each 

time i  we compute SL between channels k1 and k2 measuring the similitude between 

their closest reference vectors (i.e. the distributions of recurrences). 

1 2

1

k k
i

k

n
SL

n


where 1 2k kn  is the number of coincident recurrences found in channel k1 and in channel 

k2 at time i and 1kn is the number of recurrences found in channel k1 at time i . A SL 

value close to 1 means that all recurrences of channel k1 are shared and coincident with 

the recurrences of channel k2. Repeating the procedure for all i (i.e. sliding the method 

in time) we obtained a time series of SL for each pair of channels. 

This procedure was conducted independently for each participant in the study. Hence, 

from this analysis we obtained from each participant a matrix of 128x128xNsamples. 

We then collapsed this 3 dimensional matrix into a symmetrical matrix, where each 

entry in the matrix represents the SL between the corresponding pair of electrodes 

averaged throughout all samples. All subsequent analysis and statistics were performed 

on these SL matrices. 

2.3 Graph Theory metrics.

The connectivity matrix defines a weighted graph where each electrode corresponds to a 

node and the weight of each link is determined by the SL of the electrode pair. To 

calculate network measures, SL matrices were converted to binary undirected matrices 

by applying a threshold T. We explored a broad range of values of 0.01< T < 0.2, with 

increments of 0.0005 and repeated the full analysis for each value of T. After 
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transforming the SL-matrix to a binary undirected graph, we measured the Clustering 

Coefficient C, the Characteristic Path Length L and Modularity Index MI using the BCT 

toolbox (Rubinov & Sporns, 2009). For statistical comparisons of graph based metrics, 

we performed ANOVAs with group (control or ASD) and threshold (binned in 8) as 

independent factors. Errors were calculated using bootstrap (Efron & Tibshirani, 1994), 

which were used to explore statistical differences for all individual thresholds. The 

bootstrap probability was also calculated, resampling 2000 times each metric for both 

groups, and calculating the percentage of times the mean metric of a group was larger 

than the mean metric of the other group. Network visualizations were performed using 

the Pajek software package (Batagelj & Mrvar, 1998) using a Kamada-Kawai layout 

algorithm (Kamada & Kawai, 1989).

3. Results

For each participant in this study, we calculated the Synchronization Likelihood (SL) 

across all pairs of channels -see methods and (Montez, Linkenkaer-Hansen, van Dijk, & 

Stam, 2006) for details. SL provides a measure of temporal coherence between two 

temporal signals. This measure is more sensitive than simply a linear-correlation 

because: 1) it does not assume linearity in the coherence and 2) it is sensitive to phase-

shifted coherent frequency bands which may result in a null linear correlation. This 

analysis collapsed the stationary EEG data of each participant, band passed in the delta 

range to a 128x128 synchronization matrix (henceforth referred as SL-matrix). The 

element (i,j) of the matrix provides a measure of the temporal similarity at low 

frequencies of electrodes i and j during eyes-closed stationary EEG, which we refer as 

functional connectivity. In what follows, we analyse statistical differences in functional 

connectivity for ASD and control population. 

To calculate significant differences in SL patterns across groups, we conducted a paired 

t-test with the SL value for each pair of channels (Figure 1b). A positive t-value 

indicates that SL increased in control compared to ASD population. Conversely, a 

negative t-value indicates that SL is greater in ASD than in the control population. The 

distribution of t-values (Figure 1d) was significantly shifted towards positive values 

(mean= 0.57; std= 1,11; t-test: p=0, CImin= 0.55; CImax=0.58) indicating that the 

global trend was that SL was greater in the control population. Our interest was to 

understand the topography of the tails of this distribution, i.e. which pairs of electrodes 
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had a greater difference in SL between ASD and control population. For this, we simply 

determined an arbitrary cut-off at t = 2 (Figures 1b and 1d) and considered the resulting 

matrix with values 1, 0 or -1 depending on whether t > 2, 2>t > -2 or -2 > t (Figure 1f). 

This cut-off is certainly arbitrary but none of the results discussed in what follows 

depend on this choice (see Supplementary Figure 1 for a progression of the 

synchronization topographies for varying thresholds). The previous mask filters pairs of 

electrodes for which we found significant differences in similarity between both groups. 

To further constrain the number of comparisons and generate a relatively sparse pattern 

of connections amenable to visualize its topography, we considered only pairs of 

electrode with sufficient similarity for both groups. This was achieved applying a mask 

resulting from the intersection of pairs of electrodes with SL > 0.03 for the patients and 

for the controls grand average (Figures 1c and 1e). 

The topographic projections of connections whose strength increased (red) or decreased 

(blue) in ASD compared to control participants (Figure 1h) showed a very consistent 

pattern. Connections which were stronger in the control group were localized in the 

frontal lobe and extended over the midline to the occipital cortex. They also included 

long-range connections between these regions. On the contrary, connections which were 

stronger in the ASD group were very focal and largely localized to the lateral frontal 

electrodes. These observations did not change qualitatively when changing the 

thresholds of the binary difference matrix or the activation mask (Supplementary Figure 

1). 

To further quantify these observations, and to explore in a statistical manner whether 

fronto-occipital interactions are greater in control group and lateral-frontal interactions 

in the ASD group, we defined four different regions: Mid Frontal, Frontal Right, Frontal 

Left and Occipital (Figure 2a). We then measured global connectivity across regions 

(including the connectivity of a region with itself), performing a t-test comparing the SL 

value of the weighted SL-matrix for all pairs of electrodes of the corresponding regions. 

This analysis revealed that local connections in Mid Frontal decrease in ASD compared 

to controls (t-test: t(1,9)=3.02; p=0.01), as well as the long connections between Mid 

Frontal and Occipital (t-test: t(1,9)=2.21; p=0.05) (Figure 2b). On the contrary, local 

connections in both Lateral Frontal areas are enhanced in ASD, being significant only in 

the Frontal Left (t-test: t(1,9)=-2.35; p<0.05), not in the Frontal Right (t-test: t(1,9)=-
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0.82; p>0.1). All other combinations of regions (Figure 2b) showed no statistical 

diferences.

The previous analysis showed consistent and topographically organized differences in 

SL between ASD and control groups, suggesting that a distinct pattern of dynamical 

connectivity may be related to the physiopathology of ASD. A more severe test to this 

hypothesis involves examining progressive changes in connectivity with a continuous 

progression of ASD. To examine whether the observed difference in connectivity 

progressed with ASD severity, we measured the correlations between ADOS score –

which indexes ASD severity and varied from 7 to 16 within our population- and SL-

connectivity of each pair of electrodes. Figure 3a shows two representative examples of 

SL pairs with a negative (blue) and a positive (red) correlation with ADOS score. The 

topographical distribution of the correlation of ADOS within the ASD population 

followed the same pattern than SL differences between groups: medial electrodes are 

negatively correlated with ADOS (and hence their SL is greater with decreasing levels 

of ASD and progressing to control population); on the contrary lateral electrodes, 

predominantly short local connections, have SL values which increase with ADOS 

score. Note that, also coherently with the group analysis, the global trend is that 

negative correlations (blue edges, Figure 3b) are more prominent indicating that, on 

average, SL connectivity decreases with increasing level of ASD. To test quantitatively 

the hypothesis that short-range connections are overweighed in ASD and long-range 

connections are scanter, we measured the distribution of correlation coefficients for all 

pairs of electrodes at any given length1 (Figure 3c). Positive correlations (SL increases 

with ADOS score) were very significant only within a very short range. On the contrary 

negative correlations (SL increases with decreasing ADOS score) were broadly 

distributed and extended over distant pairs of electrodes (Figure 3c). This scaling effect 

becomes clearer in a more quantitative manner when considering the mean value of 

positive and negative correlations averaged across all pairs at a fixed distance (Figure 

3d). These results confirm our findings based on group analysis: ASD connectivity is 

overall of shorter range and dominantly localized to lateral region of the brain, with a 

deficit of medial occipito-frontal connections.  

                                               
1   Here we considered the planar distance between pairs of electrodes. This is only an 
approximation as interactions reflect coherent sources in a 3D volume. For the purpose of this analysis, 
were we merely want to explore broad scaling properties, this approximation seems adequate. Analyzing 
distributions considering spherical distances yielded virtually the same result. 
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The previous analysis shows that ADOS is a good predictor of the precise pattern of SL 

connectivity. The IQ distribution of patients was in the normal range, but patients were 

not matched individually to controls (i.e. there was not a one to one correspondence of 

IQ between both groups). To assure that the effect of ADOS in SL pattern of 

connectivity was not biased by correlations with IQ we measured the correlations 

between ADOS and IQ in the patient group. ADOS and SL were largely independent 

(Figure 4a, linear regression between both variables, p > 0.45). While this shows that 

the effect of ADOS on SL is unlikely to be accounted by covariations with IQ, IQ still 

may explain residual variance of SL patterns. To investigate a possible effect of IQ in 

SL we performed a multiple regression of SL (one for each pair of channels, as done 

above), with IQ and ADOS as regressors. The effect of ADOS is virtually identical to 

the previous analysis, which is expected if both variables are independent (compare 

figure 3b and figure 4d). A direct comparison of correlation matrices for IQ and ADOS 

(Figure 4b and 4c) shows that IQ covariations are very weak, implying that it has 

virtually no effect on our observables. 

We next investigated whether these differences resulted in network topologies which 

may have consequences in properties of information flow in the ASD and control group. 

Using the Kamada Kawai algorithm (Kamada & Kawai, 1989), we embedded the ASD 

and control networks, showing the 1000 strongest connections, in the two-dimensional 

plane (Figure 5a; visualizations of the networks at fixed threshold gave qualitatively the 

same results, see Supplementary Figure 2). By simple inspection, it is evident that the 

networks are qualitatively different. Control network presents a central core of nodes –

composed mainly by Mid-Frontal and Occipital electrodes, considering the regions 

defined in Figure 2a. The ASD network is homogeneously connected, has a larger 

diameter and appears to be more modular and less clustered. 

To quantify these observations we used four canonical graph theory metrics: Degree 

(K), Characteristic Path Length (L), Clustering Coefficient (C) and Modularity Index 

(MI). The degree (K) of the network, which constitutes its simplest statistical indicator, 

simply measures the average number of neighbours of each node (Figures 5b and 5c). 

As expected, K diminished as the threshold increases, disconnecting nodes and 

diminishing the size of the network (Stam, Jones, Nolte, Breakspear, & Scheltens, 

2007). To investigate the effect of ASD on K, we submitted the K values to an ANOVA 
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with group (control or ASD) and T (binned in 8) as independent factors. Results 

revealed a significant effect of group (F(1,1)=14.48; p<0,01) as well as for threshold 

(F(1,7)=662; p<0,01), and a significant interaction between both factors (F(1,1)=12.15; 

p<0,01). This shows that K was higher for the control group and that this effect is not 

invariant for all thresholds (Figure 5b). To further quantify where the differences 

between groups are located, we conducted a bootstrap analysis to compare K at every 

threshold. We found that for an intermediate range of T values (0.034-0.093), the degree 

was significantly higher in controls than in ASD, the most significant difference found 

for T = 0.056 (bootstrap test, P<0.01). At this threshold, we explored the topography of 

K for both groups. The scalp in Figure 5c shows the difference between scalps of both 

groups (Control – ASD). As with our previous findings, while the main finding is that K 

increases for controls compared to ASD on average, it displays a rich topographical 

distribution with areas showing larger K and areas showing smaller K than ASD: 

Control group shows larger K than ASD in the Mid Frontal and Occipital areas, and 

smaller K in the lateral fronto-parietal regions, a distribution consistent with the 

observed pattern in figures 1 and 2 (green dots mark electrodes where Kcontrol > KASD,; 

pink dots mark electrodes where KASD > Kcontrol, p<0.01). 

To quantify the notion of homogeneity we measured the distribution of K at different 

nodes (simply comparing the max and min K, a standard deviation of the distribution 

yielded the same results). Variations in K were less pronounced in ASD networks. At a 

fixed threshold the relation min(K) / max(K) for a given subject is larger in ASD than in 

Controls (mean controls = 0.02; mean ASD = 0.05; t(1,9): 2.39; p<0.05) demonstrating 

a more homogeneously connected network in ASD.

The overall dependence of the Characteristic Path Length with T also followed a well 

known behaviour (Figure 5d). As T increases, less edges remain and hence L increases. 

For very high values of T, the graph disconnects in several components, only short-

range links remaining and hence L starts decreasing. To investigate the effect of ASD 

on Characteristic Path Length, we submitted L to an ANOVA with group (control or 

ASD) and T (binned in 8) as independent factors. Results revealed a significant effect of 

group (F(1,1)=8.56; p<0,05) as well as for threshold (F(1,7)=186; p<0,01), and a 

significant interaction between both factors (F(1,1)=4.91; p<0,01), showing that L was 

higher for the ASD group (Figure 5d). To further quantify at which thresholds 

differences between groups were significant, we conducted a bootstrap analysis to 
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compare L at every threshold. At an intermediate range of values of T (0.042-0.073), L 

is significantly larger for the ASD group, the most significant difference found at T = 

0.056 (bootstrap test, p< 0.01). 

We performed the same analysis to examine whether Clustering coefficient of ASD and 

Control networks differed (Figure 5e). We submitted C to an ANOVA with group 

(control or ASD) and T (binned in 8). Results revealed a significant effect of group 

(F(1,1)=120.23; p<0,01) as well as for threshold (F(1,7)=295; p<0,01), and a non 

significant interaction between both factors (F(1,1)=1.88; p>0.05), showing that the C 

was higher for the control group (Figure 5e). Post-hoc bootstrap analysis comparing C 

at every threshold showed that, at an intermediate range of values of T (0.017-0.044), C 

is significantly larger for the control group; the most significant difference is found for 

T = 0.032 (bootstrap test, p < 0.01). 

Much effort has been devoted to the study of statistical indicators of networks, 

particularly the Characteristic Path Length and the Clustering Coefficient. An 

ubiquitous present topological network usually referred to as small-world, which has a 

relatively short (compared to random networks) Characteristic Path Length and high 

Clustering Coefficient has been shown to be optimal for information transfer and 

storage (Sporns & Zwi, 2004). Our combined findings (increased L and decreased C in 

ASD compared to control networks) indicate that the ASD network topology is 

consistently farther from being a small world than control network. 

A direct consequence of the lack of long-range connections found in ASD is that 

cortical areas may become relatively isolated from each other, resulting in turn in a 

more modular organization (Galvao et al., 2010; Gallos, Song, Havlin, & Makse, 2007). 

To assess this in a quantitative manner, we estimated the Modulation Index (MI) that 

estimates the tendency of a network to split into modules. The dependence of MI with T 

follows a similar trend than L (Figure 5f): as T increases, less edges remain and MI (and 

the number of actual modules) increases. To investigate the effect of ASD on MI, we 

submitted this data to an ANOVA with group (control or ASD) and T (binned in 8) as 

independent factors. Results revealed a significant effect of group (F(1,1)=40.76; 

p<0,01) as well as for threshold (F(1,7)=220; p<0,01), and a significant interaction 

between both factors (F(1,1)=18.64; p<0,01), showing that the MI was higher for the 

ASD group (Figure 5f). To further quantify where the differences between groups are 
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located, we conducted a bootstrap analysis to compare MI at every threshold. We found 

that for a very wide range of values of T (0.005-0.14), MI is significantly larger for the 

ASD group, the most significant difference found at T = 0.065 (bootstrap test, P < 0.01)

4. Discussion

The main purpose of this study was to characterize and compare resting state functional 

brain networks in subjects with ASD and neurotypical subjects. We studied networks 

derived from stationary EEG data filtered in the delta band. We observed reliable and 

consistent differences in the connectivity patterns of both groups. ASD subjects showed 

a lack of long-range, fronto-frontal and fronto occipital connections, and an 

enhancement of local, lateral frontal connections. While the spatial resolution of EEG is 

limited, the topographical analysis reported here can only be understood as referring to 

broad cortical regions. With this caveat and note of caution, our results are consistent

with fMRI data showing diminished or lack of connectivity in the midline, more 

specifically between the medial prefrontal cortex and precuneus (Courchesne & Pierce, 

2005; Hughes, 2007; Kana, 2006; Weng, 2010). Similarly, our observation of increased 

connectivity in prefronto-lateral nodes might be related with a lack of inhibition in 

dorsolateral Prefrontal cortex or altered connectivity of the Anterior Insula, (Di Martino 

et al., 2009; Kennedy, Redcay, & Courchesne, 2006; Weng, 2010).

Beyond broad group differences, our observation of a coherent topographic 

representation in a parametric measure of ASD determined by the ADOS score is 

indicative of a gradual change of network properties with increasing severity of the 

syndrome. Our results also revealed global trends related to proximity of correlations 

and ASD: for increased ASD severity, local connections increased monotonically and 

long range connections decreased.  This global trend is also inline with fMRI results 

relating the severity of ASD and fMRI correlation (Di Martino et al., 2009; Kennedy, 

Redcay, & Courchesne, 2006; Weng, 2010).

Changes in connectivity patterns have an impact in the global organization of a network 

which in turn determine the efficiency of information transfer and storage (Barabasi, 

2009; Galvao et al., 2010; Gallos, Song, Havlin, & Makse, 2007; Sigman & Cecchi, 

2002; Sporns & Zwi, 2004). Small-world networks have attracted great attention during 

the last decade (Watts & Strogatz, 1998) because they are ubiquitously present in a 
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broad range of natural phenomenon but also because they establish an optimal balance 

between local specialization and global integration (Sporns & Zwi, 2004). We 

tentatively suggest that the functional networks of ASD subjects reveal a big-world 

structure, which may depart from an optimal organization for information processing 

and storage.

Cortico-cortical connections can be roughly classified in two main groups (Schroeder & 

Lakatos, 2009; Sporns & Zwi, 2004): local connections linking neurons in the same 

cortical area (critical in generating functional specificity i.e., information) and long-

distance connections between neurons of different cortical regions, that ensure that

distant cortical sites can interact rapidly to generate dynamical patterns of temporal 

correlations, allowing the integration of different sources of information into coherent 

behavioural and cognitive states (Bressler, 1995; Friston, 2002; Nicoll, Larkman, & 

Blakemore, 1993; Sporns & Zwi, 2004). The differences we found in this study suggest 

that this compromise is unbalanced in ASD. The reduced long range connections may 

provide a physiological measure for the lack of proper integration of information 

observed in ASD (Frith, 1989). In this sense, the organization of the whole brain 

networks might be related with the known differences in information processing 

between typical and ASD individuals.

A ubiquitous aspect of brain function is its modular organization, with a large number 

of processors (neurons, columns or entire areas) working in parallel. The workspace 

theory argues that a distributed set of neurons with long axons provides a transient 

global “broadcasting” system enabling communication between arbitrary and otherwise 

not directly connected brain processors (Baars, 1988; Baars, 2005; Dehaene & 

Naccache, 2001). While at this stage merely speculative and requiring further 

investigation, these findings suggest that ASD individuals may have an atypical 

workspace system, revealed in enhanced local connectivity, a more homogeneous 

network lacking hubs and central nodes, and a more modular organization. While the 

workspace system conveys brain function with a flexible communication protocol this 

comes at a cost: it is slow and intrinsically serial (Pashler & O'Brien, 1993; Sergent, 

Baillet, & Dehaene, 2005; Sigman & Dehaene, 2008; Zylberberg, Fernandez Slezak, 

Roelfsema, Dehaene, & Sigman). Hence, a functional manifestation of the ASD 

network might be to favour more parallel processing of information –being the cost of 
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this enhancement the lack of behavioural flexibility, core symptom of individuals with 

ASD- an idea that resonates with the well known skills and handicaps of individuals 

with ASD, such as a detailed perception at the expense of a poorer integration into a big 

picture and, in rare cases, extraordinary performances in tasks such as the numerosity 

skill or calendar computation, typical of many autistic savants (Dakin & Frith, 2005; 

Mottron, Dawson, Soulieres, Hubert, & Burack, 2006; Thioux, Stark, Klaiman, & 

Schultz, 2006). If these speculations were true, ASD symptoms, its enhancements and 

handicaps, could be the symptoms of the lack of a proper workspace system. 

A fundamental open aspect of these results  is whether the network changes observed in 

this experiment reveal structural differences, a distinct pattern of thoughts and mental 

content during free thinking, or both. Network differences are not likely to be explained 

by changes in arousal since neither the video-image during the experiment nor the EEG 

traces revealed any indication of sleep transitions (Ogilvie, 2001). However, as in all 

resting state experiments, participants where free to elicit any kind of thoughts and it is 

likely that the mental content may vary across both groups. After completion of the 

experiment, we interviewed a fraction of our control participants and patients about the 

contents of their thoughts to specifically address whether ASD patients elicited highly 

stereotyped, arithmetic or recursive thoughts. While our questionnaire was mostly 

qualitative, results did not reflect any obvious difference between both groups. Of six 

interviewed patients the responses were widely varied without specific references to 

stereotyped thoughts or to a consistent pattern of mental content. One patient (a 

programmer) reported thoughts about his work, related to the development of an 

operating system and correspondences with a colleague in Europe. Another thought 

about the life and events of a famous Argentinean actress and rehearsed several scenes 

of her acting career. One patient reported thoughts (with imagery) about his pet in 

different situations, another mentioned that his thoughts were focused on not moving to 

conform the experimentalist requests and one patient could barely reconstruct his 

thoughts and reported a very confusing story with lots of pronouns and unspecific 

pointers (i.e. I thought about things, that changed,…). It is important to remark that 

while the patients in this study had normal IQs none of them presented savant 

characteristics. These observations do not demonstrate that changes in the functional 

network are unrelated to group differences in the patterns of thought. They simply 
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reflect that, if these differences exist, they are not so evident as to be capture by a brief 

description of mental content.  Since the pioneering work of Wundt, (De Groot, 1966; 

Wundt, 1896) it has become clear that despite obvious systematic difficulties, a detailed 

quantitative exploration of the content of mental states in relation to the network 

properties observed during free thought should open a new venue to understand the 

ultimate goal of cognition, the neural basis of thoughts.  
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Figure and Table captions

Table 1. Details of ASD subjects: age, diagnosis, IQ and ADOS scores. 

Figure 1. Differences in connectivity between ASD and Control groups. a) SL-matrix, 

averaged for all participants in this study. b) t-values of the SL difference between ASD 

and controls for each pair of channels. A red (blue) colour in the matrix indicates that 

SL is increased (decreased) in control compared to ASD population. c) Proportion of 

links in the SL-matrix remaining after appliance of different SL-value filters. The red 

line shows the threshold chosen for the analysis. d) Distribution of t-values. Red lines 

indicate the thresholds chosen for the analysis. e) Binary matrix showing links 

exceeding the SL threshold. f) Resulting matrix of thresholding the t-value matrix of fig 

1b. Values are 1, 0 or -1. g) Combination of both filters gives the matrix valued in 1 and 

-1 for those links surpassing both filters. h) Topography of the links exceeding the 

threshold: Blue lines show connections significantly higher in controls, red lines show 

connections significantly higher in ASD. 

Figure 2. SL averaged across different regions. a) Scheme of the four regions defined 

for this analysis. b) SL connections for all pair or regions (connections are symmetric 

son only the upper-diagonal triangular matrix is shown). Comparison within the 

diagonal show within region connections. Local connections in mid frontal and long

connections between mid frontal and occipital are diminished in ASD compared to 

controls. Local connections in both Lateral Frontal areas are enhanced in ASD. 
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Figure 3. Relation between SL and ADOS. a) Representative links showing a positive 

and a negative relation between SL and ADOS. b) Topographic projection of the 

coefficients of the regression, at two different thresholds. Blue lines show negative 

coefficients (negative relation between SL and ASD severity) and red lines show 

positive coefficients (positive relation between SL and ASD severity) c) Histograms of 

coefficients as a function of distance between electrodes. The fraction of positive 

coefficients decays monotonically as the distance increases. Negative coefficients 

distribution is more homogeneous and remains significant at longer distances. d)  Mean 

value of correlation coefficients as a function of distance. For short distances, 

correlations are on average positive, indicating that short range connections increase 

with ADOS. At long distances, correlations are on average negative indicating that long 

range connections decrease with ADOS 

Figure 4. Relation between IQ, ADOS and SL. a) Scatter plot of the ADOS and IQ 

scores per ASD subject. b) Beta coefficients for ADOS, from a multiple regression of 

SL (one for each pair of channels), with IQ and ADOS as regressors. c) Topographic 

projection of the beta coefficients for ADOS, at threshold =0.05. Blue lines show 

negative coefficients (negative relation between SL and ASD severity) and red lines 

show positive coefficients (positive relation between SL and ASD severity) c) Beta 

coefficients for IQ, from the same multiple regression of SL, with IQ and ADOS as 

regressors. d) Topographic projection of the beta coefficients for IQ, at threshold =0.05.

Figure 5. Topology of ASD and control functional connectivity networks: a) minimal 

energy plots of the average networks for both groups. Colors represent the four 

electrode groups defined in figure 2. b) Average degree as a function of threshold. 

Control group shows higher degree than ASD. b) Topographic map of the degree at 

threshold = 0.056. Green dots indicate electrodes where Kcontrol > KASD. Pink dots 

indicate electrodes where KASD > Kcontrol , P<0.01) d) Characteristic path length (L) as a 

function of threshold. Control group shows lower L than ASD. e) Clustering Coefficient 

(C) as a function of threshold. Control group shows higher C than ASD. f) Modularity 

as a function of threshold. ASD group shows higher modularity than Controls. 

Supplementary Figure 1. Pairs of electrodes displaying differences in connectivity 

between ASD and control groups at several thresholds.. Blue lines: connections weaker 
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in ASD than in controls. Red lines: connections stronger in ASD than in controls. a) 

Different values for the filter of T values (SL-value =0.03). b) Different values for the 

filter of SL-value (t-value =2).

Supplementary Figure 2. Visualization of ASD and control networks for a fixed 

threshold of 0.05. The topography of the networks is qualitatively equal to the 

topography when the degree is fixed.
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research highlights
 Connectivity of EEG delta band is different in ASD and control subjects.

 ASD subjects showed diminished long-range connections, and enhanced short-
range connections.

 This altered connectivity pattern is a good predictors of ASD severity.

 ASD networks are more parallel and have less small-world behaviour.
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Age Sex Diagnosis Verbal 

IQ 

Exec 

IQ 

Total 

IQ 

 ADOS 
Comm. Soc. Int. Total 

32 F Asperger 116 78 99 3 4 7 

26 M HFA 98 80 90 10 5 15 

22 M HFA 96 74 85 3 9 12 

17 M HFA 111 127 120 5 8 13 

17 M Asperger 88 83 85 2 7 9 

30 M HFA 114 130 125 4 8 12 

38 M HFA 111 131 121 6 9 15 

24 M HFA 104 89 98 5 6 11 

16 M HFA 99 89 95 3 9 12 

16 M HFA 94 105 99 6 10 16 

 

Table 1
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Figure 1

http://ees.elsevier.com/nsy/download.aspx?id=134655&guid=ac0b898f-08ef-4107-b1ad-67b4df749c16&scheme=1
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http://ees.elsevier.com/nsy/download.aspx?id=134656&guid=e2bfa70a-5515-42d8-845b-085cafed2358&scheme=1
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Figure 3

http://ees.elsevier.com/nsy/download.aspx?id=134657&guid=174966bd-3162-47ff-9655-50a0c7db1d05&scheme=1
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Figure 4

http://ees.elsevier.com/nsy/download.aspx?id=134661&guid=f6a464a1-8357-4bc6-b84c-46239a46de64&scheme=1
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Figure 5
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