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Avena fatua is an invasive weed of the semiarid region of Argentina. Seedling emergence patterns are very
irregular along the season showing a great year-to-year variability mainly due to a highly unpredictable
precipitation regime. Non-linear regression techniques are usually unable to accurately predict field
emergence under such environmental conditions. Artificial Neural Networks (ANNs) are known for their
capacity to describe highly non-linear relationships among variables thus showing a high potential appli-
cability in ecological systems. The objectives of the present work were to develop different ANN models
for A. fatua seedling emergence prediction and to compare their predictive capability against non-linear
regression techniques. Classical hydrothermal-time indices were used as input variable for the develop-
ment of univariate models, while thermal-time and hydro-time were used as independent input variables
for developing bivariate models. The accumulated proportion of seedling emergence was the output var-
iable in all cases. A total of 528 input/output data pairs corresponding to 11 years of data collection were
used in this study. Obtained results indicate a higher accuracy and generalization performance of the
optimal ANN model in comparison to non-linear regression approaches. It is also demonstrated that
the use of thermal-time and hydro-time as independent explanatory variables in ANN models yields bet-
ter prediction than using combined hydrothermal-time indices in classical NLR models. The best obtained
ANN model outperformed in 43.3% the best NLR model in terms of RMSE of the test set. Moreover, the
best obtained ANN predicted accumulated emergence within the first 50% of total emergence 48.3% bet-
ter in average than the best developed NLR model. These outcomes suggest the potential applicability of
the proposed modeling approach in weed management decision support systems design.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction portional to the amount by which soil temperature and soil
Field emergence predictive models are essential tools for the
development of weed management support systems aimed to de-
sign sustainable weed control programs while optimizing crop
yield. Such models should be able to minimize the degree of uncer-
tainty on the estimation of the time and magnitude of seedling
emergence (Forcella et al., 2000).

Empirical models have been based on the effect of soil temper-
ature and soil water potential to predict weed seedling emergence
in agronomical systems. Soil microclimate derived indices such as
hydrothermal-time or thermal-time are commonly used for model
development to quantify the effect of the above mentioned envi-
ronmental variables. They assume that emergence rates are pro-
ll rights reserved.
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water potential exceed a given threshold value for such environ-
mental factors (Bradford, 2002). Based on these indices, non-linear
regression (NLR) sigmoid shaped models (Weibull, Gompertz, Lo-
gistic, etc.) have been extensively adopted for weed emergence
prediction in the field (Forcella, 1998; Roman et al., 2000; Legu-
izamón et al., 2005; Schutte et al., 2008; Hadi and González-Andú-
jar, 2009; Royo-Esnal et al., 2010). Such models provide adequate
representation for regular, single cohort, emergence patterns, typ-
ical of temperate environments where precipitations are not sea-
sonally restricted. However, they are not expected to represent
well complex weed emergence patterns, as those observed in re-
gions of highly variable soil environmental conditions. One of the
limitations of the classical models for weed emergence prediction
is that they are univariate. Therefore, they require the use of only
one explanatory variable. If it is desired to investigate several
independent explanatory variables to estimate emergence, some
alternative modeling approach is required. Another limitation with
classical emergence models is that the underlying non-linearity is
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fixed. As pointed out in Cao et al. (2011) ‘‘parametric models are
sometimes not flexible enough to capture complex features in the
hydrothermal time distribution, such as abrupt jumps or heavy tails’’.
If more flexible structures are required, other approaches should be
adopted.

Avena fatua L. is a noxious weed species distributed worldwide
which produces severe yield and quality losses in cereal and oil seed
crops (Holm et al., 1977; Sharma and Van den Born, 1978). Several
empirical NLR models were developed specifically for
A. fatua field emergence prediction (Page, 2004; Page et al., 2006;
Martinson et al., 2007). These models adequately described typical
S-shaped cumulative emergence curves as a function of hydrother-
mal-time showing a good correlation between observed and
predicted emergence data. Conversely, in the semiarid region of
Argentina, A. fatua shows an irregular seedling emergence behavior
along the season and a great variability among years mainly due to a
highly unpredictable precipitation regime, also influenced by a fluc-
tuating thermal environment and seed dormancy level variations
within the population. For this system, Moschini et al. (2009,
2011) observed a limited capability to predict field emergence
dynamics at the onset of the germination time-window using a
hydrothermal-time based Weibull model. Therefore, alternative
modeling approaches are required to study such a complex system.

Artificial Neural Networks (ANNs) are machines with complex
functional relations learnable with a limited amount of training
data emulating data processing functions of the brain (Çakmak
and Yıldız, 2011). ANNs are known for their capacity to describe
highly non-linear relationships among variables thus showing a
high potential applicability in ecological systems (Lek and Guégan,
1999). Among the most attractive features of ANNs for empirical
modeling are the possibility of using any number of input (explan-
atory) variables and a flexible modeling framework, non-depen-
dant on specific underlying non-linear structures.

As reviewed by Huang et al. (2010), most ANNs based works in
agricultural and biological engineering have been accomplished
using a multilayer feed-forward ANN. The feed-forward network
with a single hidden layer that contains a finite number of neurons
implementing an arbitrary activation function was proven to be a
universal approximator for solving non-linear mapping problems
of high complexity level (Cybenko, 1989; Hornick et al., 1989;
Huang et al., 2010).

In the last decade, ANNs have been systematically adopted to
model many agronomical systems (Park et al., 2005; Saberali et al.,
2007; Alvarez, 2009; Fortin et al., 2010; Dai et al., 2011). However,
to the best of our knowledge, no applications of ANNs for modeling
weed emergence have been reported in the open literature. Only re-
cently, preliminary ANNs emergence models were developed for A.
fatua, based on meteorological data (Chantre et al., 2011a) and soil
microclimate derived indices (Chantre et al., 2011b).

The objectives of the present work were to: (i) develop different
ANN models for A. fatua emergence prediction based on soil micro-
climate derived indices for the semiarid region of Argentina; (ii)
obtain an optimal ANN model to predict field emergence patterns;
(iii) compare the predictive accuracy of non-linear regression mod-
els with the ANN approach.
2. Materials and methods

2.1. Field experimental data

A. fatua emergence data was collected at weekly intervals from
2000 to 2010 at the experimental field of EEA INTA Bordenave
(37�500S; 63�010W), located in Buenos Aires province, Argentina.
The experiment was conducted on an undisturbed field with a high
natural population density of A. fatua without crop presence. Seed-
ling counting was performed on three quadrats (1 m2 each) ran-
domly distributed on the field.

2.2. Estimation of soil temperature and soil water potential

The Soil Temperature and Moisture Model (STM2) developed by
USDA-ARS (http://www.ars.usda.gov/services/software/software.
htm) was used to estimate soil microclimate conditions (Spokas
and Forcella, 2009). STM2 is a user-friendly software for soil tem-
perature and moisture modeling which requires very limited user
input data.

STM2 is general in purpose and calculates soil moisture and
temperature based on soil composition and daily minimum and
maximum air temperature and precipitation. The model was tested
for many global sites in Spokas and Forcella (2009). Specifically for
the Bordenave region (Argentina), STM2 predictions were validated
against experimental data showing satisfactory agreement (Dami-
ano et al., 2010).

The model was calibrated using soil site-specific parameters:
soil texture (sandy loam = 53% sand, 31% silt, 16% clay), organic
matter content (3.1%) and bulk density (1.2 Mg/m3). Daily mean
soil temperature (T) and water potential (W) at 1 cm burial depth
were estimated using weather data registered at a meteorological
station located in the experimental field.

Evidence suggests that seeds of A. fatua might be located within
the 0–5 cm of the soil layer depending on the tillage degree (Dami-
ano et al., 2010). In this work, 1 cm was considered to be a repre-
sentative seed burial depth of an undisturbed soil condition
emulating a non-tillage field scenario. However, the choice of the
optimal depth for soil microclimate calculation is an open issue,
since large differences in hydrothermal-time can exist between
different soil layers, as demonstrated in Cao et al. (2011).

2.3. Input variables for emergence models

Recent models for weed emergence prediction adopt hydrother-
mal-time as explanatory variable since both, temperature and
moisture have proven to be critical variables for seedling emer-
gence. Therefore, an index that combines both magnitudes is nec-
essary for the development of univariate models. In Martinson
et al. (2007) it was demonstrated that a hydrothermal-time based
Weibull model predicted far more accurately than its thermal-time
counterpart in years with dry periods occurrence. Similar evidence
has been also reported by Leguizamón et al. (2005) and McGiffen
et al. (2008). For the specific case of the Bordenave region, it has
been reported that NLR hydrothermal-time based models outper-
form thermal-time based ones (Moschini et al., 2009, 2011). Based
on these arguments and on the fact that the region under study is
characterized by severe soil moisture limitations, a hydrothermal-
time index was adopted in this contribution for the univariate
modeling approach.

The following indices were used as input variables for model
development: hydrothermal-time (hHT) for univariate models,
thermal-time (hT) and hydro-time (hH) for bivariate models.

2.3.1. Thermal time
Thermal-time (hT) accumulation for seedling emergence was

calculated according to Hammer et al. (1993):

hT ¼
X
i¼1;n

ðT � TbÞ if Tb < T < To ð1aÞ

hT ¼
X
i¼1;n

ðTo � TbÞ 1� T � Tb

Tm � Tb

� �
if To < T < Tm ð1bÞ

hT ¼ 0 otherwise ð1cÞ

http://www.ars.usda.gov/services/software/software.htm
http://www.ars.usda.gov/services/software/software.htm


Fig. 1. ANN architecture with three layers, two inputs and one output.
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Eqs. (1a) and (1b) are defined for the sub-optimal and supra-
optimal thermal ranges, respectively. T is the estimated mean daily
soil temperature, Tb, To and Tm are the base, optimal and maximum
temperatures for A. fatua seedling emergence, respectively. The fol-
lowing cardinal temperatures values were used: Tb = 1 �C (Cousens
et al., 1992), To = 15 �C and Tm = 35 �C (estimated from Sharma
et al., 1976).

2.3.2. Hydro-time (I)
Hydro-time (hI

H) was calculated as (Gummerson, 1986; Brad-
ford, 1990):

hI
H ¼

X
i¼1;n

ðW�WbÞ if W > Wb ð2aÞ

hI
H ¼ 0 otherwise ð2bÞ

where W is the estimated mean daily soil water potential and Wb is
the base water potential for emergence. A figure of Wb = �1.2 MPa
was adopted from Page (2004).

2.3.3. Hydro-time (II)
The following alternative definition of hydro-time was also

adopted (Leguizamón et al., 2005; Martinson et al., 2007):

hII
H ¼ 1 when W > Wb ð3aÞ

hII
H ¼ 0 when W < Wb ð3bÞ
2.3.4. Hydrothermal-time
Two alternative approaches for the hydrothermal-time (hHT)

calculation were considered:

hI
HT ¼ hTh

I
H ð4Þ

and

hII
HT ¼ hTh

II
H ð5Þ

where hI
H and hII

HT are defined according to (2) and (3), respectively.
It should be noticed that the definitions of thermal-time and hy-

dro-time are functions of the cardinal parameters (Tb, To, Tm and
Wb). For the purposes of this contribution, such parameters were
chosen following the work of other authors but there is evidence
that their values affect the prediction results (Moschini et al.,
2011). In this sense, many other explanatory variables could be ob-
tained by modifying the values of the cardinal parameters in the
definition of the thermal-time index (Eq. (1)). Moreover, by appro-
priately choosing the value of Wb in Eqs. (3a) and (3b), hII

HT reduces
to the actual thermal-time (hT), meaning that hT might be thought
as a particular case of hydrothermal-time. There also exist alterna-
tive definitions of hT different than that of Eq. (1) (Leguizamón
et al., 2005; Martinson et al., 2007).

2.4. ANN modeling

ANNs are modeling tools that provide a practical and flexible
framework for input–output data correlation. For a thorough intro-
duction to ANNs see Fausett (1994). In Fig. 1, a three layer feed-for-
ward ANN is depicted. The network has two inputs (x1, x2), one
output (y) and eight neurons in the hidden layer.

Each of the two input layer’s neurons receive one input (x1, x2)
and broadcasts such signal to each one of the hidden layer’s neu-
rons. Each hidden neuron computes its activation function and
sends its result (z1, . . . ,z8) to the output layer’s neuron which finally
produces the response of the network (y). The output signal of each
hidden neuron (zj) is calculated as:
zj ¼ f
X
i¼1;2

v ijxi þ v0j

 !
j ¼ 1; . . . ;8 ð6Þ

while the output of the network is given by:

y ¼ f
X
j¼1;8

wjzj þw0

 !
ð7Þ

In Eqs. (6) and (7) f(�) is the activation function of the network, vij

are the weights of the connections between the input and hidden
neurons and v0j is the bias on hidden neuron j. Similarly, wj repre-
sent the weights of the connections between the hidden and output
neuron and w0 is the bias on the output neuron.

Hyperbolic tangent sigmoid transfer functions (Eq. (8)) were
used, both in the hidden and the output layer’s neurons.

Y ¼ 2
1þ expð�2XÞ � 1 ð8Þ

In this contribution, a feed-forward neural network structure
with three layers was adopted (Fig. 1). Several ANNs with different
number of neurons in the hidden layer were investigated. Input/
output data was normalized to fall in the range [�1,1] to improve
the network performance (Maier and Dandy, 2001). The Neural
Network Toolbox of Matlab (Beale et al., 2011) was used for pro-
gramming the ANNs. The Bayesian Regularization algorithm was
selected for training purposes because it produces networks with
better generalization capabilities than other training options. It
updates the weights and biases values according to Levenberg–
Marquardt optimization, seeking to minimize a linear combination
of the squared errors and of the parameters’ magnitudes. Keeping
the network parameters small, the network response is ensured to
be smooth. The Bayesian Regularization method (Foresee and Ha-
gan, 1997) consists on the minimization of the following perfor-
mance function:

Fðy;WÞ ¼ uES þ nEW ð9Þ

where

ES ¼
1
N

X
i¼1;N

yt
i � y0

i

� �2 ð10Þ

and

EW ¼
1
N

X
j¼1;n

W2
j ð11Þ



Table 1
Results for univariate models based on hI

HT. m = total number of model parameters,
g = number of effective parameters, AICd = Akaike’s Information Criterion with
different weight on the penalty term, RMSE = root mean square error.

Model m g AICd RMSE

1 0.5 Train Test

AcEm = Weibull(hI
HT) 2 – �1.29 �1.29 0.224 0.204

AcEm = Logistic(hI
HT) 3 – �1.26 �1.26 0.232 0.191

AcEm = ANN1(hI
HT) 4 3.1 �1.21 �1.22 0.243 0.186

AcEm = ANN2(hI
HT) 7 4.7 �1.23 �1.25 0.235 0.200

AcEm = ANN3(hI
HT) 10 4.7 �1.22 �1.25 0.235 0.198

AcEm = ANN5(hI
HT) 16 7.8 �1.20 �1.25 0.233 0.194

Table 2
Results for univariate models based on hII

HT. m = total number of model parameters,
g = number of effective parameters, AICd = Akaike’s Information Criterion with
different weight on the penalty term, RMSE = root mean square error.

Model m g AICd RMSE

1 0.5 Train Test

AcEm = Weibull(hII
HT) 2 – �1.33 �1.33 0.215 0.187

AcEm = Logistic(hII
HT) 3 – �1.29 �1.30 0.222 0.177

AcEm = ANN1(hII
HT) 4 3.1 �1.30 �1.31 0.220 0.168

AcEm = ANN2(hII
HT) 7 4.9 �1.31 �1.32 0.215 0.180

AcEm = ANN3(hII
HT) 10 4.9 �1.29 �1.32 0.215 0.180

AcEm = ANN5(hII
HT) 16 7.7 �1.27 �1.32 0.214 0.178

Table 3
Parameters of the NLR models.

Parameters a b c d k

hI
HT

Weibull 964.8 1.161 – – –

Logistic – – 0.920 0.0022 952.5

hII
HT

Weibull 764.2 1.281 – – –

Logistic – – 0.962 0.0027 801.2
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Es is the mean sum of squares of the network errors. yt and y0 rep-
resent the target values and outputs of the network respectively. Ew

is the mean sum of squares of the network weights and biases rep-
resented by vector W. N is the size of the training data set. Param-
eters u and n are dynamically estimated as the network training
proceeds, together with the so called effective number of parameters
(g), a measure of how many of the weights and biases of the net-
work are effectively used in reducing the error function (Foresee
and Hagan, 1997).

2.5. NLR models

Weibull and logistic models (12), (13) were also developed to
model emergence data for comparison purposes.

y ¼ 1� exp � lnð2Þ x
a

� �b
� �

ð12Þ

y ¼ c
1þ expð�dðx� kÞÞ ð13Þ

In (12) and (13) y is the accumulated emergence (in proportion), x is
the applied hydrothermal-time index (hI

HT or hII
HT), a, b, c, d and k are

model parameters. A non-linear regression fitting routine was ap-
plied for parameters estimation using the Levenverg–Marquardt
algorithm.

2.6. Models analysis

In all cases goodness-of-fit measures were based on Akaike’s
information criterion (AIC) and root mean square error (RMSE) of
the training set. The predictive capability of the developed models
was based on the RMSE of the test set.

The general definition of AIC provided in Qi and Zhang (2001)
was adopted (Eq. (14)), where m is the number of parameters of
the model, N is the number of observations and d is a user defined
constant, which allows the tuning of the penalty term.

AICd ¼ logðRMSE2Þ þ 2md

N
ð14Þ

It should be noticed however that quantitative analysis of ANNs
is open since many classical model selection criteria do not seem to
be straightforwardly applicable to this modeling approach. On one
side there is evidence that penalty-based in-sample criteria are not
adequate measures for ANNs comparison as reported by Qi and
Zhang (2001). In particular, AIC and BIC methods tend to over-
penalize ANN model complexity making the model under-fit the
data. Moreover, the different alternatives of AIC and BIC may lead
to different ‘‘best’’ models making the analysis subjective. Addi-
tionally, as also stated in Qi and Zhang (2001), model selection
based on in-sample data either by penalty-based criteria or no-
penalty-related performance measures (MAE, RMSE, MAPE, etc.)
is not always consistent with the best performances in out-sample
data (test sets).

2.7. Training and test sets

A total of 528 input/output data pairs corresponding to 11 years
of data collection were divided into training (82%) and test (18%)
subsets. Although the meteorological conditions of the different
years were quite diverse, 9 of 11 years of the data pool were char-
acterized by moderate to severe soil water availability limitations
for seedling emergence, regarding the period where W < Wb. Thus,
the training set was chosen such that a wide spectrum of precipi-
tation scenarios was included. In order to expose the performance
of the derived models, years 2006 and 2008 were selected as test
subsets representing extreme and intermediate drought condi-
tions, respectively.
3. Results

3.1. Models developed

Several univariate models were tuned with the available data
set. In all cases, accumulated emergence (AcEm) was adopted as
output variable and calculated as a function of the previously de-
scribed indices: hI

HT, hII
HT. Specifically, the following models were

developed: AcEm = Weibull(hHT), AcEm = Logistic(hHT) and AcE-
m = ANNhn=1,5(hHT), where hn represent the number of neurons in
the hidden layer.

In Tables 1 and 2, the results corresponding to hydrothermal-
time based models are reported. The number of parameters of each
model (m) is shown together with statistical measures. For the
ANNs, the number of effective parameters (g), meaning the
number of model parameters which effectively reduce the error
function, are also provided. In Table 3, the parameters correspond-
ing to the NLR models are presented.

Alternatively, a bivariate modeling approach based on ANNs
using thermal-time and hydro-time as two independent variables
was proposed. Specifically the following networks were studied:
AcEm = ANNhn(hT, hI

H), where hn = 1, 2, 3, 5, 6, 7. In Table 4, the
statistical results for the different networks are presented.



Table 4
Results for bivariate ANNs based on hT and hI

H. m = total number of model parameters,
g = number of effective parameters, AICd = Akaike’s Information Criterion with
different weight on the penalty term, RMSE = root mean square error.

Model m g AICd RMSE

1.0 0.5 Train Test

AcEm = ANN1(hT, hI
H) 5 4.1 �1.98 �1.99 0.100 0.122

AcEm = ANN2(hT, hI
H) 9 7.6 �2.00 �2.03 0.096 0.120

AcEm = ANN3(hT, hI
H) 13 10.2 �1.99 �2.03 0.095 0.120

AcEm = ANN5(hT, hI
H) 21 15.5 �1.97 �2.04 0.093 0.108

AcEm = ANN6(hT, hI
H) 25 20.1 �1.97 �2.05 0.092 0.106

AcEm = ANN7(hT, hI
H) 29 26.1 �1.98 �2.08 0.089 0.089
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3.2. Models performance

Obtained results for models with hI
HT (Table 1) showed that the

Weibull model outperformed all other models based on AIC and
RMSE measures of the training set. However, ANN1 predictions
outperformed NLR and all other ANN models, as indicated by RMSE
values of the test set (Table 1). Similarly, for hII

HT based models, AIC
selected the model with the lowest number of parameters (Table 2)
as the best modeling alternative (Weibull). Conversely, the model
with the best predictive performance was ANN1, as indicated by
the lowest RMSE value of all tested models.

According to the AIC method, the best single-input variable
modeling alternative would be the NLR-Weibull (hII

HT) model
(Table 2). However, the ANN1(hII

HT) model showed the best predic-
tive performance based on the test RMSE.

Predicted cumulative emergence curves for both NLR-Weibull
(hII

HT) and ANN1(hII
HT) models vs. observed data are presented for

two test years of different precipitation regimes (Fig. 2).
It can be seen that both models have a low predictive perfor-

mance. Under severe drought conditions, the accumulated emer-
gence was significantly overestimated in a large proportion
during the first part of year 2006 and underestimated during the
remaining period (Fig. 2A). Such notorious overestimation was reg-
istered since the onset of the emergence time-window (March
2006) till August 2006 in coincidence with a 136 day-period of pre-
cipitation deficit (W < Wb).

For a year of intermediate soil water availability (Fig. 2B), the
models provide an acceptable prediction for the first emergent co-
hort but significantly underestimate the second. The biphasic
Fig. 2. Observed vs. predicted A. fatua cumulative emergence curves for Wei
emergence pattern observed in the field was partially due to a
44 day-period of precipitation deficit concentrated between April
and May 2008. Although, such drought period did not affect model
predictions for the first cohort, the second cohort was greatly
underestimated indicating the inability of such models to ade-
quately predict the remaining of the seedling emergence after soil
water replenishment by precipitation.

For bivariate ANNs, a higher predictive capacity was observed
as the number of hidden neurons and therefore the number of
effective parameters (g) increased (Table 4). Model selection based
on AIC was clearly affected by the penalty term. For d = 1.0, ANN2

outperformed all other ANNs, while for d = 0.5, ANN7 seemed the
best modeling alternative. RMSE measures on both training and
test sets also indicate ANN7 as the best modeling option (Table 4).

By comparing Tables 2 and 4, it should be noticed that the
bivariate ANN2 model showed an improved prediction capacity
(RMSEtest = 0.120) compared to the best univariate ANN
(RMSEtest = 0.168). However, ANN2(hT, hI

H) offered a poor represen-
tation along the whole season, together with the inability to prop-
erly identify the zones of extreme accumulated emergence (Fig. 3).

ANN7 allowed for the closest representation of the observed
emergence data along the whole season for both test years
(Fig. 4). However, such an improvement was obtained at the ex-
pense of an unrealistic behavior, a reduction of the accumulated
emergence, several times along both seasons. Such a behavior sug-
gests that ANN7 is a model with an excessive number of parame-
ters (Table 4) which produces data over-fitting and yields a
(locally) reduced generalization capability.

In order to overcome ANN7 unrealistic predictions while mini-
mizing the prediction error, the ANN6 predictive outcome was
studied.

ANN6 (Fig. 5) showed a smooth prediction with excellent repre-
sentation at low and high accumulated emergences (beginning and
end of the season, respectively). However, for year 2006, ANN6

overestimated emergence from June till October while for 2008
both emergence cohorts were somewhat underestimated.

From these results, ANN6 model was selected as the best bivar-
iate modeling alternative based on both test error based measure
(RMSEtest = 0.106) and a satisfactory qualitative representation of
A. fatua cumulative emergence curves.

Prediction errors of the best univariate and bivariate modeling
alternatives, NLR-Weibull (hII

HT) model (AIC selected) and ANN6

(hT, hI
H) model (quantitatively and qualitatively selected) are
bull(hII
HT) and ANN1(hII

HT) models for the test set: 2006 (A) and 2008 (B).



Fig. 3. Observed vs. predicted A. fatua cumulative emergence curves for ANN2(hT, hI
H) model for the test set: 2006 (A) and 2008 (B).

Fig. 4. Observed vs. predicted A. fatua cumulative emergence curves for ANN7(hT, hI
H) model for the test set: 2006 (A) and 2008 (B).

Fig. 5. Observed vs. predicted A. fatua cumulative emergence curves for ANN6(hT, hI
H) model for the test set: 2006 (A) and 2008 (B).
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Fig. 6. Prediction errors of Weibull(hII
HT) and ANN6(hT, hI

H) models for the test set: 2006 (A) and 2008 (B) as a function of different A. fatua cumulative emergence percentages.
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reported for the test set at specific cumulative emergences (Fig. 6).
An average improvement of 69.5%, 60.0% and 15.5% was obtained
with the ANN-6 compared to the NLR-Weibull model at 15, 30
and 50% of A. fatua observed cumulative emergence, respectively.

4. Discussion and agronomic insight

From the analysis of the previous sections, the following leading
conclusions can be drawn:

i. For the system under study, hydrothermal-time index based
models are poor predictors of A. fatua field emergence pat-
terns, no matter the modeling framework (NLR or ANNs).

ii. ANNs with thermal-time and hydro-time as independent
input variables provide better predictions than univariate
hydrothermal-time approaches.

iii. In the bivariate ANN modeling approach, as the number of
neurons (parameters) increase, goodness of fit (RMSEtrain)
and prediction (RMSEtest) measures were improved.

iv. If parsimony is heavily weighted in the AIC evaluation
(d = 1.0), ANNs with a small number of parameters (neurons)
are preferred.

v. If parsimony is less weighted in the AIC evaluation (d = 0.5), ANNs
with a large number of parameters (neurons) are preferred.

vi. ANNs with a large number of parameters predicts unrealistic
reductions in accumulated emergence (i.e. ANN7).

None of the statistical measures used for evaluating models per-
formance (AIC and RMSE) allowed determining the optimum num-
ber of parameters of the network, since a compromise between
error minimization and parsimony could be obtained only by
graphical inspection of the predictions against the observed data.
Thus, our results agree with Qi and Zhang (2001), in the sense that
neither penalty-based in-sample (training set) criteria nor no-pen-
alty-related performance measures seem to be adequate tools for
ANNs assessment. In addition, as stated by Qi and Zhang (2001),
such measures are not always consistent with the best perfor-
mances in out-sample data (test sets).

In our study, bivariate ANN6 (thermal-time and hydro-time
based) model was considered the best modeling alternative since
it provides the closest representation of the data while verifying
the actual, ever increasing behavior of the accumulated emergence.

Our results confirmed the limited capability of hydrothermal-
time based Weibull models to accurately predict the onset of
A. fatua emergence ‘‘time-window’’ under semiarid conditions
(Moschini et al., 2009, 2011). As stated by Martinson et al.
(2007), models that significantly under-predict seedling emer-
gence will produce delayed control leading to prolonged competi-
tion, additional herbicide applications and reduced crop yields. On
the other hand, over-prediction would induce early control inter-
ventions allowing late emergence cohorts to prosper leading to
competition and seed bank replenishment.
From an agronomic point of view, an accurate prediction of
weed emergence flushes is vital in the design of effective control
tactics. The proposed model would help to improve decision-mak-
ing regarding sustainable weed management practices in semiarid
regions. Finally, it should be mentioned, that better results could
be obtained if the data sets were classified according, for example,
to low, medium and high precipitation regimes and a specific mod-
el adjusted for each case. This way the decision maker would have
a more specific predictive tool adapted for a year of particular
weather features. Moreover, a more accurate prediction of the on-
set of A. fatua emergence ‘‘time-window’’ could be obtained by
using training data belonging, for example, to the first 50% of
cumulative emergence. However, such approaches were not
adopted here since the objective was to investigate the perfor-
mance of the different ANNs for the whole emergence spectrum.

5. Conclusions

ANNs for empirical modeling allow the use of any number of in-
put variables and provides a flexible modeling framework
non-dependant on specific underlying non-linear structures. These
features redounded in improved prediction capability compared to
the commonly used univariate non-linear regression approaches.

From a practical agronomical perspective, these results suggest
that the development of ANN models offer an enormous potential
to be implemented as emergence predictors within weed manage-
ment decision support tools currently under development (Lodovi-
chi et al., 2012).

Additional studies, including the use of alternative explanatory
variables and seed burial depths would be of interest. Moreover,
complementary analysis aimed to quantify the contribution of
each input variable to the ANNs outcome would serve to improve
the understanding of the underlying ecological and biological pro-
cesses, which are difficult to unravel within a network (Olden and
Jackson, 2002).

Finally, it should be stressed that despite the acceptable predic-
tive outcome of the developed ANN models obtained in this work,
the approach remains a ‘‘black box’’. Process-based deterministic
models, as those used for crop growth calculation (Brisson et al.,
2008) might be conceived in order to represent the underlying bio-
logical processes of weeds physiology. Further studies should focus
on the development of seed dormancy and germination models in
order to address the estimation of emergence from a more mecha-
nistic approach.
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