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Abstract

Stability results for time-varying systems with inputs are relatively scarce, as opposed to the abundant literature available
for time-invariant systems. This paper extends to time-varying systems existing results that ensure that if the input
converges to zero in some specific sense, then the state trajectory will inherit stability properties from the corresponding
zero-input system. This extension is non-trivial, in the sense that the proof technique is completely novel, and allows to
recover the existing results under weaker assumptions in a unifying way.
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1. Introduction

Stability properties for systems with inputs find natu-
ral application in control systems. Input-to-state stability
(ISS) [1, 2, 3], integral ISS (iISS) [4, 5], converging-input
converging-state (CICS) [6, 7], uniformly bounded-energy
input bounded state (UBEBS) [8], bounded-energy-input
convergent-state (BEICS) [9, 10] and Lp-input converging-
state [11] are examples of such properties. Most of the ex-
isting analyses and characterizations of these properties
apply to time-invariant systems. Analogous results for
time-varying systems are very scarce. There exist some
characterizations of the ISS property [12, 13, 14] and a
recent result by the authors characterizing the iISS prop-
erty [15]. In a more general setting, some asymptotic be-
haviour results exist for asymptotically autonomous differ-
ential equations [16, 17], and some also dealing with weak
invariance principles [18]. An asymptotically autonomous
differential equation is one such that the function f0 defin-
ing its dynamics ẋ = f0(t, x) approaches a time-invariant
function g, i.e. f0(t, x)→ g(x) as t→∞, in some suitable
sense.

A time-invariant system ẋ = f̄(x, u), with an input u
that converges to zero can be interpreted as an asymptoti-
cally autonomous system [f0(t, x) := f̄(x, u(t))→ g(x) :=
f̄(x, 0)] under reasonable assumptions. By contrast, time-
varying systems of the form ẋ = f(t, x, u) do not in general
allow such a possibility. An interesting result in the lat-
ter case is provided in [18], where the concept of weakly
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asymptotically autonomous system is introduced, which,
loosely speaking, means that ẋ = f0(t, x) approaches the
differential inclusion ẋ ∈ F (x) as t→∞ in some appropri-
ate sense. The latter can be employed in the time-varying
case with f0(t, x) := f(t, x, u(t)).

An iISS system has, inter alia, the property that inputs
with bounded energy, where energy is measured according
to the iISS gain, produce state trajectories that asymptot-
ically converge to zero. The latter is the BEICS property
[9]. The function that weighs the input in order to mea-
sure input energy, i.e. the iISS gain in the iISS setting,
is extremely important in the sense that a system may be
iISS for some iISS gains but not for others. Interesting ex-
amples of some perhaps counter-intuitive facts are given in
[19] and [20], where globally asymptotically stable systems
(exponentially in [20]) are destabilized by additive inputs
of arbitrarily small energy (exponentially decaying in [20]).
The main point we make is that the ensuing stability or
instability depends on how input energy is measured.

This work relates to the CICS and BEICS properties.
Roughly speaking, these properties entail that if the sys-
tem input converges to zero in some specific manner, then
the state will also converge to zero. These properties are
of importance in stability analysis for cascade systems
and also in ensuring stability robustness under certain
types of disturbances. We consider time-varying systems
with inputs and pinpoint specific input power ‘measures’
(see Section 2.3) so that solutions corresponding to inputs
with decaying-to-zero power may inherit specific proper-
ties from the corresponding zero-input system. More pre-
cisely, suppose that the zero-input system has a uniformly
locally asymptotically stable compactum C within an open
set G contained in the “region of attraction” (see [21]
for the latter concept in time-varying systems, and Sec-
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tion 2 below). Let x be a forward complete solution of
ẋ = f(t, x, u) corresponding to an input u having decaying-
to-zero power. Then, one of the results that we prove is
that if the ω-limit set of x has nonempty intersection with
G, then x approaches C.

In this context, our contribution is the following. First,
we provide a convergence result for time-varying systems
with inputs under very mild assumptions on the function
f defining the system dynamics. Worthy of mention is
that we do not require f(t, x, u) to be continuous in t, nor
locally Lipschitz in x. As a consequence, solutions are
not necessarily unique. Second, we pinpoint input power
‘measures’ for which such convergence is possible. These
‘measures’ relate to specific bounds on f . Third, we extend
some of the main results in [6], [9] and [11] to time-varying
systems, under weaker assumptions and in a unifying way.
We emphasize that these extensions are novel and non-
trivial, since existing results for time-invariant systems,
such as those in [9] and [11], cannot be adapted to the
current setting (the corresponding proofs rely on converse
Lyapunov theorems that do not remain valid).

The remainder of this paper is organized as follows. In
Section 2 we introduce the notation, definitions and main
assumptions required. Our main result and explanations
of how our result subsumes other existing results are con-
tained in Section 3. Section 4 contains some secondary
technical results and conclusions are drawn in Section 5.

2. Preliminaries

2.1. Notation and preliminary definitions

The reals, nonnegative reals, naturals and nonnegative
integers are denoted R, R≥0, N and N0, respectively. For
ξ ∈ Rn, |ξ| denotes its Euclidean norm. For a given
nonempty subset A ⊂ Rn, |ξ|A denotes the distance from
ξ ∈ Rn to A, that is |ξ|A = inf{|ξ − ζ| : ζ ∈ A}. Given
r ≥ 0, Ar = {ξ ∈ Rn : |ξ|A ≤ r} and Br(ξ) = {ξ}r
for every ξ ∈ Rn. Thus, if ξ ∈ Rn and r ≥ 0, the state-
ments ξ ∈ Ar and |ξ|A ≤ r are equivalent. For p ≥ 1 and
m ∈ N, Lpm,loc (Lpm) denotes the set of all the Lebesgue
measurable functions v : R≥0 → Rm such that |v|p is
integrable on each finite interval I ⊂ R≥0 (|v|p is inte-
grable on R≥0). When m = 1 we just write Lploc and Lp.
For a Lebesgue measurable set J ⊂ R, |J | will denote its
Lebesgue measure. Given a metric space (U, d) and an
interval I ⊂ R, we say that v : I → U is piecewise con-
stant if there exists a partition I1, . . . , Im of I such that
Ii is an interval for every i and v is constant on Ii. The
function u : I → U is Lebesgue measurable if there ex-
ists a sequence of piecewise-constant functions uk : I → U
such that limk→∞ uk(t) = u(t) for almost all t ∈ I, that
is |{t ∈ I : limk→∞ uk(t) 6= u(t)}| = 0. When U is sep-
arable, u : I → U is measurable if and only if u−1(V ) is
Lebesgue measurable for every open subset V of U (see
Remark C.1.1. in [22]). A function ω : U → R is proper
if for all r ∈ R the sublevel set ω−1((−∞, r]) is compact.

We write σ ∈ K if σ : R≥0 → R≥0 is continuous, strictly
increasing, and σ(0) = 0. We write σ ∈ K∞ if σ ∈ K and
σ is unbounded.

2.2. Problem statement

This work deals with time-varying control systems of
the general form

ẋ = f(t, x, u) (1)

where f : R≥0 × X × U → Rn with X an open subset
of Rn and (U, d) a metric space. An input is a Lebesgue
measurable function u : R≥0 → U and U is the set of all
the inputs. We suppose that U is nonempty and there
exists 0 ∈ U , where “0” is nothing but some element in U
that we distinguish from the rest. For an arbitrary µ ∈ U ,
we define |µ| := d(µ, 0), i.e. |µ| is the distance between µ
and 0. In the case in which U ⊂ Rm, 0 denotes the origin
of Rm and d will be the metric induced by Euclidean norm.
The zero input is the map 0 ∈ U such that 0(t) ≡ 0. With
system (1) we associate the zero-input system

ẋ = f(t, x,0) =: f0(t, x). (2)

Assumption 1. The function f : R≥0 × X × U → Rn
satisfies the following conditions.

A1) (Carathéodory) f(·, ξ, µ) is Lebesgue measurable for
all (ξ, µ) ∈ X ×U and f(t, ·, ·) is continuous for every
t ≥ 0.

A2) (Zero-input Lipschitzianity) f0(t, ξ) is locally Lips-
chitz in ξ uniformly in t in the following sense: for ev-
ery compact subset K ⊂ X there exists a nonnegative

function LK ∈ L1
loc such that supt≥0

∫ t+T
t

LK(s)ds <
∞ for all T > 0 and

|f0(t, ξ)− f0(t, ξ′)| ≤ LK(t)|ξ − ξ′| ∀t ≥ 0, ∀ξ, ξ′ ∈ K.

In view of Assumption 1, for each t0 ≥ 0 and ξ ∈ X there
is a unique maximally defined (forward) solution x(t) =
ϕ(t, t0, ξ) of (2) which verifies x(t0) = ξ. We will denote
by [t0, tt0,ξ) its maximal interval of definition. It is well-
known that in the case in which ϕ(t, t0, ξ) belongs to a fixed
compact subset of X for all t ∈ [t0, tt0,ξ), then tt0,ξ =∞.

Let C ⊂ G ⊂ X be such that C is nonempty and com-
pact and G is open. In what follows we assume that C
is uniformly asymptotically stable with respect to (2) and
that G is contained in the region of attraction of C. These
statements are made precise in the following assumption.

Assumption 2 (Zero-input stability). There exist a
nonempty compact set C and an open set G such that
C ⊂ G ⊂ X and

B1) (uniform Lyapunov stability) for every ε > 0 there
exists δ > 0 such that for all t0 ≥ 0 and ξ ∈ Cδ,
ϕ(t, t0, ξ) ∈ Cε for all t ≥ t0;

B2) (uniform boundedness of solutions) for every compact
set K ⊂ G there exists a compact set Γ ⊂ X such that
for all t0 ≥ 0 and ξ ∈ K we have that ϕ(t, t0, ξ) ∈ Γ
for all t ≥ t0;
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B3) (uniform atractiveness) for every compact set K ⊂ G
and every ε > 0 there exists T = T (K, ε) ≥ 0 such
that for all t0 ≥ 0 and ξ ∈ K we have that ϕ(t, t0, ξ) ∈
Cε for all t ≥ t0 + T .

Note that under the uniform Lyapunov stability in B1)
above, it follows that C is forward invariant under (2), i.e.
for all t0 ≥ 0 and ξ ∈ C, ϕ(t, t0, ξ) ∈ C for all t ≥ t0. When
G = X = Rn, then C is globally uniformly asymptotically
stable with respect to (2).

Remark 1. When the zero-input system (2) is time-
invariant, i.e. f0(t, ξ) ≡ f∗0 (ξ), Assumption 2 is satisfied
with any compact set C ⊂ X which is asymptotically sta-
ble with respect to (2) [that is (i) C is stable: for ev-
ery ε > 0 there exists δ > 0 such that for all ξ ∈ Cδ,
ϕ(t, 0, ξ) ∈ Cε for all t ≥ 0 and (ii) C is attractive: there
exists δ0 > 0 such that |ϕ(t, 0, ξ)|C → 0 for all ξ ∈ Cδ0 ]
and with G = A, where A = {ξ ∈ X : |ϕ(t, 0, ξ)|C → 0} is
the region of attraction of C. ◦

The problem we address in this paper is the following:
Give conditions under which the property of convergence

to C that applies to solutions of the zero-input system (2)
is inherited by (i.e. also applies to) solutions of (1).

Remark 2. Some solutions to this problem are given for
time-invariant systems in [6], [11] and [9]. The results in
this paper extend these in different directions, as will be
explained in more detail in Section 3. ◦

2.3. Admissible inputs and further assumptions

One of the conditions that we will give towards solving
the considered problem is that the input u should converge
to 0 in some appropriate sense. To make this notion more
precise, we require the following assumption.

Assumption 3. The function f in (1) satisfies the follow-
ing two conditions:

C1) There exists a continuous function γ : U → R≥0 so
that: i) γ(0) = 0 and γr := inf |µ|≥r γ(µ) > 0 for all
r > 0, and ii) for every compact set K ⊂ X there
exists M = M(K) ≥ 0 such that |f(t, ξ, µ)| ≤M(1 +
γ(µ)) for all t ≥ 0, all ξ ∈ K and all µ ∈ U .

C2) For every compact set K ⊂ X and ε > 0 there exists
δ = δ(K, ε) > 0 such that for all t ≥ 0, |f(t, ξ, µ) −
f(t, ξ, 0)| < ε if ξ ∈ K and |µ| ≤ δ.

Condition C1) gives a specific bound on the growth of
|f(t, ξ, µ)| which is uniform over all t ≥ 0 and over ξ in
compact sets. Condition C2) requires that f(t, ξ, ·) be
continuous at (t, ξ, 0), uniformly over t ≥ 0 and over ξ
in compact sets.

For some results we will consider the following somewhat
weaker conditions on f , which are equivalent to those of
Assumption 3 when U is locally compact and separable
(see Lemma 2.1 below).

Assumption 4. The function f in (1) satisfies C2) and:

D1) f is bounded on R≥0×K×B for every pair of compact
sets K ⊂ X and B ⊂ U .

The proof of the following lemma is given in Section 4.

Lemma 2.1. Suppose that f satisfies condition D1) and
that U is a separable and locally compact metric space.
Then, f satisfies condition C1).

Remark 3. Several characterizations of stability proper-
ties for time-invariant systems with inputs, of the form
ẋ = f̄(x, u), are made possible by employing (i) knowledge
of the stability properties of the zero-input system, and
(ii) some local Lipschitz continuity assumption on f̄ (see
e.g. [2, 5]). For example, the proof of the characterization
of the integral input-to-state stability (iISS) property in
Theorem 1 of [5] employs the fact that the 0-input system
ẋ = f̄(x, 0) is globally asymptotically stable (Proposition
II.5 and Lemma IV.10 of [5]) and the fact that f̄ is lo-
cally Lipschitz continuous. In this work, we do not require
any additional Lipschitz continuity assumption other than
that in Assumption 1. ◦

Associated with the function γ in C1), we define the
set of admissible inputs Uγ := {u ∈ U : γ ◦u ∈ L1

loc}.
From A1) and C1), well-known results of the theory of
ordinary differential equations (e.g. Theorem I.5.1 in [23])
ensure that for every t0 ≥ 0, ξ ∈ X and u ∈ Uγ there
exists at least one maximally defined (forward) solution
x : [t0, tx) → X to (1) which verifies x(t0) = ξ and that
tx = ∞ if x(t) belongs to some fixed compact subset of
X for all t ∈ [t0, tx). We emphasize that Assumptions 1
and 3, and the fact u ∈ Uγ are not sufficient to ensure the
uniqueness of the corresponding solutions of (1), and that
uniqueness of solutions is not required along this paper.

For a given T > 0, consider the positive semidefinite
functional ‖ · ‖T : Uγ → [0,∞], defined by

‖u‖T := sup
t≥0

∫ t+T

t

γ(u(s)) ds. (3)

Given u ∈ Uγ and T > 0, the quantity ‖u‖T can be in-
terpreted as a measure of the maximum energy that u
contains in any interval of length T . Hence, ‖u‖T /T is
a measure of maximum average power. For the sake of
simplicity, and to distinguish ‖u‖T from other measures
of input energy, we will refer to ‖u‖T as the power of the
admissible input u.

Proposition 2.2. Let T1, T2 > 0. Then, there exists k =
k(T1, T2) such that ‖u‖T2

≤ k‖u‖T1
for all u ∈ Uγ .

Proof. Let k denote the least integer not less than T2

T1
.

Then, k ≥ 1 and T2 ≤ kT1. By direct application of (3)
and simple properties of integrals and suprema, it can be
shown that ‖u‖T2

≤ k‖u‖T1
. �
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Definition 2.3. We say that u ∈ Uγ converges to 0, and
write u→ 0, if limτ→∞ ‖u(·+ τ)‖T = 0. We define U0

γ :=
{u ∈ Uγ : u → 0} as the set of all the admissible inputs
that converge to 0.

By Proposition 2.2, it follows that if limτ→∞ ‖u(·+τ)‖T =
0 for some T > 0 then limτ→∞ ‖u(· + τ)‖T = 0 for all
T > 0. Therefore, neither the set U0

γ nor the convergence
of u to 0 depend on the number T in their definition.

3. Zero-input Stability Inheritance

In Section 3.1, we state and prove our main result,
namely Theorem 3.2. Some particular cases are addressed
in Sections 3.2 and 3.3. Specifically, Section 3.2 contains
results for finite-energy inputs and Section 3.3 for essen-
tially bounded ones. Along this section, we show that
Theorem 3.2 subsumes and extends many existing results
under weaker assumptions.

3.1. Main result

We require the following definition.

Definition 3.1. A maximally defined forward solution x :
[t0, tx) → X of (1) is said to be forward complete if tx =
∞. A forward complete solution x : [t0,∞) → X of (1)
converges to C, denoted by x→ C, if limt→∞ |x(t)|C = 0.

We recall that the ω-limit set Ω(x) of a forward complete
solution x : [t0,∞) → X of (2) is the set of all the points
ξ ∈ X̄ (X̄ being the closure of X ) for which there exists a
sequence {tk} ⊂ R≥0 such that tk ↗∞ and x(tk)→ ξ.

The following is the main result of the paper.

Theorem 3.2. Let Assumptions 1, 2 and 3 hold. Let x be
a forward complete solution of (1) corresponding to some
input u ∈ U0

γ [where γ is as in C1) in Assumption 3].
Then, the following are equivalent:

i) x→ C,

ii) Ω(x) ∩ G 6= ∅,
iii) ∅ 6= Ω(x) ⊂ C.

Remark 4. Item iii) in Theorem 3.2 could be replaced
by the statement “x approaches a connected component
of C”. The equivalence is explained as follows. If x
approaches a connected component of C, then clearly i)
holds and by Theorem 3.2, also iii) holds. Conversely,
if iii) above holds, then properties of ω-limit sets (see,
e.g. Proposition 2.1 in [11]) allow the following reason-
ing. From iii) above and Ω(x) being closed, it is hence
compact. Since x is continuous and Ω(x) is nonempty
and compact, then x is bounded and, a posteriori, Ω(x)
is connected and contained in a connected component of
C. The fact that x approaches Ω(x) implies then that x
approaches a connected component of C. ◦

The proof of Theorem 3.2 requires Lemmas 3.3 and 3.4
below. Lemma 3.3 bounds the difference between solu-
tions of (1) and (2) having the same initial condition. The
bound given by this lemma is useful only for small values
of t−t0 because it already assumes that solutions lie in the
compact set Γ in the time interval of interest. The proof
of Lemma 3.3 is similar to part of the proof of Lemma 3
in [15] but is included here for the reader’s convenience.

Lemma 3.3. Let Assumptions 1 and 3 hold. Let Γ ⊂ X
be a compact set and let LΓ : R≥0 → R≥0 be as in A2)
of Assumption 1 with K = Γ. Then, for every η > 0
there exists a positive constant κ = κ(Γ, η) such that the
following holds: if x is a solution of (1) corresponding to
u ∈ Uγ , z is a solution of (2) such that x(t) and z(t) belong
to Γ for all t ∈ [t0, t0 + T ], and x(t0) = z(t0) then for all
t ∈ [t0, t0 + T ],

|x(t)− z(t)| ≤
[
η(t− t0) + κ

∫ t

t0

γ(u(τ)) dτ

]
e
∫ t
t0
LΓ(s) ds

Proof. Let Γ ⊂ X be compact and η > 0.
Claim: there exists κ = κ(Γ, η) > 0 such that for all

t ≥ 0, ξ ∈ Γ and µ ∈ U ,

|f(t, ξ, µ)− f(t, ξ, 0)| ≤ η + κγ(µ). (4)

From C2) there exists 0 < δ = δ(Γ, η) < 1 such that
for all t ≥ 0, all ξ ∈ Γ and all µ ∈ U such that
|µ| < δ, it happens that |f(t, ξ, µ) − f(t, ξ, 0)| < η. If
ξ ∈ Γ and |µ| ≥ δ, using C1) it follows that |f(t, ξ, µ) −
f(t, ξ, 0)| ≤ |f(t, ξ, µ)| + |f(t, ξ, 0)| ≤ 2M(1 + γ(µ)) and
hence |f(t, ξ, µ) − f(t, ξ, 0)|/γ(|µ|) ≤ 2M [1/γδ + 1] =: κ.
In consequence

|f(t, ξ, µ)− f(t, ξ, 0)| ≤ κγ(|µ|) ∀ξ ∈ Γ, |µ| ≥ δ.

Combining the inequalities obtained, the claim is estab-
lished.

Let x be a solution of (1) corresponding to some u ∈ Uγ
and let z be a solution of (2) such that x(t) and z(t) lie in
Γ for all t ∈ [t0, t0 + T ] for some t0 ≥ 0 and T > 0. Fix
t ∈ [t0, t0 + T ]. Then, for all t0 ≤ τ ≤ t, we have

|x(τ)− z(τ)| ≤
∫ τ

t0

|f(s, x(s), u(s)))− f(s, z(s), 0)|ds

≤
∫ τ

t0

|f(s, x(s), u(s))− f(s, x(s), 0)|ds

+

∫ τ

t0

|f(s, x(s), 0)− f(s, z(s), 0)|ds

≤
∫ τ

t0

[η + κγ(u(s))]ds+

∫ τ

t0

LΓ(s) |x(s)− z(s)|ds

≤ η(t− t0) + κ

∫ t

t0

γ(u(s))ds+

∫ τ

t0

LΓ(s) |x(s)− z(s)|ds.

Using Gronwall’s inequality, it follows that

|x(t)− z(t)| ≤
[
η(t− t0) + κ

∫ t

t0

γ(u(s))ds

]
e
∫ t
t0
LΓ(s) ds

for all t ∈ [t0, t0 + T ]. �
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Lemma 3.4 below shows that solutions of (1) that begin
sufficiently close to the compact set C and correspond to
inputs with sufficiently small power are forward complete,
and that C is uniformly Lyapunov stable under the dy-
namics of (1).

Lemma 3.4. Let Assumptions 1, 2 and 3 hold. For every
ε > 0 and every T > 0 there exists δ = δ(ε, T ) > 0 so that
the following holds: if x is a solution of (1) corresponding
to an input u ∈ Uγ such that ‖u‖T ≤ δ and |x(t0)|C ≤ δ for
some t0 ≥ 0, then x is forward complete and |x(t)|C ≤ ε
for all t ≥ t0.

Proof. Let ε > 0 and T > 0. We can assume, without loss
of generality, that ε is small enough so that Γ := Cε ⊂ G.
From B1), there exists δ∗ ∈ (0, ε/2) such that for all t0 ≥ 0
and all ζ ∈ Cδ∗ , the unique maximal solution of the zero-
input system satisfies ϕ(t, t0, ζ) ∈ Cε/2 for all t ≥ t0. From
B3), there exists T ∗ = T ∗(Cδ∗ , δ

∗/2) > 0 such that for all
t0 ≥ 0 and all ζ ∈ Cδ∗ , ϕ(t, t0, ζ) ∈ Cδ∗/2 for all t ≥ t0+T ∗.

Let LΓ : R≥0 → R≥0 be as in A2) with K = Γ and let

L∗ = supt≥0

∫ t+T∗
t

LΓ(s) ds. Consider η = δ∗

4T∗eL∗
. Let

κ = κ(Γ, η) be given by Lemma 3.3. Pick c > 0 such
that ‖u‖T∗ ≤ c‖u‖T holds for every u ∈ Uγ . Let x be a
solution of (1) corresponding to some u ∈ Uγ such that
κc‖u‖T eL

∗
< δ∗/4 and such that |x(t0)|C ≤ δ∗ for some

t0 ≥ 0. Define τ∗ = sup{τ ≥ t0 : x(s) ∈ Γ ∀s ∈ [t0, τ ]}.
Since x(t0) ∈ Cδ∗ ⊂ Cε = Γ, δ∗ < ε and x is continuous, it
follows that x(s) ∈ Γ for all s in some interval [t0, t

′
0] with

t′0 > t0. So τ∗ > t0. We claim that τ∗ > t0 + T ∗. Suppose
on the contrary that τ∗ ≤ t0 + T ∗. From the definition of
τ∗, the continuity of x and the definition and compactness
of Γ it follows that x(t) ∈ Γ for all t ∈ [t0, τ

∗] and that
|x(τ∗)|C = ε. Since z(t) := ϕ(t, t0, x(t0)) ∈ Cε/2 ⊂ Γ for
all t ≥ t0, by applying Lemma 3.3 it follows that for all
t ∈ [t0, τ

∗]

|x(t)− z(t)| ≤
[
η(t− t0) + κ

∫ t

t0

γ(u(τ)) dτ

]
e
∫ t
t0
LΓ(s) ds

≤ [ηT ∗ + κ‖u‖T∗ ] eL
∗
≤ [ηT ∗ + κc‖u‖T ] eL

∗
<
δ∗

2
.

(5)

The latter and the fact that |z(t)|C ≤ ε/2 for all t ≥ t0
yield, for all t ∈ [t0, τ

∗],

|x(t)|C ≤ |z(t)|C + |x(t)− z(t)| ≤ ε

2
+
δ∗

2
< ε.

In particular, we have that |x(τ∗)|C < ε, which contradicts
the fact that |x(τ∗)|C = ε. Thus τ∗ > t0 + T ∗ as claimed.
Besides, since |z(t0 + T ∗)|C ≤ δ∗/2 and (5) holds for t =
t0 + T ∗, we also have that |x(t0 + T ∗)|C ≤ δ∗. Repeating
the same reasoning in a recursive manner we obtain that
for all j ∈ N0, |x(t)|C < ε for all t ∈ [t0+jT ∗, t0+(j+1)T ∗]
and |x(t0 +(j+1)T ∗)|C ≤ δ∗. Taking δ = min{δ∗, δ∗

4κceL∗
}

thus establishes the first assertion. Since x is contained in
the compact set Cε ⊂ X for as long as it is defined, then
x is forward complete. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. i) ⇒ ii) Since x → C and C is
compact, then ∅ 6= Ω(x) ∩ C ⊂ Ω(x) ∩ G.

ii) ⇒ iii) Firstly we will prove that Ω(x) ∩ Cδ 6= ∅ for
every δ > 0. Let δ > 0. We can assume without loss
of generality that Cδ ⊂ G. Pick any ξ ∈ Ω(x) ∩ G and
any r > 0 such that Br(ξ) ⊂ G. Due to B2) there exists a
compact set Γ ⊂ X so that for all t0 ≥ 0 and all ζ ∈ Br(ξ),
ϕ(t, t0, ζ) ∈ Γ for all t ≥ t0. From B3), there exists T > 0
so that for every t0 ≥ 0 and every ζ ∈ Br(ξ), ϕ(t, t0, ζ) ∈
Cδ/2 for all t ≥ t0 + T . Pick any 0 < δ1 < δ/2 such that
Γδ1 ⊂ X is compact. Let LΓδ1

: R≥0 → R≥0 be as in A2)

with K = Γδ1 and let L = supt≥0

∫ t+T
t

LΓδ1
(s) ds. Define

η = δ1
4TeL

. Let κ = κ(Γδ1 , η) be given by Lemma 3.3.
Since ξ ∈ Ω(x) ∩ G, there exists a sequence {tk} in R≥0

so that x(tk) → ξ. Then ξk = x(tk) ∈ Br(ξ) for k large
enough, say k ≥ k0. Since ρk := ‖u(·+tk)‖T → 0, κρke

L <
δ1/4 for k large enough, say k ≥ k1. Let k ≥ max{k0, k1}
and τk = sup{τ ≥ tk : x(s) ∈ Γδ1 ∀s ∈ [tk, τ ]}. Since
x(tk) ∈ Γ and x is continuous, it follows that x(s) ∈ Γδ1
for all s in some interval [tk, t

′
k], with t′k > tk. So τk > tk.

We claim that τk > tk + T . Suppose on the contrary that
τk ≤ tk + T . From the definition of τk, the continuity of
x and the compactness of Γδ1 it follows that x(t) ∈ Γδ1
for all t ∈ [tk, τk] and that |x(τk)|Γ = δ1. Since zk(t) :=
ϕ(t, tk, ξk) ∈ Γ ⊂ Γδ1 for all t ≥ tk, by applying Lemma
3.3 it follows that for all t ∈ [tk, τk]

|x(t)− zk(t)| ≤
[
η(t− tk) + κ

∫ t

tk

γ(u(τ)) dτ

]
e
∫ t
tk
LΓδ1

(s) ds

≤ [ηT + κρk] eL <
δ1
4

+
δ1
4

=
δ1
2
. (6)

In consequence, the latter and the fact that |zk(t)|Γ = 0
for all t ≥ tk yield

|x(τk)|Γ ≤ |zk(τk)|Γ + |x(τk)− zk(τk)| < δ1
2
,

which contradicts |x(τk)|Γ = δ1. Thus τk > tk + T .
From the facts that (6) holds for t′k = tk+T and zk(tk+

T ) ∈ Cδ/2 it follows that

|x(t′k)|C ≤ |zk(t′k)|C + |x(t′k)− zk(t′k)| < δ

2
+
δ1
2
≤ δ.

We then have that for all k ≥ max{k0, k1}, x(t′k) ∈ Cδ.
From the compactness of Cδ and the fact that t′k ↗ ∞,
the existence of an ω-limit point of x lying in Cδ follows.

Next we will prove that Ω(x) ⊂ C. Let ε > 0 and
pick any T ′ > 0. Let δ = δ(ε, T ′) > 0 as in Lemma
3.4. Let ζ ∈ Ω(x) ∩ Cδ/2 and let {tk} be a sequence such
that ζk = x(tk) → ζ. Then ζk ∈ Cδ for k large enough,
say k ≥ k2. Since u → 0, then there exists k3 such that
‖u(· + tk)‖T ′ ≤ δ for all k ≥ k3. Let k4 = max{k2, k3}
and let v : R≥0 → U be the input defined by v(t) = 0
if t ∈ [0, tk4

) and v(t) = u(t) if t ∈ [tk4
,∞). Then the
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restriction of x to [tk4 ,∞) is a solution of (1) corresponding
to the input v, |x(tk4

)|C ≤ δ and ‖v‖T ′ ≤ δ. Then, by
applying Lemma 3.4 it follows that |x(t)|C ≤ ε for all
t ≥ tk4

. Therefore Ω(x) ⊂ Cε for all ε > 0 and that
Ω(x) ⊂ C follows.

iii) ⇒ i). Since x is continuous and Ω(x) is nonempty
and compact, well-known properties of ω-limits (see, e.g.
Proposition 2.1 in [11]) imply that Ω(x) is approached by
x and therefore x→ C. �

We next consider the case of globally defined systems
for which C is globally uniformly asymptotically stable for
the zero-input system (2). The following corollary extends
Corollary 4.4 of [11] to time-varying systems and under
weaker assumptions (see Section 3.2).

Corollary 3.5. Let Assumptions 1, 2 and 3 hold with
G = X = Rn. If x is a forward complete solution of
(1) corresponding to some u ∈ U0

γ , then as t → ∞ either
|x(t)|C → 0 or |x(t)|C →∞.

Proof. Suppose that lim inft→∞ |x(t)|C < ∞. Then ∅ 6=
Ω(x) = Ω(x) ∩ G. By Theorem 3.2, then |x(t)|C → 0. If
lim inft→∞ |x(t)|C =∞, then limt→∞ |x(t)|C =∞. �

3.2. Bounded-energy inputs
In this subsection, we consider the case in which the

inputs u have finite energy, that is
∫∞

0
γ(u(s)) ds <∞ for

some function γ as in condition C1).
Note that any input u ∈ U such that

∫∞
0
γ(u(s))ds <∞

belongs to U0
γ , and that therefore Theorem 3.2 and Corol-

lary 3.5 remain valid if we replace the condition u ∈ U0
γ by

the stronger one
∫∞

0
γ(u(s))ds <∞. A consequence of this

simple observation is that the Lp-input converging-state
results for time-invariant systems in [11], namely Theo-
rem 4.2 and Corollary 4.4, can be easily deduced from
Theorem 3.2 and Corollary 3.5, respectively. Those re-
sults straightforwardly follow by observing that: (a) the
continuity of f and the zero-input local Lipschitz condi-
tion assumed in [11] imply that f satisfies Assumption 1
with U = Rm and condition C2) of Assumption 3; (b) from
the zero-input asymptotic stability of the compact set C
assumed in [11] it follows that Assumption 2 holds with
C and G = A, where A is domain of attraction of C (see
Remark 1); (c) the continuity of f , the growth condition
assumed in [11, eq.(1)] and the fact that |µ| ≤ 1 + |µ|p for
all µ ∈ Rn and all p ≥ 1 imply that condition C1) holds
with γ(µ) = |µ|p, for every p ≥ 1; and (d) the inputs u
considered in [11] belong to Lpm for some p ≥ 1.

We also remark that the growth condition assumed in
[11, eq.(1)] in conjunction with the continuity of f con-
stitute conditions that are more restrictive than C1) in
Assumption 3. Also, such growth condition is a kind of
Lipschitz continuity requirement on f that we do not as-
sume (recall Remark 3).

The main proof technique in [11] requires a converse
Lyapunov argument that is not valid for time-varying sys-
tems. Consequently, the proof in the current paper is com-
pletely novel even for this particular case.

Theorem 3.6 below provides a result in the case G =
X = Rn, related to the BEICS property. Let γ be as in
condition C1). We say that (1) has the γ-BEICS property
with respect to a compact subset C ⊂ Rn if every solu-
tion x of (1) corresponding to an input u ∈ U such that∫∞

0
γ(u(s)) ds <∞ satisfies x→ C.

Theorem 3.6. Let Assumptions 1, 2 and 3 hold with G =
X = Rn. Suppose there exists a continuously differentiable
function V : R≥0 × Rn → R such that

1. there exists φ ∈ K∞ so that for all t ≥ 0 and ξ ∈ Rn

φ(|ξ|C) ≤ V (t, ξ); (7)

2. there exists R ≥ 0 such that for all t ≥ 0, µ ∈ U and
ξ ∈ Rn the following implication holds

V (t, ξ) ≥ R ⇒ ∂V

∂t
+
∂V

∂ξ
f(t, ξ, µ) ≤ γ(µ), (8)

with γ as in C1) in Asumption 3.

Then (1) has the γ-BEICS property with respect to C.

Proof. Let u ∈ U be such that
∫∞

0
γ(u(s))ds <∞. Then,

u ∈ U0
γ . Let x be a solution of (1) corresponding to u,

maximally defined on [t0, tx). The existence of a function
V satisfying (8) implies that

V (t, x(t)) ≤ R+V (t0, x(t0))+

∫ ∞
t0

γ(u(s))ds ∀t ∈ [t0, tx).

Then (7) and the compactness of C imply that x is
bounded on [t0, tx) and that tx =∞. Application of Corol-
lary 3.5 shows that |x|C → 0. �

The BEICS part of the main result in [9] (Theorem 3.1)
is a particular case of Theorem 3.6 above, corresponding
to C = {0} and U = Rm. This can be seen as follows.
Theorem 3.1 of [9] assumes that f in (1) is time-invariant
and locally Lipschitz, and that (1) is zero-input globally
asymptotically stable and dissipative with supply function
σ ∈ K. As a consequence, Assumptions 1 and 2, and
C2) of Assumption 3 are clearly satisfied. Theorem 3.1
of [9] also requires a condition named (A), which implies
that C1) of Assumption 3 is satisfied with γ(·) = σ(| · |).
Finally, the dissipativity assumption with supply function
σ, implies (but it is not equivalent to) the existence of
the function V as required in Theorem 3.6. Therefore,
application of Theorem 3.6 recovers the σ-BEICS result
of Theorem 3.1 of [9] under weaker hypotheses. The iISS
part of Theorem 3.1 of [9] has already been extended in
[15]. The results in the current paper do not require those
of [15] (with the aforementioned exception of part of the
proof of Lemma 3.3) and are proved in a different manner.
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3.3. Essentially bounded inputs

By considering the case of essentially bounded inputs,
we are able to relax the assumptions of Theorem 3.2 even
further. We recall that an input u ∈ U is locally essentially
bounded if for each T > 0 there exists a compact set BT ⊂
U such that |{t ∈ [0, T ] : u(t) /∈ BT }| = 0. Also, u ∈ U is
essentially bounded if it is locally essentially bounded and
the set BT can be selected independently of T > 0. We
also consider the following type of ‘meagreness’ condition
on u ∈ U (cf. [24, 18]):

(M) for every T > 0 and λ > 0,

lim
t→∞

|{s ∈ [t, t+ T ] : |u(s)| ≥ λ}| = 0.

Lemma 3.7 below characterizes essentially bounded inputs
which belong to U0

γ in terms of property (M).

Lemma 3.7. Let γ : U → R≥0 be continuous and such
that γ(0) = 0 and inf |µ|≥r γ(µ) > 0 for all r > 0. Let
u ∈ U be essentially bounded. Then, the following are
equivalent:

a) u ∈ U0
γ .

b) u satisfies condition (M).

Proof. a)⇒ b). Suppose that u does not satisfy condition
(M). Then there exist T > 0, λ > 0, ε0 > 0 and a sequence
tk ↗∞ such that |{s ∈ [tk, tk + T ] : |u(s)| ≥ λ}| ≥ ε0 for
all k. Let γλ = inf |µ|≥λ γ(µ) > 0. Then∫ tk+T

tk

γ(u(s)) ds ≥ γλ ε0 ∀k

which contradicts the fact that u ∈ U0
γ .

b) ⇒ a). Since u is essentially bounded and γ is con-
tinuous it follows that γ ◦ u is essentially bounded, hence
γ(u(t)) ≤ M for almost all t ≥ 0 for some M > 0. Let
T > 0 and ε > 0. From the continuity of γ and the fact
that γ(0) = 0, there exists δ > 0 such that γ(µ) < ε

2T for
all |µ| < δ. For t ≥ 0, let J(t) = {s ∈ [t, t+T ] : |u(s)| ≥ δ}
and I(t) = {s ∈ [t, t + T ] : |u(s)| < δ}. Since u satisfies
condition (M) there exists t0 > 0 such that |J(t)| < ε

2M
for all t ≥ t0. Then, for every t ≥ t0 we have that∫ t+T

t

γ(u(s)) ds =

∫
J(t)

γ(u(s)) ds+

∫
I(t)

γ(u(s)) ds

≤M |J(t)|+ ε

2T
|I(t)| ≤ ε

2
+
ε

2
= ε.

�.

The following is the main result of this subsection.

Theorem 3.8. Let Assumptions 1, 2 and 4 hold. Let x be
a forward complete solution of (1) corresponding to some
essentially bounded input u ∈ U which satisfies condition
(M). Then the statements i), ii) and iii) of Theorem 3.2
are equivalent.

Proof. Since u is essentially bounded, there exists a com-
pact set B ⊂ U such that u(t) ∈ B for almost all t ≥ 0.
Then, there exists uB ∈ U such that uB(t) ∈ B for all
t ≥ 0 and uB(t) = u(t) for almost all t ≥ 0. It is clear
that x is a solution of (1) corresponding to u if and only if
it also is a solution corresponding to uB . By replacing u
by uB and U by B, and restricting f to R≥0 × X ×B we
can suppose without loss of generality that U is a compact
metric space and that f satisfies Assumptions 1, 2 and 4.
By applying Lemma 2.1 it follows that f also satisfies As-
sumption 3. The theorem then follows from Lemma 3.7
and Theorem 3.2. �

The converging-input converging-state result in Theorem 1
of [6] is a simple consequence of Theorem 3.8 and the fol-
lowing result.

Lemma 3.9. Let u ∈ U be locally essentially bounded and
such that limt→∞ |u(t)| = 0. Then u is essentially bounded
and satisfies condition (M).

Proof. The fact that u satisfies condition (M) is straight-
forward. Since u is locally essentially bounded and satisfies
limt→∞ |u(t)| = 0, application of Remark C.1.3 in [22] to
the sequence {ui} ⊂ U with ui : [0, 1]→ U , ui(t) := u(t+i)
for i = 0, 1, . . . shows the existence of a compact set B ⊂ U
such that u(t) ∈ B for almost all t ≥ 0. �

Theorem 1 of [6] assumes that f in (1) is time-invariant,
continuous and locally Lipschitz in x uniformly in u, when
u belongs to a compact subset of U . It is also assumed
that x̄ ∈ X is an asymptotically stable equilibrium point of
the zero-input system with region of attraction O. Then,
if x is a forward complete solution of (1) correspond-
ing to a locally essentially bounded input u such that
limt→∞ |u(t)| = 0 and x satisfies a certain recurrence
condition (see [6] for details), the aforementioned Theo-
rem 1 asserts that x→ x̄. It is clear that the assumptions
made on f in [6] imply that f satisfies Assumptions 1 and
4. In addition, Assumption 2 holds with C = {x̄} and
G = O. The facts that u is locally essentially bounded
and limt→∞ |u(t)| = 0 imply that u is essentially bounded
and satisfies condition (M) in virtue of Lemma 3.9. The
assumptions of Theorem 3.8 are thus fulfilled. In conse-
quence, being Ω(x) ∩ G 6= ∅ due to the recurrence condi-
tion assumed in [6], application of Theorem 3.8 shows that
x→ x̄, as Theorem 1 of [6] asserts.

We note that our assumptions on the function f , par-
ticularized to the time-invariant case, are slightly weaker
than those assumed in [6], since we do not require the
uniform-in-the-input local Lipschitz condition assumed in
that paper.

We close the subsection with a convergence result for
bounded-input bounded-state (BIBS) systems, easily de-
rived from Theorem 3.8. We say that system (1) is BIBS
if for every maximal solution x : [t0, tx) → X of (1) cor-
responding to an essentially bounded input u ∈ U there
exists a compact set K ⊂ X such that x(t) ∈ K for all
t ∈ [t0, tx). Then, note that x is forward complete.
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Corollary 3.10. Let Assumptions 1 and 4 hold. Suppose
that Assumption 2 holds with G = X and that (1) is BIBS.
Let x be a maximal solution of (1) corresponding to some
essentially bounded input u ∈ U which satisfies condition
(M). Then x→ C.

4. Some Technical Results

Lemma 4.1. Let (S, d) be a separable and locally compact
metric space and let s0 ∈ S. Then, there exists a proper
continuous function ω : S → R≥0 such that ω(s0) = 0 and
ω(s) ≥ d(s, s0) for all s ∈ S.

Proof. If S is compact just take ω(s) = d(s, s0). Suppose
that S is locally compact and separable but not compact.
Then there exists a sequence {Kn}n≥1 of compact subsets
of S such that s0 ∈ K1, Kn ⊂ int(Kn+1) for every n ≥ 1
and ∪n≥1int(Kn) = S. Here int(Kl) denotes the interior
of Kl for every l ≥ 1. Since S is not compact, S \Kn 6= ∅
for all n ≥ 1. From Urysohn’s lemma (see e.g. Chapter II
of [25]), for each n ≥ 1 there exists a continuous function
gn : S → [0, 1] such that gn(s) = 0 for all µ ∈ Kn and
gn(s) = 1 for all s outside int(Kn+1). Let g : U → R≥0 be
defined via g(s) =

∑∞
n=1 gn(s). It is an exercise to show

that g is well defined, continuous, proper and g(s0) = 0.
The lemma follows by taking ω : S → R≥0, with ω(s) =
max{d(s, s0), g(s)}. In fact, ω is continuous, ω(s0) = 0
and ω(s) ≥ d(s, s0). That ω is proper follows from the fact
that for every r ∈ R, ω−1((−∞, r]) = g−1((−∞, r])∩ {s ∈
S : d(s, s0) ≤ r} is compact since it is the intersection of
the compact set g−1((−∞, r]) with the closed set {s ∈ S :
d(s, s0) ≤ r}. �

Proof of Lemma 2.1. Pick any ξ0 ∈ X . Both U and X
are separable locally compact metric spaces, the first one
by hypothesis and the second one because X is an open
subset of a separable and locally compact metric space.
Then, invoking Lemma 4.1, there exist proper continuous
functions ω1 : U → R≥0 and ω2 : X → R≥0 such that
ω1(0) = 0 and ω1(µ) ≥ |µ| for all µ ∈ U , and ω2(ξ0) = 0
and ω2(ξ) ≥ |ξ − ξ0| for all ξ ∈ X . Note that for each
r > 0, the sets S1(r) := {µ ∈ U : ω1(µ) ≤ r} and
S2(r) := {ξ ∈ X : ω2(ξ) ≤ r} are compact, because the
functions ωi, i = 1, 2 are proper. Define, for all r > 0,

γ̂(r) := sup{|f(t, ξ, µ)| : t ≥ 0, µ ∈ S1(r), ξ ∈ S2(r)}.

γ̂(r) is nonnegative, nondecreasing and finite for all r > 0
due to the compactness of S1(r) and S2(r) and the bound-
edness condition assumed. Let γ̂(0) := limr→0+ γ̂(r); this
limit exists because γ̂ is nondecreasing. Then the func-
tion γ̃ : [0,∞) → R≥0, defined via γ̃(r) = γ̂(r) − γ̂(0) is
nondecreasing, continuous at 0 and γ̃(0) = 0. Therefore,
there exists a continuous and strictly increasing function
γ∗ : R≥0 → R≥0 such that γ∗(0) = 0 and γ̃(r) ≤ γ∗(r) for
all r > 0. Then, for every ξ ∈ X and µ ∈ U and every

r > 0 and s > 0 such that ξ ∈ S2(r) and µ ∈ S1(s) we
have

|f(t, ξ, µ)| ≤ γ̂(max{r, s}) ≤ γ̂(r) + γ̂(s)

≤ 2γ̂(0) + γ∗(r) + γ∗(s).

So, for all ξ ∈ X and µ ∈ U

|f(t, ξ, µ)| ≤ inf
{

2γ̂(0) + γ∗(r) + γ∗(s) :

r > 0, s > 0, ω2(ξ) ≤ r, ω1(µ) ≤ s
}

= 2γ̂(0) + γ∗(ω1(µ)) + γ∗(ω2(ξ)).

Let K ⊂ X be a compact set and c = maxξ∈K γ
∗(ω2(ξ)) +

2γ̂(0) + 1. Then we have that

|f(t, ξ, µ)| ≤ c(1 + γ∗(ω1(µ))) ∀ξ ∈ K, ∀µ ∈ U.

If we take γ = γ∗ ◦ω1, it follows that γ(0) = 0,
inf |µ|≥r γ(µ) ≥ inf |µ|≥r γ

∗ ◦ω1(µ) ≥ inf |µ|≥r γ
∗(|µ|) ≥

γ∗(r) > 0 for all r > 0, where we have used the facts
that ω1(µ) ≥ |µ| and that γ∗ is strictly increasing. Hence,
condition C1) is satisfied. �

5. Conclusions

We have provided stability results for time-varying sys-
tems with inputs. More precisely, we have given conditions
under which if the maximum average power of the input
converges to zero, then the state trajectories will inherit
stability properties from the corresponding zero-input sys-
tem. For this property to hold, input power must be mea-
sured according to a function that bounds the growth of
the function f defining the system dynamics as the input
value grows. Our results generalize to time-varying sys-
tems other existing results that are valid for time-invariant
systems. Even when particularized to time-invariant sys-
tems, the assumptions required are weaker than existing
ones. This relaxation of the required assumptions is made
possible by avoiding the use of converse Lyapunov argu-
ments (which are not valid for time-varying systems), and
by not requiring Lipschitz continuity other than for the
zero-input system. In addition, our results do not require
uniqueness of solutions.
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