A CLASSIFICATION OF NICHOLS ALGEBRAS
OF SEMI-SIMPLE YETTER-DRINFELD MODULES
OVER NON-ABELIAN GROUPS
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ABSTRACT. Over fields of arbitrary characteristic we classify all braid-
indecomposable tuples of at least two absolutely simple Yetter-Drinfeld
modules over non-abelian groups such that the group is generated by
the support of the tuple and the Nichols algebra of the tuple is finite-
dimensional. Such tuples are classified in terms of analogs of Dynkin di-
agrams which encode much information about the Yetter-Drinfeld mod-
ules. We also compute the dimensions of these finite-dimensional Nichols
algebras. Our proof uses essentially the Weyl groupoid of a tuple of sim-
ple Yetter-Drinfeld modules and our previous result on pairs.

CONTENTS
Introduction 1
1. Preliminaries )
2. Main results 10
3. Finite Cartan graphs of rank three 14
4. Cartan matrices of finite type 15
5. Auxiliary lemmas 16
6. Proof of Theorem 2.6: The case ADFE 24
7. Proof of Theorem 2.7: The case C 27
8. Proof of Theorems 2.8 and 2.9: The case B 32
9. Proof of Theorem 2.10: The case Fy 43
10. Proof of Theorem 2.5: The classification 45
Appendix A. Reflections of a pair 46
Appendix B. Rank two classification 58
References 59
INTRODUCTION

Let K be a field and let G be a group. The G-graded KG-modules (also
known as Yetter-Drinfeld modules) form a braided vector space. To any
braided vector space V there exists up to isomorphism a unique connected
graded braided Hopf algebra B(V') generated by V', such that the genera-
tors have degree 1 and all primitive elements are in V. This braided Hopf
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algebra is known as the Nichols algebra of V. It is a fundamental problem
in Hopf algebra theory to understand the structure of Nichols algebras, see
for example [10] and [2]. Besides their applications to quantum groups and
Hopf algebras, Nichols algebras have many other interesting applications
such as Schubert calculus [15], Lie superalgebras, see [1, Example 5.2], and
logarithmic conformal field theories [38, 39, 40].

First definitions and structural results on Nichols algebras were obtained
by Nichols [36]. Nichols algebras were rediscovered later by Woronowicz
[42, 43] and Majid [35], and they were used as a basic object in the lifting
method of Andruskiewitsch and Schneider [8] to classify (finite-dimensional)
pointed Hopf algebras [9, 11, 12]. Nowadays there exist generalizations of
this method to other classes of Hopf algebras [4]. A common step in these
methods is to determine all Nichols algebras satisfying a finiteness or a mod-
erate growth condition. Whereas Nichols was only able to determine Nichols
algebras over very small abelian groups, the theory of Weyl groupoids [20]
lead to satisfactory classification results for arbitrary finite abelian groups.
Among the results in this direction we mention the classification of finite-
dimensional Nichols algebras of diagonal type of [19, 22, 23, 21, 24] and [31],
and the results related to presentations of such Nichols algebras [14, 13].

Based on the successful experience with Weyl groupoids related to Yetter-
Drinfeld modules over abelian groups, the theory was extended to arbitrary
Hopf algebras with bijective antipode and semi-simple Yetter-Drinfeld mod-
ules over them [7]. It turned out that Weyl groupoids provide very strong
information on the growth and on combinatorial properties of Nichols alge-
bras in the case of several direct summands. It is remarkable that this theory
is also very useful for studying Nichols algebras of simple Yetter-Drinfeld
modules. Indeed, the only known tool today to study Nichols algebras over
such Yetter-Drinfeld modules is to look at braided subspaces which can be
viewed as semi-simple Yetter-Drinfeld modules over another Hopf algebra,
see for example [5, 6]. From this point of view, the study of Nichols alge-
bras of semi-simple Yetter-Drinfeld modules is also crucial and has several
potential applications.

Let us explain the main results of this paper and the strategy of the
proof. Let G be a group and let V' be a finite-dimensional Yetter-Drinfeld
module over Gg. By restriction of the module structure, one can view V
as a Yetter-Drinfeld module over the subgroup G of Gg generated by the
support of V. Moreover, under some assumptions on G and the field K one
can decompose V into the direct sum of absolutely simples. Motivated by
this setting, we study tuples M = (Mj, ..., My) of absolutely simple Yetter-
Drinfeld modules over a non-abelian group G, where 6 € N, such that G is
generated by the support of V = @?lei-

Let us add here a side remark. The reflection theory and the Weyl
groupoid exist for tuples of simples. However, allowing simple Yetter-Drinfeld
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modules would lead to a discussion of group representations depending heav-
ily on the field. Further, one would loose essential parts of the combinatorics
of the Weyl groupoid: In the worst case one has only one simple summand
over the base field instead of several absolutely simples over an extended
field. On the other hand, field extensions of Nichols algebras are well un-
derstood. Therefore, in general it is more promising to extend the field
appropriately before studying a Nichols algebra.

Since V' is a braided vector space, it admits a Nichols algebra B(V'). The
general theory implies that in some cases, containing those with dim B(V') <
00, one can attach to M a connected finite Cartan graph of rank 6, see
Section 1 for the definitions. If # = 1, then the Cartan graph contains no
information about B(V). Therefore we restrict our attention to the case
f > 2. Our aim is now to provide a classification of #-tuples M of absolutely
simple Yetter-Drinfeld modules over non-abelian groups such that the group
is generated by the support of @?leu and M has an indecomposable finite
Cartan graph. We record that the indecomposability assumption on the
finite Cartan graph is merely of technical nature. It allows us to exclude
the components of the Cartan graph of rank one. Since the classification
in the case of two simple summands was performed in [29, 30, 28], here we
consider the case 8 > 3. To write our classification theorem, we introduce
two concepts:

Braid-indecomposability. The braid-indecomposability of the tuple of Yetter-
Drinfeld modules records the indecomposability assumption on the finite
Cartan graph, see Definition 2.1.

Skeletons. To describe the structure of the Yetter-Drinfeld modules involved,
we make use of diagrams which are analogs of Dynkin diagrams of finite type.
We call them skeletons of finite type. See Definition 2.2 for the definition of
a skeleton and Figure 2.1 for skeletons of finite type.

A consequence of our main result is the following classification, see The-
orem 2.5.

Classification theorem. Let 6 > 3 and let M = (M, ..., Mp) be a braid-
indecomposable tuple of Yetter-Drinfeld modules over a non-abelian group G
such that the support of M1 &®- - -® My generates G. Then the Nichols algebra
B(M; @ --- @ My) is finite-dimensional if and only if M has a skeleton of

finite type.

We remark that no assumption on the characteristic of the field K is
needed. The theorem is the culmination of several theorems stated in Sec-
tion 2. These theorems contain the dimensions and the Hilbert series for the
Nichols algebras of the classification. Almost all of the examples appearing
in our classification admit a standard (classical) root system. The dimen-
sions of the Nichols algebras admiting a standard root system are shown in
Table 1.
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TABLE 1. Finite-dimensional Nichols algebras with a
standard root system.

dimension | 20(6+1) | 46(6-1)326 | 9266 | 46(6—1) | 436 | 463 | 4120 | 418

root system Ay By Cy Dy Eg | E; | Eg | Fy
char K 3 #2 # 2

It is remarkable that in characteristic zero and in the case where 6§ > 4,
these finite-dimensional Nichols algebras appear in the work of Lentner [34]
related to coverings of Nichols algebras.

In the case of three simple summands, one has an additional family of
examples which admits a non-standard root system. The dimensions of
these Nichols algebras are shown in Table 2.

TABLE 2. Finite-dimensional Nichols algebras with a non-
standard root system of rank three.

dimension | 36127 | 212124 | 66127
char K 2 3 #2,3

The proof of Theorem 2.5 is based on a general PBW-type theorem on
certain Nichols algebras from [25, Thm. 2.6], see Theorem 1.2, on the clas-
sification in the case # = 2 [28], and on the classification of connected inde-
composable finite Cartan graphs of rank three [17]. In fact, we only need
Lemma 3.1 from [17], for the proof of which we had to use the main result
in [17]. In order to simplify our approach further, we prove the following
theorem, see Theorem 4.2.

Theorem. Any connected indecomposable finite Cartan graph has an object
with a Cartan matrixz of finite type.

This result is of independent interest and its proof does not use the classi-
fication of finite Cartan graphs [17, 18]. At an early stage of our work we had
a proof of our main classification theorem without using the classification in
[17], but it was much more technical than the present work.

The paper is organized as follows. Notations, terminology and a review
of the theory of Weyl groupoids of tuples of simple Yetter-Drinfeld modules
over groups is given in Section 1. In Section 2 we state the main result
of the paper, a classification of finite-dimensional Nichols algebras of semi-
simple Yetter-Drinfeld modules over groups in terms of skeletons of finite
type. This section also contains the Hilbert series of each of the Nichols
algebras appearing in our classification, see Theorems 2.6, 2.7, 2.8, 2.9,
and 2.10. In Sections 3 and 4 we collect useful facts about finite Cartan
graphs. In particular, in Theorem 4.2 we prove that every finite connected
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indecomposable Cartan graph contains a point with a Cartan matrix of finite
type. Section 5 contains several useful lemmas related to the structure of
Yetter-Drinfeld modules over arbitrary groups. Sections 6-9 are devoted
to prove the structure theorems in cases ADE, C, B and F;. The main
theorem, Theorem 2.5, is then proved in Section 10. The paper contains two
appendices. Appendix A is devoted to the structure theory of (ad V))(W)
for particular Yetter-Drinfeld modules V and W. Some known results are
cited and some new results, which are needed in the paper, are obtained
using known methods. Appendix B reviews the main results of [28], where
finite-dimensional Nichols algebras of direct sums of two absolutely simple
Yetter-Drinfeld modules were studied.

1. PRELIMINARIES

1.1. As usual, N is the set of positive integers, Ng = NU {0}, Z is the set of
integers, K is an arbitrary field of characteristic char K and K* = K\ {0}.

For a set X we write | X| for the cardinality of X.

For a group G' we write @ for the set of linear characters of G and Z (G)
for the center of G. For g € G, we write GY for the centralizer of g in G. The
conjugacy class of g will be denoted by ¢g&. For any g, h € G we sometimes
write g h for ghg™!. If X C G is a subset, then (X) denotes the subgroup
of G generated by X.

The category of Yetter-Drinfeld modules over G will be denoted by g)}D.
Recall that a Yetter-Drinfeld module over G, also called a G-graded KG-
module, is a KG-module V' = @®4e¢V, such that hV; C Vj g1 for all g, h €
G. It is a braided vector space with braiding ¢: V@V — V ® V defined by
c(u®v) =gv®uforall ue V,, v e V. The support of V is

suppV ={g € G:V, #0}.

We say that V is absolutely simple if V' # 0 and if for any field ex-
tension I of K the only Yetter-Drinfeld submodules of L ®g V' over LG
are {0} and L ®x V. (Absolutely) simple Yetter-Drinfeld modules over G
are parametrized by pairs (¢“, p), where ¢ is a conjugacy class of G' and
p : KG9 — End(W) is an (absolutely) irreducible representation of the
centralizer G9. The (absolutely) simple Yetter-Drinfeld modules over G are

M(g%, p) = Indg,p

with the induced action y(x ® w) = yx @ w for z,y € G and w € W,
and the coaction § : M (g%, p) — KG ® M (g%, p) is given by é(z ® w) =
rgr 1 ®@(z@w) for allw € W, x € G. One also says that 2 ®@w has G-degree
rgr~L.

For a G-graded KG-module V' we write B(V') for the Nichols algebra of
V. Nichols algebras are connected strictly No-graded braided Hopf algebras
with V' as degree one part. The Hilbert series of an Np-graded algebra
R = ®pengRn is D ,~0(dim Ry)t" € Z][[t]]. For all k € Ny and t € K let
(k) =141t +--- +t*1 be the usual t-number.
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Many examples of finite-dimensional Nichols algebras of pairs of abso-
lutely simple Yetter-Drinfeld modules are related to the groups I',, for n €
{2,3,4} defined in [25]: For all n € N>o, the group I',, is defined by the
generators a, b, v and relations

ba =vab, va=av ', vb=by, V"=1.

1.2. Weyl groupoids and root systems. We review the basics of the
theory of Weyl groupoids of tuples of simple Yetter-Drinfeld modules over
groups. We refer to [7] and [26, 25] for details and proofs. We use the ter-
minology introduced in [41] after several discussions with Andruskiewitsch
and Schneider.

Let # € Nand let I ={1,...,0}. Let X be a non-empty set and for each
X € X let AX = (ag](-)lgi’jgg be a generalized Cartan matrix. For all i € 1
let r;: X — X be a map. The quadruple

C=C(,x,rA),

where r = (1;);e; and A = (AX)xcxy, is called a semi-Cartan graph if
r? =idy for all i € I, and o = a[i™) for all X € X and i,j € I. We say

7 ij
that a semi-Cartan graph C is connected if there is no proper non-empty
subset ) C X such that r;(Y) € Y forallie I and Y € ).
Let C = C(I,X,r,A) be a semi-Cartan graph. There exists a unique

category D(X,I) with X as its set of objects and with morphisms
Hom(X,Y) = {(Y, f,X) : f € End(Z%)}
for X,Y € X with the composition defined by
(2,9, Y)o (Y, [, X)=(Z,9f,X)

for all X,Y,Z € X and f, g € End(Z?).
We write aq, ..., ap for the standard basis of Z?.
For each X € X and ¢ € I let

s € Aut(Z29), sfa;=a; - afj(-ai

for all j € I. Let W(C) be the subcategory of D(X, I') generated by the mor-
phisms (r;(X), s, X), where i € I and X € X. Then W(C) is a groupoid.
For any X,Y € X and f € Aut(Z%) with w = (Y, f, X) € Hom(X,Y) and
for any a € Z? we also write wa for fo. For all k € Ny, iq,...,i, € I,
X(),Xl, - ,Xk € X with rim(Xm) = Xm_1 for all 1 <m<klet

idx,si, -+ 84, = sfflsfgz e si’“ € Hom(X%, Xo).
For each X € X the set of real roots of C at X is
A™X = {wa; - w € Uyey Hom(Y, X)} € Z°.
The sets of positive real roots and negative real roots are

ATY =AY NN, AT =AY NN,
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respectively. The semi-Cartan graph C is finite if its set of real roots at X
is finite for all X € X. The semi-Cartan graph C is a Cartan graph if the
following hold:

(1) For each X € X the set A™ X consists of positive and negative roots.
(2) Let X e X and i,j € I. If tfj{ = |A™ X N (Npay + Noaj)| < oo then

(rir) (X) = X.

If C is a Cartan graph, the groupoid W(C) is the Weyl groupoid of C.

For all points X € X of the semi-Cartan graph C let AX C Z?. We
say that R = R(C, (AX)xcx) is a root system of type C if the following
conditions hold:

(1) AX = (AX AN U —(AX ANI) for all X € X.
(2) AXOZOzz {aj,—a;} forallie I, X € X.

(3) s¥(A ) A7) forallie I, X € X.
(4)

4 (rzr]) (X) = X for all 4,j € I with i # j and all X € X, where
Z] = |A% N (Noa; + Noa;)| is finite.

Note that (4) is similar to the condition (2) of a Cartan graph, but here A
is involved instead of the set of real roots. Axiom (4) is necessary for the
Coxeter relations of the Weyl groupoid. For any finite Cartan graph C the
family (A™ X)xex defines the unique root system of type C, see [16, Props.
2.9 and 2.12].

A connected semi-Cartan graph is indecomposable if there exists X € X
such that the Cartan matrix AX is indecomposable, that is, there are no
disjoint subsets I, Iy C I such that Iy,Is # 0, Iy Uly = I, and al-)](- = 0 for
all i € I, j € I5. It is known by [16, Prop. 4.6] that if a connected finite
Cartan graph C is indecomposable, then A% is an indecomposable Cartan
matrix for all points X of C.

A semi-Cartan graph C is standard if AX = AY for all X,Y € X. In
this case the real roots form the set of real roots of the Weyl group attached
to the Cartan matrix, and hence C is a Cartan graph. We then say that
the Weyl groupoid W(C) is standard. If R is a root system of a standard
Cartan graph C, then we say that R is standard. The terminology is based
on [3].

Let us review the connections between Cartan graphs and Nichols alge-
bras. Let G be a group and gyD be the category of Yetter-Drinfeld modules
over G. We write .7-"9G for the set of #-tuples of finite-dimensional absolutely
simple objects in gyD and Xy for the #-tuples of isomorphism classes of
finite-dimensional absolutely simple objects in gyD.

For any Yetter-Drinfeld module U over G and any x € U, y € B(U) we
write (ad z)(y) for mult(id—¢)(x®y), where mult denotes the multiplication
map in B(U) and c is the braiding of B(U). Then for any two subsets U’ C U
and U” C B(U) we write (adU’)(U") for the linear span of the elements
(adx)(y) withz e U, y € U".
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Let € N and let I = {1,...,0}. For M = (My,..., M) € F§ let
[M] = ([Mi],...,[Mpy]) € Xp be the corresponding 6-tuple of isomorphism
classes. For alli € I and j € I\ {i} let af\;f = —oo if (ad M;)™(M;) # 0 for
all m > 0 and let

af\f = —sup{m € Ny : (ad M;)™(M;) # 0}

otherwise. Moreover, let a’! = 2 for alli € I. Then AM = (af\;f )i jer is called
the Cartan matrix of M. Clearly, AM depends only on the isomorphism
class of M and hence we also write AM! for AM.

For all i € I the reflection map R;: Fy' — F5' is defined by R;(N) = N
if ag = —oo for some j € I, and by R;(N) = (N7, ..., Ny), where

N = {<ad NN i

J N if j =1,
otherwise.

Since [R;(M)] = [R;(N)] in Xp for all M, N € F§ with [M] = [N] and
all i € I, we may define r;: Xy — Xy by r;([V]) = [Ri(N)] for all i € I. We
then define

FG(M)={R;, -~ R, (M) € F§ : k € No, in,...,ix € I},
XQ(M) = {Tlezk([M]) e Xy:keNy, i1,...,10% EI}.

A tuple M € ]:GG admits all reflections if ai}f € Z for all N € FE(M)
and all 4,5 € I.

For all M € F{ let B(M) = B(M;1 - - -& Mp). Following the terminology
in [26] we say that a Nichols algebra B(M) is decomposable if there exists a
totally ordered set L and a sequence (W});c, of finite-dimensional absolutely
simple Ng—graded objects in g)/D such that

B(M) ~ @i, B(W)).

In this case, the isomorphism classes of the W; and the Z’-degrees are
uniquely determined and hence one may define the set A[fr‘/f] of positive

roots and the set AM of roots of [M]:
AM — fdegW; i1 e Ly, AM =AMy _aAlM

There are several results that imply the decomposability of a Nichols
algebra. For example, Kharchenko proved [33, Thm. 2] that B(M) is de-
composable if G is abelian and dim M; =1 for all ¢ € I. In [26] it is proved
that if all finite tensor powers of M @®---® My are direct sums of absolutely
simple objects in $VD then B(M) is decomposable.

Suppose that M admits all reflections. Then

C(M) = (I, Xg(M), (ri)icr, (A xex,(ar))

is a connected semi-Cartan graph and hence the groupoid W(M) = W(C(M))
is defined.
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We stress that the above reflection theory works more generally for tuples
of simple Yetter-Drinfeld modules. From [25, Cor. 2.4 and Thm. 2.3] one
obtains the following theorem.

Theorem 1.1. Let § € N, let G be a group and let M = (M, ..., My),
where each M; is a simple Yetter-Drinfeld module over G. Assume that M
admits all reflections and that W(M) is finite. Then B(M) is decomposable
and C(M) is a finite Cartan graph.

Clearly, the same theorem holds if one starts with a tuple of absolutely
simple Yetter-Drinfeld modules. Since extension of the base field of a Nichols
algebra is compatible with the grading and with taking coinvariants, any
reflection of a tuple of absolutely simples is again a tuple of absolutely
simples.

As in the case of Coxeter groups, on morphisms of Weyl groupoids one
defines a length function, see [26, §1]. The following theorem is an analog
of a PBW-decomposition for the Nichols algebras B(M) of tuples M of
absolutely simple Yetter-Drinfeld modules.

Theorem 1.2. [25, Thm. 2.6] Let 6 > 2 and M € F§. Suppose that M
admits all reflections and that W(M) is finite. Let w = id[pssi, -+~ 8;, be
a reduced decomposition of a longest element of Unjex,ar) Hom([N], [M]).
Let
B = 1d[as]Siy *** Sipy_y Vi,

for allm € {1,...,1}, where l is the length of w. Then AL]_W] ={p1,...,. 0}
and By # Pm for all k,m € {1,...,1} with k # m. There exist finite-
dimensional absolutely simple subobjects Mg, C B(M) in gyD of degree B,
for allm € {1,...,1} with Mg, ~ R; - Ri,Ri(M);, in GYD. More-
over, the multiplication map

B(A@ﬂ)@%"B(Aﬂ%)@DB(Aﬂﬁ>'%'B(Al)

imfl im

is an isomorphism of Ng-gmded objects in 8)217.

In this theorem, as everywhere else, we write N; for the i-th entry of a
tuple N € F¢ (here N = R;,, , -+ R;, Ri,(M)), where 1 < i < 6.

For all o = Z?:l nio; € 29, we write t& for t11 - -t,° € Z[[t1,...,tq]].
For any NY-graded object X = Daeng X in g)}D, the (multivariate) Hilbert
series of X is

> (dim X )t € Z[t, . .., o]).
aeNg

The Yetter-Drinfeld modules (ad V)¥(W) C B(V & W) for k € Ny and
V.W € gyD can be computed as a certain subobject of V& @ W using

Lemma 1.3 below and hence the Mg, in Theorem 1.2 can be computed
effectively. This allows us to compute the Hilbert series of B(M).
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Lemma 1.3. [25, Thm. 1.1] Let V and W be Yetter-Drinfeld modules over
a group. Let pg = 0, XX’W =W, and

Om+1 = 1d — cyomgw,y cyyomgw + (id @ pm)er 2,
X = emn (Ve Xy cvemt o w

for allm > 0. Then (ad V)" (W) ~ X" for all n € No.

The following important fact on (ad M;)™(M;) for any § € N, M € F§,
m € N, and 4,5 € {1,...,60} is also used heavily for explicit calculations. It
is a variant of [26, Thm. 7.2(3)].

Theorem 1.4. Let § € N and M € ]590. Assume that M admits all re-

flections and that W(M) is finite. Let i,5 € {1,...,0} with i # j. Then

(ad M;)™(M;) € gyD 1s absolutely simple for all 0 < m < —aﬁ\]/-[ and zero
M

for all m > —a;5.

2. MAIN RESULTS

We will need ¢g-numbers and g¢-factorials in rings in different contexts. For
any ring R, any m € Ny and any g € R let

m—1 m
(m)g = Z 7, (m):; = H(i)q-
=0 =1

Let G be a group. For all M € ]:gG let
supp M = supp M7 U --- U supp My.

Let 59G denote the subclass of .7-'9G consisting of all tuples M such that G is
generated by supp M.

Definition 2.1. Let0 € N. Then M € .7-“9G 1s called braid-indecomposable,
if there exists no decomposition M’ © M" of ®%_M; in SYD such that
M',M" #0 and (id — )(M' @ M") = 0.

In this work we will attach a skeleton (a kind of decorated Dynkin dia-
gram) to some tuples in Fy’.

Definition 2.2. Let € N>y and M = (M,...,My) € FS. Let A =
(aij)1<ij<o be the Cartan matriz of M. We say that M has a skeleton if

(1) for all 1 < i < @ there exist s; € supp M; and o; € Gsi such that
M; ~ M(s;,0;), and
(2) for all 1 <i < j <0 with a;j # 0 at least one of a;j, aj; is —1.
In this case the skeleton of M is a partially oriented partially labeled loop-
less graph with 6 vertices satisfying the following properties.
(1) Foralll < i <@, the i-th vertex is symbolized by |supp M;| = dim M;
points. If dim M; = 1, then the vertex is labeled by o;(s;). If
dim M; = 2 and there is an additional restriction on p = Ui(s;sjl),



NICHOLS ALGEBRAS OVER NON-ABELIAN GROUPS 11

where supp M; = {s;, s;}, then the i-th vertez is labeled by (p). Oth-
erwise there is no label.

(2) For alli,j € {1,...,0} with i # j there are a;ja;; edges between the
i-th and j-th verter. The edge is oriented towards j if and only if
Qij = -1, aj; < —1.

(3) Let 1 <i < j <6 with a;; < 0. If supp M; and supp M; commute,
then the connection between the i-th and j-th vertex consists of con-
tinuous lines. Otherwise the connection consists of dashed lines. The
connection is labeled with o;(sj)o;(s;) if dim M; =1 or dim M; =1,
and otherwise it is not labeled.

Remark 2.3. Let i € {1,...,0} with dim M; = 1 in Definition 2.2. Since
the Yetter-Drinfeld modules M; are absolutely simple for all j, the support
of each M, is a conjugacy class of G and the central element s; acts by a
scalar on each Mj. Thus o;(s;) and 0;(s;) do not depend on the choice of
sj € supp M;.

We will show in Lemma 5.3 that the label (p) of a vertex with two points
in Definition 2.2 is well-defined. Therefore all labels of the skeleton of M
are well-defined.

Definition 2.4. A skeleton is called simply-laced if any two vertices are
connected by at most one edge. A skeleton is called connected if the under-
lying graph is connected. A connected skeleton with at least three vertices is
said to be of finite type if it appears in Figure 2.1. For technical reasons
we say that a skeleton of type s is of finite type.

The main result of this paper is the following theorem.

Theorem 2.5. Let 0 € N>3. Let G be a non-abelian group and M in SGG,
Assume that M is braid-indecomposable. The following are equivalent:

(1) M has a skeleton of finite type.
(2) B(M) is finite-dimensional.
(3) M admits all reflections and the Weyl groupoid W(M) of M is finite.

We record that the third property of M in the theorem is also equivalent
to the finiteness of the set of Ny-graded right coideal subalgebras of B(M)
by [27, Thm. 6.15].

Theorem 2.5 will be proved in Section 10. The Hilbert series of the Nichols
algebras of Theorem 2.5 will be given in Subsections 2.1, 2.2, 2.3 and 2.4.
In Sections 6, 7, 8, and 9 we give a description of all tuples in ]-"GG which
have a skeleton of finite type.

2.1. The ADE series. The following theorem will be proved in Section 6.

Theorem 2.6. Let § € N>o. Let G be a non-abelian group and M € E§.
Assume that the Cartan matriz AM is of finite type and the Dynkin diagram
of AM is connected and simply-laced. Then the following hold:

(1) M has a simply-laced skeleton of finite type.
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FIGURE 2.1. Skeletons of finite type with at least three vertices.

(2) M admits all reflections and the Weyl groupoid W(M) is finite with
a finite root system of standard type Ag with 0 > 2, Dy with 6 > 4,
FEg, E7 or Eg.

(8) B(M) is finite-dimensional and its Hilbert series is

Hit)= [ a+t?%
aEA L

where AL denotes the set of positive roots of the root system associ-
ated with the Cartan matriz AM. The dimensions of these Nichols

algebras are listed in Table 1.

2.2. The C series. The following theorem will be proved in Section 7.

Theorem 2.7. Let 0 € N>3, G be a non-abelian group and M € qu As-
sume that the Cartan matric AM is of type Cy. Then the following are
equivalent:

(1) charK # 2 and M has a skeleton of type vy.
(2) M admits all reflections and the Weyl groupoid W(M) 1is finite.
(8) M admits all reflections and the Weyl groupoid W(M) is standard.
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(4) B(M) is finite-dimensional.
In this case, the Hilbert series of B(M) is

nHey = [ @+t J[ @+,

short long
OéGA+ a€A+

where Afort and Alfr’ng denote the set of short positive roots and long positive
roots of the root system associated with W(M), respectively. In particular

dim B(M) = 220°~9.

2.3. The B series. Our main results in this subsection are the following
two theorems.

Theorem 2.8. Let § € N>3. Let G be a non-abelian group and M € ES.
Assume that dim M, = 1 and that the Cartan matriz AM is of type By.
Then the following are equivalent:

(1) 0 =3 and M has a skeleton of type B%.

(2) M admits all reflections and the Weyl groupoid W(M) 1is finite.

(8) B(M) is finite-dimensional.
Let h = 3 if charK = 2, h = 2 if charK = 3, and h = 6 otherwise, and
let ' = 2 if charK = 3 and h' = 6 otherwise. Then in the above cases the
Hilbert series of B(M) is

H(t)= [T e TT @%@ [] @),
acOq 06603 0660233
where O1, O3, and Oas3 are the sets of positive roots in the orbits of a1, as,
and as + 2a3, respectively, under the action of the automorphism group of
the skeleton of M in its Cartan graph, see Lemma 8.8. In particular,
dim B(M) = h°12*(2n")°.
Theorem 2.9. Let 0 € N>3. Let G be a non-abelian group and M € Eg.

Assume that dim M, > 1, and that the Cartan matriz AM is of type By.
Then the following are equivalent:

(1) charK = 3 and M has a skeleton of type By.
(2) M admits all reflections and the Weyl groupoid W(M) is finite.
(3) M admits all reflections and the Weyl groupoid W(M) is standard.
(4) B(M) is finite-dimensional.
In this case the Hilbert series of B(M) is
Ht) = J[ a+t*+2? [ @+t

CXEAihort aEAlfng

where Aﬁfort and Al_ﬁng denote the set of short positive roots and long positive
roots of the root system associated with W(M), respectively. In particular
dim B(M) = 220(0-1)320,
Theorems 2.8 and 2.9 will be proved in Section 8.
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2.4. The exceptional case Fj. The following theorem will be proved in
Section 9.

Theorem 2.10. Let G be a non-abelian group and let M € 5(?. Assume
that the Cartan matriz AM is of type Fy. Then the following are equivalent:
(1) charK # 2 and M has a skeleton of type @4.
(2) M admits all reflections and the Weyl groupoid W(M) is finite.

(8) M admits all reflections and the Weyl groupoid W(M) is standard.
(4) B(M) is finite-dimensional.

In this case, the Hilbert series of B(M) is

H(t) = (2)7(2)22(2)5 (203 (2)15 (2)s (257 (205 (2)0 (2)p10(2) 1.

In particular dim B(M) = 236.

3. FINITE CARTAN GRAPHS OF RANK THREE

In this section we collect some facts about finite Cartan graphs of rank
three which will be used for our classification. Our main reference is [17].

Lemma 3.1. Let C = C(I,X,r, A) be a connected indecomposable finite
Cartan graph with |I| = 3. If AX is not of type Az for all X € X, then up
to a permutation of I one of the following holds.

(1) C is standard of type Cs.

(2) C is standard of type Bs.
(3) For each point X of C, AX is one of the matrices

2 -1 0 2 -1 0
—1 2 =2, [—2 2 -2
0 -1 2 0 -1 2

2 -1 0 2 -1 0
-1 2 -1, |-2 2 -1
0 -2 2 0 -2 2

2 -1 0 2 -1 0 2 -1 0
1 2 -1, (-1 2 -1], [-1 2 -2,
0 -2 2 0 -4 2 0 -2 2
2 -1 -1 2 0 -1 2 0 -1
-1 2 -1, o 2 -1, 0 2 -1
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(6) For each point X of C, AX is one of the matrices

2 -1 0 2 -1 0 2 -1 0
1 2 1), (-1 2 -1], [-1 2 -2,
0 -2 2 0 -3 2 0 -2 2
2 -1 0 2 -1 0 2 -1 0
1 2 2|, (-2 2 -=3], [-2 2 -2
0 -1 2 0 -1 2 0 -1 2

The siz cases correspond to the set of positive roots in [17, Appendix A] with
number 3, 4, 13, 14, 25, and 28, respectively.

Remark 3.2. The Cartan graphs in cases Lemma 3.1(3),(4) also appeared in
[16, Thm. 5.4].

Proof. Consider the list of all possible sets of positive roots in [17, Appendix
A]. There are precisely 55 such sets up to permutation of I and up to a
choice of a point of C. By [17, Cor.2.9], the Cartan matrix of the point
X can be obtained from the set Af of its positive roots: a; +mo; € AX
for m € Z, i,j € I with i # j, if and only if 0 < m < —afj(». Since the

reflection sX for i € I maps A¥ \ {a;} bijectively to A:":(X) \ {e;}, one
can calculate the Cartan matrices and the sets of positive roots in all points
of C. The elementary calculations are done most efficiently by a computer
program. ([l

For later reference we extract two easy corollaries of the lemma.

Corollary 3.3. Let C = C(I,X,r, A) be a connected indecomposable finite
Cartan graph with |I| = 3. If AX is not of type Az for all X € X, then for
all X € X and for all columns of AX there is at most one entry which is
strictly smaller than —1.

Remark 3.4. The claim in Corollary 3.3 holds without the assumption in
the second sentence, but we will not need this.

Corollary 3.5. Let C = C(I,X,r, A) be a connected indecomposable finite
Cartan graph with |I| = 3. If AX is not of type Az and not of type Cs for
all X € X, then either C is standard of type B3 or there is a permutation of
I such that for all points X the Cartan matriz AX is one of the matrices in
Lemma 3.1(4).

4. CARTAN MATRICES OF FINITE TYPE

Recall from [32, Thm. 4.3] the classification of a class of indecomposable
real matrices. One says that a matrix A = (aij); je(1,..n} is indecompos-
able, if there are no proper subsets I,.J of {1,...,n} such that INJ =0,
IuJ=A{1,...,n},and a;; = a;; =0foralli € I, j € J. For z,y € R" we
write > y (z > y, respectively) if z — y has only positive (non-negative,
respectively) entries.
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Theorem 4.1. Let n € N and let A be an indecomposable real n x n-matriz
such that a;; <0 for alli,j € {1,2,...,n} with i # j, and a;; = 0 whenever
aji = 0. Then A has precisely one of the following properties.
(Fin) det A # 0; there exists uw > 0 such that Au > 0; Av > 0 implies
v>0o0rv=0.
(Aff) corank A = 1; there exists u > 0 such that Au = 0; Av > 0 implies

that Av = 0.
(Ind) There exists u > 0 such that Au < 0; Av > 0, v > 0 imply that
v =0.

Then A is called of finite, affine, and indefinite type, respectively. Moreover,
Al has the same type as A.

Now we apply this theorem in order to prove that any connected inde-
composable finite Cartan graph has a point with a Cartan matrix of finite
type. The classification of indecomposable Cartan matrices of finite type is
well-known and can be found for example in [32].

Theorem 4.2. Let C = C(I,X,r,A) be a connected indecomposable finite
Cartan graph. Then there exists X € X such that AX is of finite type.

Proof. The indecomposability of C implies that AX is indecomposable for
all X € X, see [16, Prop. 4.6]. We give an indirect proof of the theorem. So
assume that for all X € X the Cartan matrix AX is of affine or indefinite
type.

Since C is finite and connected, X is a finite set and A™ ¥ is finite for
all X € X. Among all real roots of C in all objects, choose a = ), ; z;a;
which is maximal with respect to >. Let = (x;);c; and let X € X be such
that & € A™ X, Let

B={sj, s (a)|k>0,j1,....55 € I}.

Observe that s;(a) = o — >,y ajz;a; for all j € I. Thus the maximality
of o implies that Az > 0. Since x > 0 and =z # 0, A is not of indefinite
type. Then A is of affine type and Az = 0. Consequently, SJX (a) = «
for all j € I. Since « is maximal, by induction on k we conclude that
sjl‘--sﬁ(a) = « for any k € Ny and ji,...,jr € I. Therefore B = {a}.
On the other hand, « is a real root which implies that s;, - - - sfi (o) = v for
some k € Ny, i1,...,i; € I, and then sisil---sfi(a) = —q; # a. This is
clearly a contradiction. ([

5. AUXILIARY LEMMAS
In this section, let G be a group.

5.1. We first extend results of [29]. We start with considerations in a general
setting.

Lemma 5.1. Let s € G. Assume that |s¢| = 2. Let r,e € G be such that
rs = esr, € # 1. Then the following hold:
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(1) s¢ = {s,es}, re = e~ 'r, and ge = eg, ges = esg for all g € G*.

(2) r=tsr =rsr~! =es and r2,r"tgr,rgr=! € G* for all g € G°.
€’s =€7s,e s or att m,n € 4.

(4) Let H be a subgroup of G containing r and s. Then H is generated
by (HNG®)U {r}.

Proof. Since rsr~! = es and |s%| = 2, we conclude that s¢ = {s,es}. Then

resr—! = s and therefore rer—! = e~!. Moreover, s¢ = {s,es} implies that
gesg™! = es for all g € G* and hence ge = eg for all g € G*. In particular,
(1) is proven.

(2) and (3) follow by similar arguments.

(4) Since |s¢| = 2, G* has index 2 in G. Therefore H N G* has index at
most 2 in H. Since r € H \ G*, we conclude the claim. O

Lemma 5.2. Let r,5,e € G. Assume that |r®| = |s%| = 2, rs = esr, and
€ # 1. Then the following hold:
(1) 7% = {rer}, s = {s,es}, € =1 and e € Z(G).
(2) Let t € G. Assume that |t¢] = 2, rt = tr, and st # ts. Then
t¢ = {t, et} and st = ets.

Proof. (1) Lemma 5.1(1) implies that s = {s,es}, r® = {r,e '}, G" and
G* commute with €, and 7e = e 'r. Thus €2 = 1. Since G* and r generate
G, we conclude that € € Z(G).

(2) Since s¢ = {s,es} by (1) and since st # ts, we obtain that ts = est.
Thus (1) with » = ¢ implies that t¢ = {¢, et} and st = ets. O

We shall also need the following lemmas.

Lemma 5.3. Let s1, 52 € G be such that s1 # so, and let V € gyD. Assume
that dimV = 2 and that suppV = s¢ = {s1,s2}. Then there exist unique
p1,p2 € K\{0} such that syv = p1v and sov = pav for allv € Vs, . Moreover,

-1 ~1 -1 -1
$281 UV = pP2p; U, S1W = PawW, So2W = P1W, S189 W = p2p; W

forallv eV, we V,.

Proof. Since s§ = {s1,s2} by assumption, there exists » € G such that
rs; = Sor and rso = sir. Moreover, pi,pe exist since s152 = s981 by

Lemma 5.1 and since dim V;, = 1 for all ¢ € {1,2}. Then s;rv = rsqv = parv
and sprv = rsjv = pyrv for all v € V. This implies the claim since
Ve =1V5,. O

Lemma 5.4. Let VW € gyD be non-zero Yetter-Drinfeld modules such
that (id — ewyveyw)(V @ W) = 0. Then suppV and supp W commute,
and for any s € suppV, t € supp W there exists Ass € K\ {0} such that
sw = Agw for all w € Wy and tv = /\S_tlv for all v € V.

Proof. Let s € suppV, t € supp W, v € V5 \ {0}, and w € Wy \ {0}. Then

id—cwvyey VR W) =vQ@w— sts v ® sw.
( vevw)( )
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Since sw € Wy,—1, the latter is zero if and only if st = ts and sw = Asw,
tv = )\;511) for some Ay € K\ {0}. These conditions are independent of the
choice of v and w, and therefore the lemma follows. O

We will also need a stronger claim in a more specific context.

Lemma 5.5. Let s,t,e € G, 0 € é\s, TGt and let V,W € gyD. Assume
that e # 1, s¢ = {s,es}, t% = {t,et}, and V ~ M(s,0), W ~ M (t, 7). Then
the following hold:
(1) e € GF UG
(2) If G* # G and st = ts then o(e) = 7(e) = 1.
(8) The following are equivalent:
(a) (id — ewyevw)(V @ W) =0,
(b) st =ts, o(t)r(s) =1, and o(e)T(e) = 1.

Proof. Since s@ = {s,es} and t¢ = {t,et}, Lemma 5.1(1) tells that € €
G* U G'. Note that € is possibly not central if s and ¢ commute.

(2) Assume that G # G'. Since both G* and G' have index two in G,
there exists r € G' with rs = esr. If st = ts, then s,e € G' and hence
7(rs) = 7(€)7(sr). Thus 7(¢) = 1 and similarly o(e) = 1.

(3) Let v € V5 \ {0}, w € Wy \ {0}, and let € G be such that rs = esr.
Since KGw = W and the braiding commutes with the action of G, we
conclude that (id—ecw,veyw)(V@W) = 0 if and only if (id—cewveyw)(v' ®
w) =0 for all v € V5 U V. Since V = Kv + Krov, by Lemma 5.4 the latter
claim is equivalent to

(5.1) st=1ts, vQw==twRsw, 1TVRW=1IrvR esw.

The second equation in (5.1) is equivalent to o ()7(s) = 1. If G* = G*, then
r and ¢t do not commute. Hence tr = r(et), and the third equation in (5.1)
is equivalent to o(et)T(es) = 1. This implies (2). On the other hand, if
G* # G, then we may assume that » € G!. In that case the last equation in
(5.1) is equivalent to the second, and the last equation in (b) is a tautology
because of (1). Thus again (2) holds. O

The following lemma is contained partially in [29, Lemmas 5.13, 5.15].

Lemma 5.6. Let VW € gyD be non-zero finite-dimensional objects such
that (ad V)2(W) = 0 in B(V & W).

(1) If (ad V)(W') # 0 then supp V is commutative.

(2) Lets € suppV andt € supp W. Assume that (id—c?)(Vs@W,) # 0,
st = ts, and that there exists A € K such that sw = Aw for all
w € W;. Then Gt C G*.

(3) Let s € suppV andt € supp W. Assume that (id—c?)(Vs@W,) # 0,
st = ts, and that there exist \,\' € K such that sw = \w and
tv = Nv for allw € Wy, v € Vs. Then dimV, = 1.
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(4) If s € suppV and t € supp W with st # ts, then (adV)(W) # 0,
Otlsupp v 15 the transposition (s t>s), dimVs = 1, and sv = —v for
all v € V.

Proof. (1) Let s € suppV, t € supp W be such that (ad Vy)(W;) # 0. As-

sume that supp V' is not commutative. Since supp V' is a union of conjugacy

classes of G, there exists r € supp V' \ {s,#7! > s} such that rs # sr. Then

(ad V) (ad Vi) (W) # 0 by [29, Prop. 5.5], a contradiction to (ad V)?(W) = 0.
(2) Let u € V5, w € Wi\ {0}, and A € K* such that sw = Aw. Then

(id—Au®w) =u®w—tu® sw = (u— \u) @ w.

Thus, by assumption, there exists v € V, such that tv # A~ lv.
Let g € G, s’ = gsg~', and v/ = gv. Then v/ € Vy and s't = ts'.
Moreover,

1

(id— AW @w)=v @w—t' ®gsg tw = g(v— \v) @w

and hence (id — ¢?)(v/ @ w) # 0. Assume that g ¢ G°, that is, s’ # s. Recall
that (ad V)2(W) ~ X3V in GYD, and that X3"" = pa(id@e1)(VRVQW).
Then

2(id ® 1) (v @ v @ w)
= (id + c12 — c33¢19 — c12c33¢12) (V ® (v — Mtv) @ w)
= (id — c12635¢12)(V @ (v — M) ® w) + 5" (v — Mv) @ (id — ) (V' @ w).

Since s and s commute by (1), the first summand of the last expression
isin Vy ® V; @ W, and the second is non-zero in V, ® Vi @ W. This is a
contradiction to (ad V)?(W) = 0.

(3) Assume to the contrary that v,v" € Vy are linearly independent. By
a computation similar to one in the proof of (2), we obtain that

(id — c12¢33¢12) (v @ (v — Atw) @ w) + s(v — Mv) ® (id — ) (v @ w) = 0.
Since tv = Nv and tv' = N/, we conclude that AN # 1 and
(1=M\)W @v—ANst@sv+ (1 - IN)sv®v)@w=0.

Applying to the second tensor factor a functional v* € V* with v™*(v) = 0,
v™*(v") = 1, implies that sv € Ksv’, which yields the desired contradiction.

(4) Since (ad Vi) (W) =~ (id — ew, vievew, ) (Vs @ Wy) in SVD and st # ts,
we conclude from [29, Prop. 5.5] that (ad Vs)(W;) # 0. If supp V' = {s,t>s},
then ¢¢fsuppv = (s (> s)). So assume that [supp V| > 3. Let r € supp V' be
such that 7 ¢ {s,t~!>s}. Since (ad V;.)(ad V;)(W;) = 0 by assumption, [29,
Prop. 5.5] implies that rt = tr. Hence ¢;|suppy = (st~ > s). This implies
the claim on ¢ |suppv-
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Let now v1,v9 € Vi and w € Wy. Then

o (id ® 1) (v1 ® Vo @ W) = P2(v] ® V2 @ W — V] @ 5t~ 1wy ® sW)
= (v1 Q@ua+ sv2 @ V1) W
— (sv2 ® sts 'y + s*ts Ty ® sv2) ® sw
— (v] ® sts tvg + s*ts oy @ v1) @ sw

+ (s*tstug @ s*ts 2oy + s*ts oy @ s%tsTlug) ® sPw.

Since sw € Wy—1 and w, s?w ¢ W1, if (ad V)2(W) = 0 then the second
and third line in the last expression have to cancel. Since

§2tsT Ve = Vg2
and s%tst~'s72 # s, we conclude that
SU9 ® sts’lvl + 11 Q sts’lqu =0.
In particular, dim Vs =1 and sv +v =0 for all v € V. O

Lemma 5.7. Let 0 € N and Vi, ..., Vy be Yetter-Drinfeld modules over G.
Let i € {1,...,0} and J C {1,...,0} \ {i} be such that supp V},supp Vj
commute for all j,k € JU{i}. Assume that G is generated by U?leupp Vi,
Vi is absolutely simple, dim V; < oo, and that (id — cy; v;cv, v;) (Vi @ V;) = 0
forallje{l,...,0}\ (JU{i}). Then dimV; = 1.

Proof. Lemma 5.4 and the conditions on supp V; imply that supp V; com-
mutes with supp V; for all 1 < 57 < 6. Since supp V; is a conjugacy class
of G and G is generated by U?zlsupp Vj, we conclude that [supp V;| = 1.
Let t € suppV; and let J' = J U {i}. By assumption, rs = sr for all
r,s € Ujesupp Vj, and hence the elements of Uj¢c ;supp V; have a common
eigenspace V in K ®g V; for some field extension K of K. Further, for all
r € suppV; with j € {1,...,0}\ J' there exists A\, € K such that rv = A\v
for all v € V; by Lemma 5.4. Since G is generated by U?leupp Vj, we con-
clude that all elements of G act by a constant on V. Since V; is absolutely
simple, it follows that dim V; = 1. O

Similar calculations as in the proof of Lemma 5.6 prove the following
claim on braided vector spaces of diagonal type, which will be needed in the
proof of Lemma 5.14.

Lemma 5.8. Let g1,92,93 € G and let V € gyD. Assume that g;9; = 9;9:
forall1 <i < j <3, and that there exist (gij)1<ij<3 € (K*)3*3 and linearly
independent elements v; € Vg, fori € {1,2,3} such that g;v; = q;;vj for all
i,7 € {1,2,3}. Then (adwvy)(adwvz)(vs) = 0 if and only if gesqse = 1 or
13931 = q12921 = 1.
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Proof. In the proof of [25, Thm. 1.1] it was shown that (ad v1)(ad v2)(v3) = 0
if and only if ¢o(id ® 1)(v1 ® v2 ® v3) = 0. Since

1(v2 ®v3) = (1 — q23q32)V2 ® V3,
w2(v1 ® v ®v3) = v1 @ (1 — ¢12¢21¢13931)v2 R V3
+ q12(1 — q13¢31)v2 @ V1 ® V3,

the claim follows from the linear independence of vy, v, v3. O

Finally, we make an important observation on tuples with certain Cartan
matrices.

Proposition 5.9. Let 6 € N>y, M € .7:96;, and i,5 € {1,...,0} be such that
i #j. Assume that {—a}, —a}l} € {{0},{1},{1,2}}. Then (ad M;)™(M;)
is absolutely simple or zero for all m € Ny.

Proof. Since M € F§, (ad M;)°(M;) = M; is absolutely simple. On the
other hand, (ad M;)%(M;) = Ry (M;, Mj)s for a = —a is absolutely simple

ij
by [7, Thm.3.8], and (ad M;)™(M;) = 0 for all m > a. Thus the claim

holds whenever a;; € {0, —1}. The only remaining case is when a}! = —2

iJ ’
M_

aj; =—1, and m = 1. In this case
(ad M;)(M;) ~ (id — enry v ¢0,,01;) (Mi @ M) ~ (ad Mj)(M;)
which is absolutely simple by a previous argument since o/ = —1. O

Jt
5.2. Cartan matrices and restrictions. Let H C G be a subgroup and
let V e 8)77). If supp V C H, then by restricting the G-module structure of
V to H one obtains a unique Yetter-Drinfeld module V/ € #YD which we
will denote by Res% V.

Lemma 5.10. Let H be a subgroup of G. Let X C G be a union of conjugacy
classes of G such that X U H generates G. Then

G=(X)H = H(X).
Proof. Tt follows from hx = (hxh™1)h for all h € H, z € X, since G is
generated by X U H. ([
Lemma 5.11. Let H be a subgroup of G. Let X C G be a union of conjugacy
classes of G such that X U H generates G.

(1) Let V be a simple KG-module. If xv € Kv for all v € V and all
xz € X, thenV is a simple KH-module by restriction.

(2) Let V' be a simple Yetter-Drinfeld module over G. Assume that
suppV C H. Let h € suppV. Ifzv € Kv for allz € X, v € V},
then ResGV € YD is simple.

Proof. (1) By Lemma 5.10, G = H(X). Hence
(5.2) V =KGv=KH(X)v=KHv

for all v € V' \ {0}. Therefore V is a simple KH-module by restriction.
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(2) Lemma 5.10 implies that G = H(X). Since V is simple and zv € Kv
for all x € X and v € V}, we conclude from (5.2) that KHv = V for all
v € Vj, \ {0}. Thus Res$V is simple. O

The last three lemmata in this subsection will be used for induction ar-
guments.

Lemma 5.12. Let § € N>o and M € EF. Assume that a} = ol = —1
and that ajl\g =0 for all j € {3,...,0}. Assume further that supp M; and
supp My commute. Then dim M; = 1 and dim My = 1.

Proof. From Lemma 5.6(1) we obtain that supp M; and supp Ms are com-
mutative since al4 = a}f = —1. Hence dim M; = 1 by Lemma 5.7 with i = 1
and J = {2}. Let r; € Z(G) with supp M1 = {r1} and let ro € supp Mo.
Since any sy € supp My acts by a constant on Mj, Lemma 5.6(2) with
V = Ms and W = M; implies that G C G"™. Hence G™ = @G, that is,
ro € Z(G) and supp Mo = {re}. Since r; € Z(G) and M, is absolutely
simple, there exists \' € K* such that rive = Nwvy for all v9 € M. Then
Lemma 5.6(3) with V' = My, W = M; implies that dim My = 1. O

Lemma 5.13. Let 0 € Ny and M € £. Assume that a}f = a}f = —1
and that a{\;[» =0 for all j € {3,...,0}. Assume further that supp My and

supp My do not commute. Then |supp M1| = |supp Ms| = 2 and dim M; =
dim My = 2.

Proof. Since al} = a3 = —1, Lemma 5.6(1) tells that supp M; and supp My
are commutative. Moreover, since supp M7 and supp M do not commute,
Lemma 5.6(4) implies that ¢r|supp v, and glsupp M, are transpositions for
all » € supp My, s € supp My. Let r € supp M; and s € supp Ma. Then
r commutes with supp M; for all 3 < ¢ < 6 by Lemma 5.4. It follows that
supp My = r¢ = {r,s>r}. Moreover, dim(M;), = 1 and dim(M), =
1 by Lemma 5.6(4). Since s does not commute with any element of r&,
the same holds for all s’ € s%. Then |supp Ma| = 2 since ¢, |supp a1, i a
transposition. [l

Lemma 5.14. Let § € N>3 and M € EF. Assume that a}} = all = adf =
—1 and that ajl‘gl- =0 forall j € {3,...,0}. Let H = <U§:28upp M;) and
M’ = (Res$§;M;)a<j<g. Then M’ € EL . If H is abelian, then G is abelian.

Proof. 1f supp M; and supp M> commute, then dim M; = 1 by Lemma 5.12.
Hence supp M consists of a central element of G, and the claim follows from
Lemma 5.11(2).

Assume that supp M7 and supp Ms do not commute. Then dim M; =
dim My = 2 and |supp M| = |supp Ms| = 2 by Lemma 5.13. In particular,
either supp My C Z(H) or Res$ My € YD is absolutely simple. Assume
first that supp Ms does not commute with supp M; for some 3 < ¢ < 6.
Then Res@ My € HYD is absolutely simple. Further, Res%M; € £YD is
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absolutely simple for all i > 3 by Lemmas 5.4 and 5.11(2). Then M’ € £ |
and H is non-abelian.

Assume that supp M7 and supp M do not commute, and that supp My
commutes with supp M3. Let r,7’,s,s’ € G be such that r # ', s # &,
and supp M7 = {r,r'}, supp My = {s,s'}. Let t € supp M3 be such that
(id — ) ((Ma)s ® (M3);) # 0. By Lemma 5.4, there exists A € K* such that
rw = Aw for all w € (M3);. Assume that K contains all eigenvalues of the
action of s and s’ on (Mj3);. Since G! is generated by (G' N G*) U {r} by
Lemma 5.1(4), a joint eigenspace W of s and ¢’ in (M3); is then invariant
under the action of G!. Since M3 is absolutely simple, we conclude that s
and s’ act by a constant on (M3);. Since rsr~! = s', these two constants
coincide. By the same reason, ¢ acts by a constant on My = (Ma)s® (Ma).
Since adt = —1 and (id — ¢)((Ma)s ® (M3);) # 0, Lemma 5.8 implies that
ad (Mz)sad (Ms) g ((Ms):) # 0, which is a contradiction to a} = —1. O

5.3. Skeletons of finite type. Here we collect two basic lemmas about
skeletons and their reflections.

Lemma 5.15. Let J, K C {1,...,0} be disjoint non-empty subsets and let
1€ J. Let M € ]-"(;G be such thataf‘f €Z forallje{l,...,0}. Ifa% =0
forallje J and k e K thenaf,;(M):OforalljeJ and k € K.

Proof. Suppose that j # i. Recall that R;(M); = (ad M;)™(M;), where
m = —af\j/f', and (ad M;)™(M;) ~ o(MP™ ® M;) for some morphism ¢ in
g)/D, see Lemma 1.3. In particular, R;(M) = My, for all k € K. Moreover,
a% = 0 if and only if cagy ar;em;,0m;, = 1daen,.  Since ¢® is a natural
isomorphism, it commutes with ¢ ®id. This implies the claim of the lemma
for j # i. The case where j = ¢ means that (id — ey yeyw)(V QW) =0
implies that (id — cwy+cy=w)(V* @ W) = 0 for V. = M; and W = My,
where k € K. The latter is well-known. O

The following lemma and the remark below will be used to simplify the
calculations of the skeletons of reflections of tuples.

Lemma 5.16. Let 0 >3, i€ {1,...,0} and let M € .7:96;. Suppose that M
has a skeleton and that for all j,k € {1,...,0} \ {i} with j # k, the triple
Ry (M;, Mj, My) has a skeleton Sj;.. Then R;(M) has a skeleton S'. More-

over, 8 is uniquely determined such that it restricts to S]’.k when considering
only the vertices i, j, and k.

Note that Ri(M;, M;, M}) means reflection on the first entry of the triple,
that is, on M;.

Proof. The definition of a skeleton of R;(M) and its existence consist of a
family of conditions in each of which at most two entries R;(M);, Ri(M)
with j, k € {1,...,0} are involved. Thus these conditions can be obtained
from Ry(M;, Mj, My,). This implies the claim. O
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Remark 5.17. Let 6 > 3, i € {1,...,0} and let M = (M,..., M) € F§'.
Suppose that M has a connected skeleton S. Lemma 5.16 can be used to
obtain quickly the skeleton of R;(M) for some M € Fy' (if it exists).

Assume that for all j,k € {1,...,0}\{¢} such that j # k and the skeleton
of (M;, Mj, My) is connected, the triple Ry (M;, M;, M) has a skeleton S, .
We show that then the conditions of Lemma 5.16 are fulfilled and hence
R;(M) has a skeleton.

Indeed, for any triple (7,j,k) with |[{¢,7,k}| = 3 one of the following
possibilities occurs:

(1) j and k are not connected with ¢ in S. Then R;(M); = M;,
R;(M)), = My, and hence Ri(M;, M, M) has a skeleton S7;. In
this skeleton, 7 and k are not connected with ¢ by Lemma 5.15.
Hence S coincides with the skeleton of (M;, Mj, Mg).

(2) (M;, M;, My) has a connected skeleton. Then Ry (M;, M;, My) has a
connected skeleton by assumption.

(3) Precisely one of j and k (say 7) is connected with the vertex i and the
other is neither connected with i nor with j. Then R;(M); = Mj.
Moreover, there exists I € {1,...,0}\ {4, j, k} such that (M;, M;, M;)
has a connected skeleton. Then Ry(M;, M;, M;) has a connected
skeleton by assumption. Then Ri(M;, M;, M}) has a skeleton with
two connected components by Lemma 5.15.

This leads to the claim on the existence (and the shape) of the skeleton of
Ri(M).

6. PROOF OF THEOREM 2.6: THE CASE ADE

In this section we require that all assumptions in Theorem 2.6 hold. Thus
let @ € N> and let G be a non-abelian group and M € &F. Assume that
the Cartan matrix AM of M is a Cartan matrix of type Ay with 6 > 2, or
Dy with 6 > 4, or Ey with 0 € {6,7,8}.

Lemma 6.1. The following hold:

(1) |supp M;| =2 = dim M; for alli € {1,...,0}.
M=_1.

(2) supp M; does not commute with supp M; whenever a;; =

Proof. We proceed by induction on 6. If § = 2, then AM is of type Ay. If
supp M7 and supp My commute, then Lemma 5.12 implies that G is com-
mutative, which is a contradiction to our assumption. Hence supp M; and
supp My do not commute, and the lemma follows from Lemma 5.13. As-
sume that § > 3. Let I = {1,...,0}. By the assumptions on A there
exist 7,7,k € I such that af\]/-[ = a% = a% = —1, and af\l/[ = 0 for all
I € I'\{i,j}. Let H be the subgroup of G generated by Ucp (;3supp M;.
Then M’ = (Rengl)lel\{i} € &, by Lemma 5.14, and a)!' = aM for
all ,m € I\ {i}. Hence, by induction hypothesis, the lemma holds for all
l € I\ {i}. In particular, dim M; = 2. Then supp M; and supp M; do not
commute and |[supp M;| = 2 = dim M; by Lemmas 5.12 and 5.13. O
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The following lemma describes the structure of the Yetter-Drinfeld mod-
ules encoded in a skeleton of types ay, dg, €6, €7 and es.

Lemma 6.2. Let N € .7-"5. The following are equivalent:

(1) N has a connected simply-laced skeleton of finite type.
(2) There exist
e a symmetric indecomposable Cartan matriz A € Z0%Y of finite
type,
e an element € € Z(G) with €2 = 1, and
o forallie{l,...,0}, s; € supp N; a unique character o; of G*,
such that supp N; = {s;,es;} and N; ~ M (s;,0;) foralli € {1,...,0},
and the following conditions hold:

(6.1)  oi(sj)oj(si) =0oi(e)oj(e) =1 for alli,j such that a;; =0,
(6.2) O'i(ESJZ)O'j(GS?) =1 foralli,j such that a;; = —1,
(6.3) oi(si) =—1  forallie{l,...,0},

(6.4) 5i8j = €5;5; for all i, j such that a;; = —1,
(6.5) sisj = sjsi  for alli,j such that a;; = 0.

(3) Let P = (Res% Ny, ..., Res%Ny), where H C G is the subgroup gen-
erated by U?:lsupp N;. Then H is non-abelian, P € E(f, and AP is
of type Ag with 0 > 2, Dy with 0 > 4, or Ey with 6 € {6,7,8}.

Proof. The implication (1)=(3) follows from the definition of a simply-laced
skeleton.

We prove that (3) implies (2). Let A = AP(= AY). Then A is a symmet-
ric indecomposable Cartan matrix of finite type and |supp N;| = dim N; = 2
for all ¢ € {1,...,0} by Lemma 6.1. Moreover, Lemmas 6.1 and 5.4 imply
that supp N; commutes with supp IV;j, where ¢ # j, if and only if a;; = 0.
Let s; € suppN; for all i € {1,...,0}. Then for all i € {1,...,0} there
exists a unique character o; of G* such that N; ~ M(s;,0;). Lemma 5.2
implies that there exists ¢ € Z(G) such that €2 = 1, supp N; = {s;,€s;}
for all ¢ € {1,...,0}, and (6.4) holds. Now (6.3) holds by Lemma 5.6(4),
and (6.1) follows from Lemma 5.5. Finally, if a;; = —1 then (ad N;)(XV;) is
absolutely simple. Therefore (6.2) follows from Lemma A.3.

Finally we prove that (2) implies (1). Let 4,5 € {1,...,0} be such that
i # j. Since € € Z(G), we conclude from Lemma 5.5 and from (6.1) and
(6.5), that (ad N;)(N;) = 0 if a;; = 0. Finally, if a;; = —1 then (6.2)-(6.4)
and Corollary A.7 imply that af}f = —1. This proves (1). O

We now study some reflections. In the case of rank three one has the
following lemma.

Lemma 6.3. Let N € F{. Assume that N has a skeleton S of type as.
Then S is a skeleton of Ry(N) for each k € {1,2,3}.
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Proof. By symmetry of the skeleton of type as, it silﬁices to prove the lemma
for the reflections R; and Ry. Let s; € G and 0; € G*i be as in Lemma 6.2(2).
Let (U, V,W) = R;(M). Then Lemma A.8 implies that U ~ M(s;*,0}),
V ~ M(s182,0") and W = Ms, where o’ € G152 with o'(s182) = —1
and o'(h) = o1(h)oa(h) for all h € G N G®2. For the proof of the claim
we use Lemma 6.2. For (U, V, W), Conditions (6.1) and (6.5) follow from
Lemmas 5.15 and 5.5. Conditions (6.2) and (6.4) for {i,7} = {1,2} and
(6.3) for i € {1,2} hold by Lemma A.8. Condition (6.3) for ¢ = 3 holds
since Ry (M)s = Ms. Thus we need to prove (6.2) and (6.4) for i = 2, j = 3.

Clearly, (6.4) follows easily, since s1s3 = s3$1 and s283 = €s3s9 imply that
518283 = €s35182. Regarding (6.2) we obtain the following;:

o' (es3)o3(e(s152)%) = o1(e83)02(es3)03(5753) = o1()oz(e) = 1,

where the last equation follows from Lemma 5.5.
Let now (U, V!, W’') = Ro(M). By Lemma A.8,
U'~ M(sgs1,p), V'~ M(sy',03), W' M(sgs3,7),

where p € G251 with p(s2s1) = —1, p(h) = o1(h)oz(h) for all h € G NG*2,
and 7 € G%2%3 with 7(s2s3) = —1, 7(h) = o2(h)os(h) for all h € G2 N G*.
As in the first part of the proof of the Lemma, one needs to check the

conditions of Lemma 6.2 for Ry(M).
Conditions (6.2)—(6.4) follow from Lemma A.8. For (6.5) we record that

(5251)(8283) = S2€525183 = S2€525351 = S2535251
since €2 = 1. Finally, sflsg € G** NG N G* and hence we get (6.1) from
the calculations
p(s283)7(s281) = p(32$131_133)7'(32333§131)

= (=1)p(s7 's3)(=1)7(s5 1)

= o1(sy 's3)02(s] 5353 1 s1)o3(s3ts1) = 1
and

p(e)T(€) = a1(€)oa(e)?o3(e) = 1.

This completes the proof. O

The reflections are studied by the following proposition.

Proposition 6.4. Let N € .7-"9G, Suppose that N has a skeleton S of type
ag, 0p (with @ > 4), e¢, €7, or es. Then S is a skeleton of Ri(N) for all
Ee{l,...,0}.

Proof. For 8 = 2 the claim follows from Lemmas 6.2 and A.8.

Assume that 8 > 3. By Remark 5.17, it is enough to prove that for all pair-
wise distinct 4,5,k € {1,...,0} such that the skeleton S;; of (M;, M;, My)
is connected, S;;i, is a skeleton of Ry (M;, Mj, My). All such skeletons are of
type as. Hence the claim follows from Lemma 6.3. (|
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Now we are ready to complete the proof of Theorem 2.6.

Proof of Theorem 2.6. (1) holds by Lemma 6.2(3)=(1), and (2) follows from
(1) and Proposition 6.4.

(3) Theorem 1.2 applies because of (2). Since the Cartan graph of M is
standard, the root system of M coincides with the root system associated
with the Cartan matrix AM. Hence

H(t) = H Hpma) ()

acA

The Nichols algebras B(M;) are quantum linear spaces with Hilbert series
(1+1)2, see also Theorem [25, Thm. 4.6(2)]. Then the claim on the Hilbert
series of B(M) follows from Theorem 1.2. O

7. PROOF OF THEOREM 2.7: THE CASE C

In this section we require that all assumptions in Theorem 2.7 hold. Let
6 € N>3 and let G’ be a non-abelian group. Assume that M € EGG and that
AM is a Cartan matrix of type Cp, where aé\{l ¢ = —2 and ag‘j” = —1 for

7.1. We first study some particular aspects for triples.

Lemma 7.1. Assume that § = 3. Then the following hold:
(1) |supp Mi| = |supp Ma| = dim M; = dim My = 2 and dim M3 = 1.
(2) supp M, does not commute with supp M.

Proof. Suppose that supp M; and supp M2 commute. Then dim M; = 1
for all i € {1,2} by Lemma 5.12. Since ajs = —1, Lemma 5.6(1) implies
that supp M3 is commutative. Then G is abelian, a contradiction. Hence
supp M7 and supp Ms do not commute. Then Lemma 5.13 implies that

|supp M;| = |supp Mz| = dim M; = dim My = 2.

Let r € supp M1, s1, 82 € supp My with s1 # s9, and ¢t € supp M3. Then
rt = tr because of a}{ = 0. Hence

supp M3 > sltsl_l = r(sltsl_l)r_l = 82rtr_1$2_1 = 82t32_1.

Assume that supp Ms and supp M3 do not commute. Then s1,s act on
supp M3 via conjugation by the same transposition because of Lemma 5.6.
Since supp M3 is a conjugacy class of G, we conclude that [supp M3| = 2.
Moreover, dim(Ms); = 1 by Lemma 5.6(4). Let now ¢ be a character of G*!
such that My ~ M(s1,0). Then Corollary A.7 for (M;, Ma) and (Ma, M3)
implies that o(s;) = —1 and o(s1) = 1, charK = 3, respectively. This is
clearly impossible. Hence supp My and supp M3 commute.

Since aé‘g = —1 and supp M3 commutes with supp M; and supp Ms, we
conclude from Lemma 5.7 for 8 = 3, Vi, = My, Vo = My, V3 = Ms, i = 3,
J = {2}, that dim M3 = 1. O
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In the following two lemmas we consider a slightly more general context,
which is motivated by Lemma 7.1 and will be used crucially in the proof of
Lemma 7.4.

Let N € ]:30 and let r € supp N1, s € supp Na, t € supp N3. Assume that
7G| = [s%| = 2, t € Z(G), and rs # sr. Let ¢ € G such that rs = esr.
Then € # 1. Moreover, r% = {r,er}, s¢ = {s,es}, € = 1, and € € Z(G)
by Lemma 5.2(1). Assume further that Ny ~ M(r, p), No ~ M (s,0) and
N3 ~ M(t, ), where p € G, o€ G5, and 7 € G.

Lemma 7.2. The following are equivalent:

(1) AN is of type Cs.
(2) The following hold:

ples®)o(er?) = p(t)r(r) = 1, p(r) =o(s) = -1,
(T(t) + 1) (o(t)r(st) — 1) = 0, o(t)7(s) # 1.

Proof. We first prove that (1) implies (2). Since N € F§' and AV is of
type C3, Proposition 5.9 implies that (ad IV;)™(1V;) is absolutely simple or
zero for all m € Ny and all 4,5 € {1,2,3} with ¢ # j. By Corollary A.7,
al, = a)] = —1 implies that p(es?)o(er?) = 1 and p(r) = o(s) = —1.
Further, from Lemma A.14 and from a{\g = 0, aé\g % 0 we obtain that
p(t)7(r) = 1, o(t)7(s) # 1. Finally, since ad, = —1, Lemma A.2 implies
that (7(¢t) + 1)(o(t)7(st) — 1) = 0.

Now assume that (2) holds. Then aY, = a9 = —1 by Corollary A.7,
ad¥, = ad) = 0 by Lemma A.14, and ab; = —2 by Lemmas A.15 and A.16(1).
Finally, a, = —1 by Lemma A.2. This proves (1). O

The classes pg and p? of pairs are introduced in Definition A.17.

Lemma 7.3. Suppose that N admits all reflections and the Weyl groupoid
of N is finite. Then (N3, N3) € S or (Na, N3) € o

Proof. Regard N1 and N> as absolutely simple Yetter-Drinfeld modules over
H = (supp (N1 ® N3)). Then H is a non-abelian epimorphic image of I's. By
Theorem 1.4, the Yetter-Drinfeld modules (ad N1)™(N2) and (ad N2)™(Ny)
are absolutely simple or zero for all m > 0, and they are zero for some

m € N. Thus Lemma A.6 implies that
(71) p(r)?=0(s)> =1, p(es?)o(er?) =1, and
. p(r) =o(s) = —1if charK = 0.

Moreover, Corollary A.24 applied to (N2, N3) implies that
(Na, N3) € o for some i € {0,1,2,3,4},

since €2 = 1 — see also Definition A.17 and Table 3. But o(s)? = 1 implies
that

(N2, N3) ¢ 5.
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Consider R3(N) = (U,V,W). Since suppN3 = {t} and t € Z(G),
Lemma A.2 implies that (U, V, W) satisfies the assumptions of the lemma.
In particular, (V, W) ¢ o, and hence

(N2, N3) ¢ ©F

by Remark A.23.
Consider Ro(N) = (U, V', W'). Then (7.1) and Lemma A.8 for (N2, N1)
imply that
dim U’ = dim V' = |supp U’| = |supp V'| = 2
and supp U’, supp V' do not commute. Moreover, Remark A.23 for (Na, N3)

implies that dim W’ = 1. In particular, (U’, V', W’) satisfies the assumptions
of the lemma. Therefore (V/,W') ¢ ¢S, and hence

(Na, N3) & of
by Remark A.23. This finishes the proof of the lemma. ([

Now we look again at our main tuple M.

Lemma 7.4. Suppose that 0 = 3, M admits all reflections, and the Weyl
groupoid of M is finite. Then (M, M3) € p%(2) and char K # 2.

Proof. By Lemma 7.1, M satisfies the assumptions on N above Lemma 7.2.
Let r,s,t € G and p, o, T as there. Since a% # 0, we obtain from Lemma 7.3
that (M, M3) € . In particular, o(t)7(st) = 1 and 7(t) # 1. Moreover,
since AM is of type C3, the formulas in Lemma 7.2(2) hold. Let M’ =
Ro(M). Since adf = —1, Lemma A.8 implies that M| ~ M(sr, p'), where
g € G with p'(sr) = =1, p(h) = p(h)o(h) for all h € G" N G®. Further,
M} ~ M(s71,0%) and M} ~ M(es*t,72) by Lemma A.15, since a}l = —2.
Since €2 = 1 and o(s) = —1, we obtain that

To(r) = —0'(67“2)7'(7“), To(s) = 0(682)7'(5), To(t) = O'(t2)7'(t).
Then
(7.2) p(es*t)mo(sr) = pes’t)o(es’t)o(es?)T(s)(—a(er®)T(r)) = —o(t)7(s).

Now Lemma 7.3 for N = (M}, M|, M}) implies that (M], M}) € ¢§ or
(M}, M}) € of. In the first case o (t)7(s) = —1, and hence 7(t) = —1 and

(Ms, Ms) € pf (2).

Moreover, char K # 2 since 7(t) # 1 by the first paragraph.
Assume that (M}, M%) € of. Since (M}, M}) € of, Remark A.23 implies

that a%/ = a%/ = —2. Moreover, since AM is of type C3, the Cartan graph
of M has no point with a Cartan matrix of type Az by Theorem 2.6. This

is a contradiction to a%/ = a%' = —2 because of Corollary 3.3. (]
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7.2. Recall the assumptions of Section 7: 6 € N>3, G is a non-abelian group,
and M € 59G such that AM is of type Cp.

Lemma 7.5. The following hold:
(1) |supp M;| =2 =dim M; for all 1 <i <6 —1, and dim My = 1.
(2) supp M; does not commute with supp M; 1 for 1 <i <6 —2.

Proof. We proceed by induction on 6. For § = 3 the claim holds by
Lemma 7.1.
Assume that 6 > 3. Let H be the subgroup of G generated by Ufzzsupp M;.
Then
M' = (Res$ Mo, ..., Res% M) € &L,

by Lemma 5.14, and H is non-abelian. Clearly, AM is of type Cy_1.
Then induction hypothesis yields the claim except for ¢ = 1. In particu-
lar, dim My = |supp Ma| = 2. Then supp M; and supp M2 do not commute
by Lemma 5.12, and |supp M1| = 2 = dim M; by Lemma 5.13. O

Before we prove Theorem 2.7, we have to study skeletons of type ~y.

Lemma 7.6. Assume that charK # 2. Let 0 € N>3 and let N € Fy'. The
following are equivalent:

(1) N has a skeleton of type p.

(2) There exists e € Z(G) with €2 =1, e # 1, and for all i € {1,...,0}
and all s; € supp N; there exists a unique character o; of G* such
that supp N; = {s;,es;} for all i € {1,...,0 — 1}, supp Ny = {sp}
and N; ~ M (s;,0;) for alli € {1,...,0}, and the following hold:

(7.3) oi(sj)oj(si) =1 ifli—jl>2and1<i,j<8,
(7.4) gi(e)oj(e) =1 ifli—jl>2,1,5 <8,

(7.5) o9—1(sg)og(sg—1) = —1,

(7.6) oi(esi,y)oiti(es?) =1 forallie{1,...,0 -2},
(7.7) oi(si) = —1 forallie {1,...,0},

(7.8) SiSi+1 = €Si+1S; forallie{1,...,6 —2},
(7.9) 5i5; = 5;8; ifj>i+2o0rj=460.

Proof. We first prove that (2) implies (1). For this, the only non-trivial
task is to show that the Cartan matrix AV is of type Cy. Now all,, =
ai]\ili = —1 for all i € {1,...,0 — 2} by Corollary A.7, af}j = al} = 0 for
i€ {l,...,6 —2} by Lemma A.14, af}f = a% =0 forije{l,...,60 -1}
with |i — j| > 1 by Lemma 5.5, and a}’ , , = —2 by Lemmas A.15 and A.16.
Finally, a}, ; = —1 by Lemma A.2. This proves (1).

Assume now that (1) holds. Then the claims in (2) on € and supp N; for
i€ {1,...,0}including (7.8) and (7.9) follow from Lemma 5.2(1). Moreover,
AN is of type Cy, and hence Proposition 5.9 implies that (ad N;)™(N;) is
absolutely simple or zero for all 4,5 € {1,...,0} with i # j. Then (7.5) holds
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by assumption on the skeleton and (7.3)—(7.7) follow from Lemmas 5.5, A.14,
A.2, and from Corollary A.7. O

For the reflections one needs the following lemmas.

Lemma 7.7. Let N € .7-"3G. Assume that charK # 2 and that N has a
skeleton S of type v3. Then S is a skeleton of Ri(N) for all k € {1,2,3}.

Proof. Slnce N has as skeleton of type 73, by Lemma 7.6 there exist r, s,t, € €
G and p € G’“ o€ GS 7 € G as above Lemma 7.2. Moreover, p, o, T satisfy
the equations in Lemma 7.6(2) with sy =7, sa = s, s3 =1t, 01 = p, 09 = 0,
o3 = 7. In particular, o(t)7(s) = 7(t) = —1.

Let (U,V,W) = Ryi(N). Then Lemma A.8 implies that U ~ M (r~}, p*),
V ~ M(rs,o’) and W' = W, where ¢/ € G™ with ¢'(rs) = —1 and o’(h) =
p(h)o(h) for all h € G" N G*. Now we use Lemma 7.6 to prove that S is
a skeleton of R;(N). Lemma 7.6(2) for IV, especially Equations (7.3) and
(7.7), imply that p(t)7(r) = 1 and p(r) = —1. Hence p*(t)7(r~!) = 1 and
p*(r=1) = —1. Further, p*(e(rs)?)o’(er=2) = 1 by Lemma A.8. Finally,

o' (t)1(rs) = p(t)o(t)T(r)r(s) = —1.

Let now (U, V/,W') = Ry(N). Lemmas A.8 and A.22(1) imply that
U' ~ M(sr,p), V' ~ M(s7%,0%) and W' ~ M (es?t,7’), where p' € G*"
with p'(sr) = —1, p/(h) = p(h)o(h) for all h € G" N G®, and 7" € G with
7'(r) = —o(er®)7(r), 7'(2) = o(zr~tzr)7(2) for all z € G*. Again we use
Lemma 7.6 to prove that S is a skeleton of Ra(/N). Lemmas A.8 and A.22(1)
imply that p'(sr) = —1, 0*(s71) = —1, 7/(es®t) = —1, and

ples ) o*(e(rs)?) =1, o*(es*t)m(s™h) = —1.
Finally,
o (es®t)7' (s1) = p(es®t)o(est)(—a(er®)T(r))o(srLsr)T(s)
= —p(es®)a(er®)p(t)T(r)o(e’s ) (t)7(s)
=1
Thus S is a skeleton of Ry(N).

Now let (U”, V", W") = R3(N). Then Lemmas A.22(5) and A.2 imply
that U” = U, V" ~ M(st,0") and W' ~ M(t~!,7%) where ¢’ € Gst
with 0”(z) = o(2)7(z) for all z € G*. Lemmas A.22(5) and A.2 imply

all conditions in Lemma 7.6(2) for (U”, V", W") except (7.6) and (7.3) for
1 =1, j = 3. These two we obtain as follows:

ples?t2)0" (er2) = plesP)or(er?)p(t2)r(er?) = 1,
p(t ) (r) = p(t)"'7(r) T = 1.
Thus S is a skeleton of R3(N). O

Proposition 7.8. Let§ > 3 and N € .7-"90. If N has a skeleton S of type g,
then AN is of type Cp and S is a skeleton of Ri(N) for all k € {1,...,0}.
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Proof. Proceed as in the proof of Proposition 6.4 and apply Lemmas 7.7 and
6.3. O

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. We prove the implications (1)=-(4)=-(2)=-(1) and
(1)=(3)=(2).

(1)=(4). Since M € 59G has a skeleton of type 7y, Proposition 7.8 implies
that M admits all reflections and W(M) is standard of type Cy. Moreover,
from Lemma 7.6 we conclude that B(M);) is finite-dimensional for all i €
{1,...,0}. More precisely,

oy () = (207, Hpa,)(t) = (2)

for all i € {1,...,0 —1}. Since the long roots are on the orbit of g and the
short roots on the orbit of (any) «o; with ¢ < 6, Theorem 1.2 implies that
B(M) is finite-dimensional with the claimed Hilbert series.

(4)=(2). Since dim B(M) < oo, the tuple M admits all reflections by [7,
Cor. 3.18] and the Weyl groupoid is finite by [7, Prop. 3.23].

(2)=(1). It is assumed that M admits all reflections, AM is of type
Cy, and W(M) is finite. Thus C(M) is a connected indecomposable finite
Cartan graph by Theorem 1.1. For the proof of (1) we just have to verify
the conditions in Lemma 7.6(2) and that char K # 2. Now Lemma 7.5 tells
that suppM; = dimM; = 2 for all 4 € {1,...,0 — 1}, dim My = 1, and
supp M; and supp M;+1 do not commute for 1 < ¢ < 6 — 2. Moreover, an
iterated application of Lemma 5.14 implies that

(Resf; Mp_o, Res§r My_y, Res My) € Ef,

where H is the (non-abelian) subgroup of G generated by Uf:972supp M;.
Therefore Lemma 7.4 implies that char K = 2 and that the conditions in
Lemma 7.6(2) hold whenever i,j € {6 — 2,0 —1,0}. The remaining claims
in Lemma 7.6(2) follow from Lemmas 5.5, A.2, and Corollary A.7.
(1)=(3). Since M € & has a skeleton of type 7y, Proposition 7.8 implies
that M admits all reflections and W(M) is standard of type Cp.
(3)=-(2). This is clear, see e.g. [16, Thm. 3.3]. O

8. PROOF OF THEOREMS 2.8 AND 2.9: THE CASE B

In the whole section let G be a non-abelian group. In order to prove
Theorems 2.8 and 2.9, we collect first some information on skeletons of type
Bo, By and B for 6 > 3, on tuples in F§' with such skeletons, and on a
particular Cartan graph.

Extending the definition of a skeleton of type 5 and 35, we say that the
skeletons in Figure 8.1 are of type ) and ), respectively. We will need
them for the proof of Theorem 2.8. We want to stress that the skeletons of
type 3, and 3y are of finite type if and only if § = 3.

For tuples with skeletons of type g, 3), and (3, respectively, where 6 > 3,
one obtains the following.
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-1 —1 —1 —1 —1
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FIGURE 8.1. Skeletons of type /3, and £y .

Lemma 8.1. Suppose that charK = 3. Let 6 € N>3 and M € ]:aG' The
following are equivalent:

(1) M has a skeleton of type Bp.

(2) There exist € € Z(G) with €2 =1, € # 1, and for all i € {1,...,0}
and s; € supp M; a unique character o; of G% such that supp M; =
{si,esi} and M; ~ M (s;,0;) for alli € {1,...,0}, and such that the
following conditions hold:

(8.1)  0i(sj)oj(si) = oi(€)oj(e) =1  for alli,j such that |i — j| > 2,
(8.2) oi(esii)oiri(esi) =1 forallie {1,...,0 — 1},

(8.3) oi(si) =—1  forallie{1,...,0 —1},

(8.4) oo(sp) =1,

(8.5) SiSi+1 = €Siy18;  forallie {l,...,0 —1},

(8.6) sisj = sjs;  for alli,j such that |i — j| > 2.

Proof. We first prove that (2) implies (1). By Definition 2.2 and the assump-
tions in (2), it only remains to prove that the Cartan matrix A is of type
By. Now a%H = a%li = —1forallie{l1,...,0 —2} by Corollary A.7(1),
all = a}f =0 fori,j e {1,...,0} with |i — j| > 1 by Lemma 5.5, and
ail o= -1, a}l, | = —2 by Corollary A.7(2). This proves (1).

Assume now that (1) holds. Then the claims in (2) on supp M; for all
i €{1,...,0} including (8.5) and (8.6) follow from Lemma 5.2(1) and the
shape of the skeleton of M. Moreover, AM is of type By by (1) and the
definition of a skeleton. Then (8.1)—(8.4) follow from Lemmas 5.5 and from
Corollary A.7. O

Lemma 8.2. Let € N>3 and M € .7-"9G, The following are equivalent:

(1) M has a skeleton of type [y, and there exist ti,ta € supp My such
that tth 7£ 752751.

(2) Let s; € suppM; for all i € {1,...,0}. There exists € € G with
3 =1, € # 1, and unique characters o; of G* such that supp M; =
{s;} for alli € {1,...,0 — 1}, supp My = {sg, €59, €59} and M; ~
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M(s;,04) for alli € {1,...,0}, and the following hold:

(8.7) oi(sj)oj(si) =1 ifli—jl=2,

(8.8) oi(sis1)oir1(si) =p forallie {1,...,0 — 1},
(8.9) oi(si) =p forallie{1,...,0 —1},
(8.10) oo(se) = —1,

(8.11) €sg = sge 7,

where p € K with 1 —p + p? = 0.

Proof. We first prove that (2) implies (1). According to Definition 2.2 and
the assumptions in (2), it only remains to prove that the Cartan matrix AM

is of type By. Now a/,, = al{,; = —1 and af\f =0forallie{l,...,06-2}
and all j > i+ 1 with j # 6 by Lemma A.l. Further, aé\/l_w = —1 and
all = 0 (and hence a)f = 0) for all i < § — 1 by Lemma A.2. Finally
alt | = —2 because of Lemma A.10. This proves (1).

Assume now that (1) holds. In particular, AM is of type By by the
definition of a skeleton and a skeleton of type 3. Let sg € supp My. Since
|supp Mp| = 3, (1) and Lemma A.9 imply that there exists € € G such that
e =1,e#1, esy = sge !, and supp My = {sp, €59, €2s9}. Then (8.7) follows
from Lemma A.2; since af\]/-[ = 0 whenever |i — j| > 2. Equations (8.8)
and (8.9) are given in the skeleton. Since a)}, ;| = —2, (8.10) follows from
Lemma A.10. O

Lemma 8.3. Let M € f(f. The following are equivalent:

(1) M has a skeleton of type [y .

(2) Let s; € suppM; for all i € {1,...,0}. There erxists € € G with
e =1,¢e¢ # 1, and 0; € Gsi for all i € {1,...,0} such that
supp M; = {s;} for alli € {1,...,0—2}, supp Mp_1 = {sg_1,€S0—-1},
supp My = {sg, €s9,€?sg}, M; ~ M(s;,0;) for alli € {1,...,0}, and
the following hold:

(8.12) oi(sj)oj(si) =1 ifli—jl=2i,j<9,
(8.13) oi(sis1)oiv1(si) =p ! forallie{1,...,6 —2},
(8.14) oi(s;)=p forallie{1,...,6 —2},
(8.15) oo—1(se—1) = og(sg) = —1,

(8.16) oo-1(€) = —p,

(8.17) og_1(es2)og(ess 1) =1,

(8.18) 59S9—1 = €S9_150,

(8.19) €sg = spe 1,

where p € K with 1 —p + p? = 0.
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Proof. Again we first prove that (2) implies (1). According to Definition 2.2
and the assumptions in (2), it only remains to prove that the off-diagonal
entries of AM correspond to the integers obtained from the skeleton of type

By. Now Q%H = af\_{“ = —1foralli € {1,...,0 — 3} by Lemma A.1
and @} = 0 for all 1 < 4,j < 6 with j > i+ 2 by Lemma A.2. Also,
aéw_w_l = —1 by Lemma A.2. Moreover, aéw_w_z = —2 by Lemmas A.15
and A.16(1). Finally, a}! , = —1 and a}}, | = —2 because of Lemma A.13.

This proves (1).

Assume now that (1) holds. Since 39G—1 and sg do not commute and
since ]sg_l\ = 2, we obtain that sgsg_1 # sg_159. Let € € G be such that
896;1 = {sgp_1,€s9_1}. Then ¢ = 1, supp My = {sp, €59, €259}, and (8.18),
(8.19) hold by Lemma A.12. It remains to prove (8.12)—(8.17).

Now (8.12) follows from Lemma A.2, since a// 7 = 0 whenever 1 <i < j-1.
By Proposition 5.9, all (ad M;)™(Mj) for ¢ # j, m > 0, are absolutely simple

or zero because of (1). Since a}}, | = —1 and a%_l = —2, (8.15) and (8.17)
follow from Lemma A.13. Finally, Conditions (8.13), (8.14), and (8.16) are
given in the skeleton. O

In the following three propositions we study reflections of skeletons of
type By, By, and Sy with 6 > 3.

Proposition 8.4. Let 6 € N with 6 > 3 and let M € .7-"96. Assume that M
has a skeleton S of type By. Then the Cartan matriz of M is of type By,
and S is a skeleton of Ry(M) for all k € {1,...,0}.

Proof. Following the arguments in the proof of Proposition 6.4 and using
Lemma 6.3, it suffices to prove the claim for § = 3. In this case, one obtains
the claim following the proof of Lemma 6.3 and using Lemma 8.1. ([

Proposition 8.5. Let M € ]-'(_;,C;. Assume that M has a skeleton S of type
By. Then S is a skeleton of Ry(M) for 1 <k < 60 —1, and Rg(M) has a
skeleton of type By .

Proof. By Remark 5.17, it is enough to consider connected subgraphs of
S with three vertices i1,149,73. If 0 ¢ {il,’ig,ig} and k € {il,’ig,ig}, then
Lemma 8.2 implies that M;, ® M;, ® M;, is a braided vector space of Cartan
type with Cartan matrix of type As, and hence the tuple R;(M;,, M;,, M;,)
for j € {1,2,3} has the same skeleton as (M;,, M;,, M;,). Thus it remains
to prove the proposition for § = 3 and k € {1, 2, 3}.

Assume first that £ = 1. Then dim M, =1, a% = —1,and a? = 0. Hence
Rl(M)l = Mik, Rl(M)Q ~ M1 X M2 by Lemma A.l, and Rl(M)g = M3.
We now verify the conditions in Lemma 8.2 for Ry (M). The only non-trivial
condition is (8.8) for ¢ = 2. For this we obtain that

o102(s3)03(5182) = 01(83)03(51)02(83)03(s2) = p 7,

and hence S is a skeleton of Ry (M).
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FIGURE 8.2. The skeleton in Lemma 8.6.

Assume now that £ = 2. Then dim M} = 1 and aé\/{ = a% = —1. Hence
RQ(M)l ~ Mo® M;, RQ(M)Q ~ M;, and RQ(M)g ~ Mo® M3 by Lemma A.2.
We verify the conditions in Lemma 8.2 for Ro(M). We obtain that

0102(8283)020’3(8281) = 01(53)03(81)01(82)02(818383)0’3(82) = p_1p2p_1 =1,

0102(55 )03 (s251) = (01(s2)02(s1)) Toa(s2) 2 =pp 2 =p ",

05 (s283)0203(s5 ") = (02(s3)03(s52)) toa(s2) 2 =pp 2 =p ",
o109(s182) = pp~'p = p,
05(32_1) =p, 0203(s283) = pp_103(83) = 03(s3).

Condition (8.11) for Ry(M) is clear. Therefore S is a skeleton of Ry(M).

Finally, assume that k = 3. Then R3(M) = (M, (ad M3)?(Ma), M3).
We have to show that Rs(M) has a skeleton of type 85. To do so we
apply Lemma 8.3. By Proposition A.11, R3(M)y ~ M(s',0’) and Mj ~
M(s3t, 0%), where s’ = esys?, o’(€) = p~2 = —p (which proves (8.16)), and
o'(h) = 7(h)?0(h) for all h € GENG*2. Now Conditions (8.12), (8.14), (8.18)
and (8.19) are clear. Moreover, (8.15) and (8.17) follow from the last claim
of Proposition A.11. We verify now (8.13):

1(s")0' (s1) = o1(es283)oa(s1)03(s1)* = 01(s2)0a(s1) (01 (s3)03(51))% = p

and the proof is completed. O

For the proof of the third of three propositions we will use the following
lemma, which will also play a role in the proof of Proposition 9.3.

Lemma 8.6. Let M € ]-"3G, Assume that M has a skeleton S as in Fig-
ure 8.2, where p = —1 if ¢> = 1. Then S is a skeleton of Rp(M) for all
ke{1,2,3}.

Proof. By assumption, there exist r,t € Z(G), s,e € G and p, T € CA;, oeGs
such that My ~ M(r,p), My ~ M(t,7), M3 ~ M(s,0), s = {s,es},
and € # 1. By Lemma 5.1, there exists x € G such that xs = esz and
re = ¢ 'z. The skeleton contains additionally the following information,
see Lemmas A.1 and A.14:

p(r) =p, T(t) =p, o(e) =g,
p(t)r(r) =p~", p(s)o(r) =1, T(s)o(t) =p ',
and that a% = —2. Since aé\g = —2, Lemma A.14 implies that p # 1.

Since af\fa% € {0,1,2} for all 4,5 € {1,2,3} with ¢ # j, Proposition 5.9 and
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Lemmas A.15, A.16 imply that the relations in one of the following three
lines hold:

o(s)=—1, o(2)#1, o(t*)r(s?) =1,
o(s) = -1, o(?) =1,
o(s) # -1, o(2)#1, o(st)r(s)=1, o(e?s*) =1.

Since o(t)7(st) = 1, we conclude that (Ms, Ms) € p5 U p1 U p7.
Let now (U, V,W) = Ry(M). Then U ~ M(r~1,p*), V.~ M(rt, pr), and
W = M3 ~ M(s,0). In particular,

pr(s)a(rt) =7(s)o(t) =p~".
Using the above formulas and the definition of a skeleton, we conclude that
S is a skeleton of Ry (M).
Let (U',V/,W') = Ry(M). Then U’ ~ M(tr,7p), V' ~ Mt~ 7*), and
W' ~ M(ts,70). Then

Tp(ts)ro(tr) = 7(t*)7(s)a(t)p(t)7(r)p(s)a(r) = p*p~'p ' =1
and To(ets) = 7(ts)o(t)o(es) = q. Then Lemma A.22(5) implies that S is a
skeleton of Ra(M).
Now let (U", V", W") = R3(M). Then U" = My ~ M(r,p), V" ~
M (es?t,75), and W ~ M(s™!, 0*), where 75 € G as in Lemma A.15. We
record that (s71)¢ = {57!, e~ 157!} and that o*(¢~!) = o(¢). Moreover,

no(r)p(es’t) = a(r®)m(r)p(s*t) = p(t)7(r) = p~".
Thus, if (M3, M) € s, p1, and g7, respectively, then Lemma A.22(2), (1),
and (3), respectively, implies that S is a skeleton of R3(M). Here, in the
case of o(¢?) = 1 we used (and needed) that p = —1 in order to identify S
as a skeleton of R3(M). This completes the proof. O

Proposition 8.7. Let M € fgq Assume that M has a skeleton S of type
y. Then S is a skeleton of Ry(M) for 1 <k <6 —1, and Ry(M) has a
skeleton of type By.

Proof. By Remark 5.17, it is enough to consider connected subgraphs of
S with three vertices 1,142,473 and their reflections. If iy,i9,i3 < 6 — 2,
then M;, @& M;, ® M;, is a braided vector space of Cartan type and their
reflections have the same skeleton. If {i1,i9,i3} = {60 — 3,0 — 2,6 — 1}, then
the reflections of M;, & M;, ® M;, have the same skeleton as M;, & M;, ® M,;,.
Indeed, (3)_, = 0 by assumption and hence p # 1. Therefore (—p)? = 1
implies that p = —1 and hence Lemma 8.6 applies.

We are left to determine the skeleton of Ry(Mpy_o, My_1, My) for all k €
{1,2, 3}, that is, to prove the claim for § = 3. To do so, assume that 6 = 3,
and let s, s9,s3,¢ € G and 01, 09,03 as in Lemma 8.3.

Let (U, V,W) = Ry(M). Then U ~ M(s;*,0%), V =~ M(s152,0109), and
W ~ M(s3,03) by Lemma A.2. Then

Ulag(esg)ag(w%s%) = (0'1(83)0'3(81))20'2(68%)0’3(65%) =1
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and hence S is a skeleton of Ri(M) by Lemmas 8.3 and A.22(5).
Let (U',V',W') = Ry(M). Then

Vi M(sy !, 0%), (s51) = {s5',e sy},

and U’ ~ M (es3s1, p') for some p’ € G by Lemmas A.15, A.16. Moreover,
the skeleton of (M7, M) is a skeleton of (U’,V’) by Lemma A.22(1) (if
p # —1) and by Lemma A.22(2) (if p = —1), since o2(s2) = —1. Further,
since (3)y,) = 0 by (8.16), we conclude from Lemma A.13 that W' ~
M (e 'sys3,7'), where 7/ € G with 7/(s3) = o3(esy oale) and 7/(h) =
oa(h)os(h) for all h € G2 N G*3. Then

o3(sy ") = 02(s2) =
/(e tsas3) = oa(e tsa)o3 (e Lsa)oz(esy ) 9(€) = 0a(s2) = —1,
o3(e7') = oa(e) = —p,

1

73 sasa))r (e 17) = on(s3d) oay(esd) = 1,

e Lsy83 351 = 6_25382551 = 6_1551(6_15253).

Therefore S is a skeleton of Ro(M) by Lemma 8.3.
Let (U, V", W") = R3(M). Then U" = M; and W" ~ M(s3',a%).
Lemma A.13 implies that V" ~ M (e 's%s9,0”), where 0" € G such that

d'(e)=1, o"(s3) = —0'3(682_ Yoa(€), " (h) = a3(h)’oa(h)

for all h € G*2 N G*3. Now we verify the conditions in Lemma 8.2 for
R3(M) € F§. Except (8.9) for i = 2 and except (8.9), everything is clear or
can be seen directly. Since e sy € Z(G) by Lemma A.12, for (8.9), i = 2,
we obtain that

0" (e tskse) = a3(esy V) 202(€)?o3(e s) 2ot s2) = ga(esa) = p.

Finally, for (8.8) we calculate the following:

01(6_15352)0"(81) = 01(83)201(52)03(51)202(51) = p_la

o' (531 )o3(e " s3s2) = —o3(e sa)oa(e Noz(esy ) = —oa(e”) =p .
Thus R3(M) has a skeleton of type (5. This completes the proof of the

proposition. O

Before proving Theorem 2.8 we also need more information on the finite
Cartan graph in Lemma 3.1(4).

Lemma 8.8. Let C = C(I,X,r, A) be the Cartan graph with I = {1,2,3},
X ={X,Y}, such that ry = ro = id, r3 is the transposition (XY') and

2 -1 0 2 -1 0
AX=[-1 2 —-1], A¥=[-2 2 -1
0 -2 2 0 -2 2
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Let Wy C W(C) be the automorphism group of X. Then
AT ={1,2,3,12,23,123,23% 123% 12%3% 1273% 1273% 12°3% 122331},
AY ={1,2,3,12,23,122,123,23% 12%3,1237 12232 12332, 12233%},
and the orbits of AX with respect to the action of Wy are
(1,42, 412, +1223% +1233% +12233%},
{43,423, £123, £1223%}, {4232, £1232%, +1223%},

where 122°3¢ and —192°3¢ mean aaq + bag + cas and —ao; — bag — cas,
respectively, for all a,b,c € Z.

Proof. 1t is clear from the definition that C is a semi-Cartan graph. It is a
Cartan graph by [16, Thm. 5.4]. The root system with number 14 in [17,
Appendix A], where one interchanges a; and ag, has C as a Cartan graph
and corresponds to the point Y, see also the proof of Lemma 3.1. From this
one obtains easily the set A% = s¥(AY).

By the proof of [16, Thm. 5.4], see [16, Egs. (5.4),(5.5)], Wy is generated
as a group by si¥, s3', and t = s3s953. (Observe that in [16] the role of 1
and 3 in [ are interchanged.) We record that

t(al) = a1 + 2a + 4asg, t(ag) = a9, t(ag) = —(CYQ + 043).

Applying successively these generators of Wy to the elements of AX one
obtains the last claim of the lemma. (|

Now we are able to prove Theorems 2.8 and 2.9.

Proof of Theorem 2.8: dim M; = 1.

(1)=(3). Since # = 3 and M has a skeleton of type S5, Propositions 8.5
and 8.7 imply that M admits all reflections and the skeletons of M and of
R3(M) form the points of the semi-Cartan graph C in Lemma 8.8. This semi-
Cartan graph is a finite Cartan graph, and the positive roots of its points
are given in Lemma 8.8. Since M has a skeleton of type f5, Lemma 8.2
implies that B(M;) is finite-dimensional for all ¢ € {1,2,3}. More precisely,

Hpan)(t) = Haom) () = (B Hpou) () = (2)7(3):,
where h = 3 if char K = 2, h = 2 if char K = 3, and h = 6 otherwise. Simi-
larly, Lemma 8.3 implies that R3(M)s is a braided vector space of diagonal
type with braiding matrix
1 -
(= )

where ( = o(€) in the notation of Lemma 8.3. Therefore

(2)? if char K = 3,

sz (1) = ()e(R)e = {(2)3(3» if char K # 3,
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where b/ = 6 if charK # 3 and h/ = 2 if charK = 3. Now Theorem 1.2,
using the decomposition of Af into Wy-orbits in Lemma 8.8, implies that
B(M) is finite-dimensional with the claimed Hilbert series.

(3)=-(2). Since dim B(M) < oo, the tuple M admits all reflections by [7,
Cor. 3.18] and the Weyl groupoid is finite by [7, Prop. 3.23].

(2)=(1). Tt is assumed that dim M; = 1, M admits all reflections, AM
is of type By, and W(M) is finite. Thus Theorem 1.1 tells that C(M) is a
connected indecomposable finite Cartan graph.

Assume first that @ = 3. If C(M) has a point with a Cartan matrix of
type As or Cs, then M is standard of type As and Cjs, respectively, by
Theorems 2.6 and 2.7. Since the Cartan matrix AM is of type Bz, from
Corollary 3.5 we conclude that either M is standard of type B3 or each
point of C(M) has one of the two Cartan matrices in Lemma 3.1(4).

Since dim M7 = 1, Lemma 5.12 implies that dim Ms = 1. Let H be
the subgroup generated by supp Ms U supp M3. Then H is non-abelian,
M' = (Res$ My, Res$ M) € M, M’ admits all reflections, and W(M’) is
standard of type By because of Corollary 3.5. Now [28, Thm. 2.1, Table 1],
especially the claim on the support of M’, imply immediately that supp M3
is non-abelian and |supp M3| € {3,4}. Moreover, the only possible example
with [supp M3| = 4 would be [28, Ex. 1.7]. However, this example has a root
system which is standard of type (G2, and hence a Cartan matrix of type
By is impossible if |supp M3| = 4. On the other hand, M’ being standard
implies that M’ ¢ 5 in the notation of [28, 7.1,8.4]. The only remaining
possibility is discussed in [28, Thm. 8.2]: There exist r,s € Z(G), t,e € G,
characters p, o of G and 7 of G* such that

My ~ M(r,p), My~ M(s,o), Ms=>~DM(t,T),
and G is generated by 7, s,t, €, the relations te = ¢ 't and €3 = 1 hold in G,
and
(8.20) (3)—o(s) =0, o(st)r(s) =1, 7(t)=-1

Moreover, the condition a}4 = 0 is equivalent to p(t)7(r) = 1.
Both if M is standard and if Af is the root system of X in Lemma 8.8,
we obtain that

Af _ AEI(M) _ AEQ(M), AM _ gRi(M) _ pR2(M)

Since Ry(M) ~ (M7, My ® M, M3) and My ® My ~ M(rs, po), the above
arguments for M applied to Rj(M) imply that

(3)—p(rs)a(rs) =0, p(?“St)U(TSt)T(TS) =1
and hence p(rs)o(r) = 1. Similarly, Ro(M) ~ (M ® Ma, M5, My ® Ms).
Then aﬁf(M) = 0 implies that

po(st)or(rs) =1,
and therefore p(s)o(rs) = 1. Thus M has a skeleton of type 5 by Lemma 8.2.
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Assume now that 8 > 4. Since dim M; = 1, Lemma 5.12 implies that
dim Mo = 1. Let H be the subgroup generated by U?:zsupp M;. Then H is
non-abelian, M’ = (Res§;M;)a<i<p € L |, M’ admits all reflections, W(M")
is finite, and AM’ is of type By_1. Thus it suffices to lead these assumptions
to a contradiction in the case 6 = 4.

Assume that & = 4. By the claim for # = 3 we conclude that there
exist ;7,8 € Z(G), t,e € G, and characters p, p,o of G and 7 of G! such
that 7/, 7, s,t, e generate G, and the relations €3 = 1, te = ¢ 't hold in G.
Moreover,

My~ M(r',p), My~ M(r,p), Mz~DM(s,o), My=~M(tT),
and the characters satisfy the relations

P)o(r) =1, pO)r(r) =1, plrs)o(r)=1, pE)r(r) =1,
p(s)o(rs) =1, (B)—o(s) =0, a(st)r(s) =1, T(t) = —1.

Since Ry (M) € £ and dim Ry(M); = 1, we conclude that
M' = (R1(M);)ieqo,3,4y € &,

where H is the subgroup of G' generated by U} ,supp Ri(M);. We record
that

M{ ~ M| ® Ma, Mé ~ Ms, Mé ~ My.
We now apply Theorem 2.5 for § = 3. This is possible since the proof does
not use results on tuples in F&, n > 4. Since Cary, My CM M} # ey
according to Theorem 2.5 and the equations dim M{ = dim M} = 1 we con-
clude that either ey aear ary = idar gy or (M, M3, M3) has a skeleton
of type f5. This implies that

Pp(s)a(r1’) = L or g/p(r'r)plpls)(rr’) = 1.

The first case is impossible since p(s)o(r) # 1, p'(s)o(r’) = 1. Therefore

Fr)p(r') = 1.

Since a}f = —1, we know that p(r) = —1 or p(rr')p'(r) = 1. Assume first
that p(rr')p'(r) = 1. Then Propositions 8.5 and 8.7 imply that there is a
finite Cartan graph with two points corresponding to the skeleton of M and

of Ry(M), respectively, such that the Cartan matrices of these points are

2 -1 0 0 2 -1 0 0
-1 2 -1 0 -1 2 -1 0
o -1 2 -1\’ 0o -2 2 -1
0o 0 -2 2 0o 0 -2 2

However, by [16, Thm. 5.4] there is no such finite Cartan graph, which es-
tablishes the desired contradiction.

Assume now that p'(r)p(r'r) # 1 and p(r) = —1. Since (3)_,) = 0, this
implies that char K = 3. Let M" = (Ra(M)1, Ro(M)3, Ra(M)4) and let now
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H be the subgroup of G generated by supp M”. Since Ry(M) € Sf and
dim Ry(M)3 = 1, we conclude that M” € . Moreover,

M{/2M1®M2, Mé’ﬁMg@Mg, M§,2M4.
Since

p'o(rs)po(r'r) = p/(r)p(r'r) # 1,
the tuple M" is braid-indecomposable. From Theorem 2.5 for § = 3 and

from the facts that dim M7 = dim MY = 1 and po(rs) = —1 we conclude
that p'p(rs)po(r'r) = —1. This immediately implies that p'(r)p(r’) = 1,
a contradiction to a4 # 0. Thus 6 # 4 and the proof of the theorem is
completed. O

Proof of Theorem 2.9: dim M; > 1.

(1)=(3),(4). Since M € &§ has a skeleton of type By, Proposition 8.4
implies that M admits all reflections and W(M) is standard of type Bjy.
Lemma 8.1 implies that B(M;) is finite-dimensional for all ¢ € {1,...,0}.
More precisely,

Hioun) (1) = ()7, Hau,) (1) = 3)F.

Now Theorem 1.2 implies that B(M) is finite-dimensional with the claimed
Hilbert series.

(4)=-(2). Since dim B(M) < oo, the tuple M admits all reflections by [7,
Cor. 3.18] and the Weyl groupoid is finite by [7, Prop. 3.23].

(2)=(1). It is assumed that dim M; > 1, M admits all reflections, AM
is of type By, and W(M) is finite. Thus Theorem 1.1 tells that C(M) is a
connected indecomposable finite Cartan graph.

Since # > 3 and dim M; > 1, it follows from Lemma 5.12 and Lemma 5.13
that supp M1 and supp Ms do not commute and that

dim M = dim Ms = |supp M| = |[supp Ma| = 2.

Let H be the subgroup generated by U?:2supp M;. Then Lemma 5.14 implies
that M’ = (Rengi)zgige € 591{1

Assume first that § = 3. Let r € supp M1, s € supp M>, and ¢ € supp Ms.
Since a% = 0, we conclude that

spt=rp>(s>t)=(r>s)>(rot)=(res)nt,

where > means conjugation: s>t = sts~!. Since s # r > s, this means
that both elements of supp My act in the same way on supp M3. Then [28,
Thm. 2.1] implies that char K = 3, dim M3 = |supp M3| = 2, and that the
conditions in Lemma 8.1(2) hold. Then Lemma 8.1 implies (1).

Assume now that # > 3. Since dim My > 1, the claim for §—1 implies that
char K = 3 and M’ has a skeleton of type 3p_1. In particular, by Lemma 8.1
there exist so,...,89,6 € G such that es; = s;e and sfl = {s;,€s;} for
2 < i <0, where H C G is the subgroup generated by sa,...,s9,e. Let
$1 € supp M1. Since s189 # $251 and €2 = 1, we conclude from Lemma 5.1
that supp M = {s1,€es1} and sje = €s1. Since G is generated by sq,. .., sg, €,
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we conclude that € € Z(G). In order to prove that M has a skeleton of type
B, one has to check conditions (8.1)—(8.6) in Lemma 8.1 for ¢« = 1. These
follow from Lemmas A.3, A.4, and 5.5.

(3)=(2) is clear. O

9. PROOF OF THEOREM 2.10: THE CASE F}

In this section we require that all the assumptions of Theorem 2.10 hold.
Thus let G be a non-abelian group and let M = (M, My, M3, My) € 54G.
Assume that AM is a Cartan matrix of type Fj. More precisely,

M_ M _ M_ M_ M_ M _
ayy = ap = a3 = azy = ay3 = —1, azy = —2,

and aﬁ\]/f = 0 otherwise if 7 # j.

Lemma 9.1. Let H = (Ul supp M;) and M’ = (Res$ M;)a<i<s. Then H
is non-abelian, M' € £l and AM' s of type Cs. Moreover, dim My = 1.

Proof. Lemma 5.14 implies that M’ € €47 and that H is non-abelian. Since
AM i5 of type Fy, we conclude that AM "is of type Cs.

Since H is non-abelian, Lemma 7.5 for M’ implies that dim My = 1.
Therefore supp Ms commutes with supp M; and hence dim M; = 1 by
Lemma 5.12. [l

The skeleton of type ¢4 is described in the following lemma.

Lemma 9.2. Assume that charK # 2. Let N € .7-"4G. The following are
equivalent:

(1) N has a skeleton of type @4.

(2) There exists € € Z(G) with €2 = 1 and for all i € {1,...,4} and
all s; € supp M; there exists a unique character o; of G% such that
supp M; = {s;} for i € {1,2}, supp M; = {s;,es;} for i € {3,4},
M; ~ M(s;,0;) for all i € {1,...,4}, and the following conditions

hold:
(9.1) o1(s1) = 02(s2) = o3(s3) = 04(s4) = —1,
(9.2) o4(esd)os(es?) = 1,
(9.3) 04(81)01(84) = 03(81)01(s3) = 04(82)02(54) = 1,
(9.4) o3(s2)oa(s3) = —1,
(9.5) o1(s2)oa(s1) = —1,
(9.6) S354 = €8453.

Proof. Suppose that N has a skeleton of type ¢4. Then AV is of type Fj.
Lemma 5.2(1) implies now the existence of € such that (9.6) holds and the
supports of Ms, M, are of the given form. Since AWV3:N4) ig of type Ao,
Corollary A.7 implies (9.2) and that 04(s4) = 03(s3) = —1. The remaining
conditions in (9.1) and (9.4), (9.5) hold by definition of the skeleton. Now

(9.3) follows from Lemma A.2 since a}f = a4 =adl =0
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The converse follows immediately from the definition of a skeleton of type
4 using Lemmas A.2, A.15, A.16, and Corollary A.7. O

Reflections of the skeleton of type ¢4 are considered in the following
lemma.

Proposition 9.3. Let M € ff. Assume that M has a skeleton S of type
w4. Then S is a skeleton of R (M) for all k € {1,2,3,4}.

Proof. According to Remark 5.17 it suffices to determine the skeletons of
Ry(M;,, M;,, M;,), where i1, i, i3 correspond to three vertices of a connected
subgraph of S and k € {1,2,3}. There are only two such subgraphs and
hence the proposition follows from Lemmas 8.6 and 7.7. O

We are now ready to prove Theorem 2.10.

Proof of Theorem 2.10. We prove the implications (1)=-(4)=-(2)=-(1) and
(1)=(3)=(2).

(3)=-(2). This is clear, see e.g. [16, Thm. 3.3].

(1)=(3),(4). Since M € E{ has a skeleton of type ¢4, Proposition 9.3
implies that M admits all reflections and W(M) is standard of type F;. The
longest element of the Weyl group of type Fj is

515251535251535253545359515359535453525153525354.
The Nichols algebras B(M;) are finite-dimensional for ¢ € {1,...,4} and

2), ifi e {1,2},
Hpr,) (1) = {EQ;% if i E }3,4;

With respect to the Cartan matrix of type F4 one computes

pr = aa,

B3 = ag,

Bs = a1 + 200 + 2as,

pr = az + as,

By = as,

P11 = a1 + 2az + 2a3 + oy,
B13 = a1 + 3ag + das + 20y,
B15 = a1 4 2a0 + 4as + 2ay,
Bir = a1 + 2a0 + 3ais + 2ay,
Bro = a1 4 2a0 + 2ai3 + 2y,
fa1 = ag + a3 + ay,

P23z = a3 + au,

The long and short roots are 3; with

B2 = a1 + ag,

By = a1 + az + ag,

B = a1 + ag + 2as,

Ps = az + 2a3,

Bro = a1 + 2 + 3asz + ay,
B12 = 2a1 + 3as + dag + 20,
Bia = a1 + a2 + 2a3 + au,
Bi6 = a2 + 2a3 + g,

Bis = a1 + az + a3 + ay,
Bog = a1 + a9 + 203 + 2014,
Pz = o + 203 + 204,

B24 = Q4.

j€{1,2,3,5,6,8,12,13,15,19, 20, 22}
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and
j€44,7,9,10,11,14,16,17,18,21,23,24},
respectively. By Theorem 1.2,
B(M) ~ B(Mﬁm) Q& B(MBI)

as Ni-graded objects in $YD. Thus a direct calculation shows that B(M)
is finite-dimensional with the claimed Hilbert series.

(4)=-(2). Since dim B(M) < oo, the tuple M admits all reflections by [7,
Cor. 3.18] and the Weyl groupoid is finite by [7, Prop. 3.23].

(2)=(1). Let H be the subgroup of G generated by U} ,supp M;. Let
N = (ReSgMi)i€{27374}. Lemma 9.1 implies that N € £ and AY is of type
C3. Therefore, by Theorem 2.7(2)=-(1), N has a skeleton of type 3 and
charK # 2. Moreover, dim M; = 1 by Lemma 9.1. For all i € {1,2,3,4}

let s; € G and 0; € G% such that M; ~ M(s;,0;). Then o9(sy) = —1,
02(83)03(82) = —1, and

(9.7) (0’1(81) + 1)(01(8182)0’2(81) — 1) =0, 0'1(83)0'3(81) =1

by Lemma A.1, since a}4 = —1 and a}4 = 0. We are left to show that
01(51) = 0'1(52)0'2(51) = —1.

Let M' = Ry(M). Then M| ~ M(sgs1,0201), Mj ~ M (s2s3,0203), and
M) = My by Lemma A.2. In particular, dim M{ = 1, dim M} = dim M} =
2, and supp M4 and supp M do not commute. Moreover, a%/ = 0 by
Lemma 5.15. Then (M|, M}, M}) € F&', where H' C G is the subgroup gen-
erated by supp M]Usupp M;Usupp M;. The Weyl groupoid of (M7, M3, My)
is finite by assumption. We apply Theorem 2.5 for § = 3, which is possible,
since its proof for § = 3 does not use anything about #-tuples with 6 > 4.
We obtain that either a%/ = 0 or the triple (M7, Mj, M) has a skeleton of
type 3. In the second case, necessarily oc201(s253)0203(s2581) = —1 holds.
Equations o2(s2) = 02(s3)03(s2) = —1 and (9.7) imply that

09201 (8283)0’20’3(8281) = —01 (82)0'2(81),

and hence in the second of the above two cases necessarily o1(s2)oa(s1) =1
holds. Since o(s2)o2(s1) # 1 because of al4 # 0 and Lemma A.2, we

conclude that the second case is impossible and hence a}f’ = 0. Then
o1(s2)o2(s1) = —1, in which case o1(s1) = —1 by (9.7). Thus we are done,
as said at the end of the previous paragraph. ([l

10. PROOF OF THEOREM 2.5: THE CLASSIFICATION

Recall that 6 € N>3, G is a non-abelian group and M € 89G is a braid-
indecomposable tuple.

Proof of Theorem 2.5. (1)=(2) Assume that M has a skeleton S of finite
type. If M has a skeleton of type ag or dy or gy, then dim B(M) < oo by
Theorem 2.6. If M has a skeleton of type vy or ¢4, then dim B(M) < oo
by Theorem 2.7 and 2.10, respectively. If M has a skeleton of type £y, then
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dim M; > 1 by Lemma 8.1 and hence dim B(M) < oo by Theorem 2.9. If
M has a skeleton of type (5, then dim M; = 1 by Lemma 8.2 and hence
dim B(M) < oo by Theorem 2.8. Finally, if M has a skeleton of type 85, then
R3(M) has a skeleton of type (5 by Proposition 8.7. Hence dim B(R3(M)) <
0o. Since R3(R3(M)) ~ M by [7, Thm. 3.12], we conclude from [7, Thm. 1]
that dim B(M) = dim B(R3(M)) < oc.

(2)=-(3) Since dim B(M) < oo, the tuple M admits all reflections by [7,
Cor. 3.18] and the Weyl groupoid is finite by [7, Prop. 3.23].

(3)=-(1) Recall that M is braid-indecomposable. Suppose that M admits
all reflections and W(M) is finite. Then C(M) is a connected indecompos-
able finite Cartan graph by Theorem 1.1. Therefore by Theorem 4.2 there
exist k € Ny and i1,...,ix € {1,...,0} such that AV is an indecompos-
able Cartan matrix of finite type for N = R;, --- R;, (M). The set of all
indecomposable Cartan matrices of finite type is well-known: They are of
ADE types or of type By, Cy, or Fy. By Theorems 2.6, 2.8, 2.9, 2.7, and
2.10 the tuple N has a skeleton of finite type. Since M ~ R;, --- R;,(N),
from Propositions 6.4, 7.8, 9.3, 8.4, 8.5, and 8.7 we conclude that M has a
skeleton of finite type. O

APPENDIX A. REFLECTIONS OF A PAIR

A.1. For one-dimensional Yetter-Drinfeld modules U, V over a group H, the
Yetter-Drinfeld modules (ad U)™ (V') and (ad V)™ (U) for m > 1 are well-
known by the theory of Nichols algebras of diagonal type. The following
lemma goes back to Rosso, see [37, Lemma 14].

Lemma A.1 (Rosso). Let H be a group and let U,V € LYD. Assume that
U=~ M(r,p) and V ~ M(s,o), where r,s € Z(H) and p,o are characters
of H. Then (adU)™(V) # 0 for a given m € N if and only if

m—1

(M) 1] (p(r's)a(r) = 1) # 0.

=0
In this case, (adU)"™(V) ~ M (r™s,0y,), where oy, is the character of H
given by om(h) = p(h)™o(h) for all h € H.

Rosso’s lemma is a special case of a more general statement which we

prove here.

Lemma A.2. Let H be a group and let U,V € gyD. Assume that U ~
M(r,p) and V ~ M(s,0), where r € Z(H), s € H, p € H, and 0 is a

representation of H®. Assume also that o(r) is a constant automorphism of
V. Then (adU)™(V') # 0 for a given m € N if and only if
m—1
(m)pey TT (1= p(ris)a(r)) # 0.
=0
In this case, (adU)™(V) >~ M(r™s, 0y, ), where o, is the representation of
H? given by op(h) = p(h)"o(h) for all h € H?.
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Proof. By Lemma 1.3, it suffices to prove the claim for X5V instead of
(adU)™(V).
Let w € U\ {0} and v € V; \ {0}. For all m > 1 let
Ym = (M) ey (L= p(r™ L s)a (r)).
We prove that
(A.1) XUV = U@ V

for all m > 1. Then X" = 0 if vi = 0 for some i € {1,...,m}, and
otherwise X" ~ M(r™s, o,). Indeed,

X%’V = Bresupp v (U™ @ V3)
in the latter case and
h(u®™ @ w) = p(h)"u®™ @ hw

for all w € V.

We prove by induction on m that
(A.2) Om (U™ @) = Yu®" Qv
for all m > 1 and all v € V,. This clearly implies (A.1).

Let v € V. For m = 1 we have ¢1(u ® v) = (id — ¢?)(u ® v) and

Alu®v) =c(rv@u) = o(r)su®v = p(s)o(r)u® v.
Therefore p1(u ® v) = y1u ® v. Assume now that (A.2) holds for some
m > 1. Then
Omr1 (™ @) = u®" M Qv — A(u@ (W @)
+ (1d ® gm)cr2(u @ u® (W™ @ v))

= (L= p(r)"a(r)p(r™s)) + p(r)ym)u®" " @ v

— ’)/m_‘_1u®m+1 X v.

This proves the lemma. ([

A.2. In this section we collect some auxiliary results regarding reflections
of [25, §4]. Let G be a non-abelian group.

Let g,h,e € G. Assume that |g¢| = |h®| = 2, gh # hg, and gh = ¢hg.
By Lemma 5.2 the subgroup (g, h,e) of G is an epimorphic image of T's.
Let V,W € GYD with V ~ M(g, p) and W ~ M(h, o), where p € G9 and

o € G". Let v € V,\{0}. Then {v, hv} is a basis of V. The degrees of these
basis vectors are g and eg, respectively. Similarly let w € W}, \ {0}. Then
{w,gw} is a basis of W and the degrees of these basis vectors are h and

eh, respectively. In particular, Resg h E>V and Resg h €>W are absolutely

simple Yetter-Drinfeld modules over (g, h,€). Since z acts on V&™ @ W&
for z € GING" and m,n € Ny by p(2)™o(2)"id, the following claims follow
directly from the corresponding results in [25].
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Lemma A.3. [25, Lemma 4.1]

(1) XY’W % 0. Moreover, XY’W s absolutely simple if and only if
p(eh?)o(eg?) = 1.

(2) Assume that p(eh®)o(eg?) = 1. Then le’W ~ M(gh,0), where
o € Gy = ({gh} U (GI N G")) with 5(gh) = —p(g)o(h), and 5(z) =
p(2)o(2) for all z € GING".

Lemma A.4. [25, Lemma 4.2] Assume that p(eh?)o(eg?) = 1.

(1) X;/’W =0 if and only if p(g) = —1.

(2) X;/’W is absolutely simple if and only if p(g) = 1 and charK # 2.
Lemma A.5. [25, Lemma 4.3] Assume that p(eh?)o(eg?) =1, p(g) = 1 and
charK # 2. Let n € N.

(1) If n > 3 then XYW =0 if and only if 0 < char K < n.

(2) Ifn > 1 and X"V # 0 then X0V ~ M(g"h,5), where G is a
character of G9"" = ({g"h} U (GI N G")) with 7(g"h) = (—1)"c(h)
and 5(2) = p(2)"a(z) for all z € GING".

With the previous calculations and exchanging V' and W one immediately
obtains the following lemma, see [25, Prop. 4.4].

Lemma A.6. The Yetter-Drinfeld modules (ad V)™ (W) and (ad W)™ (V)
are absolutely simple or zero for all m > 0 if and only if p(eh?)o(eg?) = 1
and p(g)? = o(h)? = 1. In this case, the non-diagonal entries of the Cartan
matriz AVW) are

LW )1 i plg) =1,
12 1—p ifp(g)=1and charK=p > 2,

and otherwise (ad V)™ (W) # 0 for all m > 0, and similarly

Jvw) _ )= afa(h) =—1,
21 1—p ifo(h) =1 and charK=p > 2,

and otherwise (ad W)™(V') # 0 for all m > 0.
Corollary A.7. Let V,W be as above.

(1) We have ag’w) = a;‘f’w) = —1 if and only if p(eh?)o(eg?) = 1 and
plg) =o(h) = —1.
(2) We have ag’w) = -1, agl/’w) = —2 if and only if p(eh?)o(eg?) =1,

p(g) =—1, o(h) =1, and charK = 3.

Proof. The if part of the claim follows directly from Lemma A.6.

For the only if part observe first that ag’w) = —1, agl/’w) > —2 imply

that (adV)(W) and (ad W)™(V) with 0 < m < —agl/’w) are absolutely
simple by Proposition 5.9. Then p(eh?)o(eg?) = 1 by Lemma A.3, and the

only if parts of (1) and (2) follow from Lemmas A.4 and A.5. O
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Finally to compute the reflections of the pair (V, W) one has the following
lemma.

Lemma A.8. [25, Lemma 4.5] Assume that

p(eh®)o(eg?) =1, plg)* = o(h)* =1,
and that p(g) = —1 if char K =0. Let m =1 if p(g) = —1 and let m =p—1
if p(9) =1 and charK =p > 0. Let ¢’ = g~ and W' = g™h. Then
’g/G’ _ |h/G| =2 g/h/ 7& B /7 g/h/ — ¢ /g/7 G9 N Gh _ Gg/ N Gh/.
Moreover, Ry(V,W) = (V! W') with V' ~ M(q',p") and W' ~ M(h,o'),

— P

where p' € G9" and o' € G with
p(eh?)a'(eg?) =1, P(g") = rl9), o'(h') = a(h),
and p'(z) = p(2)71, o'(2) = p(2)™0(2) for all z € GING".

A.3. Here we recall results on particular pairs of Yetter-Drinfeld modules
which play an important role in the study of skeletons of type §; and 3.

By Proposition 5.9, for any pair (U, V) € F§ the Yetter-Drinfeld modules
(adU)™(V) and (ad V)™ (U) are absolutely simple or zero if agg’v)ag[{’v) is
one of 0, 1, 2. Therefore Lemmas A.10 and A.13 below are special cases of
[28, Prop. 6.6] and [28, Prop. 4.12], respectively.

Lemma A.9. Let t,t' € G. Assume that tt' # t't, |t°| = 3, and t¢ = t'C.
Let € € G be such that t' = et. Then € =1, te = e 't, and t& = {t, et, >t}.

Proof. Since tt' # t't, we conclude that te # et. Therefore ¢ commutes
neither with ¢ nor with et. Let ¢ € t% be such that t% = {t,et,#"}. Then
ete™! ¢ {t,et}, and hence ete~! = ”. Thus conjugation by ¢ permutes t“ via
t—=t" t" =t t —t Hence €te ! =et'e ! =t. Then t" = ete ' =€ 't
and et = et”"e ! =te ! = ¢ %t. Thus €3 = 1 which implies the rest. O
Lemma A.10. Let s € Z(G) and t,e € G be such that € = 1, ¢ # 1,
te =€, and [t°| = 3. Let 0 € G and T € Gt and let U,V € YD be such
that U ~ M (s,o0) and V ~ M(t,7). Then ag’v) = —1 and ag’v) = -2 if
and only if

M) = -1, B)-oyr(s) =0, (1 +0(s))(1 —a(st)7(s)) = 0.

Proof. The assumptions imply that (¢, ¢, s) is a non-abelian epimorphic im-
age of I'3. By Lemma A.2, agg,V) = —1 if and only if o(s)7(t) # 1 and
(1 4+ 0(s))(1 —o(st)r(s)) = 0. The rest follows from [28, Lemmas6.2,6.3]
since ag?’v) = —2 implies that (ad V)?(U) = R2(U,V); is absolutely sim-
ple. O
Proposition A.11. Let s € Z(G) and t,e g\G be such that €2 =1, € # 1,

te=¢"'t, and [t°| = 3. Let o € G and 7 € G be such that
T(t) = =1, (3)_o)yrs) =0, o(st)r(s) =1
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and let U, V,U" V' € GYD such that U ~ M(s,0), ~ M(t,7), and
(U, V') = Re(U,V). Then U ~ M(s',0') and V' ~ ( L7*), where
s’ = est? and o' € G¢ such that o' () = (o (t)7(5))?, o'(h) = 7(h)?c(h) for

all h € Gt N GE. Moreover, ¢ = {e,e7 '}, t* € Z(G), and
o' (et™)r*(es?) =1, o(s)=-1, 7@t H=-1

Proof. First we prove that €& = {¢,e"'} and that t*> € Z(G). Indeed, the
assumptions imply that t& = {t,et, %t} and hence G = (t,¢, G* N G¢). Let
H be the subgroup of G generated by s,t, and €. Then ResgV, Reng €
HYD are absolutely simple. The calculation of V* = Ry(U, V) is standard.

We conclude from [28, Lemmas 6.2 and 6.3] that a(UV) —2. From [28,
Lemma6.2] we obtain that Re(U,V); ~ M(s',0’) and that the remaining
claims hold. O

Lemma A.12. Let s,t,e € G be such that € # 1, st # ts, s& = {s,es}, and
[t¢] = 3. Then €3 =1, se = es, te = e 't, ts = est, and t& = {t, et, t}.
Moreover, e 's € Z(G).

Proof. We assumed that st # ts and s¢ = {s,es}, and hence ts = est. Thus
¢s = se and te = ¢ 't by Lemma 5.1(1). Therefore s*ts™% = e 7%t € ¢ for
all k > 1, that is, €2 = 1 or €3 = 1 because of [t¢| = 3. To conclude the
lemma it suffices to show that €3 = 1 and that e~!s € Z(G).

Assume to the contrary that €2 = 1. Let ¢’ € t\ {t,et}. Then st’' = t's
and et’ = t'e. In particular, ¢ commutes with s¢, which is a contradiction,
since t' € t and t does not commute with s&.

Finally, Lemma 5.1(3) implies that (e 's)% = {¢~1s}. O

Lemma A.13. Let s,t,e € G be as in Lemma A.12. Let o € é\s, re Gl

and let U,V € GYD be such that U ~ M(s,0) and V. ~ M(t,7). Then

(U V)= 1 and agl] V)— 9 if and only if

o(et®)r(es®) =1, o(s)=—-1, 7(t)=—1.
In this case, if (3)y() = 0 then (adU)(V) ~ M (e 'st,7’) and (ad V)*(U) ~
M (e 2s,0"), where 7' € Gt with 7(t) = 1(es Ha(e), 7'(h) = o(h)T(h)
for allh € G°NGY, and o' € G with o'(¢) = 1, o/(t) = —7(es Ho(e), and
o'(h) = 1(h)%?a(h) for allh € G*NG".
Proof. By Lemma A.12, the subgroup (s,t) C G is a non-abelian epimorphic

image of I's. Hence U and V satisfy the assumptions of [28, Prop. 4.12] when
viewed as Yetter-Drinfeld modules over (s, t). This leads to the claim. [

A.4. In this section we study reflections of a particular pair of Yetter-
Drinfeld modules. Let G be a group and let s € G. Assume that |s¢| = 2.
Let 7, e € G be such that rs = esr, € # 1.

Let t € Z(G), o € Gs, and 7 € G. In particular, 7(e) = 1. Let VW €
YYD be such that V ~ M(s,0) and W ~ M(t, 7). We determine the
Yetter-Drinfeld modules XX;W for all m > 1.
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Lemma A.14. The Yetter-Drinfeld module XY’W is non-zero if and only
if o(t)7(s) # 1. In this case, XY’W ~ M(st, 1), where T is the character
of G* = G** with T1(h) = o(h)7(h) for all h € G®.

Proof. Let v € V; and w € W with v,w # 0. Since G > (s,t) = s x {t},
(id—ewyvevw)(v@w) = (1—0o(t)7(s))v@w generates XY’W as a KG-module.
This implies the claim. ]

Lemma A.15. Assume that o(t)7(s) # 1. Then X¥7W # 0. Moreover,
X;/’W s absolutely simple if and only if one of the following hold.

(1) o(e?) =1, (1+0(s))(1 — o(st)7(s)) = 0.

(2) o(s) = -1, o(2?)7(s?) = 1.

(3) o(st)r(s) =1, o(e?s?) = 1.
In this case, let A\ = —o(e€) in case (1), X = o(et)7(s) in case (2), and
A =o(es) in case (3). Then X;/’W ~ M (est,5), where T2 € G with

7o(r) = Aa(r?)7(r), 72(9) = a(gr~"gr)T(9)

forallg e G®, andwa = v @ ro@w+ Arv @ v @ w is a basis ofX;/’W.
Proof. Let w1 = v ® w. By the proof of Lemma A.14, w; € (XY’W)St
generates X}/’W as a KG-module. Since s& x (st)¢ = G (s, st)UG> (s, est),

the vectors ¢2(v ® wi) and 2(v ® rw;) generate the KG-module X;/’W.
Let w) = @a(v @ rwy). Since

w2(v @ rwy) = v rw; — estv @ srwy + 7(r)(id @ ¢1)(srv @ v @ W)
= (1 —0(25°t)7(s))v @ rwy + o (es)T(r) (1 — o (t)7(s))rv @ wy,
we conclude that w) # 0 and hence X;/’W # 0.
Assume that X;/’W is absolutely simple. Since
w2V @wp) =v®w; — sty ® swy + (Id ® ¢1)(sv @ v ® w)
— (1+0())(1 - a(st)7(s))v ® wr,
and @a(v ® wi) € (X3 )y, wh € (X" )2y, and (s2)C # (es?1) by
Lemma 5.1(3), we conclude that
(A.3) (14 0(s))(1 —oa(st)r(s)) = 0.

Also, the tensors v ® rv ® w, rv ® v ® w form a basis of (V@ V @ W) 24,
and hence

gu=oc(gr-tgr)t(gu foralluec (VRV @W).z, g€ G
Since G = G* UrG?,
Kv@r+reu)ew, Korv—rvuv)®w

are the only simple Yetter-Drinfeld submodules of (V @ V @ W) 2. Thus,
wh has to span one of these submodules, that is,

1 — o(e?s%t)7(s) = Aa(es)(1 — o (t)7(s))
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for some A € {1,—1}. Equivalently,

(A.4) (1 —Xo(es))(1+ Ao(est)T(s)) =0

for some A € {1, —1}. This and Equation (A.3) imply that (1) or (2) or (3)
hold, and X, = K(v ® rv ® w + Mrv @ v @ w).

Conversely, if one of (1), (2), (3) holds, then X;/’W = Kws by the above

calculations, and hence X;/ Wis absolutely simple. The remaining claims
also follow similarly. ([

Lemma A.16. Assume that o(t)7(s) # 1 and that Xy is absolutely sim-
ple. Let 13 be the character of G° and 14 be the character of G with

73(9) = o(g*r~gr)T(g), alg) = o(g® (r~'gr))7(9), m(r) = o(r)7(r)
for all g € G°. Then the following hold.

(1) X;,/’W =0 if and only if o(s) = —1 or o(e?) # 1.

(2) X;,/’W is absolutely simple if and only if o(s) # —1 and o(e?) = 1.
In this case, X;,/’W ~ M(es®t,13) and XX’W # 0.

(3) Assume that o(s) # —1 and o(e?) = 1. Then XX’W is absolutely
simple if and only if (3),(s) = 0. In this case, XX’W ~ M(e2s*t,74)
and Xg/’W =0.

(4) Assume that o(e%) =1 and (3),(5) = 0. Let wy be as in Lemma A.15,
w3 = v Q ws, and

wy = v ® rws + o(r?)1(r)rv @ ws.
Then ws € (X:,Y’W)esst, wy € (XX’W)€284t.
Proof. First we calculate that
w3(v @ wa) = (1 +0(s))(1 — o(e253t)7(s))v ® wo.

Hence ¢3(v ® ws) = 0 if and only if o(s) = —1 or o(e?5%t)7(s) = 1. Assume
that o(s) # —1. Since X;/ Wis absolutely simple, Lemma A.15 implies
that o(st)r(s) = 1. Thus X;/’W = 0 if and only if o(e?s?) = 1. Since
o(s)"t =a(t)7(s) # 1 and o(s) # —1 by assumption, Lemma A.15 implies
that o(e?s?) = 1 holds if and only if o(e?) # 1.

Assume now that o(e?) = 1 and o(s) # —1. Then o(st)7(s) = 1 by
Lemma A.15. Let w3 = v @ we. Then w3 € (V3 @ W), and

X:,Y’W = Kws + Krws ~ M (es3t, 3),
since gws = o(gr~tgr)T(g)ws for all g € G° by Lemma A.15. Moreover,
Pa(v @ w3z) = (3)y5)(1 — 0(83))1) ® ws,
01(v @ rws) = (1 — 0 (s”))v @ rws
—a(sr?)1(r) (1 + o (s))(1 — o (s*)rv @ ws.
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Since VoV o Xy = X! & X/ in §YD, where

Xi=veve Xy +rorne X)W,
X! =verme X, +reve X)W,

similarly to an argument in the proof of Lemma A.15 we conclude that X X W
is absolutely simple if and only if p4(v ® ws) = 0 and

pa(v@rwz) € K(v ®@rv+ Arv ®v) @ wy

for some A € K with A2 = 1. This is equivalent to (3)o(s) = 0, since then
os(v @ rwsz) = (1 — o(s) " Hwy and rwy = o(r*)7(r)ws. The rest follows
easily. O

Now we introduce classes of pairs of absolutely simple Yetter-Drinfeld
modules over any group H. They will appear naturally in Corollary A.24 in
the classification of specific pairs admitting all reflections.

Definition A.17. Let H be a group. For i € {0,1} let pg‘;l be the class
of pairs (V,W) of Yetter-Drinfeld modules over H such that the following
hold.

(1) |supp V| =2, [supp W| = 2. . .
(2) There exist s € suppV, t € suppW, o € H*, and 7 € H!, such that
V>~ M(s,0), W~ M(t, ), and the following hold:
(a) If i =0, then (id — cwyeyw)(V @ W) = 0.
(b) If i = 1, then o(et®)7(es?) = 1, and o(s) = 7(t) = —1, where
€ € H with st = ets and € # 1.
Let pf{ for 0 < i < 8 be the class of pairs (V, W) of Yetter-Drinfeld modules
over H such that the following hold.

(1) |supp V| = 2, [supp W| = 1. . R

(2) There exist s € supp V', t € suppW, o € HS, and 7 € H, such that
V ~ M(s,0), W ~ M(t,7), and o and T satisfy the conditions in
Table 3.

For alln € N with n > 2 let pi(n) be the subclass of pi of those pairs
(V, W), where additionally 7(t) is a primitive n-th root of 1.

We point out that Lemma 5.5 gives a characterization of pairs in pg’o.
A characterization of the class pgm was given in Corollary A.7.

The pairs (V, W) in the classes (p%’j for j € {0,1} and p for 0 <i <8
satisfy stronger properties. To prove them we need a lemma.

For any group H and any representation p of H we write const,(H ) for the
normal subgroup of H consisting of those g € H such that p(g) is constant.
In particular, const,(H) = H if deg p = 1. The following Lemma is probably
well-known. It follows directly from the structure theory of Yetter-Drinfeld
modules over groups.
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TABLE 3. The classes pf{, 0<7<8.

i conditions on ¢ and T

0 ot)r(s) =1

1 o(e?) =1, 0(s) = —1, o(t)r(st) =1, 7(t) # 1

2 o(e?) =1, 0(s) = =1, 7(t) = =1, (3)p(t)r(s) = 0, o (t)7(s) # 1

3 0(62) =1,0(s) =1, (3)0(15)7(5) =0, 7(t) = —o(t)7(s), o(t)7(s) # 1
4 o(€) =1, (3)5(5) =0, o(st)T(s) = 1, 7(t) = =1, o(s) # 1

5 o(e?) # 1, 0(s) = —1, o(2t?)7(s?) = 1, o(t)1(st) = 1

6 o(e?) #1, 0(s) = -1, o(2t*)1(s?) =1, 7(t) = —1

7 o(e?) # 1, 0(e25?) = 1, a(st)r(s) = 1, o(t)7(st) = 1

8 o(e?) # 1, 0(e25?) = 1, o(st)r(s) = 1, 7(t) = —1

Lemma A.18. Let H be a group and let V € gyD. Then the following
hold.

(1) For all v € supp V' there exists a representation p, of H" such that
@y, Vs =~ M(r,p,). These representations are unique up to iso-
morphism, and deg p, = deg p, for all v,s € supp V with s € v

2) Let r € suppV, h € const, (H"), and g € H. Let v’ = grg™' and

pp Y Pr ) g g g
W = ghg~'. Then h' € const,, , (H") and p,(h) = py ().

In the following two propositions we show that the presentation of the
pairs in the classes pf} and pff, 0 < i < 8, in terms of elements of the
group H and representations of their centralizers is essentially independent
of choices. This simplifies much the discussion of skeletons of tuples.

Proposition A.19. Let H be a group, (V,W) € pgm, and s € suppV,
t e suppW. Let e € H be such that st = ets.
(1) There exist unique characters o of H* and T of H® such that V ~
M(s,0) and W ~ M(t, ).
(2) st = {s,es}, t = {t,et}, € =1, ec Z(H), ¢ # 1.
(3) o(et?)r(es?) =1, o(s) = 7(t) = —1.

Proof. By assumption, there exist s’ € suppV, ¢’ € suppW, ¢ € H, such
that s't’ = €'t's’ and ¢ # 1. Since |[supp V| = |[supp W| = 2 and since
supp V, supp W are conjugacy classes of H, (2) follows from Lemma 5.2(1).
In particular, there exists x € (s,t) such that z>s = s, x>t = t. Then
€ =e.

Again by assumption, there exist characters o’ of H* and 7/ of H such
that V.~ M(s',0’), W ~ M(¢',7'), and

o (€)' (ds?) =1, () =7()=-1.

Then (1) holds by Lemma A.18(1), and (3) follows from Lemma A.18(2)
with r = ', g = x and r = t/, g = x, respectively. O

Proposition A.20. Let H be a group, i € Z with 0 <i <8, (V,W) € pll,
and s € supp V', t € suppW. Let ¢ € H be such that s = {s, es}.



NICHOLS ALGEBRAS OVER NON-ABELIAN GROUPS 55

(1) There exist unique characters o of H® and 7 of H such that V ~
M(s,0) and W ~ M(t,T).

(2) o and T satisfy the conditions in Table 3.

(8) If n € N and (V,W) € o (n), then 7(t) is a primitive n-th root of
1.

Proof. Similar to the proof of Proposition A.19. ([

As before, let G be a group, V,W € gyD with [supp V| = 2 and
lsuppW| = 1, s € suppV, t € suppW, € € G with s¢ = {s,es}, 0 a
character of G®, and 7 a character of G. Assume that V ~ M(s,o) and
W ~ M(t,7). Then € # 1.

Proposition A.21. Assume that o(t)7(s) # 1. Then (adV)™(W) and
(ad W)™(V') are absolutely simple or zero for all m € N if and only if the
following hold.
(1) (62) =1, 0(s)=-1, or
o(e22)7(s?) =1, o(s) = —1, o(e?) # 1, or
0(22) (stT(s)—l o(e?) #1, or

)
o(e?) = o(st)1(s) = 1, (3), (s) = 0.
(2) (n+ 1)1 —o(t)r (st”)) =0 for some n > 1.

Moreover, the four possibilities in (1) are mutually exclusive.
Proof. This follows from Lemmas A.14, A.15, A.16, A.2. O

Proposition A.21 leads to a characterization of those pairs (V, W) which
have a finite Weyl groupoid. Before obtaining this characterization, we need
to conclude some technicalities. For the definitions of 7, 74, and o, we refer
to Lemmas A.15, A.16, and A.2, respectively.

Lemma A.22.
(1) Assume that o(t)7(s) # 1, o(€?) = 1, and that o(s) = —1. Then
Ri(V,W) ~ (M(s7%,0%), M(es*t, 72)) and

o*(sThH = —1, o* (e =1,
o*(es’t)ma(s™h) = ot 1(s7h), mo(es’t) = o (t?)7(st).

(2) Assume that o(e*t?)7 (s>
Ri(V,W) ~ (M(s7% 0%

() = ©.
o*(es’t)mo(s7Y) = o (t)7(s), 7'2(68 t) = T7(t).

(3) Assume that o(e2s?) =1, o(st)7(s) = 1, and that o(e?) # 1. Then
Ri(V,W) ~ (M (st 0%), M(es*t, 72)) and
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(4) Assume that o(t)7(s) # 1, a( ) =1, o(st)7(s) = 1, and (3)o(s) = 0.
)

Then Ri(V,W) =~ (M(s71,0%), M(e?s*,74)) and
o (71) = o), () =1,
U*(6254t)7'4( ) o(t)T(s), T4 (€ s4t) = 7(t).

(
(5) Let n € N. Assume that o(t)7(st") = 1 and that 7(t*) # 1 for all
1<k<n. Then Ry(V,W) ~ (M(st",0,), M(t~1,7%)), and

on(st™) = o(s), on(e) = o(e),
on(t™) T (st") = o (t)7(s), Tt = T(t).
(6) Assume that (o(t)7(s))? # 1 and that 7(t) = —1. Then Ro(V,W) ~
(M(st,o1), M(t~1,7%)), and
o1(st) = —oa(st)7(s), o1(€) = a(€?),
o1(tHr*(st) = ot 7 (s7Y), ) = — 1.

Proof. The claims follow from Lemmas A.15, A.16, and A.2. For example,
in the first three cases one obtains that X;/’W £ 0, X;/’W =0, and

o*(sh) =0o(s), o (e7?) =a(),
o*(es’t)mo(s™H) = o(e 25 H (s,
mo(es’t) = o(2s4?) 7 (s%t).
The additional assumptions then imply the formulas. O

Remark A.23. From Lemmas A.14 and A.22 we obtain the Cartan matrix
entries and reflections of the pairs in the classes p& for 0 < n < 8. We
collect these data in Table 4.

TABLE 4. Reflections of pairs (V,W) € p,.

VW) | ay™ | afi™) | Ry (VW) | Ro(V, W)
o5 0 0 pF of
of | -2 | -1 pf of
e | -2 | -1 s of
f | -2 | -2 ps 0§
of | -4 | -1 o of
pf | -2 | —1 p§ of
s | -2 | -1 0§ of
pf | -2 | 1 pf o
s | -2 | -1 g 0§
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Corollary A.24. The following are equivalent.

(1) The pair (V,W) admits all reflections and W(V, W) is finite.
(2) (V,W) € of for some 0 <i < 8.

If (V,W) € ¢f, then (V,W) is standard of type Ay x Ay. If (V,W) € of
with i € {1,5,6,7,8}, then (V,W) is standard of type Co. If (V,W) € o

with 2 <1i <4, then Arf(v’W) can be obtained from [29, Lemma 8.5].

Proof. (2)=(1) Since (V,W) € of for some 0 < i < 8, the pair (V, W) ad-
mits all reflections by Remark A.23. Moreover, the Weyl groupoid W(V, W)
is finite since the set of roots of (V, W) is finite.

(1)=(2) Assume that (V, W) admits all reflections and that W(V, W) is
finite. Then (ad V)™(W) and (ad W)™ (V) are absolutely simple or zero
for all m > 1 by Theorem 1.4. Lemmas A.15, A.16, A.2 imply that all
reflections of (V, W) are pairs (V', W’) of absolutely simple Yetter-Drinfeld
modules, such that there exist s',¢ € G, t' € Z(G), and characters o’ of
G and 7/ of G with € # 1, ¢ = {5/, €'s'}, V ~ M(s',0'), W ~ M(t', 7).
By Theorem 4.2, there exists an object (V/, W') of W(V, W) with a Cartan
matrix of finite type. By Remark A.23, the reflections R; and Rs induce
permutations of the classes pZG with 0 < ¢ < 8. Hence it suffices to show
that (V,W) € plG for some 0 < i < 8 if the Cartan matrix AV'W) is of finite
type.

Assume that AV'W) is of finite type different from A; x A;. Then

o(t)T(s) # 1, and we obtain that agg’w) < —2 by Lemma A.15. Further,
ag‘Q/’W) € {—2,—4} by Lemma A.16. Hence a(g’w) = —2 and ag‘l/’w) = —1.
Then
o) =1, o(s)=-1
or
o(@tHr(s?) =1, o(s)=—-1, o(e?)#1
or

0(5252) =1, o(st)r(s) =1, 0(62) £1
by Lemma A.16, and
(r(t) + 1)(1 = a(t)7(st)) = 0

by Lemma A.2. By the same lemmas, Ry (V, W) ~ (M (s~1,0*), M (es*t, 2))
and Ry(V,W) ~ (M (st,o1), M(t~1,7%)).

If o(e?) # 1, then (V,W) € g; for some 5 < i < 8. So assume that
o(e?) =1 and o(s) = —1.

If o(t)7(st) = 1, then (V,W) € pf. Assume now that 7(t) = —1 and
(0(t)7(s))? # 1. Then Lemma A.22(6) for (V, W) and Proposition A.21 for
Ro(V, W) implies that (3)01(315) = (3)0(1&)7—(5) = 0, since o1(st) = o(t)7(s) #
—1. Then (V,W) € §. This completes the proof. O
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APPENDIX B. RANK TWO CLASSIFICATION

In this appendix we collect the main results of [29, 30, 28]. The results
are presented in the terminology of this paper. Many of the examples will be
described using Definition 2.2. However, to include all the Nichols algebras
found in [29, 30, 28], one needs to add some additional diagrams.

B.1. We first describe the examples related to the group I's of [28, §1.1].
For the Nichols algebras of dimension 64 one has the following skeleton:

In characteristic three, the pair of Yetter-Drinfeld modules which yields
Nichols algebras of dimension 1296 has the following skeleton:

t==3ec charK =3

B.2. Let us review the examples related to the group I's, see [28, §1.4]. For
the Nichols algebras of dimension 2304 related to the group I's, [28, Example
1.11, §1.4], one has the following diagrams related by reflections:

o===1 t==>c-

We remark that the diagram on the left is not a skeleton in the sense of
Definition 2.2 because the simple Yetter-Drinfeld module M (s, 07) is con-
structed with a two-dimensional representation oy. This situation is de-
scribed with a double circle at the left vertex of the diagram.

The examples of dimensions 10368, 5184 or 1152 can be described with
the following skeleton:

PE_ . (3)p =0

We remark that in this case, an extra assumption on the value of p = o1(s1)
is needed.

The examples of dimension 2239488 related to the group I's of [28, Ex-
ample 1.9, §1.4] can be described with the following diagrams related by
reflections:

1 1

:24z3za — ===

The diagram on the left is not a skeleton in the sense of Definition 2.2 since

it has a double arrow. This double arrow means that the Cartan matrix of

the pair satisfies a%wl’MQ) = agjl\/ll’MQ) = —2.
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B.3. Nichols algebras related to the group T have dimension 1259712 over
fields of characteristic two and 80621568 otherwise, see [28, §1.3]. In this

case one has the following skeleton:
pp !
= 3)—p=0

The dots on the right vertex describe the structure of the support of M (s2, 09)
which is isomorphic (as a quandle) to the tetrahedron quandle. Further, the
assumption (3)_, = 0, where p = o1(s1), is needed.

B.4. Nichols algebras related to the group I'y have dimension 65536 over
fields of characteristic two and 262144 otherwise, see [28, §1.2]. In this case
one has the following skeleton:

The four dots in the right vertex mean that the support of May(se,09) is
isomorphic (as a quandle) to the dihedral quandle Dy.

B.5. With these diagrams, the classification of finite-dimensional Nichols
algebras admiting a finite root system of rank two, [28, Theorem 2.1], can
be reformulated as follows.

Theorem. Let G be a non-abelian group and M in 526" Assume that M is
braid-indecomposable. The following are equivalent:

(1) M has a skeleton appearing in (B.1)—(B.4).
(2) B(M) is finite-dimensional.
(8) M admits all reflections and W(M) is finite.
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