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ABSTRACT. An asteroidal triple is a stable set of three vertices such that each
pair is connected by a path avoiding the neighborhood of the third vertex.
Asteroidal triples play a central role in a classical characterization of interval
graphs, which are the intersection graphs of a family of intervals on the real
line, by Lekkerkerker and Boland and in a characterization of directed path
graphs, which are the intersection graphs of directed paths in a directed tree,
by Cameron, Hodng and Lévéque. For this characterization, they introduce
the notion of a special connection. Two non-adjacent vertices are linked by
a special connection if either they have a common neighbor or they are the
endpoints of two vertex-disjoint chordless paths satisfying certain technical
conditions. They proved that if a pair of non adjacent vertices are linked by
a special connection then in any directed path model T', the subpaths of T'
corresponding to the vertices forming the special connection have to overlap
and they force T' to be completely directed in one direction between these
vertices.

On the other hand, special connections along with the concept of asteroidal
quadruple play an important role to study rooted directed path graphs.

An asteroidal quadruple is a stable set of four vertices such that any three
of them is an asteroidal triple.

A rooted directed path graph is the intersection graphs of directed paths
in a rooted directed tree. It is easy to see that a rooted directed path graph
contains no asteroidal quadruples linked by special connections [1].

A strong asteroidal is a stable set of n vertices {a1,..,an} (n > 2) of G,
such that G\ N[a;] is a connected graph for ¢ = 1,..,n. Minimal forbidden
induced subgraphs for interval graphs, for directed path graphs and for path
graphs(that are the intersection graphs of subpaths in a tree) have a strong
asteroidal.

In this work, we define other special connections, these special connections
along with the defined by Cameron, Hodng and Lévéque are nine in total, and
we prove that every one force T' to be completely directed in one direction
between these vertices. Therefore, if a1, ag, a3 is a strong asteroidal and there
is a special connection between a; and ag then none directed path model can
be rooted on a maximal clique that contains az. Moreover, we prove that the
converse is true in case of leafage three, i.e the model can not be rooted on
a maximal clique that contains a3 then one of the nine special connection is
linked a1 and az. As byproduct of our result, we build new forbidden induced
subgraphs for rooted directed path graphs.

1. INTRODUCTION

A graph is chordal if it contains no cycle of length at least four as an induced
subgraph. A classical result [4] states that a graph is chordal if and only if it is the

(vertex) intersection graph of a family of subtrees of a tree.

Natural subclass of chordal graphs are path graphs, directed path graphs, rooted
directed path graphs and interval graphs.
intersection graph of a family of subpaths of a tree. A graph is a directed path
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A graph is a path graph if it is the
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graph if it is the intersection graph of a family of directed subpaths of a directed
tree. A graph is a rooted path graph if it is the intersection graph of a family
of directed subpaths of a rooted tree. A graph is an interval graph if it is the
intersection graph of a family of subpaths of a path.

By definition we have the following inclusions between the different considered
classes (and these inclusions are strict): interval C rooted directed path C directed
path C path C chordal.

Lekkerkerler and Boland [5] proved that a chordal graph is an interval graph if
and only if it contains no asteroidal triple. As byproduct, they found a characteri-
zation of interval graphs by forbidden induced subgraphs.

Panda [8] found a characterization of directed path graph by forbidden induced
subgraphs, and then Cameron, Hodng and Lévéque [2] gave a characterization of
directed path graph in terms of forbidden asteroids. For this purpose, they intro-
duce the concept of a special connection. Two non adjacent vertices are linked by
a special connection if they have a common neighbor or they are the endpoints
of two vertex-disjoint paths of length three satisfying certain technical conditions.
Special connections are interesting when considering directed path graphs because
if a and b, two non adjacent vertices of a directed path graph, are linked by a special
connection, then in every directed path model, the subpaths of T corresponding to
the vertices forming the special connection have to overlap and they force T to be
completely directed in one direction between a and b.

Clearly, rooted directed path graphs contain no asteroidal quadruples linked by
special connections. The converse was conjectured by Cameron, Hoang and Lévéque
but in this original form, the conjecture is incomplete since they could not describe
all the connections between two non adjacent vertices that force to any tree to be
completely directed in one direction between these vertices.

In this article, we define some special connections, which along with the defines
in [1] are nine in total, and we prove that every one force T' to be completely
directed in one direction between these vertices. Therefore, if a1, aq, a3 is a strong
asteroidal and there is a special connection between a; and as then none directed
path model can be rooted on a maximal clique that contains as. Furthermore, we
prove that the converse is true in case of leafage three, i.e the model can not be
rooted on a maximal clique that contains a3 then one of the nine special connection
is linked a; and as. As byproduct of our result, we build new forbidden induced
subgraphs for rooted directed path graphs.

The paper is organized as follows: in Section 2, we give some definitions and
background. In Section 3, we define special connections and prove that if a pair of
non adjacent vertices are linked by a special connection then in any directed path
model T, the subpaths of T corresponding to the vertices forming the special con-
nection have to overlap and they force T to be completely directed in one direction
between these vertices. In section 4, we give some properties about model that
can not be rooted on bold maximal clique. Finally, in Section 5, we proved that
G is a directed path graph with leafage three, and it has a strong asteroidal triple
a1, as,as such that there is a special connection between a; and as if and only if
none directed path model can be rooted on the maximal clique that contains as.
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2. DEFINITIONS AND BACKGROUND

If G is a graph and V/ C V(G), then G \ V' denotes the subgraph of G induced
by V(G)\V'. If E' C E(G), then G — E’ denotes the subgraph of G induced by
E(G)\ E'. If G,G are two graphs, then G + G’ denotes the graph whose vertices
are V(G) U V(G’) and edges are E(G) U E(G’). Note that if T,T" are two trees
such that |[V(T) NV (T")| =0, then T+ T is a forest.

A clique in a graph G is a set of pairwise adjacent vertices. Let C(G) be the set
of all mazimal cliques of G.

The neighborhood of a vertex z is the set N(z) of vertices adjacent to x and the
closed neighborhood of x is the set N[z] = {x} U N(x). A vertex is simplicial if its
closed neighborhood is a maximal clique. Two adjacent vertices x and y are twins
if N[z] = N[y].

A strong asteroidal of a graph G is a stable set {aq, .., an}(n > 2) of vertices of
G such that G \ N|a;] is a connected graph for i = 1,..,n.

A clique tree T of a graph G is a tree whose vertices are the elements of C(G)
and such that for each vertex x of G, those elements of C(G) that contain x induce
a subtree of 7', which we will denote by T,. Note that G is the intersection graph
of the subtrees (T%)cv (). In this paper, whenever we talk about the intersection
of subgraphs of a graph we mean that the vertex sets of the subgraphs intersect.

Given two non adjacent vertices a,b of GG, and a clique tree T of G, it is defined
T(a,b) to be the subtree of T' of minimum size that contains at least a vertex of T,
and Tb.

Gavril [4] proved that a graph is chordal if and only if it has a clique tree. Clique
trees are called models of the graph.

Observe that if G has a strong asteroidal as,..,a, then every clique tree has
Nla;] as a leaf for ¢ = 1,..,n. So a; is a simplicial vertex of G for i = 1,..,n.

In [7], Monma and Wei introduced the notation UV, DV and RDV to refer to
the classes of path graphs, directed path graphs and rooted directed path graphs
respectively. They also proved the following clique tree characterizations for these
classes. A graph is a path graph or a UV graph if it admits a UV-model, i.e. a clique
tree T such that T, is a subpath of T for every « € V(G). A graph is a directed path
graph or a DV graph if it admits a DV-model, i.e a clique tree T' whose edges can
be directed such that Ty, is a directed subpath of T for every x € V(G). A graph is
a rooted path graph or an RDV graph, if it admits an RDV-model, i.e a clique tree
T that can be rooted and whose edges are directed from the root toward the leaves
such that T, is a directed subpath of T for every z € V(G).

It has been proved in [3] that if G is a DV-graph, then any UV-model of G can
be directed to obtain a DV-model of G. We say that a DV-model T of a DV graph
G can be rooted if T' can be rooted on a vertex such that it becomes an RDV-model
of G.

Let T be a clique tree. We often use capital letters to denotes the vertices of a
clique tree as this vertices correspond to maximal cliques of G. In order to simplify
the notation, we often write X € T instead of X € V(T), and e € T instead of
e € E(T). If T' is a subtree of T, then G7+ denotes the subgraph of G that is
induced by the vertices of Uxcy (1) X.

Let T be a tree. For V! C V(T'), let T[V'] be the minimal subtree of T' containing
V’. Then for X,Y € V(T), T[X,Y] is the subpath of T between X and Y. Let
TX,Y)=TX,)Y]\Y, T(X,Y]=T[X, Y]\ X and T(X,Y) =T[X, Y]\ {X,Y}.
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Note that some of these paths may be empty or reduced to a single vertex when
X and Y are equal or adjacent. If X € V(T') and e € E(T) with e = AB and
A € T[X,B], then let T[X,e] = T[X, B|, T[X,e) = T[X,A], T(X,e] = T(X, B]
and T(X,e) = T(X, A]. Given a vertex X € V(T'(Y,Z)), we say that there is a
vertez crossing X in T[Y, Z] if X’N X" # () where X’ and X" are the two neighbors
of X in T[Y, Z].

Let T be a tree, we denote by {n(T) the number of leaves of T. The leafage
of a chordal graph G is a minimum integer ¢ such that G' admits a model T with
In(T) = £. Note that if G has a strong asteroidal ay, ..., a,, then I(G) = n.

In a clique tree T, the label of an edge AB of T is defined as lab(AB) = AN B.
We will say that e, e’ in the same clique tree T are twin edges if lab(e) = lab(e’)

Let T be a DV-model of G, let @ be a vertex of T, and let e be an edge of T
Let T7 and T5 be the two connected components of T'— e where @ is in T;. We say
that vertices in lab(e) have the same end with respect to @ if there exists a vertex
Q' in T, possibly Q' = @, such that for each = € lab(e), one endpoint of T}, is @’

We say that X € V(T') dominates e € E(T) if lab(e) C X. On the other hand,
an edge e satisfying a given property P is mazimally farthest from a vertex C' if
there is no edge €', different from e, satisfying this property and such that e is
between C and ¢’

3. SPECIAL CONNECTIONS

Let a and b be two non adjacent vertices of a graph G. We will define nine type
of connection between these vertices. Observe that Type 1, 2 and 3 were already
defined in [2]

e Type 1: there exists a path P =a,z,b in G.

e Type 2: there exist two paths P = a,y1,¥y2,b and Q = a,z1,22,b in G
such that {x1,y1,92} and {1, 22,92} are cliques of G.

e Type 3: there exist two paths P = a,y1,¥y2,b, @ = a,z1,22,b, and two
vertices s1,s2 in G such that {1,292, y1,y2} {T1,y1, y2,s1} and {z1,za,
Y2, S2} are cliques of G. In this case it is said that {x1,x9, y1,y2, s1, 52}
induces an antenna.

In the follows we define new special connections.

e Type 4: there exist two paths P = a,y1,y2,b, Q = a,x1,22,b, and ver-
tices in G: t,u, z; for i € {1,..,0} such that {x1,z2, y1,¥2, 20}, {Z1,91, 2,
Zit1ti=1,..,0—1, Y1, 21, u} and {x1, 2, y1,t} are cliques of G. Figure 1.

e Type 5: there exist two paths P = a,y1,y2,b, @ = a,z1,22,b, and ver-
tices in G: s1,s,t, t; for i € {1,..,p}, u, 2 for i € {1,..,0} such that
{z1, 22,91, 92,20, 51}, {21, 22,91, Y2,%0, tp}, {71, 22,91, 20:tp, 5}, {21,391, 2,
Zig1tim1,.,0—15 1YL, 21,0}, {21, Y1,%0, ti, tig1 Jim1,...p—1 and {x1,y1,t1,t} are
cliques of G. Figure 2.

e Type 6: there exist two paths P = a,y1,y2,0, Q = a,x1,z2,b, and vertices
inG: t,t; fori € {1,..,p}, u, z; fori € {1, .., 0} such that {z1, z2, y1, Y2, 20 },
{Z1,22, Y1, 20, tp}, {21, Y1, 2is Zit1 Fim1,.0-15 {Z1,U1, Zosti, tig1tiz1,. p—1,
{y1, 2z1,u} and {x1,y1, t1,t} are cliques of G. Figure 3.

e Type 7: there exist two paths P = a,y1,y2,b, Q = a,x1,22,b, and ver-
tices in G: s, t, t; for i € {1,..,p}, u,v’, z for ¢ € {1,..,0}, 2} for i €
{17 ,q} such that {xlax% Y1, Y2, Zo,tpa Z!]}v {$17x23 Y1, %o, tpv S}’ {y17 Zlau}a
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FIGURE 1. Type 4 and an RDV-model. In the graph, we leave out
edges of cliques of size greater or equal than four.
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FIGURE 2. Type 5 and an RDV-model. In the graph, we leave out
edges of cliques of size greater or equal than four.

{xlayla Zmzz/'azz/‘Jrlatp}i:l,..,q—la {wla Y1520, Zi,u/}a {xla Y1, Zi,zi+l}i:1,.,,o—la
{z1,y1,t1,t} and {x1,y1,%0, ti, tig1}i=1,.. p—1 are cliques of G. Figure 4.

e Type 8: there exist two paths P = a, y1, 42,0, Q = a, 1, T2,b, and vertices
in G: t,t', t; for i € {1,..,p}, t, for i € {1,..,7}, u,v’, z; for i € {1,..,0}, 2!
fori € {1,..,q} such that {z1, 2, Y1, Y2, 20, tp, 20 }5 {71, T2, Y1, 20, 2, tps L.},
{71,915 2o, tp, 1158}, {21, Y1, 205 tis ti1 izt p—15 {Y1, 21,0}, {21, 91, 20, 2,
tpotiy tip1 bim1,r—1, 121,41, 20,21, W'}, {T1, 91, 20 Zig1 Fim1,.0-1, {21,915
t1,t}, and {21, Y1, Zostp, 2i, Zi41 bi=1,..,q—1 are cliques of G. Figure 5.

e Type 9: there exist two paths P = a,y1,¥2,b, @ = a,x1,x2,b, and
vertices in G: s,s1, t,t', t; for ¢ € {1,..,p}, ¢, for i € {1,..,r}, u, v,
zi for i € {1,..,0}, # for i € {1,..,q} such that {z1,z2, y1,%2, %o, tp,
Zogytry S1}, {T1, 2, Y1 2oy 25 ps Uy S}, {71,915 20, Ty, T, U}, {71, 91, 205ty
tiv1}i=1,. p—1, {T1, Y1, Zos 25 pstiy tivtti=1, r—1, 171,91, t1,t}, {71, 91,
Ziy Zig1 Fi=1,..,0—1, Y1, 21, U}, {21, Y1, 20,21, ¢'} and {@1, Y1, 2o, tp, 25, 241}
i=1,..,q—1 are cliques of G. Figure 6.



M. GUTIERREZ, S. B. TONDATO

X1 Y1221

[axqy; F{Xﬂ/ﬁt Hxvilbz, -t ¥125%0Y, Xo¥b

T

FIGURE 3. Type 6 and an RDV-model. In the graph, we leave out
edges of cliques of size greater or equal than four.
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FIGURE 4. Type 7 and an RDV-model. In the graph, we leave out
edges of cliques of size greater or equal than four.
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FIGURE 5. Type 8 and an RDV-model. In the graph, we leave out
edges of cliques of size greater or equal than four.



ON ROOTED DIRECTED PATH GRAPHS 7

X4 y12730

XY 2 7122

“”1 % Hn it H"WHH‘ZZO \ '\xwﬂpZd’H HMH'pZoHQZ'q

—fanpatizes  FHanbrtae oot

Hep |

FIGURE 6. Type 9 and an RDV-model. In the graph, we leave out
edges of cliques of size greater or equal than four.

Theorem 1. Let G be a DV graph, and let a, b be two non adjacent vertices of G
that are linked by Type i with 1 < ¢ < 9. Then, for every T, DV-model of G, the
subpath T'(a,b) is a directed path.

Proof. Let @), be a maximal clique that contains a, and @, be a maximal clique
that contains b.

(1) Types 1,2,3. In [2] was proved that if a and b are linked by Type i with

(2)

1 € {1,2,3} then T[Q,, Q) is a directed path of T.
We can assume that there is a special connection of Type 4,5,6,7,8 or 9.

The edge of T[Q.,Qp] incidents to @, must have in its label S at least

one vertex of {x1,z2} ({y1,y2}), otherwise a and b are in two different
components of G \ S contradicting that a,x1,x2,b (a,y1,y2,b) is a path.
Analogously, the edge incidents to (), must have in its label at least one
vertex of {y1,y2} ({z1,22}). Vertex a is not adjacent to x3, and b is not
adjacent to y1 then QuN{z1, 22, 91,y2} = {71, 91} and Qo {z1, T2, y1,92} =

{2, 92}
(a) Suppose that the connections is of Type 4.

Let Q',Q,, @ and @Q; be maximal cliques of G such that Q" O {z1, xa,
y1,t}, Qo D {x1,22,91,92, 20}, @ D {y1,21,u}, and Qi D {z1,y1,2;,
zig1pfori=1,..,0—1.

We will prove that Q,,Q’, Q,, @, appear in this order in T

As a is not adjacent to o, b is not adjacent to 1 and x1, xo are vertices
in @, NQ’, then we have Q, ¢ T[Q,, Q'] and Qp ¢ T[Q,,Q’]. Observe
that 1 and y; are vertices in (Q' N Q.) — (Qo N @), z2 and yo are
in (Q,NQy) —(Q'NQ,), x2 € Q' N Qp but neither z; or y; or yo
are in Q' N Qp. Thus Q,, Q’, Q,, Qy appear in this order in T'. Since
1 € QaNQ, and 2 € Q'NQy it is follows that T[Q,, Q) is a directed
path of T.

On the other hand Q; ¢ T[Q’, Q,] for i # o since x5 is not adjacent to
z; for i # 0. As x1, y1 and z; are vertices in Q;NQ;41 fori =1,..,0—1,
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x1 and y; are in @Q; N Q,, and z1,y; are vertices in Q1 N @, then
Qu,Q',Q0,Q0_1,..,Q1,Q appear in this order in T. Vertex b is not
adjacent 10 1. 50 @ ¢ TQu, Q.
Suppose that the connection is of Type 5.
Let Qo, @), @), Q:,Q,Q; and Q' be maximal cliques of G such that
Qo D {Z1, 2,91, Y2:%0, 51}, Qp D {1, %2,y1,Y2,20, tp}, Q) D {21,722,
Y1, Zostp, s} Qi D {z1, 91, 2 zipa } for i = 1,..,0 = 1, Q D {y1, 21, u},
Q; ) {xlaylvzo7tiati+1} for i = 17 Y S ]-7 and QI ) {$17y17t17t}~
We will prove that Qq,Q’, Q1, .., Q),, Q,, Qo, Qp appear in this order
inT.
Vertex s1 is not adjacent to ¢,, and s is not adjacent to ys then Q, ¢
T1Q,, Q) and @, ¢ T[Q7, Qo] respectively. Observe that 1, w2, y1,
z, and t, are vertices in Q, N @), but yo ¢ Q, N Q). Also z1, xa,
Y1, y2 and z, are in Q, N Q, but t, ¢ Q, N Q,. Thus Q,,Q;,Q,
appear in this order in 7. On the other hand, Q; ¢ T[Q,,Q,] for
i # p since t; is not adjacent to xa. As {1,y1,%,t:} C Q;NQjy,
and {z1,v1,%} C QN Q,, but t; ¢ Q, for i # p it is follows that
1 Qs @, Qo appear in this order in 7. Note that Q" ¢ T[Q1, Q]
since z, is not adjacent to t; {z1,y1,t1} C Q' N Q}, x1 and y; are
in Q"'NQ, but t1 ¢ Q,, s0 Q',Q1,..,Q,,Q,,Q, appear in this order
in T. Since a is not adjacent to t; for ¢ = 1,..,p, and is also not
adjacent to xzo then Q, ¢ T[Q',Q,]. Vertex b is not adjacent to ¢;
for i = 1,..,p and is also not adjacent to y1, so Qp ¢ T[Q’,Q,]. As
1,91 € (QaNQ') — (QoNQyp) and 2,92 € (Qo N Qp) — (Ra NQ’),
it is follows that Qq,Q’, Q1, .., @}, @, Qo, Qp appear in this order in
T. Since 1 € Q, N Q, and z2 € Q' N Qp then T[Q,, Qp] is a directed
path of T
Using the same argument of Case 2a, Q,,Q’, Q, .., @), Qo, Qo—1, .-
Q1, Q appear in this order in T and also Qp ¢ T[Qa, Q).
Suppose that the connection is of Types 6 or 7.
In case that the connection is of Type 6, let Q,, @}, Qi, @, Q; and Q'
be maximal cliques of G such that: Qo D {21,22,41,92, 2}, @, D
{1,22,Y1, 20, tp}, Qi D {z1,91,2i, 241} for i = 1,..,0—1, Q D
{yl,Zl,U}, Q; D {$1,y172’o,ti,ti+1} for i = 1,..,p — 1, and Q/ >
{$1,y1,t1,t}.
In case that the connection is of Type 7, let Q,, Q;,, @7, Q", Q;, Q; and
Q' be maximal cliques of G such that: Q, D {z1,%2, Y1, Y2, 20stp, 24}
Qp D {1, 72, Y1, 20, tp, s}, QF D {x1, 51, 20, 20,211, tp} fori =1,..,q—
1, Q" D {x1,y1,20, 21,0}, Q" D {x1,y1,t1,t}, Q O {y1,21,u}, Qi O
{z1,91, zi,zip1} for i = 1,..,0 — 1, and @} D {z1,y1,20,ti, tiy1} for
1=1,..,p—1.
In both cases, we will prove that Q.,Q’, Q1, .., @}, Qo, @y appear in
this order in T
We know that {x1, 22,1, 20, tp} C QoNQ, if the connection is of Type
7, and {z1,72,Y1, 20} C Qo N Q) if the connection is of Type 6. But
in both cases we have y2 ¢ Q,N Q;. Vertex t; is not adjacent to xo for
i # p then Q} ¢ T[Q,,Q,]. Observe that {x1,y1,2,,t:} C Q; N Qi 4,
{z1,91, 20} € QiNQ, but t; ¢ Q, for i # p. Thus Q, .., Q},, Q, appear
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in this order in T. Note that Q' ¢ T[Q, Q,] since z, is not adjacent
to t. Vertices x1, y1 and t; are in @' N Q}, =1 and y; are Q' N Q, but
t1 ¢ Qo, s0 Q',Q1,..,Q,, Qo appear in this order in T. Vertex a is
not adjacent to t; for 1 =1,..,p, and is also not adjacent to xo then
Q. ¢ T|Q’',Q,). Since b is not adjacent to t; for i = 1,..,p and b is not
adjacent to y1 so Qp ¢ T[Q', Qo]. Asx1,9y1 € (QuNQ")—(Q,NQy) and
z2,92 € (Qo N Qp) — (Qa NQ'), then Qq, Q', Q1 .., @), Qo, Qp appear
in this order in T'. Since z1 € Q,NQ, and x2 € Q' NQy it follows that
T[Qa, Q) is a directed path of T.

On the other hand, in case that the connection is of Type 6, using the
same argument of Case 2a, we have Q,,Q’,Q}, ..., Qo, Qo—1,.,Q1,Q
appear in this order in 7. And as b is not adjacent to y; then Qp ¢
T(Qu. Q]

In case that the connection is of Type 7, as z; is not adjacent to z; for
jed{l,..,o—1}andi € {1,..., ¢} it follows that Q7’, QY ¢ T'Q;, Qj+1].
Also Q7 ¢ T[Q}, Q,) since 2, is not adjacent to t; for i € {1, .. 1}
and j € {1,..,p—1}. Observe that {xhyl,zo,thz} c QY ﬂQL_H

i # ¢, {T1,91, %0, tp} C QY NQo, {x1,y1} C QuNQY, and {z1,y1,2.} C
Q/NQo—1 then Qu, Q1, .., Qo, Q7 -, QF, Qo—1, .., Q appear in this order
in T, and also @y ¢ T[Qq, Q).

Suppose that the connection is of Type 8 or 9.

In case that the connection is of Type 8, let @, Qw 5QY, Q)
Q",Q,Q; and Q7 be maximal cliques of G such that Q, D {xl, xg, Y1,
Y2, Zos tps 29}, Qp D AT1, %2, Y1, %0, 25 tp, .}, QU {1, Y1, 20, tp, 1, '},
Q; D {x1, Y1, 2o tistigr} for i =1,..,p =1, QY D {1, 41, 20, 25, tp, 1,
t;+1} for i = 17"771 - 1, QI ) {xlvylatlat}v Q” ) {xluyla 207237“’/}7
Q D {y1,z1,u}, Qi D {x1,y1,2i,zi41} for i = 1,..,0—1, and Q} D
{Z1,91, %0, tp, 2, 2j f for i =1,..,q — 1.

In case that the connection is of Type 9, let Q,, @}, Q7. QLQ", QY Q'
Qi,Q and Q” be maximal cliques of G such that Q, D {1, z2, yl,yg,
Zostp, 2 q, try s1}, Qp D {T1,%2, Y1, 20, 2gitp, Ly, 8}, Q" D {x1,y1,
Zoy bp, th, '}, Q) D {xl,yl, Zoy tistiv1} fori=1,...,p—1, Q" D {z1, 11,
zo,z{,u’}, Q" D {x1,y1, 20, 25 tp, t, iy} for i = 1,0 =1, Q" D
{z1, 91, t1,t}, Qs D {w1,y1, zi,zia )} fori=1,.,0—1, Q D {y1, 21, u},
and QF D {x1,y1, %o, tp, 2}, zj4 y fori=1,..,¢ — 1.

In both cases, we will prove that Q., Q", Q1, .., @, L™, QY. ..Q" |,
Q> Qo, Qp appear in this order in T'.

We know that {z1,%2,y1, 20, p, 25} C Qo N Q) but yo & Qo N Q. As
t! is not adjacent to x2 for i # r, so QY ¢ T[QO, Q-

Observe that {x1,y1, 20,2, t;} C Q" N QYL {xl,yl,zo,zq,tp,t'r} C
QL1 NQy, but t. & Qo, {T1,Y1, 20, 20, tp} C QY NQ, but ¢ ¢ Q, for
S Then 7@, Q) Q, appear in this order in T'.

On the other hand, Q“’ ¢ T[Q1,Q,) since z is not adjacent to t'.
Vertices z1, y1, 20, tp and ¢} are in QN QY x1, y1, 2, and t, are in
Q"NQ, but t}| ¢ QO it is follows that Q™,QY’,...,Q)" |, Q),, Q. appear
in this order in 7.

As t; is not adjacent to t, for i # p—1 then Q) ¢ T[Q",Q,]. Observe
that {z1,91, 20,8} C Q;NQjy 1, {T1,y1,2} C QiNQ, but t; ¢ Q, for
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i # pand {z1,Y1, 20, tp, 11} C Q1 NQ™, {T1,y1,20,1p} C Q1N Qs
and t; ¢ Q,. Thus Q,..,Q, ,Q",QY,.Q!" |, Q). Q. appear in this
order in T
On the other hand, Q' ¢ T[Q},Q,] since z, is not adjacent to t;
{zlayhtl} - Q/ N Qllv {zlayl} C Q/ N Qo but ty ¢ Qoa S0 Qla /17"3
-1, Q" Q.. Q7" 4,Q,,Q, appear in this order in 7. Since a is
not adjacent to ¢; for i = 1,..,p and «a is not adjacent to xo, then Q, ¢
T[Q',Q,]. Vertex b is not adjacent to t; for ¢ = 1,..,p and is also not
adjacent toyr, so Qb ¢ T[Q,7 Qo]' As T1,41 € (QamQ/)f(Qome) and
22,1 € (QuNQ)~(QuNQ), then Qu, @', QY @y, @, QY- Q.
Q;,QO,Qb appear in this order in 7. Since 7 € Q, N Q, and x5 €
Q' N Qyp it is follows that T[Q,, Q) is a directed path of T'.
Using the same argument of Case 2c¢ for Type 7, we have Qq, @, .., Qo,
g @1, Q", Qo 1,..,Q appear in this order in T, and also Q, ¢
Q.. QI
O

We will say that there is a special connection between two non adjacent vertices
a and b if

(1) there exists a connection of Type 1 between a and b; or
(2) there exist two induced pathsin G, P = a,y1, .., yn,band Q = a, 21, .., T, b,
such that
(a) PNQ = {a,b}
(b) if {o;, xi41, Y5,y +1} isacliquefori € {1,..,m—1} and j € {1,..,n—1}
then there is a connection of Type k € {3,4,5,6,7,8,9} between x;_;
and yj4o for i # 1,5 # n — 1, or between a and yj4o for j #n — 1,
or between x;_; and b for 7 # 1, or between a and b, or between y;_;
and x;49 for j # 1,4 % m — 1, or between a and ;45 for i #m — 1 or
between y;_1 and b for j # 1.
(c) if {zs, zi41,Yj,yj+1} is not a clique then there is a special connection
of Type 2 between x;_1 and y;4o for ¢ # 1,5 # n — 1, or between a
and y;j42 for j # n — 1, or between x;_; and b for i # 1, or between
a and b, or between y;_1 and x;4o for j # 1,4 # m — 1, or between a
and x;49 for ¢ # m — 1, or between y;_; and b for j # 1.

4. PROPERTIES

If G is a DV graph that has a strong asteroidal triple a1, as, as, then G \ N|a;]
is a connected graph for ¢ = 1,2, 3. Hence for every T, a DV-model of G, Nla;] for
i = 1,2,3 must be a leaf of T. Let C; be the closest vertex to N[a;] such that it
has degree at least three, for ¢ = 1,2,3. If |V(T[NJa;], Ci])| > 2, we will denote by
e; = A; B, the edge in T[N|a;], C;], with A; the neighbor of Na;] and B; # NJa,].
If there exists an edge dominated by e; then we choose e} to maximally farthest
from e;. We denote this edge by e, = A, B! with B, € T[A}, C,].

We will say that a DV graph G is minimally non rooted on a mazimal clique H
if none DV-model T of G can be rooted on H but for every z € V(G)\ H, G\ =
has a DV-model that can be rooted on H.

In the follows, if 7" has three leaves we will denote by C the vertex of degree
exactly three in T
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Lemma 1. Let G be a DV graph such that it has a strong asteroidal triple a1, as, as,
and it is minimal non rooted on N|ag).

(1) Let T be a DV-model of G.

(a)

(b)
()

Then for all e edge in T[Nla;],C;] for i = 1,2, there are at least two
vertices x,y € lab(e) such that T, and T, have different end towards
C;.

There are not twin edges in T[N|a;], C;] fori=1,2,3.

If [V(T[Na;], Cs])| > 2 for i = 1,2 then there is a dominated edge by
e; that is not in T[Nla;], Ci].

(2) If T is a DV-model of G that has three leaves, then T does not have twin
edges one in T[N|a;],C] fori = 1,2, and the other in T[NJas], C].

Proof. (1) (a) Suppose by contradicting that every vertex x in lab(e) has the

same end to C;. Let e = AB € T[Nla;],C;] for i = 1,2 with B €
T[A,C;] and T =T — E(T[N|a;], B]). All vertices of lab(e) are twins
in Gp. Let T” be a DV-model of G7/. Since ai,as,as is a strong
asteroidal triple Nas] and NJa;] for j # ¢,3 are leaves of 7", and
by minimality we have T” can be rooted on Nas]. For = € lab(e),
T! =T"[Z,W]and W € T"[Z,N|as]]. Let T = T"+ZA+T[A, N|a]].
It is easy to check that T is a DV-model of G that can be rooted on
Nlag], a contradiction.

Suppose by contradicting that there are two twin edges in T[N|a,], C;]
for i € {1,2,3}. Let e = AB and ¢’ = A’B’ be twin edges with
A, B, A’, B’ appearing in this order in T[N[a;],C;], and T = T —
E(T[A,B']) + AB’. By minimality, there is 7" a DV-model of Gy~
that can be rooted on Nlag]. Let € = A B’ be an equivalent edge of
AB’ in T". Thus, it is possible to build a DV-model of G from T” by
adding T'(A, B’) as follows: T" — AB + ZT(A’,B)?. Clearly, this
DV-model can be rooted on Nlag], a contradiction.

Suppose by contradiction that e; can not dominate an edge outside
of T[Nla;],Ci]; i.e € € T[Nla;],Ci]. Let T/ = T — T[NJa;], A;). By
the choice of e}, it is clear that A’ is always a leaf in every DV-model
of G7v. By minimality, there is 7" a DV-model of G+ that can be
rooted on Nas]. It is easy to see that T +T[A}, N|a;]] is a DV-model
of G that can be rooted on NJag], a contradiction.

(2) Suppose by contradiction that e and e’ are twin edges, one in T[N][a;], C]
and the other in T[C,Nlag]] for ¢ = 1,2. Let e = AB € T[NJas],C]
and ¢ = A'B’ € T[C, Nag]] with B € T[A,C] and B’ € T[C,A’]. Let

T =

T —{e,e'} + AB' + BA’. It is a DV-model of G. Since T can not

be rooted on Nlas] so there is a vertex crossing by C in T[N[a1], Nas]],
and then B # C. As there is a vertex crossing by C' in T[N|[a;], N[as]] then
there is no vertex crossing by C' in T[Nla,], C] for j # i,3 because G is a
DV graph. Hence T” can be rooted on NJas], a contradiction.

O

Theorem 2. Let G be a DV graph such that it has a strong asteroidal triple
a1, az, a3, and it is minimal non rooted on Nlag]. If T is a DV-model of G that has

three leaves,

two twin edges one in T[Nlay],C] and the other in T[Nlaz],C], then

there is a special connection of Type 1 or Type 2 between a; and as.
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Proof. Since T has twin edges it follows that |V (T[N[a;],C])| > 3 for some ¢ €
{1,2}. If there exists a vertex € N[a1] N Nag] then there is a special connection
of Type 1 between a; and as.

Suppose that there is not a vertex in this condition. By Lemma la, and by the
position of twin edges in T it follows that N[a1]A; can not be a dominated edge of
ey if it exists, and Naz]As can not be a dominated edge of e if it exists.

Let e € T[N[a1],C] and ¢’ € T[C, N[az]] be twin edges such that its distance
is maximum in T. As N[a;]A; is not dominated by e; with {¢,j} = {1,2}, and
by the choice of €}, it is clear that e} € T[e/, A3] and e, € T'le, A1]. But by the
election of e and €’ to maximum distance in T, €} must be ¢’ and e}, must be e.
Then lab(e) = lab(e’) C A1 N As.

On the other hand, by Lemma la there are two vertices z,y € lab(e) such
that T, = T[Iz,Dz], T, = T[ly,Dy|, Iz # Iy, Dx # Dy with Dz = Nlas]
and Iy = N[ay]. By the before exposed, z ¢ Nla;] and y ¢ Nlas]. Also by
Lemma la, there are vertices y; € lab(N]a1]A1) and x1 € lab(N[az]A2) such that
Dy, # Dy = Az and Ix; # Iz = A;. Clearly, 1 ¢ Nai] and y; ¢ N|az]. Observe
that y; ¢ lab(e}) and zq1 ¢ lab(e]). Hence, there is a special connection of Type 2
between a; and ays. More clearly, P = aq,y,x1,a2 and Q = ay,y1,,as are paths
in G, and {z,y,11}, {y,x, 1} are cliques of G. O

Corollary 1. Let G be a DV graph such that it has a strong asteroidal triple
a1, as,a3, and it is minimal non rooted on Nlas]. If there exists T a DV-model
of G with three leaves such that €] is in T[N[a;],C] {i,7} = {1,2} then there is a
special connection of Type 1 or Type 2 between a1 and as.

Proof. If €} = Nazg]As or ¢ = N]a1]A;1, by Lemma la there is € N[ai] N Nlaz].
Hence, there is a special connection of Type 1 between a; and as. Otherwise, as
e} € T[A2,C] and e}, € T[A;1,C] then lab(e}) = lab(e}). So by Theorem 2, there is
a special connection of Type 1 or Type 2 between a; and as. ([

Claim 1. Let G be a DV graph such that it has a strong asteroidal triple a1, as, as,
and none DV-model of G can be rooted on Nlas]. If there exists T a DV-model of
G with three leaves, and e = AB € T[Nlas],C] is dominated by ¢ € T(N[aq],C]
with B € T[C, A] then none edge of T(e',C] can have in its label vertices with the
same end towards Na1].

By way of contradiction, suppose that there is e” € T(e’, C] such that all vertices
in lab(e”) have the same end towards N[ai]. Let A; be the end of these vertices.
Let ¢/ = A"B” with B” € T[A”,C]. As lab(e) C lab(e’) and e’ € T(e,C]
then lab(e) C lab(e”) C Ay. Also, the vertices in lab(e”) have Ay as a leaf. Let
T =T —{e",e} + B"A; + AA”. Tt is clear that 7" is a DV-model of G. Observe
that there is no vertex crossing by Ay in T'[NJa1], C] because of A; is a leaf of each
vertex in lab(e’). Also, there is no vertex crossing by C' in T'[N[as], B] since there
is no vertex crossing by C in T[NJaz], N]as]]. Clearly, T77 is a DV-model of G that
can be rooted on Nlasg], a contradiction. This proves claim (1).

Claim 2. Let G be a DV graph such that it has a strong asteroidal triple a1, as, as,
and none DV-model of G can be rooted on Nlas]. Let T be a DV-model of G with
three leaves, X,Y € V(T) be such that one and only one of them is in T[N]as], C]
fori=1,2 and the other is in T|N|as],C]. If e = AB be an edge in T[X, C] with
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B € T[A, C], which is dominated by D € T[Y,C|, then Ve' € T|C,D'] lab(¢') ¢ B
whenever DD' € E(T[Y, C)).

By way of contradiction, suppose that there is ¢’ € T[C, D'] such that lab(e’) C B.
Let ¢/ = A”B” be such that B” € T[C, A”]. Clearly T =T — {e,e'} + A"B+ AB"
is a model of G.

Suppose that X is in T[NJa;],C]. Observe that ¢/ € T[C, D'], and A” may be
D’. Since e is dominated by D then lab(e) C B”. Thus T’ is a DV-model of G.
Clearly, T" does not have a vertex crossing by C in T'[Na1], N]az]] since there is
no vertex crossing by C in T[NJas], N[az]]. Hence, T’ can be rooted on NJas], a
contradiction.

The proof is the same if Y is in T[N[a;],C]. This proves claim (2).

Election 1 of vertices in label of edges:

Let T be a DV-model of G and A ,B be vertices that appear in this order in T
Let e(1) be the edge in T'[A, B] incidents to A.
o Take a vertex w; € lab(e(1)) such that Ty, is the shortest towards B. Let
Tw, = T[{w1, Dwq] with A € T[Iw1, Dwq]. If B ¢ T[A, Dw;] then we
repeat the following process, ¢ > 0:
e Let e(i+1) be the edge in T[Dw;, B] incidents to Dw; and w; 1 € lab(e(i+
1)) such that T, , is the shortest towards B, if w1 € Tw; (for i = 1, take
A instead of JTw;) then w; = w; 1, we continue until cover all T[A, BJ.
Observe that Ty, € T, ,-
The preceding election of vertices, is a technical tool in order to define special
connection of Type 4,5,.., or 9.

5. PROOF OF THE MAIN THEOREM

Finally, in this section we give the result that is the goal of this article, a char-
acterization of rooted directed path graphs whose rooted models can not be rooted
on a bold maximal clique.

Theorem 3. Let G be a DV graph such that it has a strong asteroidal triple
ay,as,az and leafage three. There is a special connection between ai and as if
and only if none DV-model of G can be rooted on N|as].

Proof. = By Theorem 1.

< Suppose that G is the smallest graphs such that none DV-model of G can be
rooted on NJas]. Since I[(G) = 3 and G \ NJa;] is a connected graph for i = 1,2, 3
then Nla;] is a leaf in every model of G. Let T' be a DV-model of G that reaches
the leafage, and C be the vertex of degree three in T'. Since T can not be rooted
on Nlag] then there is a vertex crossing by C' in T[NJa;], N]ag]]. By Lemma 1b,
we can assume that there are not two edges with the same label in T[NJa;], C] for
all ¢ € {1,2,3}. Clearly if T[N[a;],C] has exactly two vertices for ¢ = 1,2 then
there exists a vertex € N[ai] N Nlag], so there is a special connection of Type 1
between a; and as.

Now, we can assume that T[NJa;],C], for some i € {1,2}, has at least three
vertices.
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Suppose that T[N[a1],C] has at least three vertices. Thus there exists e; €
T[Na1],C], and by Lemma 1c there exists ] ¢ T[Na1],C]. If €} is in T[N]az], C]
then by Corollary 1 there is a special connection of Type 1 or 2 between a1 and as.

Suppose that it is in T[Nas], C]. As T is a DV-model of G, and there is a vertex
crossing by C' in T[N[aq], N[az]] if CNlag] ¢ E(T) then e, = N]a1]A;. Therefore,
by Corollary 1, there is a special connection of Type 1 or Type 2 between a; and
as.

Consider CNJag] € E(T).

By Lemma 1la, |lab(N[a1]A;1)| and |lab(N[azg]C)| is greater than one. Let 21,11 €
lab(N[a1]A1) and zo,y2 € lab(N]as]C) be such that [{Q € C(G)| z; € Q} > {Q €
C(@)|yieQ} >1,{Q € C(G)| x; € Q}| is maximum, and {Q € C(G)| y; € Q}]
is minimum for ¢ = 1,2. Observe that if 1 € Nlag] or z2 € N[a] then there is a
special connection of Type 1 between a; and as.

In the follows, we suppose that 21 ¢ N[as] and x2 ¢ Nlay]. Let X; be the leaf of
T, and Y; be the leaf of T}, different from Na;] for i = 1,2 respectively. Observe
that X5,Ys € T[NJa1], N[az]] but X;,Y; may be in T[C, N[as]].

First of all, we know that lab(e}) C A;. As lab(e}) € Nla1], since G\ N[aq] is a
connected graph, there is a vertex v € lab(e}) N A1 — Naq].

In the follows, we will analyze several cases taking into account if {1, z2,y1, Y2}
is or not a clique of G. We will study two situations depending on if there is or not
an edge e € T[Nla1], X2] such that lab(e) C C.

Case 0: T,,, NT,, # 0 but T, N T}, =0 and T,, NT,, = 0. Clearly 21 ¢ C. Let
P = a1,y1,v,yY2,a2 and Q = a1,T1,%2,a2 be paths in G. Then there is a special
connection between a; and ay. More clearly, {a1,z1,v1}, {y1,v,21},{v, 21,22},
{v,29,y2} and {za,y2,as} are cliques of G.

Observe that there is a special connection: of Type 2 between a1, y2, and between
Y1, ag; see Figure 7.

a

FIGURE 7. Case 0: Type 2 between a1, y» and y;, as.

e There is not an edge e € T[NJa1], X2] such that lab(e) C C.

Case 1: T,, NT,, = 0. By the choice of 1, each vertex in lab(e}) must
have A; as a leaf. Clearly, there is a path P = ay,y1, v, Y2, as in G between
a1 and az. We will need other path @ in G between a; and as. Observe
that: a) by the election of x1, for all € € T'[X, X3 lab(e) N N]a1] = 0; b)
by Claim 1, as €} € T[C, N|as]] is a dominated edge by e; € T(N[a41],C],
Ve € T[X1, X3], the vertices in its label can not have the same end to Nla;].
Since v € lab(€), and its end is A; it follows that there is w € lab(e) — A;.
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FI1GURE 8. Case 1.1: Type 2 between a1, wa; wy,—1, az and Type
1 between w;, w;4a.

As was mentioned above, we need to search other path and Claim 1 will
provide the vertices of this. We choose vertices through Election 1, we take
A=X1,B=Xsandw; ¢ Ay fori=1,.,n. Clearly, Q@ = a1, 21, w1, .., Wy,
T9,as is a path in G different from P between a; and as. Observe that w,,
may be in C. In this last case, as lab(e) € C for all e € T[Cy,, Xo] it
follows that there exists a vertex w’ € lab(e(n)) — C that has A; as one of
its leaves. Recall that w, was chosen in the label of e(n).

Next, we will study if there is or not a clique in G of size four with two
vertices of P and two vertices of Q.

Case 1.1: There is not a clique in G of size four with two vertices of
P and two vertices of ). Then y; and w; are not adjacent vertices; also
yo and w,, are not adjacent vertices. Therefore, there is a special connec-
tion between a; and ay. More clearly, {a1,21,y1}, {v1,v,21}, {z1,v, w1},
{wi, v, Wit1}i=1,. n—1, {Wn, v, 22}, {v, 2, y2} and {2, y2, a2} are cliques of
G.

Observe that there is a special connection: of Type 2 between a1, ws
and wy_1, ag; and of Type 1 between w;, w; o with i € {1,..,n — 2}; see
Figure 8.

Case 1.2: There is only one clique in G of size four with two vertices
of P and two vertices of Q). First, suppose that {x1,y1, w1, v} is the clique.
Since there is one and only one clique of size four, y, and w, are not
adjacent vertices. On the other hand, y; and w; are adjacent vertices and
wy ¢ A; then A; must be separated by a vertex s; in direction to Nlag].
By the choice of 41, s1 € N[a1] so it is a simplicial vertex of G. Let s3 be a
separator vertex of X; to C such that [{Q € C(G)| s2 € Q}| is minimum.
By the election of wy, it is clear that sy ¢ Dw; then it is not adjacent
vertex to ws. Therefore there is a special connection between a; and as.
More clearly, {a1, 1,91}, {w;, v, wit1}i=1,. n—1, {wn, v, x2}, {v, 2, y2} and
{z2,y2,a2} are cliques of G, and {z1,y1,ws,v, s1,s2} induces an antenna.

Observe that there is a special connection: of Type 3 between a; and wo;
of Type 1 between w;, w; o with ¢ € {1,..,n — 2}, and of Type 2 between
Wy —1, az; see Figure 9.

Case 1.3: There is one only one clique in G of size four with two vertices
of P and two vertices of Q. Now, suppose that {xs,y2, w,, v} is the clique.
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$1

FIGURE 9. Case 1.2: Type 3 between a1, wy; Type 1 between w;,
w;+2; Type 2 between w,_1, as

As there is only one clique of size four, y; and w; are not adjacent vertices.

We will analyze two situations depending on whether w,, is or not in C.

(1) wy, ¢ C. Let s3 be separator vertex of C' to Nlas]. Clearly s3 is not
adjacent to w,. Let s4 be a separator vertex of Xa to N[aq] such that
HQ € C(G)| s4 € Q}] is minimum. By the election of w,, s4 is not
adjacent vertex to w,_;. Then there is a special connection between
ay and ag. More clearly, {a1, 21,91}, {y1, v, 21} {wi, v, wig1}iz1, n—1
and {xa,y2,as} are cliques of G, and {2, ya, wp,v, s3, 84} induces an
antenna.
Observe that there is a special connection: of Type 2 between ay, wo;
of Type 1 between w;, w; o with i € {1,..,n—2}, and Type 3 between
Wp—1, az; see Figure 10.

FIicURE 10. Case 1.3.1: Type 2 between a;, wy; Type 1 between
w;, Wi+2; Type 3 between w,_1, as

(2) wy, € C. Hence there is a vertex in lab(e(n)) — C that has A; as one
of its leaves. Let w’ be the vertex such that [{Q € C(G)| v’ € Q}| is
maximum. Let W' be the other leaf of w’.

If w' € X5 then we take P = a1, y1,w’,x2,a2 and Q = a1, x1, w1, ..,
Wy, Yo, a2 paths in G.
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In case that yo ¢ W’ then there is a special connection: of Type 2
between a1, wsy; of Type 1 between w;, w;4o with i € {1,..,n—2}, and
of Type 2 between w,,_1, ao; see Figure 11.

FiGure 11. Case 1.3.2: Type 2 between a1, wy and wy_1, as ;
Type 1 between w;, w;42

In case that yo € W', by the same argument used in 1 taken w,,w’
instead of w,, v, there is a special connection of Type 3 between w,,_1,
ag; see Figure 12.

FIGURE 12. Case 1.3.2: Type 2 between a1, wa; Type 1 between
w;, wi+o and Type 3 between w,_1, as

Now, suppose that w’ ¢ X5. Then we choose vertices in label of edges
of T[W', X5] that are not in C' through Election 1 with A = W' and
B = Xs. Let t; be these vertices for ¢ = 1,..,m such that ¢; is the
first vertex chosen. Observe that by the choice of w’, t; ¢ A; and by
the election of wy,, t; ¢ lab(e(n)) then t; is not adjacent to w,_;. Let
P =ay,y1,w' t1, .., tm, T2, a2 and Q = ay, w1, w1, .., Wn, Y2, az be paths
in G. Note that {wy,tm,y2, 22} and {y1,21,w’, w1} may be cliques.
Clearly, {y1,x1,w’, w1} is not a clique because of {y1,x1,v,w;} is not
a clique. In case that {wy,tm, T2, y2} is not a clique then there is
a special connection between a; and az. More clearly {ai,y1,21},
{w'sz,wi}, {w', wi, wig1 bzt o1, {W' st wet, {t tigr, Wntiz1,.m,
{tm» T2, wn}a {1'23 Wn, yQ}v {x2> Y2, a2} are Cliques of G.
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Observe that there is a special connection of Type 2 between a;, wo;
of Type 1 between w’, to; between t;, t;yo with ¢ € {1,..,m — 2}, and
of Type 2 between t,,_1, as; see Figure 13.

X, W1 Wp Yo

FIGURE 13. Case 1.3.2: Type 2 between ay, we and t,,—1, ao;
Type 1 between w’, to and #;, t;10

In case that {wy,tmn,y2, 22} is a clique, let s3 be separator vertex of
C to NJag]. Clearly, s3 is not adjacent to ¢, since t,, ¢ C. Let s4
be a separator vertex of X, to Naq] such that [{Q € C(G)| s4 € Q}|
is minimum. By the election of t,,, s4 is not adjacent vertex to t,,_1.
Hence, there is a special connection between a; and as. More clearly,
{ar, y1, 21}, {w', w1, w1}, {w', wi, wig1 Yo, -1, {w' 1, wn b, {ti tig,
wn}i:l,..,ma {w2,2,a2} are cliques of G, and {t,,, 72, Y2, wn, 83,54}
induces an antenna.

Observe that there is a special connection of Type 3 between ¢,,_1 and
as; see Figure 14.

FIGURE 14. Case 1.3.2: Type 2 between a;, wy; Type 1 between
w’, to and t;, t;10; Type 3 between t,, 1, as

Case 1.4: There are two cliques in G of size four with two vertices of P
and two vertices of @, and they are {z1,y1,w1,v} and {z2,y2, w,,v}. In
this situation, we obtain a combination of the previous cases.
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Case 2: T, NT,,NT,, #0but T, N T, =0, or T,,, N T, NT,, # 0
but T,,, N T, = 0. In both situations is clear that there are two paths
P = ay,y1,v,y2,a2 and Q = a1,x1,Z2,as in G between a; and as. Next,
we will study if there is or not a clique in G of size four with two vertices
of P and two vertices of Q.

Case 2.1: T, NT,, NT,, # 0 but T, NT,, = 0. Clearly {z1,y1,v,z2}
is a clique of G. By the election of z1, every vertex of lab(e}) has A; as a
leaf. It is necessary to study two situations depending on 7, and 7, have
or not the same end to N[a;]. More clearly, if A; is or not a leaf of both of
them.

First, we suppose that T, and T, have the same leaf in direction to
Nlaq], i.e both of them have A; as a leaf. By Claim 1, for each € € T[X7, Y3]
the vertices in its label can not the same end to Nai]. As T, and T,
have the same leaf A; to N[aq] then we choose vertices w; € lab(e) — Ay
through Election 1 with ¢ = 1,..,n. Let P’ = a1,¥y;,72,a2 and Q' =
a1, T1,W1, .., Wy, Y2,a2 be paths in G between a; and as. Observe that
{z1,22,y1, w1} may be a clique. In case that wy ¢ Y7 then there is not
a clique of size four with two vertices of each path. Hence, there is a
special connection between a1, as. More clearly, {a1,z1,y1}, {z1, 22,91},
{z1, 22, w1}, {wi, wig1, x2}iz1,. . n—1, {Wn, 2, y2} and {x2, ya, az} are cliques
of G.

Note that there is a special connection: of Type 2 between ai, ws; of
Type 1 between w;, w;ye with ¢ € {1,..,n — 2}, and between w,, ag, see
Figure 15.

-

wy 2
Wn

\ I X4 W1 Yo

1

FIGURE 15. Case 2.1: Type 2 between a1, wsy; Type 1 between w,
W;+o and wy, as

In case that wy € Y1, as w1 ¢ A; then Y7 # A;. Let s1 be a separator
vertex of Xo = A; to N|ay] such that |[{Q € C(G)| s1 € Q}] is minimum.
By the choice of y1, s1 is a simplicial vertex of G. As w; € Y; then
X1 # Dwp. Let so be a separator vertex of X to Cs such that [{Q €
C(G)| s2 € Q}] is minimum. By the election of wy, sz is not adjacent to
wo. Hence there is a special connection between a; and as. More clearly,
{a1, 21,91}, {wi, wit1,T2}ti=1,. n, {Wn,T2,y2} and {z2,y2,as2} are cliques
of G, and {z1,y1, w1, 22, 81, S2} induces an antenna.

Note that there is a special connection: of Type 3 between ai, ws; of
Type 1 between w;, w;yo with i € {1,..,n — 2}, and between w,, as; see
Figure 16.
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Wn

FIGURE 16. Case 2.1: Type 3 between a1, we; Type 1 between w;,
Wito and wy,, ag

Finally, we can assume that T, and T, do not have the same leaf in
direction to Nai]. By the election of z1, it is clear that v ¢ NJai]. As
29 ¢ Nai] and X5 # Ay then x5 ¢ A;. Observe that Y7 # A; since Ty, N
Te, NIy, # (). Let s1 and s, be vertices such that s; is a separator vertex of
Aj to Nlaq], s is a separator vertex of X to C and [{Q € C(G)| s2 € Q}|
is minimum. By the choice of y1, s1 ¢ N[ai] so it is a simplicial vertex of
G. If so is adjacent to yo, let P’ = a1,y1,22,a2 and Q' = a1, w1, S2,¥2, as
be paths in G between a; and as. Clearly, there is not a clique of size four
with two vertices of each path. Then there is a special connection between
a; and ap. More clearly, {a1, 21,91}, {21, %2, 82}, {1, 22,91}, {52, 2,92}
and {x2,y2,a2} are cliques of G.

Note that there is a special connection: of Type 2 between a1, y2, and
of Type 1 between so, as; see Figure 17.

A —t
é2
®
a
52 ) | @ a2
* 1 82 2

FIGURE 17. Case 2.1: Type 3 between a1, y2; Type 1 between v, ag

If so is not adjacent to ys, let P = a1,y1,v,y2,a2 and Q = a1, %1, X2, a2
be paths in G between a; and ay. Clearly there is a special connection
between a; and as. More clearly, {y1,z1,v,z2,$1,S2} induces an antenna
and {a1,2z1,y1}, {v, 22,92}, {x2,y2, a2} are cliques of G.

Note that there is a special connection: of Type 3 between a1, y2, and
of Type 1 between v, as; see Figure 18.

Case 2.2: T, NT,, NT,, # 0 but T, NT,, = (. Clearly, there are two
paths in G between a; and as; P = a1,21,%2,a2 and Q = a1, y1,, Yo, as.
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S1

a

X1 X2

S2

FIGURE 18. Case 2.1: Type 2 between aq, y2; Type 1 between so, as

On the other hand, {z1,22,y2,v} is a clique of G. We will analyze if z; is
or not in C.

First, 1 ¢ C. Clearly Y5 # C. By the election of x1, every vertex in
lab(e}) has Ay as a leaf. Let so be a separator vertex of X5 to N[aj] such
that [{Q € C(G)] s2 € Q}| is minimum.

If s5 € Y7 then we can change the paths in order to Type 2 appears. Let
P’ = a1,y1,52,72,a2 and Q' = a1, 71, Y2, a2 be paths in G. More clearly,
{ar,z1,91}, {s2, 21,91}, {s2, 21,22}, {x1, T2, y2} and {x2, ya, as} are cliques
of G.

Note that there is a special connection of Type 1 between a1, so; and of
Type 2 between y;, as; see Figure 19.

ANA

X1
FIGURE 19. Case 2.2: Type 1 between aq, so; Type 2 between y;, as

If s5 ¢ Y1, let s1 be a separator vertex of C' to N[as], then there is a spe-
cial connection between aj,as. More clearly, {y2, z2,v, 21, 81,52} induces
an antenna and {a1,x1,y1}, {v,z1,y1}, {T2,y2, a2} are cliques of G.

Observe that there is a special connection: of Type 1 between a1, v, and
of Type 3 between y1, as; see Figure 20.

Finally, z; € C. We know that Ve € T[Y7, Xs], lab(e) € C. We choose
w; € lab(e) — C through Election 1 with A =Y; and B = X,. Let P’ =
ai,r1,ys,a2 and Q' = y1, w1, .., wy, T2,as be paths in G between a; and
as.
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v y1 \Y y2

X1 X 2
$2

F1GURE 20. Case 2.2: Type 1 between a1, v; Type 3 between y1, as

If w, is not adjacent to yo then there is a special connection between
ar and az. More clearly, {a1,z1,y1} {21, y1, w1}, {wi,wiy1,21}i=1,. n-1,
{wn, 1,22}, {21, 22,92} and {2, y2,as} are cliques of G.

Observe that there is a special connection: of Type 1 between a;, wi;
between w;, w; 2 with i € {1,..,n — 2}, and of Type 2 between w,,_1, as;
see Figure 21.

Y1 W1 X2

F1cURE 21. Case 2.2: Type 1 between a1, wy; between w;, w;42;
Type 2 between w,,_1, as

If w, is adjacent to yo then Y3 # C by the election of w,, ¢ C. Clearly,
there is a clique of size four with two of each path, it is {1, 22, y2, wy}.
Let s1 and so be vertices such that s; is a separator of C' to Nas], sq is a
separator of X3 to Nai] and [{Q € C(G)| s; € Q}] is minimum for ¢ = 1, 2.
By the election of w;, so is not adjacent to w,_1. Hence there is a spe-
cial connection between a; and ag. More clearly, {a1, z1,y1},{x1,y1, w1},
{wi, wit1, %1} i=1,. n—1, {2, Y2, a2} are cliques of G, and {wy,, z1, z2, Y2, 1,
s2} induces an antenna.

Observe that there is a special connection: of Type 1 between aj, ws;
between w;, w; 2 with ¢ € {1,..,n — 2}, and of Type 3 between w,_1, as;
see Figure 22.

Case 3: T,, NT,, NT,, NT,, # 0. Clearly, there are two paths in G
between a; and as. Let P = a1,y1,y2,a2 and Q = a1,x1,T2,as be these
paths. Also {z1,y1,22,y2} is a clique of G which has two vertices of P and
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FIGURE 22. Case 2.2: Type 1 between a1, wy and w;, w;y2; Type
3 between w,,_1, as

two vertices of (). We will study two situations depending on x; is or not
in C.

First, 1 ¢ C. Since Xa # N|a;] then Y7 # A;. Let s; be a separator
vertex of X5 to N[ai], s2 be a separator vertex of X; to Nlas] such that
HQ € C(G)] s; € Q}| is minimum for ¢ = 1,2. By the election of y; for
i=1,2, 55 ¢ Nlag] and s1 ¢ N[a1]. Hence there is a special connection of
Type 3 between a; and as; see Figure 23.

$2
Y1 )
§2 31 32
/ o
$1
2
*2 X1 X2
Y2
S1

FI1GURE 23. Case 3: Type 3 between a1, as

We now suppose that z; € C. Since there is not an edge whose label
is contained in C, then y; ¢ C. Hence Yo # C. Observe that Xo # Y3
but Y7 may be Y. Let sy be a separator vertex of X3 to Na;], s1 be a
separator vertex of C to Naz] such that [{Q € C(G)| s; € Q}| is minimum
for ¢ = 1,2. By the before exposed, sa ¢ Nlai] and s1 ¢ NJaz]. Hence
there is a special connection of Type 3 between a; and as; see Figure 24.

In both cases, {a1, z1,y1}, {az, x2,y2} are cliques of G, and {s1, s2, x1, T2,
y1,y2} induces an antenna.

e There is an edge e € T[N[aq], X3] such that lab(e) C C.

Case 1: T, NT,, = 0. By the election of z1, each vertex in lab(e]) must
have A; as a leaf. Clearly, there is a path P = ay,y1,v,y2, as in G between
a1 and as. We will need other path @) in G between a; and as. Observe
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S2
ap
X1 X2
S1

F1GURE 24. Case 3: Type 3 between ay, as

that: a) by the election of x1, for all € € T[X1, Xs], lab(€) N Na1] = 0; b)
by Claim 1 as e} € T[C, Nlas]] is a dominated edge by e; € T(N[a41],C],
Ve € T[X1,Xs], the vertices in its label can not have the same ends to
Nlaq]. Hence as v € lab(e) for all € € T[X1, X3], there is w € lab(e) — A;.
As was mentioned above, we need to search vertices for other path. We
choose vertices through Election 1 taken A = X;, B = X5 and w; ¢ A;
for i = 1,..,n. Clearly, Q = a1, x1, w1, .., Wy, T2, a2 is a path in G different
from P between a; and as. As there is an edge in T[X7, X5] whose label is
contained in C' then w,, is in C. Clearly {x2, y2,wy,, v} is a clique of G, and
{z1,y1,v,w1} may be a clique. Let W’/ Dw,, € E(T) be such that Dw,, €
T[C,W']. Let u be a separator vertex of W’ to Nag)], i.e u € W'—Duw,,. Let
e(n) = XY be the edge which was chosen w,, with Y € T'[X, C]. Observe
that Y may be X5. On the other hand, e(n) is dominated by Dw,, because
of the choice of w,,, which is the shortest vertex to C, and lab(e(n)) C C.
We will analyze if there is or not another edge € € TI[Y, X5] such that
lab(e) C C.

O Suppose that other edge does not exist. By Claim 2, as e(n) is an
edge dominated by Dw,, € T[C, Nas]] then for every edge in T[W’', C] its
label is not contained in Y. Hence we choose vertices in label of edges
e € T[W',C] that are not in Y, through Election 1 taken A = W’ and
B = C. Let z; ¢ Y be such that T,, = T[Iz;, Dz;| with Iz; € T(Y, Dz;]
fori=1,..,0, and z, is the last vertex chosen. By the choice of z; ¢ Y for
i=1,..,0, it follows that e} ¢ T[W’, C].

Now, we will analyze two situations depending on the position of Iz, in
T(Y,C):

First, we consider Iz, € T(X3,C]. Let t be a separator vertex of Xs to
Nlaq] such that [{Q € C(G)| ¢t € Q}|is minimum. Observe that ¢t ¢ X. Also
t is not adjacent to yo or z,. Then, there is a special connection between
ay and az. More clearly, in case that {x1, y1,v, w1} is not a clique it follows
that {a1, 1,91}, {z1,v, 51}, {z1, v, w1}, {wi, v, wig1}im1,. -1, {22, y2, a2},
{v, wn, T2, Y2, 20}, {2, Zig1, U, Wn} i=1..0—1, {8, v, 21} and {v, wy,, z2,t} are
cliques of G.
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Observe that there is a special connection: of Type 2 between a;, wo;
of Type 1 between w;, w;42 with i € {1,..,n — 2}; and of Type 4 between
wy,_1 and as; see Figure 25.

In case that {z1,y1,v, w1} is a clique of G, by the same argument used
in Case 1.2, there are two vertices s, sz in G such that {z1,y1,v, w1, $1, $2}
induces an antenna.

FiGURE 25. Case 1: Type 2 between a1, wa; Type 1 between w;,
w;+2; Type 4 between w,,_; and ag

Finally, we consider Iz, € T(Y, X3]. Let e(0) = A,B, be the edge which
2, was chosen, with B, € T[C, A,]. Let Z’ be the vertex of T such that
I12,7' € E(T) and Iz, € T[Z', X3]. Observe that Z’ # X since Iz, # Y.
Also, by the election of z,, e(0) is a dominated edge by I, then by Claim
2 for every €’ edge in T[Z’, X5] its label is not contained in B,. Hence we
choose vertices through Election 1 in label of edges of T'[Z’, X5] such that
they are not in B,. Let t; ¢ B, be the vertices chosen with i € {1,..,p},
and t, be the last vertex chosen. It is clear that ¢, may be in C'. But there
is not an edge different from e(n) such that it is contained in C then ¢, ¢ C.
Clearly, t, may be adjacent or not to y».

O tp is adjacent to yo. Ast, ¢ C there is a separator vertex of C' to Nas].
Let s; be the separator of C' to N|as] minimizing [{Q € C(G)| s1 € Q}.
As z, was chosen instead of s; then z,_; is not adjacent to s;. Let s
be a separator of X5 to Nfaj] such that |{Q € C(G)| s € Q}| is min-
imum. By the election of t,, it is clear that s is not adjacent to t,_;.
Let ¢t be a separator of It; to Nlai] such that |[{Q € C(G)| t € Q}|
is minimum. Observe that ¢ ¢ X. There is a special connection be-
tween a; and as. More clearly, in case that {z1,y;,w1,v} is not a clique
then {ay,z1,51}, {z1,v,u1}, {z1,v, w1}, {wi, v, wiptiz1, n—1, {2 2it1,
U, Wn Fi=1,.,0-1, {T2, Y2, a2}, {u, v, 21}, {0, Wn, 20, T2, p, 8}, {tp, T2, Y2, 2o, Wn,
v}, {t,wn, v, t1}, {ti, tiv1, U, Wn, 20 Fi=1,.. p—1 and {v, wy, T2, Y2, 2o, S1} are
cliques of G.

Observe that there is a special connection: of Type 2 between aj, wo;
of Type 1 between w;, w; o with ¢ € {1,..,n — 2}; and of Type 5 between
wy—1 and as; see Figure 26.

In case that {z1,y1,v, w1} is a clique of G, by the before exposed, there
are two vertices s}, so in G such that {z1,y1,v, w1, s}, s2} induces an an-
tenna.
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FIGURE 26. Case 1: Type 2 between a1, ws; Type 1 between wy,
w;42; of Type 5 between w,,_1, ag

¢ t, is not adjacent to y2. As before, considering only the separator
of Ity to Nfai]. Then there is a special connection between a; and as.
More clearly, in case that {x1,y1,w1,v} is not a clique then {aq, 21,91},
{$17U7y1}7 {9517117101}, {wia v, wi+1}i:1,..,na {Zi,2¢+1, v,wn}i:l,.,o—h {9€2,y2,
a2}7 {ua v, Zl}a {ta U, Wn, tl}v {tia ti+1a U, W, Zo}i:l,.,pfla {tpy T2, U, Wn, Zo}
and {v, wy, T2, Y2, 2o} are cliques of G.

Observe that there is a special connection: of Type 2 between a;, wo;
of Type 1 between w;, w;yo with ¢ € {1,..,n — 2}; and of Type 6 between
wp—1 and asg; see Figure 27.

In case that {x1,y1,v, w1} is a clique of G, by the before exposed, there
are two vertices s1, 2 in G such that {x1,y1,v, w1, s1, 2} induces an an-
tenna.

FI1GURE 27. Case 1: Type 2 between a1, wg; Type 1 between wy,
w;+2; Type 6 between w,_1, as

O Suppose that there is an edge in T[B, X3] which is contained in C. Let
€ be the nearest C. Observe that lab(e(n)) C lab(€), but by our assumption
lab(e) ¢ lab(e(n)), let m € lab(€) — lab(e(n)) such that T), is the shortest
to Nas] with Dm its leaf in T'[C, Nlag]]. Clearly, m # w,,v. Observe that
for all edge € in T'(¢, X5], lab(é) € C. Therefore there are vertices in the
label of edges of T'(¢, X5] that are not in C.

In case that Dm € T[Dw,, Nlag]], € is dominated by Dw, then by
Claim 2 there are vertices in the label of edges of T[W’, C] that are not in
B with ¢ = AB and B € T[/Nl, C]. Let z; be these vertices for i = 1,..,0
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chosen through Election 1. Therefore I, ¢ B. Also, by the election of
e, the vertices t; chosen as before are not in C, in particular the vertex
t, ¢ C. Hence we get situations described previously, i.e Type 4 or Type 5
or Type 6. More clearly, in case that {z1,y;,w;,v} is not a clique then if
Iz, € T(X2,Cl, {ar, x1,y1 ), {71, 0,91}, {71, v,wi ), {wi, v, it Fiz1, -1,
{2,y2, a2}, {v, wn, 22,92, 20}, {2, 2i41,0,wn} i=1.0-1, {w,v, 21}, and
{v, wy, x2,t} are cliques of G. If Iz, € T(B,X»] then in case that t,
is adjacent to yo, {a1,z1,y1}, {z1,v,01}, {z1,v, w1}, {22, Y2, a2}, {w;,v,
Wit1 Fim1,...n—1> %> Zit1s Vs Wn Fim1,..0—15 18V, 21}, {0, Wn, 20, T2, tp, 5}, {tp,
T2, Y2, Z0s Wiy U}, {t, Wn, v, 1}, {ti, tiv1, U, Wn, Zo}i=1,.. p—1 and {v, wp, T2,
Y2, %0, 51} are cliques of G. In case that t, is not adjacent to y, then
{a17$1,y1}, {551,117111}7 {551,1),101}, {33273/2,612}, {wiavawi+1}i:1,..,na {Zi;ZiJrlv
UV, Wy Fim1,0—15 180, 21}, {0, 00, t1 ), {tis tig1, 0, Wns Zo Fimt,. p—1, {tps T2,
Uy Wy 2o} and {v, wy, x2,Y2, 2.} are cliques of G. In case that {z1,y1,v,
wi } is a clique of G, by the before exposed, there are two vertices s}, o in
G such that {z1,y1,v, wi, s|, s2} induces an antenna.

In case that Dm € T[C,Dw,), e(n) is dominated by Dw, then by
Claim 2 there are vertices chosen through Election 1 that are not in Y.
As before, let z; be these vertices for i =10 If 2z ¢ B then we get
situations described previously. If z, € B, as Dm dominates €, none edge
of T[M',C] (DmM' € E(T) with M’ € T[M, Dw,)) is dominated by B,
then e(o) ¢ T[C,M’]. It is clear that Iz, ¢ T[X2,C]. Also t, = m. In
this case t, € C. By Claim 2 as € is a dominated edge by Dt, = Dm,
in the label of edges of T[C, M'] there are vertices that are not in B.
Let z] be vertices chosen in the label of edges in T[C, M’'] that are not
in B through Election 1 taken A = M’', B = C for i = 1,..,q, and
with z; the last vertex chosen. Let v’ be adjacent to 2] but not adja-
cent to z5. If z(’l € T(Xo,C] then let s be a separator of Xs to Nlaq]
such that [{Q € C(G)| s € Q}] is minimum. We obtain a special connec-
tion between a; and as. More clearly, in case that {x1,y1,v, w1} is not
a clique then {ay,z1,y1}, {z1,v,01}, {710, w1}, {wi,v, wi-l—l}i:l,..,n—la
{x2,y2, a2}, {2, Zig1, 0, Wn izt 0—1, {0, v, 21}, {ti, tig1, 0, Wn, 20 Fiz1,. p—15
{t,v,wn, t1 ), {u', 21, 20, Wy v, {8, Tpy Wiy v, 20, T2}, {2, T2, Y2, U, Why by, 20}
and {z], 2 1,0, Wn, tp, Zo}i=1,. q—1 are cliques of G.

Observe that there is a special connection: of Type 2 between aj, wo;
of Type 1 between w;, w; o with ¢ € {1,..,n — 2}; and of Type 7 between
wp—1 and asg; see Figure 28.

In case that {z1,y1,v, w1} is a clique of G, by the before exposed, there
are two vertices s}, so in G such that {z1,y1,v, w1, s}, s2} induces an an-
tenna. ~

If 2, € T(B, X2], as the edge e(q) where z; was chosen is dominated by
Iz, it follows by Claim 2 that there are vertices ¢ that are not in By, with
e(q) = A¢Bq and B, € T[C, A,], for i = 1, ..,r. Also by the election of €,
they are not in C. Let ¢, be the last vertex chosen. Observe that ¢, may
be adjacent to ys.

If ¢/ is not adjacent to y2 then there is a special connection between
ap and ag. More clearly, in case that {z1,y1,w1,v} is not a clique then
{al,ﬁﬂhyl}, {$1,U,y1}, {1‘1,11,101}7 {wiavawi-l—l}i:l,..,n—la {1‘2,y2,a2}, {Zz‘,
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FI1GURE 28. Case 1: Type 2 between a1, wg; Type 1 between wy,
w;+9; Type 7 between w,_1, as

Zit1, Uy Wptiz1.0—1, 14,0, 21}, {ti, tit1,0, Wn, 2o }iz1,.. p—1, {t, 0, Wn,t1},
{t' ], tp, v, wn, 20}, {t;, ti s zo,z;,tp,v,wn}i:L__,r_l, {t]., tp, v, Wn, 2o, z(’z,
T2}, {lp, v, Wn, Zo, 24, T2,Y2}s {tp, U, Wn, 205 245 2141 Yiz1,....q—1 and {u', 2],
Zo, Wy, v} are cliques of G.

Observe that there is a special connection: of Type 2 between a;, ws;
of Type 1 between w;, w; 4o with ¢ € {1,..,n — 2}; and of Type 8 between
wp—1 and asg; see Figure 29.

In case that {x1,y1,v, w1} is a clique of G, by the before exposed, there
are two vertices s1, so in G such that {z1,y1,v, w1, s1, s2} induces an an-
tenna.

21
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e

)
o

\
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FiGURE 29. Case 1: Type 2 between a1, wo; Type 1 between w;,
w;+2; Type 8 between w,_1, as

If ¢/ is adjacent to ys, let s be a separator of Xs to N[aj] such that
HQ € C(G)] s € @Q}| is minimum. By the election of ¢/, it is clear that s
is not adjacent to #,._,, recall ¢/ ¢ C. Then, let s; be a separator vertex
of C' to Nlas] such that {Q € C(G)| s1 € Q}] is minimum. Observe
that s; # z; since z; € T(E,Xg}. Hence there is a special connection
between a; and as. More clearly, in case that {z1,y1, w1, v} is not a clique
then {a1,x1,y1}, {371,?1,3/1}, {$17U,w1}7 {wi7U7wi+1}i:1,..,n—17 {1327927@2},
{2is 2zit1, vywntiz1o-1, {u, v, 21}, {ti; tiv1, v, Wn, 20 biz1, p—1, {t,0, Wn,
tl}a {tla tllv tp, U, W, Zo}a {t;, t;+1» Zoy Zz/p tp, v, wn}izl,..,rfla {t;n, tp, Uy Wy, 2o,
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Z;a'r27y2781}7 {tp7v7 Wn, 2o, Zz/'7z7/l+1}i=1,...,q—17 {tp7v7 Wn, 2072117,&/} and
{s,15., 205 tp, 20, v, Wn, T2} are cliques of G.

Observe that there is a special connection: of Type 2 between a;, wo;
of Type 1 between w;, w;4+2 with i € {1,..,n — 2}; and of Type 9 between
wy_1 and as; see Figure 30.

In case that {z1,y1,v, w1} is a clique of G, by the before exposed, there
are two vertices s, s2 in G such that {x1,y1,v, w1, s}, s2} induces an an-

tenna.

N\ /&
w%n!ﬂ"\“x“.‘%/ 2

tot \’

tp

F1GURE 30. Case 1: Type 2 between a1, wg; Type 1 between wy,
w;+9; Type 9 between w,_1, as

Case 2: T, NT,,NT,, # 0 butTy,NT,, =0, or T, NT,,NT,, # 0 but
T,, NT,, = (. By our assumption, there is an edge in T[N]a1], X3] whose
label is contained in C. Hence T, N Ty, N T, = 0.

Clearly, there are two paths in G between a; and as; P = a1, x1, %2, as
and @ = a1, 1,9, Y2, az2. On the other hand, {x1, z2,y2, v} is a clique of G.
In this situations, x; may be in lab(e]). We know that there is an edge in
T[Y1, X5] whose label is contained in C. Let ¢ = AB be the nearest C' with
B € T[A,C], and m € lab(€) such that T}, is the shortest to N[as] and
Dm its leaf in T[C, Nlas]]. Observe that m is not v. Moreover Dm # Bj
otherwise T/ = T — {¢}, &} + AB} + A, B is a DV-model that can be rooted
on NJas], a contradiction.

On the other hand, we choose w; in label of edges in T'[Y7, Xa] with the
Election 1 taken A = Y7 and B = X5. Let w, be the last vertex chosen,
and Dw,, be the leaf of w, to N]ag]. Observe that w, may be x; or m.

If m = z1, let X{X; be the edge of T with X| € T[X;, N[ag]]. As X3
dominates € it follows by Claim 2 that for all edge & € T[C, X}] lab(e) ¢ B.
Then we choose vertices in the label of edges in T[C, X’] through Elec-
tion 1 with A = X{ and B = C such that are not in B. Let z; be these
vertices chosen for ¢ = 1,..,0, and z, be the lasted vertex chosen. As
in the Case 1, we will analyze if Iz, is or not in T(B, X5], and we ob-
tain special connection of Type 4, 5 or 6, taken x; instead of w; in Case
1. More clearly, {a1,z1,91}, {x1,v,01}, {22,92,a2}, {v, z1,22,¥2,2},
{#i,2i+1,0, 21} i=1..0-1, {U,v,21} and {v,x1,22,t} are cliques of G; so
there is a special connection of Type 4 between y;, as, and of Type 1
between aj, v; see Figure 31. Or {ai,z1,y1}, {z1,v,91}, {x2,y2,a2},
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FI1GURE 31. Case 2: Type 4 between y;, as and Type 1 between aq, v

{2i; zig1, v, 21 bz, 015 {u, v, 21}, {0, @1, 20, T2yt ST {tp, T2, Y2, 20, 1,0},
{t,x1, v, t1}, {tistit1, v, 21, 2o bi=1,.. p—1 and {v, T1, T2, Y2, 70, 51} are cliques
of G; so there is a special connection of Type 5 between y;, as and of
Type 1 between a1, v. Or {a1,z1,y1}, {x1,v,91}, {22,¥y2,a2}, {zi, zit1,
’Uaxl}izl,.,oflv {U,’U, Zl}, {tvvvml,tl}» {ti»tiJrlvUv xlvzo}izl,..,pflv {tpax%
v, 1, %o} and {v, x1, T2, Y2, 20} are cliques of G; so there is a special con-
nection of Type 6 between y1, as, and of Type 1 between a1, v; see Figure
32.

FIGURE 32. Case 2: Type 5 between y1, a2 and Type 1 between
a1, v or Type 6 between y1, as and Type 1 between aq, v

If m = wy,, let P =ay,y1,wr,..,wy,,Ta,a2 and Q' = a1, z1,y2,as be
paths in G between a; and ay. Hence there is a special connection of
Type 4 or Type 5 or Type 6 between w,_1 and as. More clearly, {a;,x1,
yi}, {wn 2y}, {wi wivn, @1tz -1, {72, 92, 02, } {22, w0, 21}, {20,
1, Wn, T2, Y2}y {Zis Zit1; Wn, T1}i=1,.0—1 and {z1,x1,u} are cliques of G.
Or {a1, 21,91}, {w1, 21,91}, {wz‘,wi+1,$1}z‘:1,..,n—1, {w2,92, a2, }, {tp,y%
T2, Zo, Wi, T1}, {22, tp, 2oy S5 Wniy T1}, {20, tis Lig1, X1, Wn izt p—1, {t, Wn, 21,
t1}, {20, %1, Wn, 2, Y2}, {24, Zig1, Wn, X1 }iz1,.. 0—1 and {21, 21, u} are cliques
of G. Or {ay,z1,y1}, {wi,z1, 1}, {wi, wivr,z1tiz1, -1, {22,92, a2, },
{y2, 22, 20, W, 1}, {22, tp, 20y Why 1}, {20y tis tig1, 1, Wn iz, p—1, {L, Wn,
x1, t1}, {Zi, Zig1, Wn, T1}i=1,.0—1 and {21, x1, u} are cliques of G; see Figure
33.

If m # z1,w,, let P/ =ay,y1, w1, .., wn,T2,a0 and Q' = a1, x1,y2,as be
paths in G between a; and as. Hence there is a special connection of Type
4 or Type 5 or Type 6 or Type 7 or Type 8 or Type 9 between w,_1 and as
considering the analysis of Case 1 when there are another edge contained

in C.
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FicURE 33. Case 2: Type 4 or Type 5 or Type 6 between w,,_1,
az and Type 1 between aq, w;

Case 3: T,, NT,, NT,, NT,, # 0. Clearly, there are two paths in G
between a; and as. Let P = a1,y1,y2,a2 and QQ = aq,x1,x2,a2 be paths
in G. Also {z1,y1,x2,y2} is a clique of G. By the existence of an edge
e € T[NJa1], X2] such that lab(e) C C, we have z; € C'and y; € C. Observe
that N[a1]A; has label contained in C, and may have other edge. On the
other hand, z; and y; can not be both vertices of lab(e}) otherwise T" =
T —{NJa1]A1, €} + Nla1] B} + A1 A1 is a DV-model of G rooted on Nas],
a contradiction. Hence y; ¢ lab(e}), moreover y; ¢ B. Let Y]Y; € E(T)
be such that Y/ € T[Y, N[as]], and let € = AB be the closest edge to C
dominated by Y;. Clearly lab(e) C C. By Claim 2, for all ¢’ € T[C,Y/], we
have lab(e’) ¢ B. By the before exposed, there are vertices z; € lab(e') — B
which were chosen through Election 1, and if z, is the last vertex chosen
then analyzing where is [z,, we obtain the situations describe in Case 1,
i.e there is a special connection of Type 4 or Type 5 or Type 6 taken
wp, = y1 and v = x1. More clearly, {a1,z1,y1}, {72, 2, a2, }, {t, 22,91, 71},
{20, 21,91, T2, 42}, {205 2i41, Y1, 21 Fi=1,...0-1 and {z1,71,u} are cliques of
G. Or {alaxh y1}7 {$2;y27a27 }7 {t:my% 33272073/171'1}7 {xQJtP720787y17$1}7
{20, tis tiv1, 1, Y1 }i=1,..p—1, 16 y1, 71, t1 )}, {20, 71,5 Y1, T2, Y2}, {205 2i1, Y1,
Z1}i=1,.0—1 and {z1,x1,u} are cliques of G. Or {a1,x1,y1}, {z2,¥2, a2, },
{y2, 22, 20, y1, 21}, {22, tps 20, Y1, 21} {200 tis ti1s X1, Y1 bzt p—15 {T Y1, 21,
t1}, {zi, zig1,Y1, T1 Fi=1,..,0-1 and {z1, z1, u} are cliques of G; see Figure 34.

O

The following Corollary allows us to construct different forbidden induced sub-
graphs for rooted directed path graphs to those described in [1].

Corollary 2. Let G be a DV graph with an asteroidal quadruple {a1,as,as,a4}. If
ay,as and as,ay are linked by a special connection then G is not an RDV graph.

Proof. Let @), be a clique that contains a, for ¢ = 1,2, 3,4 and T be a DV-model of
G. As ay,a2,a3,a4 is an asteroidal quadruple then T[Qq,, Qays Qass Qa,) has four
leaves. By Theorem 1, T'(a1,az2) and T'(as, a4) are directed path then T' can not be
rooted. Therefore G is not an RDV graph. (]
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FiGURE 34. Case 3: Type 4 or Type 5 or Type 6 between a1, as
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