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Global stability results for switched systems
based on weak Lyapunov functions

José L. Mancilla-Aguilar, Hernan Haimovich and Rafael A. Garcı́a

Abstract—In this paper we study the stability of nonlinear
and time-varying switched systems under restricted switching.
We approach the problem by decomposing the system dynamics
into a nominal-like part and a perturbation-like one. Most
stability results for perturbed systems are based on the use of
strong Lyapunov functions, i.e. functions of time and state whose
total time derivative along the nominal system trajectories is
bounded by a negative definite function of the state. However,
switched systems under restricted switching may not admit
strong Lyapunov functions, even when asymptotic stability is
uniform over the set of switching signals considered. The main
contribution of the current paper consists in providing stability
results that are based on the stability of the nominal-like part
of the system and require only a weak Lyapunov function.
These results may have wider applicability than results based
on strong Lyapunov functions. The results provided follow two
lines. First, we give very general global uniform asymptotic
stability results under reasonable boundedness conditions on the
functions that define the dynamics of the nominal-like and the
perturbation-like parts of the system. Second, we provide input-
to-state stability (ISS) results for the case when the nominal-like
part is switched linear-time-varying. We provide two types of ISS
results: standard ISS that involves the essential supremum norm
of the input and a modified ISS that involves a power-type norm.

I. INTRODUCTION

Switched systems appear naturally in many engineering
instances or as abstractions of more complicated systems [1]–
[4]. The stability properties of switched systems have been
extensively investigated in the last two decades (see [1], [2],
[5]–[7] and references therein).

Lyapunov functions are central tools in the study of sta-
bility of nonautonomous (non-switched) nonlinear systems
(see, e.g. [8]–[10]). Loosely speaking, Lyapunov functions
can be classified as either strong or weak, depending on
whether their mere existence is enough to ensure uniform
asymptotic stability (strong) or just uniform Lyapunov stability
(weak). In some cases, a strong Lyapunov function can be
constructed if a weak one is available [11]–[14]. Although a
weak Lyapunov function by itself gives no asymptotic stability
guarantee, it can be supplemented with extensions of LaSalle’s
invariance principle [15] (see [16] and references therein)
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or other approaches (such as those based on persistence of
excitation [17]–[19]), in order to yield asymptotic stability.

For switched systems, the existence of a strong Lyapunov
function common to all of the subsystems implies that the
switched system is globally uniformly asymptotically stable
(GUAS) under arbitrary switching (the converse holds for
time-invariant switched systems [20]). As a consequence, no
strong Lyapunov function exists for a switched system that
is GUAS for switching signals within some proper class
but not GUAS under arbitrary switching. In many of these
cases, however, it is indeed possible to find a common
weak Lyapunov function (see the interesting discussion in
Example 2 in Section VI of [21]). This fact motivated the
development of several stability results for switched time-
invariant systems: extensions of LaSalle’s invariance principle
[22]–[29] and other approaches [30]–[33]. To the best of our
knowledge, results based on weak Lyapunov functions for
switched time-varying nonlinear systems can only be found
in [34]–[36], where the concept of persistence of excitation
plays a fundamental role.

For systems with inputs/disturbances, one of the most
useful formulations is given by the Input-to-State Stability
(ISS) property [37], [38]. As for ISS of switched nonlinear
systems under arbitrary switching, uniform (with respect to
the switching signals) ISS is equivalent to the existence of
a common ISS-Lyapunov function [39]. When no common
ISS-Lyapunov function exists but the ISS property holds for
each component subsystem, results for establishing ISS of the
switched system were given in [40] for dwell-time switching
and in [41] for average dwell-time switching. Recently, re-
sults for establishing ISS of switched systems where the ISS
property does not necessarily hold for all subsystems have
been given in [42], where the existence of an ISS-Lyapunov
function for each ISS subsystem is assumed.

In the first part of this paper we address the following
problem: assuming the existence of a weak common Lyapunov
function V for a switched time-varying nonlinear system
with switching signals belonging to some class S, determine
conditions under which the system is globally uniformly
asymptotically stable with respect to S (GUAS w.r.t. S, see
Definition 2.1 in Section II). We will prove that under reason-
able boundedness conditions, the switched system is GUAS
w.r.t. S when the dynamics of each component subsystem can
be decomposed into a switched time-varying part (denoted the
nominal switched system) that is GUAS, and a switched time-
varying part (denoted the perturbation) that satisfies a very
mild vanishing property. Although such an approach resembles
the classical one for perturbed systems (e.g. Chapter 9 of [8]),
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the techniques used in this paper differ greatly from standard
ones, since we do not assume V to be a Lyapunov function
for the nominal switched system.

In the second part of the paper we consider the following
problem: determine conditions under which a switched time-
varying nonlinear system with inputs/disturbances is ISS,
uniformly with respect to switching signals in some class S
(see Definition 4.1 in Section IV). We will give results for the
case in which the zero-input switched system dynamics can
be decomposed into a switched linear-time-varying (LTV) (the
nominal system) part, which is GUAS (and hence globally uni-
formly exponentially stable) with respect to S, and a switched
time-varying nonlinear one (the perturbation) which satisfies
specific bounds. Once again, our approach departs from the
standard one since no common ISS-Lyapunov function is
assumed to exist for the nominal switched system. In addition
to the standard ISS concept, we also provide results employing
a power-type norm instead of the supremum norm. This ISS
variant is stronger and provides a better description of the
behaviour of the system than the standard one.

The remainder of the paper is organized as follows. In
Section II, we state the problems addressed and introduce
some of the concepts and assumptions employed. Our main
results are contained in Sections III (GUAS) and IV (ISS).
The main body of the proofs of our main results are given in
Section V and some concluding remarks in Section VI. The
Appendix contains supplementary proofs for our ISS results.

Notation. N, N0, R, R≥0 and R>0 denote the natural
numbers, nonnegative integers, reals, nonnegative reals, and
positive reals, respectively. |x| denotes the Euclidean norm of
any x ∈ Rp. ‖A‖ and A′ denote, respectively, the induced
operator norm and the transpose of any matrix A ∈ Rm×p.
If g : R≥0 → Rp, τ ≥ 0 and I ⊂ R≥0 is an interval, then
gτ = g(·+τ) and gI : R≥0 → Rp is such that gI(s) = g(s) if
s ∈ I and gI(s) = 0 otherwise. For any interval I ⊂ R, L1(I)
is the set of Lebesgue integrable functions f : I → R. For any
n ∈ N, Un and L∞n denote the sets of all the locally essentially
bounded functions and respectively the set of all the essentially
bounded functions u : R≥0 → Rn. We note that L∞n ⊂ Un.
A Carathéodory function is a function h : R≥0 × Rn → Rn
such that h(t, ·) is continuous for every t ≥ 0 and h(·, ξ) is
Lebesgue measurable for every ξ ∈ Rn. We write α ∈ K
if α : R≥0 → R≥0 is continuous, strictly increasing and
α(0) = 0, and α ∈ K∞ if, in addition, α is unbounded.
Finally, β : R≥0 × R≥0 → R≥0 is a function of class KL if
β(·, t) ∈ K∞ for any t ≥ 0 and, for any fixed r ≥ 0, β(r, t)
monotonically decreases to zero as t→∞.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the switched time-varying nonlinear system

ẋ = f(t, x, σ) (1)

where x takes values in Rn, σ : R≥0 → Γ, with Γ an index
set, is a switching signal, i.e., σ is piecewise constant (it has at
most a finite number of jumps in each compact interval) and
continuous from the right (considering the discrete topology
in Γ), f : R≥0 × Rn × Γ → Rn, and fi(·, ·) = f(·, ·, i) is a

Carathéodory function for every i ∈ Γ. Given a family S of
switching signals, we say that (1) is forward complete w.r.t. S
if for every t0 ≥ 0, x0 ∈ Rn and σ ∈ S, any maximal solution
x of (1) corresponding to σ and such that x(t0) = x0 is defined
for all t ≥ t0. Along the paper we will employ the following
definition of global uniform asymptotic stability w.r.t. S, where
uniformity is understood in the strongest possible sense, i.e.
w.r.t. initial times and w.r.t. the switching signals in S.

Definition 2.1: System (1) is GUAS w.r.t. a family S of
switching signals if it is forward complete w.r.t. S and there
exists β ∈ KL such that for every t0 ≥ 0, x0 ∈ Rn and σ ∈ S,
any maximal solution x of (1) corresponding to σ such that
x(t0) = x0 satisfies

|x(t)| ≤ β(|x0|, t− t0) ∀t ≥ t0. (2)

Remark 2.1: The GUAS w.r.t. S property can be defined
equivalently in the classical ε − δ form, as it is done, for
example, in [34, Defn. 1]. The equivalence between these
definitions can be proved with the same technique used to
prove Proposition 2.5 in [43]. ◦

Throughout the paper, we require the following standing
assumptions.

Assumption 1: The function f in (1) can be written as

f(t, ξ, i) = f̂(t, ξ, i) + g(t, ξ, i), (3)

where f̂i(·, ·) = f̂(·, ·, i) is a Carathéodory function for every
i ∈ Γ, f̂(t, ·, i) is locally Lipschitz, uniformly in t and in i,
i.e. for all compact B ⊂ Rn, there exists L ≥ 0 such that
|f̂(t, ξ, i)− f̂(t, ξ′, i)| ≤ L|ξ − ξ′| for all ξ, ξ′ ∈ B, all t ≥ 0
and all i ∈ Γ, and the switched system (4) is GUAS w.r.t. S.

ẋ = f̂(t, x, σ) (4)

For ease of reference, f̂ will be called the nominal system
function and g the perturbation term. The nominal system (4)
is often a ‘simplified’ version of the system (1) for which the
GUAS w.r.t. S property is easier to prove.

Assumption 2: There exists a common weak Lyapunov
function V for (1), i.e. V : R≥0 × Rn → R is continuously
differentiable, and

i) there exist φ1, φ2 ∈ K∞ such that

φ1(|ξ|) ≤ V (t, ξ) ≤ φ2(|ξ|), ∀ξ ∈ Rn, ∀t ≥ 0; (5)

ii) for all i ∈ Γ, all t ≥ 0 and all ξ ∈ Rn,

V̇i(t, ξ) :=
∂V (t, ξ)

∂t
+
∂V (t, ξ)

∂ξ
fi(t, ξ) ≤ −ηi(t, ξ), (6)

where ηi : R≥0 ×Rn → R≥0 is a Carathéodory function
for every i ∈ Γ.

Remark 2.2: Without loss of generality, we may assume
that the function η : R≥0 × Rn × Γ → R in (7) is bounded
on [0, T ] × B × Γ for every T ≥ 0 and every compact set
B ⊂ Rn. Otherwise, just replace ηi by min{ηi(t, ξ), |ξ|2}. ◦

η(t, ξ, i) := ηi(t, ξ) (7)

Remark 2.3: It must be pointed out that the function V in
Assumption 2 is not necessarily a Lyapunov function (be it
weak or strong) for the nominal system (4). ◦
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In Section III, we give GUAS results for the switched
system (1), based on weak Lyapunov functions. In Section IV,
we consider system (1) under the effect of disturbances:

ẋ = f(t, x, σ) +G(t, x, σ)u, (8)

where G : R≥0×Rn×Γ→ Rn×m, every column of G(·, ·, i)
is a Carathéodory function for every i ∈ Γ, and u represents
the disturbance input. By ‘input’ we mean a function u ∈ Um.
We will give conditions to establish ISS of (8) uniformly over
switching signals in a given set S when only a weak Lyapunov
function is available for the zero-input system (1).

III. GLOBAL UNIFORM ASYMPTOTIC STABILITY

This section focuses on GUAS results for switched nonlin-
ear time-varying systems, based on weak Lyapunov functions.
Results are given by imposing additional assumptions on the
nominal system function f̂ and on the perturbation term g
appearing in Assumption 1. We will require the following
boundedness condition.

Definition 3.1: A function h : R≥0 × Rn × Γ → Rp is
uniformly bounded if h is bounded on R≥0×B×Γ for every
compact set B ⊂ Rn.

Assumption 3: The nominal system function f̂ and the
perturbation term g in (3) are uniformly bounded.
We are now ready to formulate our main GUAS result.

Theorem 3.1: Consider (1) and a family S of switching
signals, for which Assumptions 1 to 3 hold. In addition,
suppose that the functions g in Assumption 1 and η in (7)
satisfy the following condition:
(C) If {(tk, ξk, ik)} is a sequence in R≥0 × Rn × Γ such

that tk → ∞ and for some 0 < ε ≤ 1, ε ≤ |ξk| ≤
1/ε for all k then limk→∞ η(tk, ξk, ik) = 0 =⇒
limk→∞ g(tk, ξk, ik) = 0.

Then, (1) is GUAS w.r.t. S.
The proof of Theorem 3.1 requires the concept of output-
persistent excitation introduced in [34]. A particular case of
this definition directly adapted to our problem is given next.

Definition 3.2: Let f be as in (1) and let h : R≥0 × Rn ×
Γ→ Rp be such that for every continuous function z : R≥0 →
Rn and for every switching signal σ ∈ S, h(·, z(·), σ(·)) is
Lebesgue measurable and locally essentially bounded. The pair
(h, f) is output-persistently exciting (output-PE) w.r.t. S if
for every 0 < ε ≤ 1 there exist T = T (ε) > 0 and r =
r(ε) > 0 such that for every solution x of (1) corresponding
to a switching signal σ ∈ S and every t ≥ 0 the following
implication holds

ε ≤ |x(τ)| ≤ 1

ε
, ∀τ ∈ [t, t+ T ] =⇒∫ t+T

t

|h(τ, x(τ), σ(τ))|2 dτ ≥ r. (9)

Lemma 3.1: Under the assumptions of Theorem 3.1, the
pair (h, f), with h : R≥0 × Rn × Γ→ R defined via

h(t, ξ, i) =
√
η(t, ξ, i)

with η as in (7), is output-PE w.r.t. S.

Note that h in Lemma 3.1 is well defined and satisfies the mea-
surability and local essential boundedness conditions in the
first part of Definition 3.2 due to Assumption 2, Remark 2.2,
and the fact that a switching signal is piecewise constant. The
proof of Lemma 3.1 is given in Section V-A.

Theorem 3.1 is a straightforward consequence of
Lemma 3.1 and the following result, which is a corollary of
Theorem 2 in [34].

Theorem 3.2: Consider (1) and a family S of switching
signals. Let Assumption 2 hold and the pair (h, f), with h
as in Lemma 3.1, be output-PE. Then (1) is GUAS w.r.t. S.

Proof: The theorem readily follows from Theorem 2 in
[34], since the hypotheses of that theorem are fulfilled with
Φ the set of all the pairs (x, σ) with x a maximal solution of
(1) corresponding to σ ∈ S and the covering χ = {χi}i∈Γ,
with χi = Rn for all i ∈ Γ. In fact, Φ is invariant for χ, V is
a piecewise Lyapunov function w.r.t. Φ which verifies (17) in
[34] and the pair (h, f) is output-PE.

Theorem 3.1 is established by applying an existing result,
namely Theorem 2 of [34]. The main difficulty in the appli-
cation of the latter result lies in showing that the output-PE
assumption holds. Lemma 3.1 is thus the main technical tool.
The proof of Lemma 3.1 requires the concept of limiting so-
lutions of switched systems introduced in [34] and is inspired
by the methods used in [16]. See Section V-A for details.

Example 3.1: Consider the switched system (1) with two
modes ẋ = fi(t, x), i = 1, 2, where for all t ≥ 0 and ξ ∈ R2

fi(t, ξ) =

[
hi,1(t)ξ1 + ξ2
−ξ3

1 − hi,2(t)ξ2

]
i = 1, 2, (10)

and for i = 1, 2, hi,1 ∈ L1(R≥0), it is bounded and
limt→∞ hi,1(t) = 0, and hi,2 is measurable, bounded and
lim inft→∞ hi,2(t) = ai > 0. We claim that (1) is GUAS
for arbitrary switching, i.e. it is GUAS w.r.t. the family of all
the switching signals. To show that, consider for i = 1, 2

f̂i(t, ξ) = f̄(ξ) =

[
ξ2

−ξ3
1 − aξ2

]
where a = min{a1/2, a2/2}, and

gi(t, ξ) =

[
hi,1(t)ξ1

(a− hi,2(t))ξ2

]
.

Note that for i = 1, 2 the functions f̂ and g defined by
f̂(t, ξ, i) = f̂i(t, ξ) and g(t, ξ, i) = gi(t, ξ) are uniformly
bounded. Also, note that (4) is GUAS for arbitrary switching
since ẋ = f̄(x) is a non-switched GUAS system. This
statement follows readily from LaSalle’s invariance principle
by using the weak Lyapunov function W (ξ) = ξ4

1 + 2ξ2
2 .

Let Ta > 0 be such that hi,2(t) ≥ a for all t ≥ Ta and let
ρ : R≥0 → R≥0 be any uniformly continuous function, such
that ρ ∈ L1(R≥0) and

a) for all 0 ≤ t ≤ Ta

ρ(t) ≥ max
{
|h1,1(t)|,|h2,1(t)|,

|a− h1,2(t)|, |a− h2,2(t)|
}

+ e−t

b) ρ(t) ≥ max{|h1,1(t)|, |h2,1(t)|}+ e−t for all t ≥ Ta.
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Define γ(t) = e−
∫ t
0

4ρ(s) ds and V (t, ξ) = γ(t)W (ξ). We
have that γ is continuous, decreasing and limt→∞ γ(t) =
e−
∫∞
0

4ρ(s) ds = γ̄ > 0 and that γ̇(t) = −4ρ(t)γ(t). Since ρ
is uniformly continuous and belongs to L1(R≥0), due to Bar-
balat’s Lemma ρ(t) → 0 as t → ∞. Then limt→∞ γ̇(t) = 0.
It is easy to see that V satisfies (5) and that

V̇i(t, ξ) ≤ −ηi(t, ξ) ≤ 0, ∀t ≥ 0, i = 1, 2,

with η1(t, ξ) = η2(t, ξ) = 4γ(t)[e−tξ4
1 + a ξ2

2 ]. Note that
the function η defined by η(t, ξ, i) = ηi(t, ξ) is uniformly
bounded.

Finally, gi satisfies condition (C) in Theorem 3.1. In fact,
if η(tk, ξk, ik) → 0, with tk → ∞ and ε ≤ |ξk| ≤ 1/ε, for
some ε ∈ (0, 1], then, if ξk = [ξ1

k ξ
2
k]′, we have ξ2

k → 0. In
this case,

g(tk, ξk, ik) = [hik,1(tk)ξ1
k (a− hik,2(tk))ξ2

k]T → 0,

since hik,1(tk) → 0, ξ2
k → 0 and {ξ1

k} and {hik,2(tk)} are
bounded and {|a − hik,2(tk)|} is eventually bounded from
below by a > 0.

Therefore the conditions of Theorem 3.1 are satisfied and
hence the switched system (1) is GUAS for arbitrary switch-
ing. We note that in this example, we have that V̇i(t, ξ) < 0
for all t ≥ 0 and ξ 6= 0. Nevertheless, V is not a strong
Lyapunov function for the switched system since there do not
exist positive definite functions µi such that V̇i(t, ξ) ≤ −µi(ξ)
for all t ≥ 0, for all ξ ∈ R2 and for i = 1, 2.

Example 3.2: Consider the ideal switched model of the
semi-quasi-Z-source inverter [44], connected to a cubic-law
time-varying resistive load and under zero input voltage:

ẋ = f(t, x, σ) = Ãσx− e4g̃σ(t, e′4x),

e4 = [0 0 0 1]′, P = diag(L1, L2, C1, C2)

Ã1 = P−1

[
0 0 0 0
0 0 1 1
0 −1 0 0
0 −1 0 0

]
, Ã2 = P−1

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
,

g̃i(t, v) =
Gi(t)

C2
v3, Gi(t) = | cos(t2 + ai)|+ εi,

for some ai ∈ R and εi > 0, for i = 1, 2. The positive
constants L1, L2, C1, C2 represent the inverter inductance and
capacitance values. Irrespective of the load function g̃i, stabil-
ity of this inverter model can only be ensured by constantly
switching between modes 1 and 2, and imposing additional
restrictions on the time spent in mode 2 [45]. Let S denote
the set of switching signals σ : R≥0 → {1, 2} where each
mode has minimum (dmin) and maximum (dmax) dwell-times
satisfying 0 < dmin < dmax < π

√
L1C1. The time-invariant

positive definite quadratic function V (t, x) = V̄ (x) = 1
2x
′Px

satisfies (5) with φ1(s) = λmins
2 and φ2(s) = λmaxs

2 with
λmin, λmax the minimum and maximum eigenvalues of P/2.
The function V is a common weak Lyapunov function for this
system and Assumption 2 is satisfied, since

V̇i(t, ξ) = ξ′PÃiξ − ξ′C2e4g̃i(t, e
′
4ξ)

= −Gi(t)(e′4ξ)4 =: −ηi(t, ξ) ≤ 0.

Note that PÃi is skew-symmetric for i = 1, 2 and hence
ξ′PÃiξ = 0 for all ξ ∈ Rn. The switched-linear system

ẋ = Ãσx is thus lossless, since ∂
∂ξ V̄ (ξ)Ãiξ ≡ 0. As a

consequence, the evident decomposition of the system into
the form (3) with nominal system function f̂(t, ξ, i) = Ãiξ
is not useful because the GUAS w.r.t. S requirement of
Assumption 1 is not satisfied. Let K > 0 and put the system
into the form ẋ = Aσx+ gσ(t, x), with, for i = 1, 2,

Ai = Ãi −Ke4e
′
4, gi(t, ξ) = −e4[g̃i(t, e

′
4ξ)−Ke′4ξ].

Following the same lines as in Lemma 1 and Theorem 2 of
[44], we can show that the switched-linear system ẋ = Aσx is
GUAS w.r.t. S . Assumption 1 is now satisfied by decomposing
the system into the form (3) with f̂(t, ξ, i) = Aiξ and
g(t, ξ, i) = gi(t, ξ). Note however that V is not a strong Lya-
punov function for the nominal system and no such function
exists in this case. We have |gi(t, ξ)| ≤ |g̃i(t, e′4ξ)|+K|e′4ξ|,
|g̃i(t, e′4ξ)| ≤ (1 + εi)|e′4ξ|3/C2, and Gi(t) ≥ εi > 0. Then,
Assumption 3 is satisfied. In addition, εi(e′4ξ)

4 ≤ ηi(t, ξ) ≤
(1+εi)(e

′
4ξ)

4 for all t and hence Condition (C) of Theorem 3.1
is satisfied. By Theorem 3.1, the system is GUAS w.r.t. S. ◦

Remark 3.1: Given a switched system (1) which satisfies
Assumption 2 and a family of switching signals S, two issues
arise in the application of Theorem 3.1: a) how to decompose
the switched system into suitable nominal and perturbation
parts and b) how to prove that the nominal part is GUAS
w.r.t. S. Usually, the nominal system is obtained by replacing
f by some function f̂ which is simpler than f and such that,
roughly speaking, f − f̂ → 0 when the virtual output h =√
η → 0. This step should be carefully performed, since if f̂

is too simple it could result in a non GUAS nominal part. For
example, if in Example 3.1 we take f̂i = [0 −ξ3

1 ]′ for i = 1, 2,
then the perturbed terms satisfy (C) in Theorem 3.1 but the
nominal system is not GUAS w.r.t. any family of switching
signals. The same occurs in Example 3.2 if we take as the
nominal terms: f̂i(t, ξ) = Ãiξ, for i = 1, 2.

Once the decomposition of the system is performed, the
GUAS of the nominal part w.r.t. S may be proved by means
of existing results or ad hoc methods as, e.g., in [45]. There
are systems for which no useful decomposition is possible,
save for the trivial one f̂ = f and g = 0. The latter happens,
e.g., for the switched system (29) in Section V of [36], which
is GUAS for arbitrary switching. ◦

IV. INPUT-TO-STATE STABILITY

In this section, we consider system (8) and provide con-
ditions for the ISS w.r.t. the disturbance input u, uniform
over switching signals in a given set S. We say that (8) is
forward complete w.r.t. S if for every initial time t0 ≥ 0,
initial state x0 ∈ R, switching signal σ ∈ S and input
u ∈ Um, every maximal solution x of (8) corresponding to
σ and u that satisfies x(t0) = x0, is defined for all t ≥ t0.
Besides standard ISS involving the essential supremum norm
‖u‖∞ = ess supt≥0 |u(t)|, we will also consider the following
family of norms, which we will collectively name the power
norms. Given p ∈ [1,∞) and τ > 0, we define for u ∈ Um:

‖u‖p,τ := sup
t≥0

(∫ t+τ

t

|u(s)|p ds
)1/p

. (11)
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We employ the following definitions.
Definition 4.1: Let S be a family of switching signals.

System (8) is input-to-state stable (ISS) uniformly w.r.t. S if it
is forward complete w.r.t. S and there exist β ∈ KL and ν ∈ K
such that for every t0 ≥ 0, x0 ∈ Rn and maximal solution x
of (8) corresponding to any switching signal σ ∈ S, any input
u ∈ Um, and such that x(t0) = x0, the following holds:

|x(t)| ≤ β(|x0|, t− t0) + ν(‖u‖∞) ∀t ≥ t0. (12)

Definition 4.2: Let S be a family of switching signals.
System (8) is power ISS (pISS) uniformly w.r.t. S if it is
forward complete w.r.t. S and there exist τ > 0, β ∈ KL
and ν ∈ K such that for every t0 ≥ 0, x0 ∈ Rn and maximal
solution x of (8) corresponding to any switching signal σ ∈ S,
any input u ∈ Um, and such that x(t0) = x0, then

|x(t)| ≤ β(|x0|, t− t0) + ν(‖u‖1,τ ) ∀t ≥ t0. (13)

Remark 4.1: By the Markov and causality properties,
equivalent definitions of ISS and pISS are obtained if u in
(12) and (13) is replaced by u[t0,t]. ◦

Remark 4.2: By means of techniques analogous to those
used for proving Lemma 2.7 of [46], one can prove that
system (8) is ISS (pISS) uniformly w.r.t. S if and only if the
following conditions hold with ‖ · ‖ = ‖ · ‖∞ (‖ · ‖ = ‖ · ‖1,τ ):

i) For every T > 0, r > 0 and s > 0 there exists C > 0
such that every maximal solution x of (8) corresponding
to any switching signal σ ∈ S , any input u such that
‖u‖ ≤ s, and any t0 ≥ 0 for which |x(t0)| ≤ r, satisfies
|x(t)| ≤ C for all t ∈ [t0, t0 + T ].

ii) For each ε > 0 there exists δ > 0 such that every maximal
solution x of (8) corresponding to any switching signal
σ ∈ S, any input u such that ‖u‖ ≤ δ, and any t0 ≥ 0
for which |x(t0)| ≤ δ, satisfies |x(t)| ≤ ε for all t ≥ t0.

iii) There exists ν ∈ K such that, for any r ≥ ε > 0, there
is a T > 0 so that for every maximal solution x of (8)
corresponding to any switching signal σ ∈ S, any input
u, and any t0 ≥ 0 for which |x(t0)| ≤ r, then

|x(t)| ≤ ε+ ν(‖u‖) ∀t ≥ t0 + T. ◦

Remark 4.3: The following assertions hold.
i) Given positive real numbers τ and τ ′, there exists a

constant k = k(τ, τ ′) such that ‖u‖1,τ ≤ k‖u‖1,τ ′ . In
consequence, if ‖u‖1,τ is finite for some τ > 0, then
‖u‖1,τ ′ is finite for every τ ′ > 0.

ii) Taking into account that for p > 1, τ > 0 and every t ≥ 0,∫ t+τ
t
|u(s)| ds ≤ τ1/q(

∫ t+τ
t
|u(s)|p ds)1/p, where q sat-

isfies 1/p+ 1/q = 1, we have that ‖u‖1,τ ≤ τ1/q‖u‖p,τ .
iii) Since for every τ > 0 and every t ≥ 0,

∫ t+τ
t
|u(s)| ds ≤

τ ‖u[t,t+τ ]‖∞ ≤ τ‖u‖∞, it follows that ‖u‖1,τ ≤ τ‖u‖∞.
iv) For t ≥ t0 ≥ 0, we have that ‖u[t0,t]‖p,τ is finite for all

p ≥ 1 and all τ > 0. In addition, the norm inequalities in
the previous items hold when replacing u by u[t0,t]. ◦

Remark 4.4:
i) From Remark 4.3i) we have that if (13) holds for some

norm ‖ · ‖1,τ , then it holds for any norm ‖ · ‖1,τ ′ if we
replace ν by ν̃(r) := ν(k(τ, τ ′)r).

ii) It follows from Remark 4.3ii) that if system (8) is pISS
uniformly w.r.t. S , then (13) holds with ‖u‖p,τ instead
‖u‖1,τ and with ν̃(r) := ν(τ1/qr) instead of ν. ◦

Remark 4.5: Due to Remark 4.3iii), if (8) is pISS uniformly
w.r.t. S then it is ISS uniformly w.r.t. S. In addition, the bound
(13) gives a better description of the behavior of the switched
system than the bound (12). For example, consider an input
u unbounded on [0,∞) and whose integrals on any interval
of length τ are uniformly bounded. Then (12) does not give
useful information while (13) implies that the states remain
bounded and converge to a ball centered at the origin. ◦

Assumption 4 below is somewhat weaker than requiring
Assumption 1 and that the nominal part of the zero-input
system (1) be switched LTV.

Assumption 4 (Switched LTV GUAS nominal system): The
function f in (8) can be written as in (3), where the nominal
system function f̂ : R≥0 × Rn × Γ→ Rn satisfies

f̂(t, ξ, i) = A(t, i)ξ, (14)

with A(t, i) ∈ Rn×n measurable in t ≥ 0 for every i ∈ Γ, and
for every T ≥ 0 there exists M > 0 such that ‖A(t, i)‖ ≤M
for all t ∈ [0, T ] and all i ∈ Γ. In addition, the nominal system
ẋ = A(t, σ)x is GUAS w.r.t. S.

Remark 4.6: Consider Assumption 4, and let Φ(t, s, σ)
denote the state transition matrix of the GUAS w.r.t. S LTV
system ẋ = A(t, σ)x, satisfying Φ(s, s, σ) = I . Following
similar lines as in, e.g., [8, Theorem 4.11], it follows that
there exist positive constants Ψ and λ such that

‖Φ(t, s, σ)‖ ≤ Ψe−λ(t−s), ∀t ≥ s ≥ 0, ∀σ ∈ S. (15)

We require the following strengthened version of Assump-
tion 2 and Condition (C) of Theorem 3.1.

Assumption 5: Let Assumption 2 hold. Suppose that there
exist a nondecreasing and Borel measurable function ω :
R≥0 → R≥0, such that ω(s) > 0 if s > 0, a continuous
function φ3 : R≥0 → R≥0 such that φ3(0) = 0 and a
continuous and nondecreasing function φ4 : R≥0 → R≥0 such
that φ4(s) > 0 if s > 0 and

i) for all t ≥ 0, all ξ ∈ Rn and all i ∈ Γ,

|gi(t, ξ)| ≤ φ3(ηi(t, ξ)), (16)
‖G(t, ξ, i)‖ ≤ ω(V (t, ξ)), (17)∣∣∣∣∂V∂ξ (t, ξ)G(t, ξ, i)

∣∣∣∣ ≤ φ4(V (t, ξ)), and (18)

ii) The function φ5 defined in (19) satisfies φ5 ∈ K∞.

φ5(s) =

∫ s

0

1

φ4(τ)
dτ, (19)

where the integral is considered in the Lebesgue sense.
We require the following lemma, whose proof is given in the
Appendix.

Lemma 4.1: Let φ : R≥0 → R≥0 be a continuous function
such that φ(0) = 0. The following are equivalent

i) There exists a continuous and nondecreasing function γ :
R≥0 → R≥0 such that γ(0) = 0 and∫ 1

0

φ(|h(s)|)ds ≤ γ
(∫ 1

0

|h(s)|ds
)
, ∀h ∈ L1([0, 1]);
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ii) lim sup
r→∞

φ(r)

r
<∞.

The following is our main ISS result based on weak Lyapunov
functions.

Theorem 4.1: Consider (8) and a family S of switching
signals, for which Assumptions 4 and 5 hold, as well as
item a) below. Consider Ψ as in (15) in Remark 4.6 and
κ2(s) := φ2(2Ψs). If item b) holds with

˜̀(a, b, r) := φ−1
5

(
φ5(a) + rb

)
(20)

and item c) holds, then (8) is ISS uniformly w.r.t. S.
If item b) holds with

˜̀(a, b, r) := φ−1
5

(
φ5(a) + b

)
(21)

and item d) holds, then (8) is pISS uniformly w.r.t. S.
a) There exists a continuous and nondecreasing function
γ : R≥0 → R≥0 with γ(0) = 0, such that for all
h ∈ L1([0, 1]),∫ 1

0

φ3(|h(s)|)ds ≤ γ
(∫ 1

0

|h(s)|ds
)

; (22)

b) lim sup
a→∞

ρ(a, b,M)

a
<

1

2
for all b ≥ 0 and M > 0, where

ρ(a, b,M) := sup
0<r≤M

h5(a, b, r), (23)

h5(a, b, r) := κ2

{
rγ
(

˜̀(a,b,r)−a
r

)
+

∫ ˜̀(a,b,r)

a

ω(s)

φ4(s)
ds

}
;

c) lim sup
a→∞

φ−1
1 (a)

φ−1
2 (a/2)

<∞;

d) sup
a>0

φ−1
1 (a)

φ−1
2 (a/2)

<∞.

The proof of Theorem 4.1 is given in Section V-B. We next
provide some comments on the required assumptions.

According to Lemma 4.1 and since φ3 : R≥0 → R≥0

is continuous and satisfies φ3(0) = 0 by Assumption 5,
the existence of γ as required by item a) is equivalent to
lim supr→∞

φ3(r)
r < ∞. Once the function φ3 is known, the

latter inequality can be used to easily decide whether such φ3

is suitable. The function γ is then required in order to build
ρ for item b). A suitable tool for establishing a) directly is
Hölder inequality, which can be employed when φ3 is of the
form φ3(s) =

∑k
i=1 cis

1/pi for some k ∈ N, ci > 0 and
pi ≥ 1, yielding γ(s) = φ3(s). In case φ3 does not have such
form, the proof of Lemma 4.1 gives some indication on how
the required function γ can be constructed. The evaluation of
items c) or d) is straightforward, as is that of item b) once γ
is known.

Remark 4.7: The assumptions required in Theorem 4.1 in
order to ascertain the pISS property imply those required for
the ISS property. This is because item d) implies item c) and if
item b) holds with ˜̀as in (21) then item b) also holds with ˜̀as
in (20). To see the latter fact, let ρISS and ρpISS denote (23) with
˜̀ as in (20) or (21), respectively. Note that ρISS(a, b,M) ≤
ρpISS(a, bM,M) for all a > 0, b ≥ 0, and M > 0, and then
lim supa→∞

ρISS(a,b,M)
a ≤ lim supa→∞

ρpISS(a,bM,M)
a < 1/2. ◦

The proof of Theorem 4.1 takes advantage of the linear
+ perturbation (+ input) form of the system dynamics. The
ISS property is established via the equivalent formulation of
Remark 4.2. A very interesting strategy that is employed in the
proof is that solutions are ‘sampled’ at specific time instants.
These time instants are selected so that either the ‘nominal
part’ of the solution is ensured to cause a substantial decrease
in the value of the (weak) Lyapunov function or the increase
in this value caused by the input u does not exceed a specific
threshold. See Section V-B for details. Existing results that
employ a related type of sampling in order to ensure the
decrease of a weak Lyapunov function or of the magnitude
of the state can be found in [47], [48].

Corollary 4.1 below gives simpler to check but more restric-
tive assumptions that also ensure the uniform ISS and pISS
properties considered.

Corollary 4.1: Consider (8) and a family S of switching
signals. Let Assumption 2 hold, with φ1, φ2 satisfying item c)
of Theorem 4.1 and φ2(s) =

∑k2
j=1 bjs

lj for some k2 ∈ N,
bj > 0 and lj > 0. Let Assumptions 3 and 4 hold. Let (16)
be satisfied with φ3(s) =

∑k3
j=1 cjs

1/pj for some k3 ∈ N,
cj > 0 and pj ≥ 1. Let (17) hold for some ω : R≥0 → R≥0

nondecreasing, Borel measurable, and satisfying ω(s) > 0 if
s > 0 and ω(s) = %snω for all s ≥ s̄, for some % > 0, nω ≥ 0
and s̄ > 0. Let (18) be satisfied with φ4(s) = ds1/m for
some d > 0 and m > 1. If max1≤j≤k2 lj < mmin1≤j≤k3 pj
and nω < 1

max1≤j≤k2 lj
, then (8) is ISS uniformly w.r.t. S. If,

in addition, φ1, φ2 are such that item d) of Theorem 4.1 is
satisfied, then (8) is pISS uniformly w.r.t. S.

Proof: As explained above, the fact that pj ≥ 1 allows
the application of Hölder inequality and shows that item a) of
Theorem 4.1 is satisfied with γ = φ3. By direct computation
from the definition (19), we have φ5(s) = q

ds
1/q , where

we defined q := m/(m − 1). Note that φ5 ∈ K∞ because
m > 1 gives q > 0. Then, Assumption 5 is satisfied. Let
κ2(s) = φ2(2Ψs) =

∑k2
j=1 bj(2Ψ)ljslj . Define h(a, b, r) :=

rγ
(
φ−1
5 (φ5(a)+b)−a

r

)
+
∫ φ−1

5 (φ5(a)+b)

a
ω(s)
φ4(s)ds. For a ≥ s̄, we

can compute

h(a, b, r) = r

k3∑
j=1

cj

[(
a1/q + db/q

)q − a
r

]1/pj

+ %Ξ,

with Ξ =
q/d

qnω + 1

[(
a

1
q +

db

q

)qnω+1

− anω+ 1
q

]
.

Define also

h′(a, b,M) :=

{
sup0<r≤M κ2{h(a, br, r)} (ISS)
sup0<r≤M κ2 {h(a, b, r)} (pISS)

Since pj ≥ 1 for all j = 1, . . . , k3, then both h(a, br, r) and
h(a, b, r) are nondecreasing in r. In consequence, we have

h′(a, b,M) :=

{
κ2{h(a, bM,M)} (ISS)
κ2 {h(a, b,M)} (pISS)

Note that h′ is continuous, h′(a, 0,M) = 0, and that
h′(a, ·,M) is nondecreasing. Since pj ≥ 1, m > 1, 0 <
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max1≤j≤k2 lj < mmin1≤j≤k3 pj and nω < 1
max1≤j≤k2 lj

,
simple computations show that

lim
a→∞

h′(a, b,M)

a
= 0. (24)

This follows after taking into account that, for all K ∈ R,

lim
a→∞

(a` +K)1/` − a
at

= 0 if `+ t > 1.

Then, item b) of Theorem 4.1 is satisfied because ρ = h′ in
either case. By Theorem 4.1, the result follows.

Example 4.1: Consider a switched system of the form (8),
where f(t, x, σ) coincides with that of Example 3.2 and
G(t, ξ, i) = I (identity matrix) for all t ≥ 0, ξ ∈ Rn, i ∈ Γ.
The system equations may represent, for example, the semi-
quasi-Z-source inverter under time-varying input voltage [45].
Consider the same set of switching signals S and weak
Lyapunov function V of Example 3.2. Since V is quadratic,
then V satisfies (5) with φ1(s) = λmins

2, φ2(s) = λmaxs
2

and λmin, λmax the minimum and maximum eigenvalues of
P/2. Note that φ1, φ2 satisfy item d) and hence item c)
of Theorem 4.1. Consider the same decomposition (3) for
the zero-input system as that in Example 3.2. We have
|gi(t, ξ)| ≤ Gi(t)

C2
|e′4ξ|3 +K|e′4ξ| and ηi(t, ξ) := Gi(t)(e

′
4ξ)

4,
whence |e′4ξ| = [ηi(t, ξ)/Gi(t)]

1/4 with εi ≤ Gi(t) ≤ 1 + εi
for all t ≥ 0. Consequently, (16) is satisfied with φ3(s) =
c1s

1/p1 + c2s
1/p2 , with c1 = (1 + max{ε1, ε2})1/4/C2,

c2 = K/(min{ε1/41 , ε
1/4
2 }), p1 = 4/3, and p2 = 4. Also, (17)

is satisfied with ω(s) ≡ 1 = 1 · s0. Since V is quadratic, then
(18) is satisfied with φ4(s) = ds1/m, with d = 2λmax/

√
λmin

and m = 2. Since 2 < 2 · 4/3 and 0 < 1/2, by Corollary 4.1,
the considered system is pISS uniformly w.r.t. S and in conse-
quence also ISS w.r.t. S. As regards the semi-quasi-Z-source
inverter connected to the specific nonlinear load considered,
this establishes a very important property: if the input voltage
u is bounded or, more generally, the integrals of |u| or of
|u|2 on intervals of length τ are uniformly bounded, then
irrespective of its time evolution (even if it is discontinuous
and changes sign) the system variables will be bounded when
switching is performed so that the corresponding switching
signals are in S. ◦

Remark 4.8: Examples 3.2 and 4.1 deal with a real applica-
tion: the semi-quasi-Z-source inverter switched model. Being
a physical system, a ‘natural’ Lyapunov function is given
by the circuit’s energy function. Neither subsystem of this
switched system is ISS since neither zero-input subsystem
is asymptotically stable. As a consequence, neither strong
common nor strong individual Lyapunov functions (and in
consequence neither ISS common nor individual ISS Lya-
punov functions) exist for the zero-input system. In addition,
not even standard multiple Lyapunov functions exist for this
circuit. This happens because the usual requirement that the
value of the Lyapunov function at every onset time of a
same subsystem must be lower than the previous one cannot
be satisfed, since the constraints on the switching times are
time-dependent but not state-dependent. As a consequence,
Example 4.1 gives a practical example where, to the best of our
knowledge, no other existing results can be applied in order

to establish the ISS uniformly w.r.t. S property, let alone by
means of the natural energy function. ◦

V. PROOFS

A. Proof of Lemma 3.1
For proving Lemma 3.1 we will employ the concept of

limiting solution of a switched system introduced in [34]. We
next give a definition of this concept adapted to our purpose.

Definition 5.1: A continuous function x̄ : R≥0 → Rn is a
limiting solution of the switched system (1) with switching
signals in S if there exist an unbounded sequence {tk} in
R≥0, a sequence {(xk, σk)}, with xk a maximal solution of (1)
corresponding to the switching signal σk ∈ S, and a compact
set K ⊂ Rn such that xk(t) ∈ K for all t ∈ [tk, tk + k] and
all k, and {xk(·+ tk)} converges to x̄ uniformly on [0, T ] for
all T > 0.

Remark 5.1: Note that the sequence of switching signals
{σk(· + tk)} in Definition 5.1 is not required to converge in
any sense. ◦
The following lemma is a consequence of Lemma 3 in [34].

Lemma 5.1: Consider the switched system (1) with switch-
ing signals in S. Suppose that f in (1) is uniformly bounded.
Let {tk} be an unbounded sequence in R≥0, K ⊂ Rn be
compact and {(xk, σk)} be a sequence such that for every k:

1) xk is a maximal solution of (1) corresponding to the
switching signal σk ∈ S; and

2) xk(t) ∈ K for every t ∈ [tk, tk + k].
Then there exists a subsequence {kl} of {k} and a limiting
solution x̄ : R≥0 → Rn of (1) with switching signals in S
such that {xkl(·+ tkl)} converges to x̄ uniformly on [0, T ] for
all T > 0.
Now, we are in position to prove Lemma 3.1.

Proof of Lemma 3.1: We will prove the lemma by
contradiction. Suppose that the pair (h, f) is not output-PE.
Then there exist 0 < ε0 ≤ 1 and sequences {t′k} in R≥0, {σk}
in S and {zk}, where for every k ∈ N zk is a solution of (1)
corresponding to σk ∈ S, such that for each k ∈ N:

1) ε0 ≤ |zk(t)| ≤ 1/ε0 for all t ∈ [t′k, t
′
k + 2k];

2)
∫ t′k+2k

t′k
|h(s, zk(s), σk(s)|2 ds ≤ 1/k.

Let tk = t′k + k. Then tk → ∞. If we consider the compact
set K = {ξ ∈ Rn : ε ≤ |ξ| ≤ 1/ε0}, we have that
zk(t) ∈ K for all t ∈ [tk, tk + k]. Since the functions f̂ and
g are uniformly bounded, it follows that f is also uniformly
bounded. By applying Lemma 5.1 there exists a subsequence
of {tk}, which we still denote by {tk}, and a limiting solution
x of (1) with switching signals in S such that the sequence
{xk}, with xk = zk(· + tk), converges to x̄ uniformly on
[0, T ] for all T > 0. Note that from 1) above, we have that
|x(t)| ≥ ε0 for all t ≥ 0.

Now, taking 2) into account, for every k we have

0 ≤
∫ k

0

η(s+ tk, xk(s), σtkk (s)) ds ≤ 1/k.

For any k let ρk(s) := η(s + tk, xk(s), σtkk (s)) for s ∈ [0, k]
and ρk(s) := 0 for s > k. Then

lim
k→∞

∫ ∞
0

ρk(s) ds = 0.
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From the latter, the nonnegativeness of the integrands and
well-known results of real analysis it follows that there exists
a subsequence of {ρk}, which we still denote by {ρk} such
that for almost all s ∈ R≥0

lim
k→∞

ρk(s) = 0.

Since ρk(s) = η(s+ tk, xk(s), σtkk (s)) for all s ≤ k, then

lim
k→∞

η(s+ tk, xk(s), σtkk (s)) = 0 (25)

for almost all s ∈ R≥0. Let s ≥ 0 be such that (25) holds.
Then, due to condition (C),

lim
k→∞

g(s+ tk, xk(s), σtkk (s)) = 0.

Since (25) is true for almost all s ∈ R≥0, it follows that

lim
k→∞

g(s+ tk, xk(s), σtkk (s)) = 0 a.e. on R≥0. (26)

Next we prove that x̄ is a limiting solution of the switched
system (4) with switching signals in S.

Taking into account that for all t ≥ 0

xk(t) = xk(0) +

∫ t

0

f̂(s+ tk, xk(s), σtkk (s)) ds

+

∫ t

0

g(s+ tk, xk(s), σtkk (s)) ds, (27)

that xk → x̄ uniformly on [0, t], that f̂ is locally Lipschitz
uniformly in t and in i, the boundedness condition on g, (26)
and the Lebesgue Convergence Theorem we arrive to

x̄(t) = x̄(0) + lim
k→∞

∫ t

0

f̂(s+ tk, x̄(s), σtkk (s)) ds. (28)

For any k, let wk be the maximal solution of (4) corresponding
to the switching signal σk that satisfies wk(tk) = x̄(0). Since
(4) is GUAS w.r.t. S, the solution wk is defined for every
t ≥ tk and |wk(t)| ≤ β(|x̄(0)|, t − tk) for all t ≥ tk, where
β ∈ KL. So wk(t) ∈ K∗ for all t ≥ tk, where K∗ is the
compact set K∗ = {ξ ∈ Rn : |ξ| ≤ β(|x̄(0)|, 0)}. If in
addition we take into account the boundedness condition on
f̂ , Lemma 5.1 asserts that there exist a subsequence of {tk},
which we still denote by {tk}, and a limiting solution w̄ of (4)
with switching signals in S such that {wk(·+ tk)} converges
to w̄ uniformly on any interval [0, T ], with T > 0. If for any
k we denote ωk(·) = wk(·+ tk) then

ωk(t) = x̄(0) +

∫ t

0

f̂(s+ tk, ωk(s), σtkk (s)) ds.

The uniform convergence of {ωk} to w̄ on [0, t] and the
Lipschitz condition on f̂ yield

w̄(t) = x̄(0) + lim
k→∞

∫ t

0

f̂(s+ tk, w̄(s), σtkk (s)) ds. (29)

From (28) and (29) it follows that for every t ≥ 0

w̄(t)− x̄(t) = lim
k→∞

∫ t

0

θk(s) ds,

where θk(s) = f̂(s+tk, w̄(s), σtkk (s))−f̂(s+tk, x̄(s), σtkk (s)).
The fact that x̄(s) and w̄(s) belong to some compact set for

all s ≥ 0 and the Lipschitz condition on f̂ imply the existence
of a constant L ≥ 0 such that |θk(s)| ≤ L|w̄(s) − x̄(s)| for
all s ≥ 0. In consequence, for all t ≥ 0

|w̄(t)− x̄(t)| = lim
k→∞

∣∣∣∣∫ t

0

θk(s) ds

∣∣∣∣
≤ lim sup

k→∞

∫ t

0

|θk(s)| ds

≤
∫ t

0

L|w̄(s)− x̄(s)| ds.

By applying Gronwall’s Lemma, it follows that |w̄(t)−x̄(t)| ≤
eLt|w̄(0) − x̄(0)|. Since w̄(t) = limk→∞ wk(t + tk), then
w̄(0) = x̄(0) and hence w̄(t) = x̄(t) for all t ∈ R≥0. Also,
since |wk(t + tk)| ≤ β(|x̄(0)|, t) for all t ∈ R≥0, it follows
that |x̄(t)| ≤ β(|x̄(0)|, t) for all t ≥ 0, and a posteriori that
x̄(t) → 0 as t → ∞, which contradicts the fact that |x̄(t)| ≥
ε0 > 0 for all t ≥ 0.

B. Proof of Theorem 4.1

The proofs of the ISS and pISS cases are very similar and
hence we will establish both cases simultaneously. We first
prove that item i) of Remark 4.2 holds for the norm ‖ · ‖∞
and for the norm ‖ · ‖1,τ , with any τ > 0.

Let t0 ≥ 0, let x0 ∈ Rn, let u ∈ Um and let x denote any
maximal solution of (8) corresponding to some σ ∈ S and
satisfying x(t0) = x0. By Assumption 5, we have

d

dt
[V (t, x(t))] ≤ ∂V

∂ξ
(t, x(t))G(t, x(t), σ(t))u(t)

≤ φ4 ◦V (t, x(t)) |u(t)|, (30)

for almost all t ≥ t0 for which x is defined. Applying the
Comparison Lemma (see, e.g. [8, Lemma 3.4]), then for all
t ≥ t0 for which x is defined,

V (t, x(t)) ≤ φ−1
5

(
φ5(V (t0, x(t0)) +

∫ t

t0

|u(s)|ds
)
. (31)

Due to (5), (31) and standard results for differential equations
we have that (8) is forward complete w.r.t. S.

Let T > 0, r > 0 and s > 0. Then, if |x(t0)| ≤ r
and the input u satisfies ‖u‖∞ ≤ s or ‖u‖1,τ ≤ s,
from (5), (31), Remark 4.3i) and the fact that u ∈ Um,
it follows that |x(t)| ≤ C for all t ∈ [t0, t0 + T ], where
C = φ−1

1 (φ−1
5 ◦φ2(r) + Ts) in the case of the supremum

norm and where C = φ−1
1 (φ−1

5 ◦φ2(r)+k(T, τ)s) in the case
of the norm ‖ · ‖1,τ .

We next introduce auxiliary functions. Define R : (0,∞)→
(0,∞) and R̄ : (0,∞)→ (0,∞) as

R(a) :=
1

λ
log

2Ψφ−1
1 (a)

φ−1
2 (a/2)

. (32)

R̄(b) := sup
a≥b

R(a).

Note that item d) implies item c), and that R̄(b) is finite for
all b > 0 due to continuity and item c). For a > 0 and b ≥ 0,
define

`(a, b) := ˜̀(a, b, R(a))
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and consider the expression

h1(a, b, c) := a/2+

κ2

{
R(a)γ

(
`(a, b)− c
R(a)

)
+

∫ `(a,b)

a

ω(s)

φ4(s)
ds

}
,

valid for 0 ≤ c ≤ `(a, b). Define the function h2(·, ·) via

h2(a, b) = sup
{
c ∈ [0, `(a, b)] : c ≤ h1(a, b, c)

}
.

Note that h2 satisfies h2(a, b) ≤ `(a, b). The following claims,
whose proofs are given in the Appendix, will be used in the
proof of the theorem.

Claim 1: There exist α, α̃ ∈ K∞ such that α̃(b) ≥ α(b) for
all b ≥ 0 and (33) holds. In addition, (34) holds for the ISS
proof and (35) holds for the pISS proof.

0 < h2(a, b) < a for all a ≥ α(b), b > 0. (33)

φ−1
5 [φ5(α(b)) + R̄(α(b))b] ≤ α̃(b) for all b > 0. (34)

φ−1
5 (φ5(α(b)) + b) ≤ α̃(b) for all b > 0. (35)

Claim 2: Consider sequences {yk} and {wk} of nonneg-
ative real numbers satisfying supk≥0 wk ≤ U and yk+1 ≤
h2(yk, wk) for all k ∈ N0 for which yk ≥ α(U). Then,
for all r̃ > 0 and 0 < U0 ≤ U ≤ U1, there exists
K = K(r̃, U0, U1) ∈ N such that if α(U) ≤ y0 ≤ r̃ then
yk < α(U) for some k ≤ K.

We next proceed to prove that items ii) and iii) of Remark
4.2 hold for the norms ‖ · ‖∞ and ‖ · ‖1,τ , where

τ := lim
b→0+

R̄(b).

Note that item d) implies that τ <∞.
Let U > 0. Let x denote any solution to (8) corresponding

to a switching signal σ ∈ S and to an input u ∈ Um such that
‖u‖ ≤ U , where in the sequel ‖u‖ denotes ‖u‖∞ for the ISS
proof (in which case u ∈ L∞m ) and ‖u‖1,τ for the pISS proof.

Let t0 ≥ 0 be such that x(t0) is defined. In correspondence
with solution x, U and t0, we define recursively the sequences
{tk}, {xk} and {Vk} as follows

r0 := 0, x0 := x(t0), V0 := V (t0, x0),

and, while Vk ≥ α(U)

rk+1 := R(Vk) tk+1 := tk + rk+1

xk+1 := x(tk+1) Vk+1 := V (tk+1, xk+1).

For any k such that tk and tk+1 are defined, we also define

uk := ess suptk≤t≤tk+1
|u(t)|. (ISS)

uk :=

∫ tk+1

tk

|u(s)|ds. (pISS)

Note that the sequences are finite if for some k ∈ N0, Vk <
α(U). In particular, if V0 < α(U) the sequences {tk}, {xk}
and {Vk} are only defined for k = 0, while the sequence {uk}
is undefined. Note also that uk ≤ U for every k for which uk
is defined. The latter fact follows straightforwardly for the ISS
proof and from tk+1 = tk+R(Vk) ≤ tk+τ for the pISS proof.

The following fact about the sequences defined above is
proved in the Appendix.

Claim 3: The sequences {Vk} and {uk} satisfy

Vk+1 ≤ h2(Vk, uk) ≤ h2(Vk, U) < Vk.

In consequence, combining Claims 2 and 3 we can establish
the following fact about the sequence {Vk}:

Fact 1: For every r̃ > 0 and positive numbers U0 ≤ U1

there exists K = K(r̃, U0, U1) such that: if V0 ≤ r̃ and U ∈
[U0, U1] then there exists k∗ ≤ K such that Vk∗ < α(U).

From Fact 1, the definition of {tk} and the monotony of
{Vk}, we derive the following result.

Fact 2: Let r̃ > 0 and 0 < U0 ≤ U1. Then there
exists T = T (r̃, U0, U1) such that for every solution x of (8)
corresponding to a switching signal σ ∈ S, an input u such that
‖u‖ ≤ U , with U ∈ [U0, U1], and such that V (t0, x(t0)) ≤ r̃
for some t0 ≥ 0, there exists tx ∈ [t0, t0 + T ] such that

V (tx, x(tx)) < α(U).

If x is in the conditions of Fact 2, and {tk}, {Vk} are the
sequences defined above, from Fact 1 we have that for some
0 ≤ k∗ ≤ K = K(r̃, U0, U1), Vk∗ < α(U). If k∗ = 0, then
tx = t0. If k∗ > 0, then V (tk∗ , x(tk∗)) < α(U) and tk∗ =

t0 +
∑k∗−1
j=0 R(Vj) ≤ t0 +k∗R̄(α(U)) ≤ t0 +KR̄(α(U0)). In

both cases Fact 2 holds with T = KR̄(α(U0)).
Fact 3: Let U > 0 and let x be a solution of (8)

corresponding to a switching signal σ ∈ S and input u such
that ‖u‖ ≤ U . If V (tx, x(tx)) ≤ α(U) for some tx ≥ 0, then

V (t, x(t)) ≤ α̃(U) ∀t ≥ tx. (36)

Suppose that (36) does not hold for some solution x in the
conditions of Fact 3. Then, from the continuity of V (·, x(·)),
there exists t∗ > t′0 ≥ tx such that V (t′0, x(t′0)) = α(U),
V (t, x(t)) > α(U) for all t ∈ (t′0, t

∗] and V (t∗, x(t∗)) >
α̃(U). If we consider the sequences {tk}, {xk}, {Vk} and
{uk} defined above, but with the initial data t0 := t′0, x0 :=
x(t′0) and V0 := V (t′0, x(t′0)), from Claim 3 we have that
V1 = V (t1, x(t1)) < α(U), where t1 = t′0 + R(α(U)). So,
necessarily t∗ ∈ (t′0, t1). Using (31) with t0 replaced by t′0, it
follows that for all t ∈ [t′0, t1]

V (t, x(t)) ≤ φ−1
5

(
φ5

(
V (t′0, x(t′0))

)
+

∫ t1

t′0

|u(s)| ds

)
.

In consequence,

V (t∗, x(t∗)) ≤ φ−1
5

(
φ5(α(U)) +R(α(U))U

)
≤ α̃(U),

for the ISS case, and

V (t∗, x(t∗)) ≤ φ−1
5

(
φ5(α(U)) + U

)
≤ α̃(U),

for the pISS case. In both cases we arrive to a contradiction.
So, Fact 3 holds.

Next, we prove that item ii) in Remark 4.2 (recall Re-
mark 4.2) is satisfied. Let ε > 0, let U = α̃−1 ◦φ1(ε),
and δ = min{U, φ−1

2 ◦α(U)} > 0. Let x be a solution
of (8) corresponding to a switching signal σ ∈ S and
an input u such that ‖u‖ ≤ δ, and |x(t0)| ≤ δ. Then,
‖u‖ ≤ U and |x(t0)| ≤ φ−1

2 ◦α(U). The latter inequality
implies that V (t0, x(t0)) ≤ α(U). From Fact 3, we have that
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V (t, x(t)) ≤ α̃(U) = φ1(ε) for all t ≥ t0. From (5), then
|x(t)| ≤ ε for all t ≥ t0.

Next, we show that item iii) in Remark 4.2 is also satisfied.
Fix 0 < ε ≤ r. Then, φ1(ε) ≤ φ2(r). Suppose that x is a
solution of (8) corresponding to a switching signal σ ∈ S and
to an input u, such that for the time t0 ≥ 0, |x0| = |x(t0)| ≤ r.
The latter implies that V0 = V (t0, x(t0)) ≤ φ2(r) =: r̃. We
will consider two cases:
a) V0 ≤ α(‖u‖).
b) V0 > α(‖u‖).
In case a), from Fact 3 with U = ‖u‖ we have that
V (t, x(t)) ≤ α̃(U) and hence |x(t)| ≤ ε + φ−1

1 ◦ α̃(‖u‖) for
all t ≥ t0.

In case b), and since V0 ≤ r̃, then α(‖u‖) < r̃. Let
ε̃ := α ◦ α̃−1(φ1(ε)), U0 := α̃−1(φ1(ε)) = α−1(ε̃) and
U1 := max{α−1(r̃), U0}. Take U = max{‖u‖, U0} and note
that 0 < U0 ≤ U ≤ U1. Let T be as in Fact 2. Then, there
exists tx ∈ [t0, t0 + T ] such that V (tx, x(tx)) ≤ α(U). From
the latter and Fact 3 it follows that V (t, x(t)) ≤ α̃(U) for all
t ≥ t0 + T . If ‖u‖ ≥ U0, then U = ‖u‖ and we have that
V (t, x(t)) ≤ α̃(‖u‖) and hence |x(t)| ≤ φ−1

1 ◦ α̃(‖u‖) + ε for
all t ≥ t0 + T . If ‖u‖ < U0, then U = U0 and V (t, x(t)) ≤
α̃(U0) = φ1(ε) and hence |x(t)| ≤ φ−1

1 ◦ α̃(‖u‖) + ε for all
t ≥ t0 + T .

In either case, item iii) in Remark 4.2 is satisfied with ν =
φ−1

1 ◦ α̃.

VI. CONCLUSIONS

We have provided a set of novel stability results for switched
nonlinear and time-varying systems under restricted switch-
ing. These results are based on weak Lyapunov functions.
The approach employed consists in decomposing the system
dynamics into a nominal part that is GUAS with respect to
the set S of switching signals considered, and a perturbation
term that should satisfy specific bounds. Both GUAS w.r.t.
S results and uniform w.r.t. S ISS results are provided. Our
GUAS results require the perturbation term to satisfy a mild
vanishing condition. The uniform ISS results provided require
the nominal part of the system to be switched linear-time-
varying, and more stringent assumptions are placed on the
perturbation and the weak Lyapunov function. To the best of
the authors’ knowledge, no other GUAS or ISS results exist for
switched nonlinear and time-varying systems under restricted
switching based on weak Lyapunov functions and employing
a perturbation approach. In addition to standard ISS involving
the essential supremum norm of the input, we also provide
another type of ISS result that employs a power-type norm of
the input. An interesting approach employed in the ISS proofs
consists in ‘sampling’ the system solutions at specific time
instants related to a specific decrease in the magnitude of the
solution.

APPENDIX
ISS SUPPLEMENTARY PROOFS

A. Proof of Claim 1

This proof requires the following result.

Lemma A.1: Let ρ : R>0 × R≥0 × R>0 → R≥0 ∪ {∞} be
continuous and satisfy, for all a > 0 and M > 0,
a) ρ(a, 0,M) = 0;
b) ρ(a, ·,M) is nondecreasing.

If lim sup
a→∞

ρ(a, b,M)

a
<

1

2
for all b ≥ 0 and M > 0, then for

every M > 0 there exists γ̃ ∈ K such that ρ(a, b,M) < a/2
for all a > γ̃(b) and b ≥ 0.

Proof: Given M > 0, for each b ≥ 0 consider

C(b) := {c ≥ 0 : ∀a > c, ρ(a, b,M) < a/2},
ϕ(b) := inf C(b).

Note that ϕ(b) ≥ 0 for all b ≥ 0, C(0) = [0,∞) by a)
and hence ϕ(0) = 0, and also ϕ(b) < ∞ for all b ≥ 0.
By definition, we have ρ(a, b,M) < a/2 for all a > ϕ(b)
and by continuity of ρ, ρ(ϕ(b), b,M) = ϕ(b)/2 if b > 0.
By b), then ϕ(·) is nondecreasing. Hence, there exists L ≥ 0
such that limb→0+ ϕ(b) = L. For a contradiction, suppose
that L > 0. Consider a sequence {dj} of positive numbers
satisfying limj→∞ dj = 0. We have ρ(ϕ(dj), dj ,M) =
ϕ(dj)/2. But limj→∞ ρ(ϕ(dj), dj ,M) = ρ(L, 0,M) = 0
and limj→∞ ϕ(dj)/2 = L/2 > 0, which is a contradiction.
Then, L = 0. The function ϕ thus satisfies ϕ(0) = 0, is
nondecreasing, and continuous at 0, and hence can be bounded
by a function γ̃ ∈ K so that ϕ(b) ≤ γ̃(b) for all b ≥ 0. Then,
ρ(a, b,M) < a/2 for all a > γ̃(b), for all b ≥ 0.

For a > 0, b ≥ 0 and 0 ≤ c ≤ `(a, b), h1(a, b, c)
is continuous and nonincreasing in c. So h1(a, b, c) − c is
strictly decreasing. Since h1(a, b, 0) > 0, then the set of values
c ∈ [0, `(a, b)] satisfying c ≤ h1(a, b, c) is an interval of the
form [0, h2(a, b)], and h2(a, b) > 0. For a > 0 and b ≥ 0,
define h3(a, b) := h1(a, b, a) − a/2. Note that h3 is well
defined because a ≤ `(a, b). The inequality h3(a, b) < a/2
implies a > h1(a, b, a). The latter means that c = a does not
satisfy c ≤ h1(a, b, c) and hence h3(a, b) < a/2 implies that
h2(a, b) < a. Consider

A(b) := {c ≥ 0 : ∀a > c, h3(a, b) < a/2}
h4(b) := inf A(b).

We have A(0) = [0,∞) because h3(a, 0) = 0 for all
a > 0. Then, h4(0) = 0. Since h3(a, b) is nondecreasing
in b (because h1 is), then b1 ≤ b2 ⇒ A(b1) ⊇ A(b2) and
hence h4(b1) ≤ h4(b2). This shows that h4 is nondecreasing.
We next show that A(b) 6= ∅ for all b > 0. Note that
h3(a, b) = h5(a, b, R(a)). Let L > 0 and M = R̄(L). Then
R(a) ≤ M whenever a ≥ L. For all a such that R(a) ≤ M ,
it follows that h3(a, b) ≤ sup0<r≤M h5(a, b, r) = ρ(a, b,M).
Note that ρ is continuous, ρ(a, 0,M) = 0, and that ρ(a, ·,M)
and ρ(a, b, ·) are nondecreasing. Hence, let γ̃ ∈ K correspond
to M as per Lemma A.1. Then, for all a > γ̃(b) such that
R(a) ≤ M it happens that h3(a, b) ≤ ρ(a, b,M) < a/2.
Hence, h3(a, b) < a/2 for all a > max{L, γ̃(b)} and A(b) is
thus nonempty. As a consequence, h4(b) <∞ for all b ≥ 0.

We next show that limb→0+ h4(b) = 0. Since h4 is
nondecreasing, there exists L = limb→0+ h4(b) ≥ 0. For a
contradiction, suppose that L > 0. Let 0 < ε < L, let γ̃ ∈ K
correspond to M = R̄(L − ε) according to Lemma A.1 and
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let b > 0 be sufficiently small so that γ̃(b) < L− ε. Note that
a ≥ L− ε implies that R(a) ≤ M and hence h3(a, b) < a/2
for all a ≥ L − ε. Then, h4(b) ≤ L − ε, contradicting
the fact that h4 is nondecreasing. The function h4 is thus
nondecreasing, continuous at 0, and satisfies h4(0) = 0 and
h4(b) <∞ for all b > 0. Therefore, we can find α ∈ K∞ so
that h4(b) < α(b) for all b > 0. We then have h3(a, b) < a/2
for all a ≥ α(b), a > 0, which implies that h2(a, b) < a for
all a ≥ α(b), a > 0. We have now established (33).

We next proceed with the ISS proof in order to establish
(34). We have 0 ≤ h3(a, b) < a/2 for all a ≥ α(b),
a > 0. In particular, h3(α(b), b) < α(b)/2 and then
limb→0+ h3(α(b), b) = 0. From the definition of h1, h3

and `, it follows that h3(a, b) ≥ κ2

(∫ `(a,b)
a

ω(s)
φ4(s)ds

)
≥ 0.

Define F via F (r) :=
∫ r

0
ω(s)
φ4(s)ds for r ≥ 0. Since

ω is positive for s > 0, Borel measurable and
nondecreasing, φ4 is continuous and positive on (0,∞)
and φ5 ∈ K∞, then F (0) = 0, F is continuous and strictly
increasing and h3(a, b) ≥ κ2(F (`(a, b)) − F (a)) ≥ 0.
Since `(a, b) = φ−1

5 (φ5(a) + R(a)b), κ2 ∈ K∞,
and limb→0+ h3(α(b), b) = 0, it follows that
limb→0+ F (`(α(b), b)) = limb→0+ F (α(b)) = 0.
Then limb→0+ `(α(b), b) = 0 and, a posteriori
limb→0+ [R(α(b))b] = 0. Next, we show that
limb→0+ [R̄(α(b))b] = 0. Since R̄(α(·)) is nonincreasing,
then limb→0+ R̄(α(b)) exists (but may equal ∞). If
limb→0+ R̄(α(b)) < ∞, then limb→0+ [R̄(α(b))b] = 0. If
limb→0+ R̄(α(b)) = ∞, consider a decreasing sequence
{bk} of positive real numbers, satisfying limk→∞ bk = 0.
Due to the continuity of R(·) and hypothesis c), then
R̄(a) < ∞ for all a > 0, and for each bk there exists
a corresponding ak satisfying 0 < bk ≤ ak < ∞ and
R̄(α(bk)) = R(α(ak)). The sequence {ak} necessarily
satisfies limk→∞ ak = 0. Therefore, 0 ≤ R̄(α(bk))bk ≤
R(α(ak))ak and limk→∞[R̄(α(bk))bk] = 0. This
shows that limb→0+ [R̄(α(b))b] = 0. The function
¯̀(b) := φ−1

5

(
φ5(α(b)) + R̄(α(b))b

)
thus satisfies

limb→0+
¯̀(b) = 0 and is continuous for all b > 0. The

existence of α̃ ∈ K∞ satisfying (34) is thus ensured. The fact
that α(b) ≤ α̃(b) for all b ≥ 0 is a consequence of φ5 ∈ K∞
and R̄(α(b))b > 0 for all b > 0.

Finally, we establish (35) for the pISS case. Since α, φ5 ∈
K∞, then α̃ defined as α̃(b) = φ−1

5 (φ5(α(b)) + b) satisfies
α̃ ∈ K∞, (35) and α(b) ≤ α̃(b) for all b ≥ 0.

B. Proof of Claim 2

By the analysis performed at the beginning of the proof
of Claim 1, we know that for a > 0 and b ≥ 0, the set of
values c ∈ [0, `(a, b)] satisfying c ≤ h1(a, b, c) is an interval
of the form [0, h2(a, b)], with h2(a, b) > 0. If a ≥ α(b), by
(33) and the fact that a ≤ `(a, b), then h2(a, b) < `(a, b).
As a consequence, if a ≥ α(b), then h2(a, b) is the unique
value of c ∈ [0, `(a, b)] satisfying h1(a, b, c) = c. Consider
the set C = {(a, b) ∈ R2

≥0 : a ≥ α(b), b > 0} and
a sequence {(ak, bk)} in C that converges to (a, b) ∈ C.
We have 0 < h2(ak, bk) < ak for all k, and there exists
a subsequence {(akl , bkl)} so that h2(akl , bkl) → c, where

0 ≤ c ≤ a ≤ `(a, b). By the continuity of h1, then
h2(akl , bkl) = h1(akl , bkl , h2(akl , bkl)) → c = h1(a, b, c),
and hence c = h2(a, b). This shows that h2(ak, bk)→ h2(a, b)
and hence h2 is continuous in C.

Let D = {(a, b) : α(b) ≤ a ≤ r̃, U0 ≤ b ≤ U1}. Define
m = m(r̃, U0, U1) via m = min(a,b)∈D[a − h2(a, b)]. The
function a−h2(a, b) is continuous and positive in the compact
set D ⊂ C, and hence m > 0. Since supk≥0 wk ≤ U ,
then yk ≥ α(U) implies that yk ≥ α(wk). By (33), then
for each k for which yk ≥ α(U), we have yk − yk+1 ≥
yk − h2(yk, wk) ≥ yk − h2(yk, U), where the last inequality
follows because h2(a, ·) is nondecreasing. Let l = inf{k ∈
N0 : yk < α(U)}. Since y0 ≥ α(U), then l ≥ 1 and
yk ≥ α(U) for k = 0, 1, . . . , l − 1. Note that (yk, U) ∈ D
and hence yk − yk+1 ≥ m whenever k = 0, 1, . . . , l− 1. This
shows that l < ∞, and the result follows by taking K equal
to the lowest integer not less that r̃/m.

C. Proof of Claim 3

Suppose that Vk and Vk+1 are defined. Then Vk ≥ α(U) >
0 and tk+1 = tk + R(Vk) < ∞. Let Φ(t, s, σ) denote the
state transition matrix of the linear time-varying system ẋ(t) =
A(t, σ(t))x(t), satisfying Φ(s, s, σ) = I . From (3) and (14),
we have

xk+1 = Φ(tk+1, tk, σ)xk+∫ tk+1

tk

Φ(tk+1, s, σ)
[
g(s, x(s), σ(s))+G(s, x(s), σ(s))u(s)

]
ds

Using (5) and the fact that for all a, b ≥ 0 and φ ∈ K,
then φ(a + b) ≤ φ(2a) + φ(2b), it follows that Vk+1 =
V (tk+1, xk+1) satisfies, using (15),

Vk+1 ≤ φ2

(
2|Φ(tk+1, tk, σ)xk|

)
+

κ2

(∫ tk+1

tk

[∣∣g(s, x(s), σ(s))
∣∣+
∣∣G(s, x(s), σ(s))u(s)

∣∣]ds) .
The first summand above satisfies

φ2 (2 |Φ(tk+1, tk, σ)xk|) ≤ φ2(2Ψe−λ(tk+1−tk)φ−1
1 (Vk))

where we employed (15). Given that tk+1 − tk = R(Vk),

e−λ(tk+1−tk) = e−λR(Vk) =
φ−1

2 (Vk/2)

2Ψφ−1
1 (Vk)

,

where we have used (32). It thus follows that

φ2(2|Φ(tk+1, tk, σ)xk|) ≤ Vk/2, ∀σ ∈ S.

By means of (22), we can write for every h ∈ L1([tk, tk+1])∫ tk+1

tk

φ3(|h(s)|)ds ≤ R(Vk)γ

(∫ tk+1

tk

|h(s)|
R(Vk)

ds

)
We next employ (16) and the above inequality to reach∫ tk+1

tk

|g(s, x(s), σ(s))|ds ≤R(Vk)γ

(∫ tk+1
tk

ησ(s)(s,x(s))

R(Vk)
ds

)

≤ R(Vk)γ

(
Vk − Vk+1

R(Vk)
+

∫ tk+1

tk

φ4(V (s, x(s)))|u(s)|
R(Vk)

ds

)
,
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where we have used (30) and (18).
Using (31) with t0 replaced by tk, it follows that

V (t, x(t)) ≤ φ−1
5

(
φ5(Vk) +

∫ t

tk

|u(s)|ds
)

(37)

for t ∈ [tk, tk+1]. Since φ4 is nondecreasing, we may employ
(37) to derive the following bound∫ tk+1

tk

φ4(V (s, x(s)))|u(s)|ds

≤
∫ φ5(Vk)+

∫ tk+1
tk

|u(s)|ds

φ5(Vk)

φ4 ◦φ
−1
5 (τ)dτ

= φ−1
5

(
φ5(Vk) +

∫ tk+1

tk

|u(s)|ds
)
− Vk,

where the last equality follows because, according to Assump-
tion 5, then

∫ s
0
φ4 ◦φ

−1
5 (τ)dτ = φ−1

5 (s). Following similar
lines, using (17), (37), and since ω is nondecreasing, then∫ tk+1

tk

∣∣G(s,x(s),σ(s))u(s)
∣∣ds ≤ ∫ tk+1

tk

ω(V (s,x(s))) |u(s)| ds

≤
∫ φ5(Vk)+

∫ tk+1
tk

|u(s)|ds

φ5(Vk)

ω ◦φ−1
5 (τ)dτ

=

∫ φ−1
5 (φ5(Vk)+

∫ tk+1
tk

|u(s)|ds)

Vk

ω(r)

φ4(r)
dr,

where the last equality follows via the change of variables r =
φ−1

5 (τ). Combining the bounds obtained into the inequality
for Vk+1, and considering that

∫ tk+1

tk
|u(s)|ds ≤ R(Vk)uk for

ISS and that
∫ tk+1

tk
|u(s)|ds = uk for pISS, it follows that

Vk+1 ≤ h1(Vk, uk, Vk+1). Evaluating (37) at t = tk+1, then
Vk+1 ≤ `(Vk, uk). From the definition of h2, it follows that
Vk+1 ≤ h2(Vk, uk). The function h2(a, ·) is nondecreasing
because h1(a, ·, c) is. Thus, h2(Vk, uk) ≤ h2(Vk, U). Then,
h2(Vk, U) < Vk follows from Vk ≥ α(U) and (33).

D. Proof of Lemma 4.1

The proof requires the following preliminary result.
Lemma A.2: Let XM be the set of Lebesgue measurable

functions h : [0, 1] → [0,M ], where M > 0. Let ρ :
[0,M ] → [0, 1] be continuous, strictly increasing, and such
that ρ(0) = 0 and ρ(M) = 1. Then, there exists γ ∈ K such
that

∫ 1

0
ρ(h(s)) ds ≤ γ

(∫ 1

0
h(s) ds

)
for all h ∈ XM .

Proof: Let γ∗ : [0,M ]→ [0, 1] be defined by

γ∗(l) = sup

{∫ 1

0

ρ(h(s)) ds : h ∈ XM ∧
∫ 1

0

h(s) ds ≤ l
}
.

Note that γ∗ is nondecreasing. Consider the strictly decreasing
sequence {sk}∞k=0, sk = ρ−1(2−k). Note that s0 = M .
Let ε > 0 and k ∈ N0 be such that 2−k+1 < ε. Suppose
that l > 0 satisfies l < δ = 2−ksk. Let h ∈ XM be
such that

∫ 1

0
h(s) ds = l and let A1 = {s ∈ [0, 1] :

h(s) ≤ sk} and A2 = {s ∈ [0, 1] : h(s) > sk}. The fact
|A2|sk ≤

∫
A2
h(s) ds ≤ l, implies that |A2| ≤ l/sk < 2−k,

where |A2| denotes the Lebesgue measure of A2. Then, taking

into account that ρ is strictly increasing,
∫ 1

0
ρ(h(s)) ds =∫

A1
ρ(h(s)) ds +

∫
A2
ρ(h(s)) ds ≤

∫
A1
ρ(sk) ds + |A2| ≤

2−k + 2−k = 2−k+1 < ε. Therefore γ∗(l) < ε ∀l < δ and
liml→0+ γ∗(l) = 0. Since γ∗ is nondecreasing, γ∗(0) = 0,
and liml→0+ γ∗(l) = 0, then there exists γ ∈ K such that
γ∗(s) ≤ γ(s) for all s ≥ 0. Thus, for all h ∈ XM , we have∫ 1

0
ρ(h(s)) ds ≤ γ∗

(∫ 1

0
h(s)ds

)
≤ γ

(∫ 1

0
h(s)ds

)
.

Proof of Lemma 4.1: i) ⇒ ii). For every r ≥ 1,
consider the function hr ∈ L1([0, 1]) defined by hr(s) =
r if s ∈ [0, 1/r] and hr(s) = 0 otherwise. We have∫ 1

0
φ(|hr(s)|)ds = φ(r)

r ≤ γ(1), for all r ≥ 1. As a
consequence, lim supr→∞

φ(r)
r ≤ γ(1) <∞.

ii) ⇒ i). We can suppose, without loss of generality, that φ
is, in addition, strictly increasing. If it is not, just replace φ
by any class-K function which majorizes φ and satisfies item
ii) of the lemma. Let r̄ > 0 and K > 0 satisfy φ(r) ≤ Kr
for all r ≥ r̄. For every h ∈ L1([0, 1]), define f(h) = {s ∈
[0, 1] : |h(s)| < r̄}, g(h) = {s ∈ [0, 1] : |h(s)| ≥ r̄} and
h(s) = h(s) if s ∈ f(h) and h(s) = 0 otherwise. Note that
[0, 1] = f(h)∪g(h) and

∫ 1

0
φ(|h(s)|)ds =

∫
f(h)

φ(|h(s)|)ds+∫
g(h)

φ(|h(s)|)ds =
∫ 1

0
φ(|h(s)|)ds+

∫
g(h)

φ(|h(s)|)ds. Define
ρ : [0, r̄] → [0, 1] via ρ(s) = φ(s)/φ(r̄). By Lemma A.2,
there exists γ̃ ∈ K such that

∫ 1

0
ρ(|h(s)|)ds ≤ γ̃

(∫ 1

0
|h(s)|ds

)
and hence

∫ 1

0
φ(|h(s)|)ds ≤ φ(r̄)γ̃

(∫ 1

0
|h(s)|ds

)
. In addition,∫

g(h)
φ(|h(s)|)ds ≤

∫
g(h)

K|h(s)|ds ≤ K
∫ 1

0
|h(s)|ds. Then,∫ 1

0
φ(|h(s)|)ds ≤ φ(r̄)γ̃

(∫ 1

0
|h(s)|ds

)
+ K

∫ 1

0
|h(s)|ds ≤

γ
(∫ 1

0
|h(s)|ds

)
, with γ(s) := φ(r̄)γ̃(s) +Ks.
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