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Do Not Fear Your Opponent: Suboptimal Changes of a Prevention Strategy

When Facing Stronger Opponents

Diego Fernandez Slezak and Mariano Sigman
University of Buenos Aires

The time spent making a decision and its quality define a widely studied trade-off. Some models suggest
that the time spent is set to optimize reward, as verified empirically in simple-decision making
experiments. However, in a more complex perspective compromising components of regulation focus,
ambitions, fear, risk and social variables, adjustment of the speed—accuracy trade-off may not be optimal.
Specifically, regulatory focus theory shows that people can be set in a promotion mode, where focus is
on seeking to approach a desired state (to win), or in a prevention mode, focusing to avoid undesired
states (not to lose). In promotion, people are eager to take risks increasing speed and decreasing accuracy.
In prevention, strategic vigilance increases, decreasing speed and improving accuracy. When time and
accuracy have to be compromised, one can ask which of these 2 strategies optimizes reward, leading to
optimal performance. This is investigated here in a unique experimental environment. Decision making
is studied in rapid-chess (180 s per game), in which the goal of a player is to mate the opponent in a finite
amount of time or, alternatively, time-out of the opponent with sufficient material to mate. In different
games, players face strong and weak opponents. It was observed that (a) players adopt a more
conservative strategy when facing strong opponents, with slower and more accurate moves, and (b) this
strategy is suboptimal: Players increase their winning likelihood against strong opponents using the

policy they adopt when confronting opponents with similar strength.
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Decision making involves the selection of a course of action
among several alternative scenarios. An important aspect is
whether the decision making mechanism is optimal, which can
only be assessed in the context of a specific goal. For instance, a
conservative policy in which decisions are only made when reach-
ing maximal confidence in favor of an option may be optimal if the
goal is to avoid errors. However, this policy is suboptimal if the
goal is to maximize the number of correct responses (regardless of
errors), where a less conservative policy that speeds the decision-
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making process increases the expected value (Green & Swets,
1966). Hence, the specific relevance of the outcomes of a decision,
intended (maximizing correct choices) and unintended (making
errors, wasting time, effort, or resources), depends on the specific
context and goals in which decisions are made.

In this article, we investigate optimality of decision making in
chess games played under intense temporal pressure. Rated chess
games are played with a time control. Each player’s clock starts
with a specified time budget. While a player is deciding on their
move, their clock time decreases, and the opponent clock stays
still. A player who runs out of time automatically loses, unless the
opposing player has insufficient material to mate, in which case the
game is a draw. A timed-out player loses, even when holding a
completely winning position with immediate mate to come. Hence,
in chess under time control, the objective is to mate the opponent
in a finite amount of time or, alternatively, time-out of the oppo-
nent with sufficient material to mate.! Different initial ranges of
time budgets are given specific names: classic (about 2 hr), rapid
(10 to 60 min per player), blitz (3 to 5 min per side) and lightning
(when the time budget per side is less than 3 min).

In this study we concentrate on blitz games with a total time
budget of 3 min per player without increment. This time control
might be considered to be so fast that tactics and skill are second-
ary to quick moves. However, the prevalent view in chess exper-

! Many tournaments are played with an “increment” that implies that in
each move made, the player gains a fix number of seconds to its time
budget. Under this rule, the total time is unbounded, but the total time per
move remains bounded.
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tise has ruled out this possibility. Expert players excel specifically
at rapid object recognition abilities (Burns, 2004; Gobet & Simon,
1996b) and, hence, under temporal pressure are expected to further
amplify the differences with weaker players. Time pressure also
increases the possibility of blundering, even in grandmaster play
(Chabris & Hearst, 2003). Indeed, as players are forced to play
faster, their ability during regular play under normal time controls
becomes less predictive of their performance (Van Der Maas &
Wagenmakers, 2005). Thus, time pressure provokes a selective
enhancement of rapid object recognition, favoring the best players,
but also increases the likelihood of errors and blunders, which, in
turn, tends to equalize the game. Time constraints and playing
ability therefore interact, and, as a result, ratings at different time
controls tend to be similar (Burns, 2004), indicating that, even
when the time budget is severely limited, chess skill relates highly
to the outcome. Hence, blitz constitutes an ideal context in which
correct outcomes (good moves) and speed of choice have to be
compromised to achieve the goal.

The specific aim of this work is to investigate (a) whether there
is change in the decision-making policy in blitz when players face
a stronger opponent and, (b) if so, whether this change is optimal
assuming that the objective of the player is to win the game. To
contextualize the current investigation in psychological theory, in
the next sections, we review three relevant concepts.

Speed-Accuracy Trade-Off

In most psychological experiments, a relation is found between
the time spent in a decision and its outcome known as the speed—
accuracy trade-off (SAT; Woodworth, 1899). Participants in
reaction-time (RT) tasks must adjust their performance to achieve
an appropriate balance between speed and accuracy (Wickelgren,
1977).

Decision making has been widely explained by models in which
evidence is progressively accumulated to a threshold (Luce, 1991).
These models can easily explain the specific compromise between
speed and accuracy in decisions based on noisy evidence. Raising
the decision threshold diminishes the effect of noise in the out-
come of the decision (it is formally equivalent to decreasing the
effect of the noise). Naturally, raising the decision boundary also
increases the time to reach the threshold resulting in slower re-
sponse times (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Bogacz & Gurney, 2007; Bogacz, Wagenmakers, Forstmann, &
Nieuwenhuis, 2010). This theory argues that fast and slow deci-
sions are explained with a single model with a varying continuous
parameter. But there are other potential alternatives to explain the
SAT. For instance, according to the fast guess theory (Ollman,
1966; Yellott, 1971), in any individual decision a subject can emit
either a random guess with short latency or a stimulus-controlled
response at considerably longer latency. Under speed conditions, a
subject increases the proportion of fast random guesses to
stimulus-controlled responses. This theory also predicts the SAT
relation, arguing that fast and slow decisions are of different kinds.
However, several experiments have shown consistently that spe-
cific patterns of the SAT function cannot be accounted by different
proportions of fast guesses (Pachella, 1974; Reed, 1973; Swens-
son, 1972).

Simple perceptual judgment has been investigated by Shadlen
and collaborators. In these experiments, participants have to decide

the direction of motion of a cloud of dots (Gold & Shadlen, 2007),
where only a fraction of the dots move in a coherent direction and
the remaining set of dots move randomly. As the proportion of
random moving dots increases, the decision becomes more diffi-
cult. Under time pressure, participants can make these decisions
quickly but at the cost of making more errors.

Gold and Shadlen (2002) tested a specific version of this task in
which participants control the pace of response. The number of
trials per unit of time increases as participants respond faster.
Subjects receive a reward if the choice is correct, and there is no
penalty for errors. Intuitively, the optimal threshold would estab-
lish a compromise between the two factors (speed and accuracy),
limiting the reward rate. If the threshold is too low (relative to the
difficulty of the task) the subject is not accurate, and if the
threshold is too high, the subject is too slow. In this simplified
version, the value of the decision threshold that maximizes the
reward for a given fraction of coherent dots can be explicitly
calculated (Bogacz et al., 2006), and it has been shown that
participants rapidly and spontaneously adapt the threshold to its
optimal value (Gold & Shadlen, 2002).

Although this suggests that in relatively simplified situations (a
binary one-dimensional choice), the decision threshold achieved is
optimal (in the context of maximizing the rate of reward), opti-
mality is not found systematically in decision making. For in-
stance, Bogacz, Hu, Holmes, and Cohen (2010) showed that in a
simple modification of the random dot task, in which the time
delay between trials is varied, subjects typically set their threshold
at higher values than predicted by reward maximization, leading to
more conservative policies. Moreover, Balci et al. (2011) trained
people with multiple signal qualities and showed that it takes many
sessions to train participants to behave in an optimal way, which
shows that, in the more typical case, optimal threshold adaptation
does not occur on the fly.

The beauty of the previous examples is that optimality can be
determined explicitly by quantitative models of decision making.
But these oversimplified situations are relatively far from real-life
decision making, which incorporates desires, fears, social interac-
tions, and core motivations idiosyncratic of human cognition (Kah-
neman & Tversky, 1979).

Kahneman and Tversky proposed an heuristic description of
human decision making, with special emphasis in errors leading to
suboptimal behavior which result from fear to take risks (referred
as risk aversion). Their work is synthesized in prospect theory,
proposing that the value function is steeper for losses than for
gains, so that the subjective experience of pain from a loss is
greater than the experience of pleasure from winning. In other
words, that people tend to prefer sure gains over bets, even when
the bet has a higher expected value than the sure gain (Tversky &
Kahneman, 1981). Fear of losing leads to an overly cautious
behavior, which turns out to be suboptimal.

Tversky and Kahneman also showed that the choices that one
makes are affected by the way the problem is framed, leading to
suboptimal behavior (Tversky & Kahneman, 1981). In their classic
demonstration, they asked a group of participants to choose be-
tween two alternative programs to combat the disease: One had an
exact value (200 people will be saved), and the other had a
distribution of probabilities with risk involved (“there is a one-
third probability that 600 people will be saved”). When the pro-
gram was presented, as in the previous example, framed in terms
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of the number of people saved, participants preferred exact pro-
gram. When the program was framed as the number of people who
would die, participants instead chose the risk-taking decision.
More generally, decisions that lead to gain are often risk averse,
whereas choices involving losses are generally risk taking. This
behavior can convincingly lead to suboptimality, when the bet has
a higher expected value than the sure gain (Kahneman & Tversky,
1979; Tversky & Kahneman, 1981).

Regulatory Focus:
Setting a Speed—Accuracy Trade-Off Policy

As reviewed in the previous section, prospect theory and the
framing effect have convincingly demonstrated that human deci-
sion making can violate rational requirements of consistency, not
maximizing the utility.

Prospect theory shows that decision makers weight gains and
losses unevenly. Decision frame theory goes beyond this asym-
metry, showing that decision makers can become suboptimal be-
cause of a specific formulation of the decision problem, norms,
habits, and personal characteristics of the decision maker.

Recent psychological research has shown that a decisive factor
determining the decision frame is the regulatory focus: the specific
way in which someone approaches pleasure and avoids pain.
Regulatory focus theory differentiates between two focus: a
promotion-focus based on hopes and accomplishments (gains) and
a prevention-focus based on safety and responsibilities (non-
losses).

Cesario, Grant, and Higgins (2004) studied the interaction be-
tween regulatory focus and message framing. They primed either
a promotion or prevention focus in participants. When a promotion
focus was adopted, messages emphasizing the health benefits of
exemplary fruit and vegetable consumption were more compelling.
When a prevention focus was adopted, messages emphasizing the
health complications of deficient fruit and vegetable consumption
became more compelling. This is predicted by regulatory focus
theory (Higgins, 1997), which proposes that regulatory focus differ
in their strategic inclinations for attaining desired end states. In a
promotion focus, the end state is desired, and the decision-maker
goal is to approach it. In a prevention focus the end state is
undesired, and the decision maker goal is to avoid it.

This idea seems abstract but becomes clear in the following
example, which is essential in our study. Imagine a game played
for money between two players. If Player A is in a promotion
focus, he will play to win (achieving the desired state), which
typically will involve taking risks and being aggressive. If Player
A is in a prevention focus, he will play to avoid losing (avoiding
the undesired state), which will reflect a cautious way of playing,
avoiding errors that might lead to defeat.

Now consider the case in which both players have different
strengths. The rules of the game are such that the weaker player
plays at higher odds, receiving more money for a win than the
stronger player. In case of a draw, the weaker player wins money
(less than for winning), and the stronger player loses money.
Should the weaker player shift to a more prevention or promotion
focus (relative to his original bias of course)?

We reasoned that the weaker player might try not to lose and,
hence, shift to a more prevention focus, because by simply not
losing, he wins money. Conversely, the stronger player is forced to

win if he does not want to lose money, which should orient him on
a promotion focus. We refer to this hypothesis as the draw value
shift of regulatory focus.

Conversely, players could shift in regulatory focus based on the
decision stakes (i.e., the money earned by the weaker player if he
wins, which is the same in value to the money lost by the stronger
player if he loses), becoming more prevention oriented as the
stakes grow higher. We refer to this hypothesis as the stake value
shift of regulatory focus.

The two hypotheses have qualitatively different predictions in
the shift of regulatory focus as a function of the difference in
strength.

e The draw value hypothesis predicts a monotonic dependence
of the shift in regulatory focus. When a player confronts a stronger
opponent he should shift to prevention (trying to assure a draw).
The greater the difference, the greater the shift should increase
since the expected value of the draw is higher. Conversely, when
a player confronts a weaker opponent he should shift the policy
used (to avoid drawing), becoming progressively more promotion
oriented as the difference with the weaker increases avoiding
draws.

e The Stake Value hypothesis predicts a U-shape dependence of
the shift in regulatory focus. When a player confronts an opponent
of very different strength (either stronger or weaker), the stakes
grow higher, and, hence, according to this hypothesis, the player
should become more prevention oriented.

The experimental challenge to distinguish between these two
hypotheses is to measure parametrically the shift in regulatory
focus as a function of the change in strength. For this we bring
together the two main ideas outlined in this review: the regulatory
focus and the speed—accuracy trade-off. These two observables are
intrinsically related: Promotion produces a strategic eagerness to
achieve the end state, increasing speed and decreasing accuracy.
Instead, prevention focus concerns avoiding undesired states,
with a strategic vigilance, decreasing speed and improving
accuracy (Forster, Higgins, & Bianco, 2003). Hence, the pre-
diction of a U-shape or a linear function of shift in regulatory
focus translates directly into the same prediction for RT and
accuracy (see Figure 1).

In this study, we use chess games (played for points instead of
money) to discriminate between these hypotheses and to test the
optimality of shifts in regulatory focus. In the next section, we
revise broadly how chess has been used to understand decision
making and other aspects of the workings of the human mind.

Chess as Vehicle to Understand Cognition

Chess thinking has been a very informative path to the inner
operation of effective thought. Adriaan De Groot’s seminal book
Thought and Choice in Chess (de Groot, 1965) is considered by
many psychologists to be one of the greatest works on human
thinking (T. Shallice, personal communication, December 2007).

Charness (1992) reviewed the impact of chess research on
cognitive sciences in three different roles: (a) as a subject of
inquiry in its own right (e.g., de Groot, 1965; Schultetus & Char-
ness, 1999; Simon & Chase, 1973; van Harreveld, Wagenmakers,
& van der Maas, 2007); (b) as a convenient environment for the
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Figure 1. Hypothetical shifts of regulatory focus when players confront opponents of different strengths. Two

hypotheses are proposed: draw value (top row), with promotion focus (less accurate and faster playing) when
confronting weaker opponents and prevention focus (more accurate and slower playing) with stronger opponents,
and stake value (bottom row) U-shaped dependence of the shift in regulatory focus, with shift to prevention

(more accurate and slower) focus as stakes increase.

study of complex cognitive processes, such as perception, problem
solving, and memory (e.g., Chase & Simon, 1973; Gobet & Simon,
1996a; Reingold, Charness, Schultetus, & Stampe, 2001); and (c)
as a convenient environment for exploring and developing theories
about search mechanisms (e.g., Gobet & Simon, 1996b; Saari-
luoma, 1995).

In this article, we incorporate new dimensions in which chess
may be useful in the cognitive sciences: decision making, opti-
mality, and regulatory focus. In addition, our study has several
important methodological differences from the vast majority of
previous investigations using chess to understand the human mind.
Our study relies on a vast corpus (30,000,000 games, about
2,400,000,000 decisions), capitalizing on a broad worldwide ten-
dency of people to play chess and on the existence of servers that
accumulate this data. Our study in this sense seeks statistical
emergents of potentially subtle effects, which may be detectable
only with a remarkable number of observations and might remain
undetected in small sample sizes typical of laboratory studies. Our
study also relies on the current vast capacity to analyze the value
of chess positions with high accuracy and on powerful computing
resources to evaluate thousands of millions of decisions. This
results in a very unique experimental condition in which players
are free to choose from among a virtually infinite tree of options,
and nonetheless, the value of the position can be measured directly
and does not need to rely on indirect measurements such as
self-reported post-choice satisfaction, which have been often used

to estimate the goodness of choice, as shown in Dijksterhuis, Bos,
Nordgren, and Van Baaren (2006).

Another virtue of our chess-based decision making corpus is
that the strength of each player is also well documented. Each
registered user has associated a rating that indicates the chess skills
strength of the player, represented by a number typically between
1,000 and 3,000 points, calculated using the Glicko rating system
(Glickman, 1999). Briefly, the rating is a dynamic variable that is
updated after each game played that represents the player’s
strength in a very confident manner. The update in rating consti-
tutes a reward (players vigorously try to improve their ratings),
which is, as all other variables, registered in our corpus.

In fact, reward in blitz games works exactly as in the money
games described in the previous section, where rating points play
the role of money. Players receive rating points (instead of money)
in proportion to the difference in their strength. In the case of a
draw, the weaker player wins points (less than for winning), and
the stronger player loses them (Glickman, 1999).

We investigate the policies used by players when confronting
stronger opponents (SO policy) and when confronting players of
equal strength (ES policy). By investigating how RT and accuracy
change in both policies, we can derive shifts in regulatory focus
and, thus, verify which hypothesis—draw or stake value—
governs players’ behavior. We use the term fearful to refer to the
policy adopted in prevention focus (avoiding risks, high decision
threshold, slower, and more accurate) and fearless for the policy
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adopted by a player in promotion focus (risk taking, lower decision
threshold, faster, and less accurate). Using these terms, our objec-
tive can be rephrased,, asking whether the SO policy is fearless or
fearful. By a quantitative analysis of the winning likelihood of
each configuration (a certain position value, a certain time for each
player, and the rating of both players) we can also determine which
of these policies is optimal (i.e., increases the expected win of
rating points).

Method

All games were downloaded from FICS (Free Internet Chess
Server; http://www.freechess.org/), a free ICS-compatible server
for playing chess games. Site administrators offered free access to
full database of games since 2008, with more than 300,000 regis-
tered users and more than 30 million games. This information was
stored in a PostgreSQL database (http://www.postgresql.org/). The
games include players involved, their ratings, moves, and times of
each move in millisecond precision.

We added the evaluation of each move. An ideal evaluation
function would assign to each position three possible values
according to the result following best play from both sides: 1 if
white wins, O is the result is a draw, and —1 if black wins. An
ideal evaluation function exists for other type of games, such as
checkers, that are known to result in a draw with perfect play
(Schaeffer et al., 2007). However, such ideal evaluation func-
tion does not exist for chess and most likely will never be
computed, according to many theoretical thinkers, such as
Claude Shannon (1950). An evaluation function in chess ap-
proximates an ideal one considering material value along with
other factors affecting the strength of each side. When counting up
the material for each side, typical values for pieces are one point
for a pawn, three points for a knight or bishop, five points for a
rook, and nine points for a queen. The king is sometimes given an
arbitrary high value, such as 200 points (Shannon, 1950), or any
other value that adds more than all the remaining factors. Evalu-
ation functions also consider factors such as pawn structure, the
fact that a pair of bishops are usually worth more, centralized
pieces are worth more, and so on. All these factors are collapsed on
a single scalar, the score, typically measured in hundredths of a
pawn, which provides an integral measure of the goodness of a
position. Then the evaluation is a continuous function that assigns
a score (often also referred as value) to each position that estimates
of the likelihood of the final result. Conventionally, positive values
indicate that the most probable outcome is a win for white.

We used Stockfish (Romstad et al., 2011), an open source
chess engine, to analyze the moves and calculate the score. The
analysis consists of a finite tree-driven exploration of succes-
sive moves, up to a predefined depth of move number; we
stored analysis with multiple depths, from six to 12 plies, into
the database. When the engine assigns a score of s to a position,
it considers that this is the score of the resulting position when
the best moves have been played by both sides. According to
the engine’s exploration, other moves would worsen the score.

In this article, we used the score calculated by the maximum
depth analyzed: 12 plies. The AScore was calculated as the
difference between the given position score at depth 12 and the
next ply at depth 11 to compare results with the same depth in
the decision tree. Hence, the most accurate moves have AScore

values close to zero, and very inaccurate moves correspond to
high negative numbers (blunders). Because of the high perfor-
mance of the computer engine, the fraction of moves with a
positive value of AScore—which provides an estimate of the
goodness of the engine relative to the players of the data-
base—is very low (Sigman, Etchemendy, Fernandez Slezak, &
Cecchi, 2010).

The calculation of the score of a games may take between 1 and
3 min on a standard desktop computer. For the analysis used in this
article, more than 1 million games were studied. If each game took
1 min to be analyzed, almost 2 full years would have been
necessary to finish all of them. To accelerate this procedure, score
calculation was parallelized using MPI and run in BlueGene/P and
an off-the-shelf Beowulf cluster located at the University of Bue-
nos Aires, Buenos Aires, Argentina.

We focused on players between 1,400 and 1,900 rating points.
For all figures and statistical data reported in this article, we
performed the same analysis on seven different sets each compris-
ing 150,000 blitzes, and then results were averaged for these seven
independent measures. Error bars indicate the standard error of
these seven measures. All games considered in this article corre-
spond to 180 s total time without increment.

During the analysis of the different variables in this article,
we performed several filtering into the moves database. Filter-
ing moves was performed to assure that all conditions were
equal except the variable of interest (i.e., it is a way of selecting
moves for which score, time left for white, time left for
black. . . are matched and only the variable of interest changes).
Because of the granularity of ratings, move times, and scores,
selecting strict values results in almost single samples (if any)
in the database. To have enough moves to be useful for statis-
tics, we defined intervals for ratings, move times, and scores
dimensions.

To illustrate this, we present a simple example. In Figure 4, we
study the evolution of an average game. The moves used to
calculate the move time where filtered first by players rating
([1,400-1,500]) and opponents rating ([1,600—1,700]). To match
score and time-left, intervals were defined so that selected moves
corresponded to those with score § = € and time-left 7 = €,
(i.e., Eg and €, were, respectively, set to 0.2 and 5 s). These
values assured sufficient moves for all conditions, but all the
results reported here were robust to changes in these values.

Game trajectories (evolution of time and score throughout the
course of the game) were calculated from moves played with SO
and ES policies, following Algorithm 1 (see Figure 2).

In the SO policy, moves are obtained from games in which a
player plays against a stronger opponent. For instance, in a repre-
sentative game that opposes players rated 1,400 and 1,600, after 10
iterations (assuming that score is —1.5 and time-left is 150 s and
152 s for player and opponent, respectively), the meanDuration
would be calculated as

meanDuration = {Duratinons|PlayerRating = 1400

/\ MoveNumber = 11 /\ Score = —1.5
/\ TimeLeft = 150sec

/\  OpponentRating = 1600)

SO policy
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Algorithm 1 Calculated ES game-play of the first 30 moves with player rating = pr and

opponent player = pr + Arating

T(0) = 180 sec
S(0)=0

for i=1:30 do

{Player’s turn}

meanDuration =

(Durations | PlayerRating = pr A MoveNumber =i A Score = S(i) A

ATimeLeft = T(i) A OpponentRating = Player Rating )

meanDeltaScore =

ES policy

(AScore | PlayerRating = pr A MoveNumber =i A Score = S(i) A

ATimeLeft = T(i) A OpponentRating = PlayerRating )

T(i) = T(i-1) - meanDuration

S(i) = S(i-1) + meanDeltaScore

ES policy

{Opponent’s turn: same procedure, but with SO policy, Player Rating = pr+ Arating

and OpponentRating = pr}

end for

return T,S

Figure 2. Algorithm 1. Calculated ES game-play of the first 30 moves with player rating = pr and opponent

player = pr + Arating.

and opponentMeanDuration would be calculated as
opponentmeanDuration = (Duratinons|PlayerRating = 1600
N\ MoveNumber = 11 /\ Score = —1
/N TimeLeft = 152sec
/\  OpponentRating = 1400)

SO policy

On the other hand, a the same game-play using an ES policy
would change only in the calculation of players averages; for
example, the mean Duration:

meanDuration = (Duratinons|PlayerRating = 1400

/\ MoveNumber = 11 /\ Score = —1.5

/\ TimeLeft = 150sec

/\  OpponentRating = 1400)

SO policy

The participants registered to play in the website are identi-
fied by their login name, not their full name, and agree to have
their matches stored in a publicly accessible server. The website
is designed so that any person, and not just registered partici-
pants, can look up the matches by browsing them as a guest.
That is, the data are already anonymized. Moreover, in our
storing process, we further anonymized the data by stripping all
information except the player’s ranking. Individual consent was
therefore not sought because of this double layer of anonymity,
along with the public, open nature of the website.

Results

Changes in SAT When Opposing Players of
Different Strength

Our aim is to determine whether regulatory focus shifts
toward a more prevention or promotion focus when players face
opponents of different strength. This can only be measured
indirectly, calculating shifts in the speed—accuracy trade-off.
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Figure 3. Shifts in response time (move-time) and accuracy (AScore) when players confront opponents of
different strengths. Average AScore (a) and move-time (b) were calculated for players between 1,400 and 1,900
rating points, confronting opponents between 1,400 and 1,900 rating points, both grouped in bins of 100 rating
units: [1,400-1,500], [1,500—-1,600], ..., and [1,800—1,900]. Only move numbers between 10 and 30 were
taken into account from 150,000 blitz games (3 min without increment). Spontaneous change in policy is
observed: As the strength of the opponent increases, players spend more time making each move and make more
accurate moves, consistent with the draw value hypothesis. In panels ¢ and d, respective normalized accuracy
and response-time are shown versus strength difference, confirming the draw value hypothesis.

To investigate shifts in SAT, we measured whether response
times and accuracy (change in AScore) varied when players con-
fronted opponents of different strength. We emphasize that AScore
is a measure of the quality of a single, one-player move, indepen-
dent of the opponent response. It is obvious that the winning
likelihood will diminish when playing stronger opponents, since
the opponent move will be progressively better. But here we do not
take this factor into account. Instead, we only focus on one-player
move and investigate if, when presented with the same position,
they play differently as a function of the opponent strength.

We selected moves between 10 and 30 from 150,000 blitz
games (3 min without increment) with players between 1,400 and
1,900 rating points. We split the moves, taking into account the
player ratings, into five different sets: [1,400-1,500], [1,500—
1,600], ..., and [1,800-1,900] rating points (see Figure 3, data
series in color lines). For each data series, we calculated the

average move-time and AScore versus the opponent’s rating, again
in bins of 100 rating points.

Analysis of performance revealed a highly expected main effect:
Strong players play more accurately and faster than weak players
(see Figure 3a). Accuracy is reflected by an increase of score with
player rating. An equivalent way of expressing this result would be
to set a blunder threshold (typically a move is considered a blunder
when the loss of score after the move is more than 2, but this
threshold is arbitrary). As the average score increases, the likeli-
hood of blundering decreases, as shown in Sigman et al. (2010),
which implies that, as expected, stronger players have less prob-
ability of blundering.

Interestingly when a player confronts a stronger opponent
accuracy increases. To quantify this observation— capitalizing
on the vast amount of the data—we compared pairs of decisions
for which all variables were identical (time left to the player,
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time left to the opponent, evaluation of the position, player’s
rating) and only differed in the rating of the opponent, which
could either be the same, 100 or 200 rating points of difference.

We performed the same analysis for move duration, investigat-
ing how it varies with opponent strength when all other state
variables of the game are matched. We found that, as observed for
accuracy, duration increases in a highly significant manner as the
difference between the player and the opponent rating increases
(see Figure 3b). For instance, a player with 1,650 rating points
during the middle game (between moves 10 and 30) takes (on
average) less than 4.4 s per ply when facing a weaker opponent and
more than 4.7 s when facing stronger opponents.

To assess which hypothesis was adopted by players (Draw or
Stake value), we calculated the normalized accuracy—AScoreN =
AScore[ARating)/AScore(ARating = 0)], where ARating = oppo-
nent’s rating minus player’s rating—rversus strength difference
with opponent (see Figure 3c). We found that, as predicted by the
Draw value hypothesis, accuracy increases linearly with oppo-
nent’s rating increase. Analogously, we calculated the normalized

response times (RT") versus strength difference. Again, consistent
with the Draw value hypothesis, we found that response time
increases linearly as opponent’s strength increases (see Figure 3d).

We calculated the linear regression of change in AScore”™ and
RT" versus difference with opponent’s strength. Figure 3c shows
AScore™ (color points) and the linear regression (black line, R* =
.88, p < 107'?). Change in response time (RT"™) is shown in Figure
4d (color points) and its linear regression (black line, R* = .89,
p < 10712,

Our results show that in rapid chess players spontaneously
change their policy: As the strength of the opponent increases, they
become more conservative in the speed—accuracy axis (i.e., they
spend more time making each move and make more accurate
moves). This result denies the stake value shift of regulatory focus,
since it would predict a consequent U-shape dependence in RT and
accuracy. It is consistent with the draw value hypothesis. Regula-
tory focus shifts toward a more prevention oriented strategy as
opponent’s strength is higher as reflected by the adoption of a
fearful policy, where decisions are slower and more accurate.

Optimality of Policy Shifts When Confronting
Stronger Opponents

Since rapid chess is played with finite time, and since we have
sufficient games in the database for each trio of (value of the
position, time left for player one, time left for player two), it is
possible to determine empirically whether this switch in policy is
optimal (Sigman et al., 2010). Figure 4 gives a hint indicating that
this shift may be suboptimal: Although the amount in time in-
creases steadily with opponent strength, accuracy shows a plateau,
suggesting that the cost in time may not compensate the loss of
time.

To quantitatively determine if policy adaptation is optimal, we
investigated the winning likelihood in simulated game trajectories
(evolution of time and score throughout the course of the game)
played with SO (henceforth referred as fearful) and ES (henceforth
referred as fearless) policies.

Given two ratings (player and opponent), we can calculate the
mean move time and AScore for each game status (time-left of
each player and score). From an initial state of the game, we can

simulate a game trajectory by iterating representative moves of
each player under different policies.

Specifically, the trajectory of a representative game is calculated
iteratively as follows: Time-left is initially set to 180 s (all games
analyzed here were 3 min games without increment), and score is
set to 0. A move is made with a duration D and with a change in
score AScore, considering the mean of durations (respectively,
change of score) for all moves in the database with the correspond-
ing time-left 7" and score S. Iteratively, time-left and score evolved
following the average duration and AScore (see Algorithm 1 for an
example of calculated game-play using the fearless policy).

To create fearful game trajectories, we can just fix the players
ratings (e.g., wr for white-rating; br for black-rating) and initial
status and concatenate mean moves calculated from games with
white and black players of ratings wr and br, respectively. Instead,
we can simulate fearless policy game trajectories, by calculating
the mean move from other game set, with players with the same
rating (e.g., white and black ratings equal to wr). If white player
was weaker than black player, from Figure 4 we know that, in the
fearless policy, the white player would play faster and lose a tiny
additional amount of value in each move.

To make this aspect of our experiment clear, we asked whether
1,500 rated players play optimally against 1,700 rated players. The
key aspect of this experiment is that, at any moment of the game
(e.g., it is white’s turn, with 60 s on the clock; the opponent has
80 s, and the position is slightly favorable with a score of 0.5), we
have sufficient data to compute precisely the mean time taken and
the average quality of this move. This is done for two different
distributions of moves: considering only moves belonging to
games in which 1,500 rated players confront 1,700 players (fearful
policy) or only moves belonging to games in which 1,500 players
confront opponents of the same strength (fearless policy). The
algorithm then iterates time and score according to the measured
average values. Critically, the response of the opponent does not
depend on the player policy. The response of the 1,700 player will
be computed from the moves belonging to all games in which a
1,700 player confronts a 1,500 player after filtering for the corre-
sponding time-left of both players and score. The explicit algo-
rithm is included in the Method section.

Figure 4 shows the evolution of the game according to both
policies for players with 1,450 = 50 rating points facing players
with 1,650 £ 50 rating points. The fearful policy represents the
evolution of an average game of the database. Time budget de-
creases monotonically, and after 30 moves, players have used, on
average, about half of their time budget. Note that the time-left
curve becomes steeper, indicating that more time is spent in the
middle game than in the opening stage of the game, as shown in
Sigman et al. (2010). The score also decreases throughout the
course of the game, which simply indicates that a player is facing
a stronger opponent, and as the game progresses, his position
worsens. The evolution of a game with a fearless policy follows
basically the same trend, with consistent departures (error bars are
plotted on the time-left curves, but they are so small that they are
almost invisible). When, playing according to the fearful policy,
the time budget decreases more rapidly, reaching a difference of
about 3 s after 30 moves. Consistently, when playing with the
fearful policy, the score remains better than when playing with the
fearless policy, reflecting the integration over moves of a weak but
significant difference in accuracy in each move of the sequence.
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Figure 4. Simulated game trajectories (evolution of time and score throughout the course of the game)
played with fearful and fearless policies, calculated for players rated between 1,400 and 1,500 against
opponents with rating 1,600-1,700. In black dots, fearful policy represents the evolution of an average
game of the database. In gray dots, players’ fearless policy calculated from games confronting opponents
of the same strength: [1400;1500]. Shadow shows the error bars on both panels; errors are so small that,
in left panel, they are almost invisible. After 30 moves, a player following a fearless policy stands with a
slightly worse position but with more time available.

In summary, after 30 moves, a player following a fearful policy
(comparatively slower and more accurate moves), on average,
stands with a position that is slightly better than if he or she would
have played with a fearless policy. But this does not come without
a cost; he or she also has, on average, less time remaining for the
rest of the game. Are his or her winning chances better or worse?

To determine the efficiency of both policies, we compute the
average result as a function of the time-left to each player, the
score, and the rating of both players. How all these factors com-
bine to form an average result can be determined empirically from
the database. This is done by simply computing, on each move
number, the average result of all games that agree with these
factors. It is important to emphasize that, whereas in the fearless
policy, the moves considered to evolve the game are taken from
players of the same strength, the average result is calculated, for

both policies, from the games in which the player confronts the
stronger opponent.

We estimated the average result according to play dictated by
both policies for seven independent experiments (each comprising
150,000 independent games) and for three different ARating val-
ues: 100, 200, and 300 rating points (see Figure 5). For each game,
the result has a value of 1 for a win, O for a draw, and —1 for a loss.
Since we study games in which players face a stronger opponent,
average results are negative, and, as expected, the average result
decreases as ARating growths.

For the 15 cases studied here (five different ratings and three
different ARatings), we observed that average result was greater
for the fearless than for the fearful policy (note that all points in
Figure 5 are above the diagonal). This observation is confirmed by
an analysis of variance (ANOVA) with player rating ([1,400
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Figure 5. Winning likelihood in simulated game trajectories based on games played using fearless versus
fearful policies. Trajectories were calculated for players between 1,400 and 1,900 rating points (grouped in bins
of 100 rating points), confronting opponents with three different Arating values: 100, 200, and 300 rating points.
All rating ranges show better estimated results using the fearless policy.
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1,500], [1,500 1,600], [1,600 1,700], [1,700 1,800], [1,800 1900])
ARating (100, 200, 300), and policy (fearful and fearless) as main
factors. This shows that players confronting stronger opponents
play slower and more accurately and that these factors combine in
a suboptimal way.

The effect was extremely consistent, as for all ratings and
ARatings, we observed that winning chances increased with the
fearless policy (see Figure 5). This effect was confirmed by a 7 test
comparing the average result of the fearless and fearful policies for
all ratings and ARatings, as in Figure 5, 1(14) = 4.18, p < .001.
Although this effect is extremely consistent (winning likelihood
increased for every single rating and ARating), it must be empha-
sized that the effect size is relatively small and is only observable
after averaging a significant number of games played. However,
the majority of these players play a great number of games,
suggesting that a concrete intervention based on these observations
may have a concrete benefit on weaker players’ performance.

Discussion

We proposed that players adapt their regulatory focus, i.e., the
balance between pursuing positive outcomes—a win—and avoid-
ing negative ones—a loss. Argument on how regulatory focus
might be set lead to two different hypothesis: (a) the draw value
hypothesis, according to which a player confronting a stronger
opponent should shift to prevention (trying to avoid losing to
assure a draw), and (b) the stake value hypothesis, according to
which a player confronting an opponent of very different strength
(either stronger or weaker) should become more prevention ori-
ented, because the stakes grow higher.

We showed that players of different levels adapt their speed—
accuracy policy (i.e., their regulatory focus) when confronting
opponents of varying strengths. When facing strong opponents,
players shift toward a prevention focus, which results in a fearful
decision-making policy, playing slightly slower and more accu-
rately. This result denies the stake value hypothesis and provides
evidence in favor of the draw value. As players face stronger
opponents, they concentrate more on not losing, being more cau-
tious, and playing slower and more accurately.

If players play more accurately, why does winning likelihood
decrease? This can only be understood in terms of the rules of the
game. The opponent has to be mated in a relatively short (180-s)
time budget. Hence, optimizing winning chances requires a bal-
ance between playing good and playing fast and our results show
that, empirically, the prevention focus does not maximize the gain
of these competing factors. The price of the time spent is too high
for the corresponding gain in value. It is clear that this may only
be valid in games played under strong time pressure (or, as often
happens, in games that initiate with a generous time budget but that
become a time-pressure game after a player “sleeps on his clock™).
As emphasized in the introduction, optimality can only be argued
with a specific goal and context. Here we show that, with strong
time pressure, becoming prevention oriented is, in fact, subopti-
mal. Our results show that the extra time spent is too costly for the
improvement in the position to which it leads. The possibility of
measuring the price of a second is unique in this experimental
setup and turns out to be a very difficult question to approach in
general decision-making scenarios. We could capitalize on the
experimental setup of rapid chess that combines virtually infinite

data (thousands of millions of decision), time pressure, and very
refined algorithms to compute the accuracy of a decision (of the
move made) and its corresponding change in value.

A specific analysis of the game played under different policies
shows that suboptimality emerges when both players have more
than 1 min remaining in their clocks, before time pressure converts
the game to what is essentially a moving piece lottery. Hence, our
results do not rely on decisive outcomes from this extreme time-
pressure situation, in which the most reasonable strategy is simply
to make any legal move to avoid being flagged and to try to flag
the opponent. There are also some exceptions to this, with impres-
sive demonstrations of how players can master a mating line with
only a couple of seconds remaining on the clock. In particular,
most chess clients used for online chess have an option used by
virtually all players by which a player can make a premove before
the opponent has played. If the premove is legal it is made without
loss of time.

Generally, time pressure tends to impose a more intuitive (im-
pulsive) strategy, rather than thoughtful decisions made with
plenty of time (Kim & Lee, 2011), based on a tendency to seek an
inferior but more immediate reward. Impulsive actions can be
produced when too much emphasis is placed on speed, rather than
accuracy, in a wide range of behaviors, including perceptual de-
cision making. In our experiment, under strong time pressure,
players adopt longer deliberating decisions when facing strong
opponents, becoming less impulsive. Since time primes here,
against what intuition may dictate, this lack of impulsivity turns
out to be suboptimal.

Our results also rule out other factors, which have previously
been considered instrumental in determining the suboptimal char-
acter of decisions with deliberation (e.g., Dijksterhuis et al., 2006;
Wilson & Schooler, 1991). When the space of choices involves too
many factors (e.g., choosing a car in which a complex function of
speed, size, prize, comfort, economy, etc. has to be maximized) the
decision without deliberation is better, and certainly faster, than a
decision based on rational thought (Dijksterhuis et al., 2006;
Wilson & Schooler, 1991). We do not observe this dependence,
even if chess presents without doubt a high-dimensional search
space. We showed that when players face weaker opponents, they
play faster and their winning chances increase. But this does not
result from the fact that fast decisions without deliberation are
better than slow, calculated rational choices. This is consistent
with recent results showing that, as players are forced to play
faster, their ability during regular play under normal time controls
becomes less predictive of their performance (Van Der Maas &
Wagenmakers, 2005). On the contrary, when players play faster,
the result of each move is worse on average. The only reason why
this strategy is nevertheless optimal is, as mentioned earlier, be-
cause the time saved plays a more important role.

We have shown a change in policy when confronting stronger
opponents and argued that this is an intentional (not necessarily
conscious) shift associated with an adoption of a prevention focus.
However, one may question whether there may be other possible
causes for why players play more slowly and more accurately
when confronting stronger opponents. A possible concern is that
the adoption of the conservative policy may not necessarily be the
result of the weaker player’s individual decision but, rather, an
emergent property of the dynamics of the game. Intuitively speak-
ing, one may have no other choice but to fend off the blows,
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regardless of emotional state or inclination. This is a very impor-
tant aspect that requires specific clarification.

After a few moves, a player is likely to have a worse position
against a stronger opponent and a better position against a weaker
opponent. Won positions might be easier to play (although this is
not necessarily true), and hence, it may be thought that this may
explain our results. However, our analysis takes this into account.
When comparing the properties of a move time taken and change
in score), we have matched all properties (time left for both
players, the score of the position) and only varied, parametrically,
the rating of the opponent. This is in part possible because of the
vast amount of data in which we still have sufficient games in
which a player plays a stronger opponent (at move N) with a score
and time in each clock comparable to the expected value at move
N when playing an opponent of the same strength. In spite of this
effort to match all circumstances except rating, some issues may
still remain. First, a game in which a weak player is holding an
even game against a strong opponent is an atypical game in which
he is playing above its chances. It may then be the case (and this
is a possibility we cannot discard) that the shift in policy is
enhanced when a weak player has made it far in the game without
losing, and the desire of to not lose the game is exacerbated. A
second argument is that even if the scores are equal, the stronger
player may pose more difficult problems. This raises the issue of
the complexity of a chess position (psychological, not computa-
tional, complexity), which is extremely hard to measure algorith-
mically. This was actually one of the original goals of the seminal
work of de Groot (1965) and still remains a challenge for computer
chess and artificial intelligence. Since psychological complexity is
virtually impossible to measure precisely (as opposed to the score,
which is very accurate) we could not match it in this study. But it
could be possible that players take more time against strong
opponents simply because the position they are presented with is
harder to handle. However, an aspect of our data makes this
hypothesis unlikely. If this was the case, we would expect that,
when playing stronger opponents, players would take more time
and also play worse. Or, at least, not be able to find a balance
between time and accuracy in which more time results in propor-
tionally better choices. The logic of the SAT compromise is
evident when complexity is matched. On the contrary, when the
complexity of a problem increases with a parameter—for instance,
the distance of a numerical comparison (Dehaene, 1992)—as the
decision becomes more difficult, subjects take more time and make
more errors.

The finding that players shift strategy when facing strong op-
ponents builds up in consonance with previous results by Forster et
al. (2003) demonstrating that decisions appear to be influenced by
the strategic inclinations of participants varying in regulatory focus
rather than by a built-in trade-off. The observed suboptimality is
reminiscent of the inability of expected utility to explain decision
making under risk, as discussed by Kahneman and Tversky (1979).
More generally, these results are in line with a widely demon-
strated influence of emotions on decision making (e.g., Damasio,
2000; Isen & Patrick, 1983; Loewenstein, Weber, Hsee, & Welch,
2001). A corollary of our observations is the non-Markovian
character of decision making during game play. In “perfect” play,
at any given position, there is a “best move” that is independent of
all factors beyond the specific position of the board, such as the
precedent sequence of moves. In previous results, Sigman et al.

(2010) showed non-Markovian violations in chess playing. The
present observations extend these results. Although we do not have
recordings of participants’ awareness of such strategic change, it is
very likely that it remains spontaneous and unconscious, probably
reflecting heuristics, as proposed by Kahneman, Slovic, and Tver-
sky (1982) and Ariely and Jones (2008), i.e., an estimate of how
players should regulate their own play from an estimate of the
opponent strength.

Practical (imperfect) play is actually not Markovian. For in-
stance, backgammon software computes winning chances to de-
cide cube policy, whether to double stakes or not, combining the
value of the position (the Markovian component) and an estima-
tion of a player strength (the non-Markovian component, since this
estimation is based on the history of the game). Estimating oppo-
nent strength in chess is straightforward, since it is indexed by the
opponent’s rating. Using this information as an heuristic to com-
bine and guide action could be an optimal non-Markovian way of
playing. As it happens, however, the fear and respect that induce
conservative play are—at least in fast chess, where time is too
costly—not the right way to go.
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