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Abstract The aim of this paper is to study self-similar solutions to the symplectic
curvature flow on 6-dimensional nilmanifolds. For this purpose, we focus our attention
on the family of symplectic two- and three-step nilpotent Lie algebras admitting a
minimal compatible metric and give a complete classification of these algebras together
with their respective metric. Such a classification is given by using our generalization
of Nikolayevsky’s nice basis criterion, which, for the convenience of the reader, will be
repeated here in the context of canonical compatible metrics for geometric structures
on nilmanifolds. By computing the Chern–Ricci operator P in each case, we show
that the above distinguished metrics define a soliton almost Kähler structure. Many
illustrative examples are carefully developed.
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1 Introduction

Let (g, J, ω) be an almost Kähler structure on a manifold M2n . Let us denote by p
its Chern–Ricci form and by ric the usual Ricci tensor of the Riemannian manifold
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(M2n, g). The symplectic curvature flow (SCF) on a compact almost Kähler manifold
(M2n, g0, J0, ω0) is given by the system of evolution equations

{
∂
∂t ω = −2p; with ω(0) = ω0,

∂
∂t g = −2(pc(·, J ·) − ricac); with g(0) = g0.

(1.1)

Here, pc is the complexified component of p (also called the J -invariant part of p) and
ricac denotes the anti-complexified part of ric (also known as the anti-J -invariant part
of ric).

This geometric flow was recently introduced by Streets and Tian in [18], where the
short-time existence and uniqueness for this flow are proved. The solution to Eq. (1.1)
preserves the almost Kähler structure, and if the initial almost Kähler structure is in
fact Kähler, then such is a solution to the Kähler Ricci flow.

Let G be a simply connected Lie group admitting a left invariant almost Kähler
structure (g0, J0, ω0). Any left invariant almost Kähler structure on G is determined
by an inner product 〈·, ·〉 on g and a non-degenerate skew-symmetric bilinear form
ω on g, here g = Lie(G) (the Lie algebra of G). One can consider the symplectic
curvature flow on G, where (1.1) becomes a system of ordinary differential equations.
The almost Kähler structure (g0, J0, ω0) is called a soliton [12, Sect. 7] if the solution
to the SCF starting at (g0, J0, ω0) is (algebraically) self-similar, this is to say, the
solution has the form {

ωt = c(t)ω0(φt ·, φt ·)
gt = c(t)g0(φt ·, φt ·) (1.2)

for some c(t) ∈ R>0 and φt ∈ Aut(g), both differentiable at t , with c(0) = 1, φ0 = Id
and φ′

0 = D ∈ Der(g).
By following results given in [12], our aim in this work is to study soliton almost

Kähler structures on 6-dimensional nilmanifolds. In some cases, such structures are
determined by minimal compatible metrics on symplectic nilpotent Lie algebras
(which are related with the anti-complexified Ricci flow introduced in [13]). This
is the case of symplectic two-step nilpotent Lie algebras which are Chern–Ricci flat
(it follows from results of Vezzoni [19] or Pook [16, Proposition 2]). In this way, we
give a complete classification of minimal compatible metrics on symplectic three-step
and two-step nilpotent Lie algebras and prove the main results of this paper:

Theorem A All symplectic two-step Lie algebras of dimension 6 admit a minimal
compatible metric and, in consequence, admit a soliton almost Kähler structure.

Theorem B Every minimal compatible metric on a symplectic three-step nilpotent
Lie algebra of dimension 6 defines a soliton almost Kähler structure.

In general, it is a difficult problem to know when a symplectic nilpotent Lie alge-
bra admits a minimal compatible metric. This problem is equivalent to determining
whether an orbit of the natural action of Sp(n, R) on �2(R2n)∗ ⊗R

2n is distinguished,
i.e., we must determine when an orbit contains a critical point of the norm-square of
the moment map msp associated with the action. By using convexity properties of the
moment map and recent results of Jablonski [6], the author presented a criterion to
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knowing whether a nice element of a real reductive representation has a distinguished
orbit [2]. Such a result can be considered as a generalization of Nikolayevsky’s nice
basis criterion [15, Theorem 3]. As Theorems A and B are proved by using such a
criterion, we prove, for the convenience of the reader, the corresponding criterion
in the general context of canonical compatible metrics for geometric structures on
nilmanifolds (Sect. 2.2); which is considered the second aim of this paper.

2 Preliminaries

2.1 Soliton Solutions for the SCF on Lie Groups

Let G be a Lie group admitting a left invariant almost Kähler structure, i.e., there exist
a symplectic structure ω on g, an almost complex structure J on g and an inner product
〈·, ·〉 on g satisfying the compatibility condition

ω(X, Y ) = 〈J X , Y 〉, ∀X, Y ∈ g.

By symplectic structure on g we mean that the non-degenerate skew-symmetric bilin-
ear form ω is closed, that is,

ω([X, Y ], Z) + ω([Y, Z ], X) + ω([Z , X ], Y ) = 0 (2.1)

for any X , Y and Z in g.
Given a bilinear form on g, say B: g × g−→R , the complexified part of B and the

anti-complexified part of B, denoted by Bc and Bac respectively, are defined to be

Bc(·, ·) = 1

2
(B(·, ·) + B(J ·, J ·)) and Bac(·, ·) = 1

2
(B(·, ·) − B(J ·, J ·)).

In the same way we define the complexified part and anti-complexified part of a linear
map T : g−→ g , denoted by T c and T ac respectively, to be

T c = 1

2
(T − J T J ) and T ac = 1

2
(T + J T J ).

From now on, the transpose of a linear map T : g−→ g with respect to 〈·, ·〉 and ω

are denoted by T T and T Tω , respectively (note that T Tω = −J AT J ).
Let p be the Chern–Ricci form of the left invariant almost Kähler structure

(〈·, ·〉, J, ω). It is proved in [19, Proposition 4.1] and [16, Sect. 3] that p is given
by

p(X, Y ) = 1

2

(
tr(adJ [X,Y ]) − tr(J ad[X,Y ])

)
. (2.2)

The above expression has interesting consequences, among them let us mention,
for instance, if g is a two-step nilpotent Lie algebra (ad[·,·] = 0), then p = 0, i.e.,
(g, 〈·, ·〉, J, ω) is Chern–Ricci flat ([19, Proposition 4.1] or [16, Proposition 2]).
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From Eq. (2.2), it is easy to see that there exists an Ĥ ∈ g such that

p(X, Y ) = ω(Ĥ , [X, Y ]) (2.3)

because ω is non-degenerate. Such an Ĥ can be taken to be 1
2

∑
adT

ei
ei +

1
2

∑
J adT

ei
(Jei ), where {e1, . . . , en} is an orthonormal basis for g. Therefore, if

P is the Chern–Ricci operator, i.e., P is the linear transformation of g such that
p(X, Y ) = ω(PX, Y ) for all X, Y ∈ g, then P = adĤ + adTω

Ĥ
(it is immediate from

Eq. (2.1)).
According to the above formula for P, we can say more about the Chern–Ricci form

p. To do this, let us make a short digression on left-symmetric algebras.

Definition 2.1 [17] A left-symmetric algebra structure (LSA-structure) on a Lie alge-
bra g is a bilinear product �: g × g−→ g satisfying the conditions

(1) [X, Y ] = X � Y − Y � X ,
(2) X � (Y � Z) − Y � (X � Z) − [X, Y ] � Z = 0

for all X , Y and Z ∈ g.
Given X ∈ g, let λX denote (respectively ρX ) the left multiplication by X (respec-

tively right multiplication by X ) in the left-symmetric algebra: λX (Y ) = X � Y and
ρX (Y ) = Y � X for all Y ∈ g. The LSA-structure is called complete if for every X ∈ g,
the linear transformation Id + ρX is bijective.

Note that the LSA-structure conditions are equivalent to having a left-invariant
affine connection on g which is: (1) torsion free and (2) flat. These concepts play
an important role in the study of affine crystallographic groups and of fundamental
groups of affine manifolds, which are well-developed theories and have a rich history
that includes challenging problems due to Louis Auslander and John W. Milnor. We
refer the reader to [1] for a comprehensive review of the literature on such topics.

On the completeness of an LSA-structure, we have the following result due to Dan
Segal.

Theorem 2.2 [17] Let g be a Lie algebra over a field k of characteristic zero and
�: g × g−→ g be an LSA-structure on g. The following conditions are equivalent:

(1) The LSA-structure is complete.
(2) The LSA-structure is right nilpotent, i.e., ρX is a nilpotent linear transformation,

for all X ∈ g.
(3) tr(ρX ) = 0 for all X ∈ g.

This theorem implies the following additional property on the Chern–Ricci operator.

Proposition 2.3 Let g be a unimodular Lie algebra and (〈·, ·〉, J, ω) be an almost-
Kähler structure on g. Then, its Chern–Ricci operator P is a nilpotent operator.

Proof Consider the usual LSA-structure �: g × g−→ g on g induced by the symplectic
structure, which is defined implicitly by

ω(H, [X, Y ]) = −ω(X � H, Y ), (2.4)

for any H , X and Y ∈ g.
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Given H ∈ g, let PH denote the linear transformation such that

ω(H, [X, Y ]) = ω(PH X, Y ),∀X, Y ∈ g. (2.5)

From Eq. (2.1), it follows that

adTω

X (H) = adTω

H (X) + adH (X)

and, in consequence, PH = adTω

H +adH . Since g is unimodular (tr(adZ ) = 0, ∀Z ∈ g),
tr(PH ) = 2tr(adH ) = 0 for any H ∈ g.

By Eqs. (2.4) and (2.5), we have ρH = −PH , and, on account of the above-
mentioned, tr(ρH ) = 0 for any H ∈ g, which implies that the LSA-structure is
complete and so, ρH is a nilpotent linear transformation for any H ∈ g. Since the
Chern–Ricci operator P is equal to PĤ = −ρĤ for certain Ĥ ∈ g, this completes the
proof. 
�
Remark 2.4 A direct proof of the above proposition can be given by using the equation:

tr(ρk
X ) = tr(ρXk ), ∀X ∈ g (2.6)

where Xk = Xk−1 � X with k ∈ N (see [5, Proposition 15], [10, Theorem 2.2] or [17,
Proposition 2])

Having disposed of this preliminary information on the Chern–Ricci form, we can
now return to the main topic of this subsection.

Definition 2.5 [12, Definition 7.2] An almost Kähler structure (〈·, ·〉, J, ω) on a Lie
algebra g is called a soliton if for some c ∈ R and D ∈ Der(g),

{
P = cId + 1

2 (D − J DT J )

Pc + Ricac = cId + 1
2 (D + DT).

(2.7)

It is proved in [12, Lemma 7.1] that the above definition is equivalent to saying that
the solution to the SCF starting in (〈·, ·〉, J, ω) is self-similar in the sense of condition
(1.2).

Note that, if the almost Kähler structure is in fact Kähler, then such a structure is a
soliton if and only if 〈·, ·〉 is a semi-algebraic Ricci soliton; Ric = cId + 1

2 (D + DT)

(because P = Ric). Here, we can highlight that it is now known from recent works of
Michael Jablonski that semi-algebraic solitons are algebraic (see [8]).

Given that the SCF evolves the metric and the symplectic structure, preserving the
compatibility, one expects that, in general, it is not enough to have a “distinguished”
metric or a “distinguished” symplectic structure in order to have a soliton.

Example 2.6 Consider the Lie algebra g := (R6, μ) with

μ =
{ [e1, e2] = e1, [e1, e3] = e1, [e1, e4] = −2 e6, [e1, e6] = −2 e5,

[e2, e5] = −2 e5, [e2, e6] = −e6, [e3, e4] = 2 e4, [e3, e6] = e6
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and the almost-Kähler structure on g given by (〈·, ·〉, J, ωcn), where 〈·, ·〉 is the
canonical inner product of R

6 and ωcn is the canonical symplectic form of R
6;

ωcn = e∗
1 ∧ e∗

6 + e∗
2 ∧ e∗

5 + e∗
3 ∧ e∗

4.
An easy computation shows that (〈·, ·〉, J, ωcn) is an Einstein strictly almost Kähler

structure on g. In fact, NJ (e1, e3) = 4e1 = 0, where NJ is the Nijenhuis tensor and

Ric = Diag(−4,−3,−3,−2, 2, 0) − 1

2
Diag(0, 6, 6, 0, 0, 0) − Diag(2, 0, 0, 4, 8, 6)

= −6Id.

In consequence, the Ricci tensor is J -invariant; Ricac = 0.
The vector Ĥ defined as Ĥ := 3e2 − e3 satisfies p(X, Y ) = ωcn(Ĥ , [X, Y ]), so

the Chern–Ricci operator P is given by

P = Diag(−6,−6,−2,−2,−6,−6).

In consequence, the Chern–Ricci operator is symmetric; Pc = P.
In this case, the soliton condition may then be reduced to P = cId + 1

2 (D + DT),
with D ∈ Der(g). Since the algebra of derivations of g is given by

Der(g) = span

{
E1,1 + 2E5,5 + E6,6, E4,4 + E5,5 + E6,6, E6,1 − E4,3,

E5,1 + 1
2 (E6,2 − E6,3), (E1,2 + E1,3) − 2(E6,4 + E5,6, E5,2)

}
,

a trivial verification shows that (〈·, ·〉, J, ω) is not a soliton.

Example 2.7 Consider the family of strictly almost Kähler solvmanifolds given by
the family of solvable Lie algebras g(λ1, λ2, λ3) := (R6, μλ1,λ2,λ2), where

μλ1,λ2,λ2 =
⎧⎨
⎩

[e1, e3] = − (
λ1

2 + λ2
2
)

e3, [e1, e4] = λ3e3 + (
λ1

2 + λ2
2
)

e4,

[e2, e6] = (
λ2

2 − λ1
2
)

e2 + 2 λ1λ2e5,

[e5, e6] = 2 λ1λ2e2 + (
λ1

2 − λ2
2
)

e5,

with strictly almost Kähler structure (〈·, ·〉, J, ωcn) given by the canonical inner prod-
uct of 〈·, ·〉 and the usual symplectic form ωcn (note that NJ (e1, e4) = λ3e3 + 2(λ2

1 +
λ2

2)e4).
The vector Ĥ defined as Ĥ := 1

2λ3e6 satisfies p(X, Y ) = ωcn(Ĥ , [X, Y ]). Since
e6 ⊥ω [g, g], the above family is Chern–Ricci flat (p = 0).

An easy computation shows that

Ricac = λ3

4
Diag

(
−λ3, 0,

(
2λ3 4(λ2

1 + λ2
2)

4(λ2
1 + λ2

2) −2λ3

)
, 0, λ3

)

and a straightforward computation of the algebra of derivations when λ3 = 0 shows
that the above structure is a soliton if and only if λ3 = 0, and in that case, Ricac = 0.

Some sufficient conditions to have a soliton have been given in [12]. These condi-
tions are more easily verifiable than those in Definition 2.5.
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Proposition 2.8 [12, Proposition 7.4] If an almost-Kähler structure (〈·, ·〉, J, ω) on
a Lie algebra g satisfies any of the conditions

{
P + Ricac = cId + D (2.8)

or{
P = c1Id + D1
Ricac = c2Id + D2

(2.9)

with c′s ∈ R and D′s ∈ Der(g), then (〈·, ·〉, J, ω) defines a soliton with the same c
and D in condition (2.8), and c = c1 + c2 and D = D1 + D2 in condition (2.9).

Let (n, ω) be a symplectic nilpotent Lie algebra and 〈·, ·〉 be a compatible metric
with (n, ω). If the anti-complexified part of the Ricci operator of 〈·, ·〉, Ricac, satisfies
Ricac = cId + D for some c ∈ R and D ∈ Der(n), then such a metric is minimal
(see [11, Theorem 4.3]). Thus, in the nilpotent case, some soliton almost-Kähler struc-
tures are given by minimal compatible metrics with the Chern–Ricci operator being a
derivation.

Example 2.9 Consider the nilpotent Lie algebra n := (R8, μ) with

μ =
{

[e1, e2] =
√

14
14 e4, [e2, e5] =

√
14

14 e8, [e2, e6] =
√

14
14 e3, [e3, e7] =

√
14

14 e4,

[e5, e7] = −
√

14
14 e6, [e6, e7] = −

√
14

14 e1, [e7, e8] =
√

14
14 e3

and the almost Kähler structure given by (〈·, ·〉, J, ωcn), where 〈·, ·〉 is the canonical
inner product of R

8 and ωcn is the usual symplectic form of R
8; ωcn = e∗

1 ∧ e∗
8 + e∗

2 ∧
e∗

7 + e∗
3 ∧ e∗

6 + e∗
4 ∧ e∗

5. The vector Ĥ :=
√

14
28 e7 satisfies p(X, Y ) = ωcn(Ĥ , [X, Y ]).

Since e7 ⊥ω [n, n], (n, 〈·, ·〉, J, ω) is Chern–Ricci flat.
The anti-complexified part of the Ricci operator of (n, 〈·, ·〉) is such that

Ricac = 1

56
Diag(0, 1, 2, 4,−4,−2,−1, 0)

= − 3

56
Id + 1

56
Diag(3, 4, 5, 7,−1, 1, 2, 3)

with Diag(3, 4, 5, 7,−1, 1, 2, 3) being a derivation of n.
It follows from Proposition 2.8 that (〈·, ·〉, J, ωcn) is a soliton almost Kähler struc-

ture on n.

Remark 2.10 In the theory of nilsoliton metrics (minimal metrics on nilpotent Lie
algebras), it is well known that the eigenvalues of the Einstein derivation are all positive
integers (up to a positive multiple). More precisely, if 〈·, ·〉 is a nilsoliton metric on a
nilpotent Lie algebra n with Ric = cId + D, where c ∈ R and D ∈ Der(n), then there
exists a positive constant k such that all the eigenvalues of D lie in kN [3, Theorem
4.14]. The above example shows a subtle difference between nilsoliton metrics on
nilpotent Lie algebras and minimal compatible metrics with symplectic Lie algebras.
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2.2 Canonical Compatible Metrics for Geometric Structures on Nilmanifolds

In this section we give a brief exposition of minimal compatible metrics for geometric
structures on nilmanifolds [11]. Such an approach is a way to study the problem of
finding “the best metric” which is compatible with a fixed geometric structure γ on
a simply connected nilpotent Lie group. By using strong results from real geometric
invariant theory (real GIT), the properties that make a minimal metric “special” are
given in [11]: a minimal metric is unique (up to isometry and scaling) when it exists,
and it can be characterized as a soliton solution of the invariant Ricci flow [11, Theorem
4.4].

By using results given in [2], we introduce the notion of a nice basis (Definition 2.18)
in the context of minimal metrics and give the corresponding criterion for knowing
whether a geometric structure γ on a nilpotent Lie algebra admitting a γ -nice basis
has a minimal compatible metric.

Let (N, γ ) be a class-γ nilpotent Lie group: N is a simply connected nilpotent Lie
group and γ is an invariant geometric structure on N (see [11, Definition 2.1]). We
identify n with R

n and so the structure of the Lie algebra on n is given by an element
μ ∈ �2(Rn)∗ ⊗ R

n ; n = (Rn, μ) and the geometric structure γ is given by the left
translation of a tensor on R

n which we denote also by γ . In the same way, any left
invariant compatible metric with (N, γ ) is defined by an inner product (·, ·) on R

n .
By definition, there is no loss of generality in assuming that the canonical inner

product of R
n , 〈·, ·〉, also defines a compatible metric with (N, γ ). Since the reductive

group

Gγ = {g ∈ GLn(R) : g · γ = γ }

is self adjoint with respect to any compatible metric (this also follows easily from the
definition), then Gγ is compatible with the usual Cartan decomposition of GLn(R),
that is, Gγ = Kγ exp(aγ )Kγ with Kγ a subgroup of the Orthogonal group O(n) and
aγ a subalgebra of the algebra of the diagonal matrices a.

Example 2.11 From [9, Theorem 5], we consider the free 2-step nilpotent Lie algebra
of rank3:

n18 := {[e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6

and the symplectic structure ω2(t) on n18 given by

ω2(t) = e∗
1 ∧ e∗

5 + te∗
1 ∧ e∗

6 − te∗
2 ∧ e∗

5 + e∗
2 ∧ e∗

6 − 2te∗
3 ∧ e∗

4 .

In general, it is well known that, for any symplectic form ω, there exists a suitable
change of basis such that ω is given by the “canonical symplectic form”. In this case,
we can try to make a change of the basis having the form

g = Diag

(
m1,1, m2,2, m3,3, m4,4,

(
m5,5 m5,6
m6,5 m6,6

))
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and to solve g · ω2(t) = ω2(t)(g−1·, g−1·) = ωcn for {m1,1, . . . , m6,6}. Here, ωcn =
e∗

1 ∧ e∗
6 + e∗

2 ∧ e∗
5 + e∗

3 ∧ e∗
4.

The solution to this equation is

{
m4,4 = −1

2

1

tm3,3
, m5,5 = − t(

t2 + 1
)

m2,2
,

m5,6 = 1(
t2 + 1

)
m1,1

, m6,5 = 1(
t2 + 1

)
m2,2

, m6,6 = t(
t2 + 1

)
m1,1

}
.

Hence, we can take the particular solution defined by m1,1 = m2,2 = m3,3 = 1, which
defines a symplectomorphism from (n18, ω2(t)) to (R6, μt , ωcn) with

μt = {[e1, e2] = −2 t e4, [e1, e3] = −t e5 + e6, [e2, e3] = e5 + t e6 .

With respect to Gωcn , we have the usual presentation of the symplectic group,
Sp(3, R) by

Sp(3, R) = {
g ∈ GL6(R)/gT Jg = J

}
,

where Je1 = e6, Je2 = e5, Je3 = e4 and J 2 = −Id. “The” maximal compact
subgroup of Sp(3, R) is the unitary group U(3) and a Cartan decomposition is given
by Sp(3, R) = U(3) exp(aωcn )U(3) with

aωcn = {Diag(−x1,−x2,−x3, x3, x2, x1) : xi ∈ R} .

Definition 2.12 [11, Definition 2.2] Let (·, ·) be a compatible metric with the class-γ
nilpotent Lie group (N, γ ). Consider the orthogonal projection Ricγ

(·,·) of the Ricci
operator Ric(·,·) on gγ = Lie(Gγ ) with respect to the inner product ((·, ·)) of gln(R)

induced by (·, ·), i.e., for any A, B in gln(R), ((A, B)) = tr(ABT), where BT denotes
the transpose of B with respect to (·, ·). Ricγ

(·,·) is said to be an invariant Ricci operator,
and the corresponding invariant Ricci tensor is defined by ricγ = (Ricγ ·, ·).
Example 2.13 In the symplectic case, it is easy to see that the invariant Ricci operator
coincides with the anti-complexified Ricci tensor, i.e., if (·, ·) is a compatible metric
with (n, ω), then

Ricω
(·,·) = Ricac

(·,·) = 1

2

(
Ric(·,·) + J(·,·)Ric(·,·) J(·,·)

)
,

where J(·,·) is the linear transformation such that ω(·, ·) = (J(·,·)·, ·).
Definition 2.14 (Minimal compatible metric) [11, Definition 2.3] A left invariant met-
ric 〈·, ·〉 compatible with a class-γ nilpotent Lie group (Nμ, γ ) is called minimal if

tr
(

Ricγ
〈·,·〉

)2 = min

{
tr
(

Ricγ

(·,·)
)2 : (·, ·) is a compatible metric with (Nμ, γ )

and sc((·, ·)) = sc(〈·, ·〉)
}

.
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Now we study the natural action of GLn(R) (and Gγ ) on V := �2(Rn)∗ ⊗ R
n

given by the change of basis:

g · μ(X, Y ) = gμ(g−1 X, g−1Y ), X, Y ∈ R
n, g ∈ GLn(R), μ ∈ V .

The corresponding representation of gln(R) on V is

A · μ(X, Y ) = Aμ(X, Y ) − μ(AX, Y ) − μ(X, AY ), A ∈ gln(R), μ ∈ V .

Consider the usual inner product 〈·, ·〉 on V defined by the canonical inner product
of R

n as

〈μ, λ〉 =
∑
i jk

〈μ(ei , e j ), ek〉〈λ(ei , e j ), ek〉, μ, λ ∈ V

and let 〈〈·, ·〉〉 be the canonical inner product of gln(R) induced by the canonical inner
product of R

n (as in Definition 2.12).
We are now in a position to define the moment map of the above-mentioned action.

This map is implicitly defined by

mgln(R) : V −→ gln(R)

〈〈mgln(R)(μ), A〉〉 = 〈A · μ,μ〉, (2.10)

for all A ∈ gln(R) and μ ∈ V .
Let Projgγ

denote the orthogonal projection of gln(R) to gγ with respect to the
inner product 〈〈·, ·〉〉. It is easy to see that the moment map for the action of Gγ on
V , mgγ , is Projgγ

◦ mgln(R). The following result illustrates the relationship between
minimal metrics and the moment map.

Proposition 2.15 [11, Proposition 4.2] Let (Nμ, γ ) be a class-γ nilpotent Lie group.
Then

4Ricg·〈·,·〉 = mgln(R)(g
−1 · μ), ∀g ∈ GLn(R), and (2.11)

4Ricγ

h·〈·,·〉 = mgγ (h−1 · μ), ∀h ∈ Gγ , (2.12)

where Ricg·〈·,·〉 is the Ricci operator of the Riemannian manifold (Nμ, g · 〈·, ·〉) with
respect to the orthonormal basis {g · e1, . . . , g · en} and Ricγ

h·〈·,·〉 is the invariant Ricci
operator of (Nμ, γ, h · 〈·, ·〉) with respect to the orthonormal basis {h · e1, . . . , h · en}.

Hence, the problem of finding a minimal compatible metric with (Nμ, γ ) is equiv-
alent to finding a minimum value of ||mgγ ||2 along the Gγ -orbit of μ (recall that any
compatible metric is of the form h · 〈·, ·〉 with h ∈ Gγ ). The above is exactly to know
if the orbit Gγ ·μ is distinguished for the action of Gγ on V (Gγ ·μ contains a critical
point of ||mgγ ||2).
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Theorem 2.16 [11, Theorems 4.3 and 4.4] Let (Nμ, γ ) be a class-γ nilpotent Lie
group. (Nμ, γ ) admits a minimal compatible metric if and only if the Gγ -orbit of μ

is distinguished for the natural action of Gγ on V . Moreover, there is at most one
minimal compatible metric on (N, γ ) up to isometry (and scaling).

Remark 2.17 The last part of the above theorem follows from strong results on critical
points of the norm-square of a moment map. In the proof of [11, Proposition 4.3 and
4.4] a result of Marian [14, Theorem 1] is used to prove such a part. However, there is
an error in the proof of Marian’s result. A correct proof can be found in [7, Theorem
5.1] and [4, Corollary 6.12].

We are now in a position to introduce the notion of a nice basis.

Definition 2.18 (γ -nice basis). We say that the canonical basis {e1, . . . , en} of R
n is

a γ -nice basis for (Rn, μ, γ ) if for any metric of the form a · 〈·, ·〉 with a ∈ exp(aγ ),
Ricγ

a·〈·,·〉 ∈ aγ holds, where Ricγ
a·〈·,·〉 is represented with respect to the orthonormal

basis {a · e1, . . . , a · en} of (Rn, μ, a · 〈·, ·〉).

Remark 2.19 By Proposition 2.15 and [2, Proposition 4.8], the above definition is
equivalent to saying that μ is a nice-element for the natural action of Gγ on V [2,
Definition 3.3].

Remark 2.20 In general, it is difficult to know whether a pair (N, γ ) admits a γ -nice
basis, even when γ = 0 (nilsoliton case). The author in [2, Sect. 4] investigated this
problem in the general case of real reductive representations, and some of the obtained
results will be very useful for the study of minimal metrics.

Notation 2.21 Consider (Rn, μ, γ ), where {e1, . . . , en} is a γ -nice basis. Denote by
Rγ (μ) an ordered set of weights related with μ to the action of Gγ on V (see [2, Nota-
tion 2.5]), i.e., if {Ck

i, j } are the structural constants of (Rn, μ) in the basis {e1, . . . , en},
then

Rγ (μ) :=
{

Projgγ
(Ek,k − Ei,i − E j, j ) : Ck

i, j = 0
}

,

where {Ei, j } is the canonical basis of gln(R).
We denote by β

γ
μ the minimal convex combination (mcc) of the convex hull of

Rγ (μ), i.e., β
γ
μ is the unique vector closest to the origin in the mentioned hull.

The Gram matrix of (Rγ (μ), 〈〈·, ·〉〉) will be denoted by Uγ
μ, that is, if Rγ (μ)p is

the pth element of Rγ (μ), then

Uγ
μ(p, q) = 〈〈Rγ (μ)p,Rγ (μ)q〉〉.

By using the above notation, it follows from [2, Theorem 3.14] a goal in this work.
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Theorem 2.22 Let (Rn, μ, γ ) be such that {e1, . . . , en} is a γ -nice basis. (Nμ, γ )

admits a compatible minimal metric if and only if the equation

Uγ
μ[xi ] = λ[1] (2.13)

has a positive solution [xi ] for some λ ∈ R. Moreover, in that case, there exists an
a ∈ exp(aγ ) such that a · 〈·, ·〉 defines a minimal compatible metric with (Nμ, γ ).

Remark 2.23 The proof of [2, Theorem 3.14] says even more, namely, if (Rn, μ, γ )

admits a minimal compatible metric, then one can find such a metric by solving the
equation

mgγ (a · μ) = βγ
μ (2.14)

for a ∈ exp(aγ ). Since

βγ
μ = 1∑

x p

(∑
x pRγ (μ)p

)
,

where [xi ] is any positive solution to Eq. (2.13), in practice it is sometimes easy to
solve Eq. (2.14).

3 Soliton Almost Kähler Structures

In this section, we present those soliton almost Kähler structures on two- and three-
step nilpotent Lie algebras of dimension 6 that are obtained by minimal compatible
metrics with symplectic structures. It may be that all SCF-solitons on any nilmanifold
are of this kind with the Chern–Ricci operator being a derivation of the respective
nilpotent Lie algebra.

By following the classification given in [9] for 6-dimensional symplectic nilpotent
Lie algebras, a simple inspection of such a classification list reveals that many pairs
(n, ω) are written in an ωcn-nice basis or by using a suitable change of basis, these
pairs can be written in a nice basis. Here ωcn is the canonical symplectic form of R

6:
ωcn = e∗

1 ∧ e∗
6 + e∗

2 ∧ e∗
5 + e∗

3 ∧ e∗
4.

We denote by msp the moment map corresponding to the action of the symplectic
group Gωcn = Sp(3, R) on V and we have

aωcn = {Diag(−x1,−x2,−x3, x3, x2, x1) : xi ∈ R}.

Theorem 2.22 has been applied to each mentioned algebra individually. We present
in detail only those examples that we consider representative. The remaining cases are
established in an entirely analogous way.

3.1 Symplectic Three-Step Nilpotent Lie Algebras

In this part, first we give a complete classification of minimal compatible metrics on
symplectic three-step nilpotent Lie algebras. Afterwards, we compute the respective
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Chern–Ricci operator, which happens to be a derivation in this case. From Proposition
2.8, Theorem B follows.

Example 3.1 We consider the nilpotent Lie algebra n11 given by [e1, e2] =
e4, [e1, e4] = e5, [e2, e3] = e6, [e2, e4] = e6, which carries two curves of non-
equivalent symplectic structures, namely, ω1(λ) = e∗

1∧e∗
6+e∗

2∧e∗
5+λe∗

2∧e∗
6−e∗

3∧e∗
4,

with λ ∈ R and ω2(λ) = −ω1(λ) (by [9, Theorem 5]). Let us look at the case for
ω1(λ); similar considerations apply to the other case.

In our approach, we need that the canonical inner product defines a compatible
metric, which is similar to finding a basis for n11, where the symplectic structure is
defined by ωcn . To do this, we perform a change of basis having the form

g−1 = Diag

((
m1,1 m1,2

0 m2,2

)
,

(
m3,3 m3,4
m4,3 m4,4

)
,

(
m5,5 m5,6

0 m6,6

))
.

Since we also need an ωcn-nice basis, we can also try to get that msp(exp(X)·g ·n11) ∈
aωcn for any X ∈ aωcn . If λ = 0 then by solving such a system of equations, we have,
for instance, a solution given by

{
m1,1 = − 1

2
λ

m5,6
, m1,2 = − 1

2 m2,2λ, m2,2 = m2,2, m3,3 = −m4,4
−1, m3,4 = 0,

m4,3 = 1
2 m4,4

−1, m4,4 = m4,4, m5,5 = m2,2
−1, m5,6 = m5,6, m6,6 = −2 m5,6

λ

}
.

If we let m2,2 = 1, m4,4 = 1, and m5,6 = 1 then

g =
((− 2

λ
−1

0 1

)
,

(−1 0
1
2 1

)
,

(
1 λ

2
0 −λ

2

)
,

)

defines a symplectomorphism from (n11, ω1(λ)) to (R6, μλ, ωcn), where

μλ :=
{ [e1, e2] = − 1

2 λ e4, [e1, e3] = − 1
4 λ e5, [e1, e4] = − 1

2 λ e5,

[e2, e3] = − 1
2 λ e5 + 1

4 λ e6, [e2, e4] = − 1
2 λ e6

and (R6, μλ, ωcn) is written in an ωcn-nice basis. For all λ ∈ R\ {0}, the Gram matrix
is

Uωcn
μλ

= 1

2

⎡
⎣3 1 1

1 5 3
1 3 3

⎤
⎦

and since the general solution to Uωcn
μλ

X = [1] is X = 1
2 [1, 0, 1]T, for any λ = 0,

(n11, ω1(λ)) does not admit a minimal metric.
When λ = 0, on the contrary, (n11, ω1(λ = 0)) admits a minimal metric. In fact, like

above, we consider g = Diag
(
1, 1,

( 1 1
2

0 −1

)
, 1, 1

)
. g defines a symplectomorphism

from (n11, ω1(0)) to (R6, μ, ωcn) with
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μ := { [e1, e2] = 1
2 e3 − e4, [e1, e4] = −e5, [e2, e3] = e6, [e2, e4] = − 1

2 e6,

where (R6, μ, ωcn) is written in an ωcn-nice basis. The Gram matrix is

Uωcn
μ = 1

2

[
3 1
1 3

]

and the general solution to Uωcn
μλ

X = [1] is X = 1
2 [1, 1]T. Since X ′ = X is a positive

solution, (n11, ω1(0)) admits a minimal metric. To find such a metric, we solve the
equation

4Ricac(exp(Y ) · μ) = msp(exp(Y ) · μ) = mcc(Rωcn (μ))

with Y ∈ aωcn . Let Y = Diag(ln(2) + 1
4 ln(3), 0,− 1

4 ln(3) + 1
2 ln(2), 1

4 ln(3) −
1
2 ln(2), 0,− ln(2) − 1

4 ln(3)). The change of basis given by exp(Y ) defines

μ̃ :={
[e1, e2]=

√
6

12 e3 −
√

2
4 e4, [e1, e4]=−

√
6

6 e5, [e2, e3] =
√

2
4 e6, [e2, e4] = −

√
6

12 e6.

Since

mgl(μ̃) = 1

6
Diag(−4,−4,−1,−1, 2, 2),

it follows that

msp(μ̃) = 1

2
(mgl(μ̃) + J.mgl(μ̃).J )

= 1

2
Diag(−1,−1, 0, 0, 1, 1)

= −Id + 1

2
Diag(1, 1, 2, 2, 3, 3)︸ ︷︷ ︸

Derivation

and thus, the canonical inner product of R
6 defines a minimal metric on (R6, μ̃, ωcn).

A straightforward computation shows that (R6, μλ, 〈·, ·〉, J, ωcn) and (R6, μ̃, 〈·, ·〉,
J, ωcn) are Chern–Ricci flat, where 〈·, ·〉 is the canonical inner product of R

6.

Example 3.2 We consider the nilpotent Lie algebra n13 given by [e1, e2] =
e4, [e1, e3] = e5, [e1, e4] = e6, [e2, e3] = e6 and the curve of non-equivalent sym-
plectic structures ω2(λ) with λ = 0:

ω2(λ) = e∗
1 ∧ e∗

6 + λe∗
2 ∧ e∗

4 + e∗
2 ∧ e∗

5 + e∗
3 ∧ e∗

5 .
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The change of basis given by g =
(

1,

(
λ − 1

2 − 1
2

1 1

)
,

( 1
2 1
1 0

)
, 1

)
defines a sym-

plectomorphism from (n13, ω2(λ)) to (R6, μλ, ωcn) with

μλ :=
{ [e1, e2] = − 1

2λ
e4 + 1

λ
e5, [e1, e3] = (4 λ−1)

4λ
e4 + 1

2λ
e5, [e1, e5] = e6,

[e2, e3] = 1
λ

e6.

It is a simple matter to see that (R6, μλ, ωcn) is written in an ωcn-nice basis and
that if λ = 1

4 then the Gram matrix is

Uωcn
μλ

= 1

2

⎡
⎢⎢⎣

3 3 3 1
3 5 1 0
3 1 5 2
1 0 2 5

⎤
⎥⎥⎦ .

The general solution to Uωcn
μλ

X = [1] is X = 1
25 [10 − 50 t, 4 + 25 t, 25 t, 8]T. Since

X ′ = 2
25 [3, 3, 1, 4]T is a positive solution, (n13, ω2(λ)) admits a minimal metric.

Although it is difficult to give an explicit formula for such a curve of metrics in this
case, we can say that if such metrics have scalar curvature equal to − 1

4 then

4Ricac = msp = −25

22
Id + 5

11
Diag(1, 2, 2, 3, 3, 4).

Furthermore, they are given in the family of symplectic nilpotent Lie algebras
(R6, μt , ωcn) with

μt :=
{

[e1, e2]=−te4 ± 1
22

√
99−1452 t2e5, [e1, e3]=± 1

22

√
55−1452 t2e4+te5,

[e1, e5]=
√

22
11 e6, [e2, e3]=2 te6.

The Chern–Ricci operator of (R6, μt , 〈·, ·〉, J, ωcn) is

P = t
√

22

22
(E4,1 − E6,3) ±

√
22

484

√
99 − 1452 t2(E5,1 − E6,2),

which is easily seen to be a derivation of (R6, μt ). From Proposition 2.8, (〈·, ·〉, J, ωcn)

defines a soliton almost Kähler structure on (R6, μt ).
If λ = 1

4 , one can proceed as above and show that (n13, ω2(λ = 1
4 )) admits a soliton

almost Kähler structure.

Example 3.3 For a final example, consider the nilpotent Lie algebra n12 given by
[e1, e2] = e4, [e1, e4] = e5, [e1, e3] = e6, [e2, e3] = −e5, [e2, e4] = e6 and the curve
of non-equivalent symplectic structures ω1(λ) = λe∗

1 ∧ e∗
5 + e∗

2 ∧ e∗
6 + (λ + 1)e∗

3 ∧ e∗
4

(with λ ∈ R \ {−1, 0}). Consider the change of basis given by

g = Diag

(
1, 1, 1, λ + 1,

(
0 1
λ 0

))
,
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which defines a symplectomorphism from (n12, ω1(λ)) to (R6, μλ, ωcn), where

μλ :=
{ [e1, e2] = (λ + 1) e4, [e1, e3] = e5, [e1, e4] = λ

λ+1 e6,

[e2, e3] = −λ e6, [e2, e4] = 1
λ+1 e5.

As above, (R6, μλ, ωcn) is written in an ωcn-nice basis and, by Theorem 2.22,
one can show that (n12, ω1(λ)) admits a minimal compatible metric. By solving
msp(exp(Y ) · μλ) = mcc(Rωcn (μλ)), we have a symplectomorphism defined by
exp(Y ) from (R6, μλ, ωcn) to (R6, μ̃λ, ωcn) with

μ̃λ :=

⎧⎪⎪⎨
⎪⎪⎩

[e1, e2] =
√

2
4

(λ+1)
√

λ2+λ+1
λ2+λ+1

e4, [e1, e3] =
√

2
4

√
λ2+λ+1

λ2+λ+1
e5,

[e1, e4] =
√

2
4 sign

(
λ

λ+1

)
e6, [e2, e3] = −

√
2

4
λ

√
λ2+λ+1

λ2+λ+1
e6,

[e2, e4] =
√

2
4 sign (λ + 1)e5,

where the canonical inner product defines a minimal compatible metric with
(R6, μ̃λ, ωcn).

This example is interesting in the following sense. Let Pλ be the Chern–Ricci
operator of (R6, μ̃λ, 〈·, ·〉, J, ωcn). We have

Pλ = 1

16

(1 + sign (λ)) |λ + 1| √λ2 + λ + 1

λ2 + λ + 1
(E5,1 − E6,2).

It is easy to see that Pλ is a Derivation of (R6, μ̃λ) and, moreover, (R6, μ̃λ, ωcn) is
Chern–Ricci flat if and only if λ is a negative number (with λ = −1).

Theorem 3.4 The classification of minimal metrics on 6-dimensional symplectic
three-step nilpotent Lie algebras is given in the Table 1. In each case, such a met-
ric defines a soliton almost Kähler structure, where each Chern–Ricci operator is a
derivation of the respective nilpotent Lie algebra (see Table 2).

In the Table 1, each Lie algebra defines a symplectic three-step Lie algebra given
by (R6, μ̃, ωcn) and the canonical inner product on R

6 defines a minimal metric of
scalar curvature equal to − 1

4 . In the column ||β||2 we give the squared norm of the
stratum associated with the minimal metric and, in the Derivation column, we give
the derivation of (R6, μ̃) in such a way that

msp6(R)(μ̃) = −||β||2Id + Derivation.

In the last column, we give the dimension of the automorphism group of the symplectic
three-step Lie algebra (R6, μ̃, ωcn). A line means that such symplectic nilpotent Lie
algebra does not admit a minimal metric.
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Table 1 Classification of minimal compatible metrics on symplectic three-step Lie algebras of dimension
6

Not. Critical point Derivation ||β||2 dim
Aut

10.1 [e1, e2] = −
√

2
4 e4, [e1, e3]

= −
√

2
4 e5, [e1, e4] =

√
2

4 e6,

1
2 Diag(1, 1, 2, 2, 3, 3) 1 5

[e2, e4] = −
√

2
4 e5

10.2 [e1, e2] = −
√

2
4 e4, [e1, e4]

=
√

2
4 e6, [e2, e3] =

√
2

4 e6,

1
2 Diag(1, 1, 2, 2, 3, 3) 1 5

[e2, e4] = −
√

2
4 e5

11.1 – – – 5

λ = 0

11.1 [e1, e2] =
−

√
6

12 e3 +
√

2
4 e4, [e1, e3] =

√
2

4 e5,

1
2 Diag(1, 1, 2, 2, 3, 3) 1 6

λ = 0 [e1, e4] = −
√

6
12 e5, [e2, e4]

= −
√

6
6 e6

11.2 – – – 5

λ = 0

11.2 [e1, e2] =
√

6
12 e3 +

√
2

4 e4, [e1, e3]
=

√
2

4 e5,

1
2 Diag(1, 1, 2, 2, 3, 3) 1 6

λ = 0 [e1, e4] =
√

6
12 e5, [e2, e4] =

√
6

6 e6

12.1 [e1, e2] = f1(λ) (λ + 1) e4, [e1, e3]
= f1(λ)e5,

1
2 Diag(1, 1, 2, 2, 3, 3) 1 5

[e2, e3] = f1(λ)(−λ)e6,

[e1, e4] =√
2

4 sign
(

λ
λ+1

)
e6, [e2, e4]

=
√

2
4 sign (λ + 1)e5

13.1 [e1, e2] = f2(λ) (1 − λ) e4, [e1, e3]
= f2(λ)e5,

1
6 Diag(5, 3, 6, 8, 11, 9) 7

6 7

[e2, e3] = f2(λ)(λ)e6, [e2, e4]
=

√
6

6 sign (λ − 1) e5

13.2 see Example 3.2 5
11 Diag(1, 2, 2, 3, 3, 4) 25

22 6

λ = 1
4

13.2 [e1, e2] = −
√

165
66 e4 +√

11
11 e5, [e1, e3] =

√
165
66 e5,

5
11 Diag(1, 2, 2, 3, 3, 4) 25

22 6

λ = 1
4 [e1, e5] =

√
22

11 e6, [e2, e3] =√
165
33 e6

13.3 – – – 7
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Table 1 continued

Not. Critical point Derivation ||β||2 dim
Aut

14.1 [e1, e2] =
√

55
22 e5, [e1, e3]

= 3
√

11
22 e4, [e1, e4] =

√
22

11 e6

5
11 Diag(1, 2, 2, 3, 3, 4) 25

22 6

14.2 [e1, e2] =
√

55
22 e5, [e1, e3]

= − 3
√

11
22 e4, [e1, e4] =

√
22

11 e6

5
11 Diag(1, 2, 2, 3, 3, 4) 25

22 6

14.3 [e1, e2] =
√

6
6 e4, [e1, e3]

=
√

6
6 e5, [e1, e4] =

√
6

6 e6

1
6 Diag(3, 5, 6, 8, 9, 11) 7

6 7

15.1 – – – 5

15.2 – – – 5

15.3 [e1, e2] =
√

21
14 e5, [e1, e5]

=
√

42
14 e6, [e2, e3] =

√
35

14 e4

5
28 Diag(2, 4, 3, 7, 6, 8) 25

28 4

21.1 [e1, e2] =
−

√
66

44 e4 −
√

22
44 e5, [e1, e3]

= 3
√

22
44 e4 +

√
66

44 e5,

5
11 Diag(1, 2, 2, 3, 3, 4) 25

22 6

[e1, e4] = −
√

22
11 e6, [e2, e3]

=
√

66
22 e6

21.2 [e1, e2] =
√

6
6 e3, [e1, e3]

=
√

6
6 e6, [e2, e4] =

√
6

6 e6

1
6 Diag(3, 5, 8, 6, 9, 11) 7

6 7

21.3 [e1, e2] =
√

6
6 e3, [e1, e3]

= −
√

6
6 e6, [e2, e4] =

√
6

6 e6

1
6 Diag(3, 5, 8, 6, 9, 11) 7

6 7

22.1 [e1, e2] = 1
2 e5, [e1, e5]

= 1
2 e6

1
4 Diag(2, 4, 5, 5, 6, 8) 5

4 8

Here, f1(λ) =
√

2
4

√
λ2+λ+1

λ2+λ+1
and f2(λ) =

√
6

6

√
λ2−λ+1

λ2−λ+1

3.2 Symplectic Two-Step Nilpotent Lie Algebras

Here, we give the classification of minimal compatible metrics on two-step nilpotent
Lie algebras, which determines immediately a soliton almost Kähler structure because
the Chern–Ricci operator is always zero.

Example 3.5 Consider the free 2-step nilpotent Lie algebra of rank3:

n18 := {[e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6 .

By [9, Theorem 5], n18 carries two curves of non-equivalent symplectic structures,
namely, ω1(s) and ω2(t) (with s ∈ R\{0, 1} and t ∈ R\{0}), and an isolated symplectic
structure ω3. In this example we want to prove that every pair (n18, ωi ) admits a
minimal compatible metric.
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Table 2 Chern–Ricci operator
of minimal compatible metrics
on symplectic three-step Lie
algebras of dimension 6

Here, f1(λ) =
√

2
4

√
λ2+λ+1

λ2+λ+1

and f2(λ) =
√

6
6

√
λ2−λ+1

λ2−λ+1

Not. Chern–Ricci operator

10.1 Chern–Ricci flat

10.2 Chern–Ricci flat

11.1 (λ = 0) Chern–Ricci flat

11.2 (λ = 0) Chern–Ricci flat

12.1 Pλ =
√

2
8 (1 + sign (λ)) |λ + 1| f1(λ)(E5,1 − E6,2)

13.1 Pλ =
√

6
12 |λ − 1| f2(λ)(E5,1 − E6,2)

13.2 see Example 3.2

13.2 (λ = 1
4 ) P =

√
30

132 (E4,1 − E6,3) +
√

2
22 (E5,1 − E6,2)

14.1 P = 3
√

2
44 (E4,1 − E6,3)

14.2 P = − 3
√

2
44 (E4,1 − E6,3)

14.3 P = 1
12 (E5,1 − E6,2)

15.3 P = 3
√

2
56 (E5,1 − E6,2)

21.1 P = − 3
44 (E4,1 − E6,3) +

√
3

44 (E5,1 − E6,2)

21.2 P = 1
12 (E5,1 − E6,2)

21.3 P = − 1
12 (E5,1 − E6,2)

22.1 P = 1
8 (E5,1 − E6,2)

Consider the case of the first curve

ω1(s) = e∗
1 ∧ e∗

6 + se∗
2 ∧ e∗

5 + (s − 1)e∗
3 ∧ e∗

4, with s ∈ R \ {0, 1}

and let g = Diag(1, 1, 1, s − 1, s, 1). The change of basis given by g defines a
symplectomorphism from (n18, ω1(s)) to (R6, μs, ωcn) with

μs := {[e1, e2] = (s − 1)e4, [e1, e3] = se5, [e2, e3] = e6 .

It is obvious that (R6, μs, ωcn) is written in an ωcn-nice basis because

Rωcn (μs) =
{

1

2
Diag(−1,−1,−1, 1, 1, 1)

}

and, from this, (n18, ω1(s)) admits a minimal compatible metric which can be found
by solving the equation

msp(a · μs) = 1

2
Diag(−1,−1,−1, 1, 1, 1)

for a ∈ exp(aωcn ).
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Let a = exp(X) with

X = 1

2
Diag(ln(4 s2 − 4 s + 4), 0, 0, 0, 0,− ln(4 s2 − 4 s + 4)).

The change of basis given by a defines the curve

μ̃s :=
⎧⎨
⎩ [e1, e2]= 1

2 (s − 1)

√(
s2 − s+1

)−1
e4, [e1, e3]= 1

2 s
√(

s2 − s + 1
)−1

e5,

[e2, e3] = 1
2

√(
s2 − s + 1

)−1
e6

and, since

mgl(μ̃s)

= 1

2(s2 − s + 1)
Diag(−2 s2+2 s − 1,−s2+2 s − 2,−(s2+1), (s−1)2 , s2, 1),

we get

msp(μ̃s) = 1

2
(mgl(μ̃s) + J.mgl(μ̃s).J )

= 1

2
Diag(−1,−1,−1, 1, 1, 1)

= −3

2
Id + Diag(1, 1, 1, 2, 2, 2)︸ ︷︷ ︸

Derivation

.

The canonical inner product of R
6 defines a minimal compatible metric on

(R6, μ̃s, ωcn).
Now, consider the case of

ω2(t) = e∗
1 ∧ e∗

5 + te∗
1 ∧ e∗

6 − te∗
2 ∧ e∗

5 + e∗
2 ∧ e∗

6 − 2te∗
3 ∧ e∗

4 .

From Example 2.11, we have that (n18, ω2) is equivalent to (R6, μt , ωcn) with

μt := {[e1, e2] = −2 t e4, [e1, e3] = −t e5 + e6, [e2, e3] = e5 + t e6 .

It is easy to see that (R6, μt , ωcn) is written in an ωcn-nice basis and that

Rωcn (μ) = {Diag(−1, 0,− 1
2 , 1

2 , 0, 1), Diag(0,−1,− 1
2 , 1

2 , 1, 0),
1
2 Diag(−1,−1,−1, 1, 1, 1)}.

Like above, Theorem 2.22 implies that (n18, ω2(t)) admits a minimal compatible
metric and, proceeding in a similar way to the above, we get that μ̃t := a · μ with

a = Diag

(
1, 1, 2

√
3t2 + 1,

1

2
√

3t2 + 1
, 1, 1

)
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is such that the canonical inner product of R
6 defines a minimal compatible metric on

(R6, μ̃t , ωcn) for any t ∈ R \ {0}.
In the latter case,

ω3 := e∗
3 ∧ e∗

5 − e∗
1 ∧ e∗

6 + e∗
2 ∧ e∗

5 + 2e∗
3 ∧ e∗

4,

and we can now proceed analogously like above. We leave to the reader to verify that
the following change of basis defines a minimal compatible metric with (n18, ω3):

g := Diag

(
−1,

(
1 5

6
1 − 1

6

)
,

(−2 − 1
6

2 7
6

)
, 1

)
,

a := Diag

(
2
√

3, 1, 1, 1, 1,

√
3

6

)
.

Proceeding in an entirely analogous way, we can study the remaining symplectic
two-step Lie algebras in [9, Theorem 5.24] and obtain

Theorem 3.6 All symplectic two-step Lie algebras of dimension 6 admit a minimal
compatible metric and, in consequence, these admit a soliton almost Kähler structure.

Remark 3.7 We must say that there are several mistakes in the classification given in
[9]. For example, 16.(b) does not define a symplectic structure and 9. is not a curve
of non-equivalent symplectic structures. Some errors have already been corrected by
personal communication with authors, like the symplectic structure given in 23.(c).

In Table 3, each Lie algebra defines a symplectic two-step Lie algebra (R6, μ̃, ωcn)

such that the canonical inner product on R
6 defines a minimal metric of scalar curvature

equal to − 1
4 . In the column ||β||2 we give the squared norm of the stratum associated

with the minimal metric and, in the Derivation column, we give the derivation of
(R6, μ̃) in such a way that

msp6(R)(μ̃) = −||β||2Id + Derivation.

In the last column, we give the dimension of the automorphism group of the symplectic
two-step Lie algebra (R6, μ̃, ωcn).

4 Conclusions

The SCF was introduced by Jeffrey Streets and Gang Tian as a geometric analysis
approach to understanding the topology and geometry of symplectic manifolds, to
introduce the “Ricci flow philosophy” to symplectic geometry. Such flow evolves
almost Kähler structures towards certain “canonical geometric structures” on sym-
plectic manifolds.

Lie groups have always been a source for finding explicit examples for many con-
cepts and notions in geometry. Our results are given with the idea of providing and
understanding the “canonical geometries” to the SCF.
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Table 3 Classification of minimal compatible metrics on symplectic two-step Lie algebras of dimension
6

Not. Critical point Derivation ||β||2 dim
Aut

16.1 [e1, e2] =
√

2
4 e3, [e1, e5] =

√
2

4 e6, 1
2 Diag(1, 2, 3, 1, 2, 3) 1 6

[e2, e4] =
√

2
4 e6, [e4, e5] =

√
2

4 e3

17 [e1, e3] =
√

6
6 e5, [e1, e4] =

√
6

6 e6, 1
6 Diag(3, 5, 6, 8, 9, 11) 7

6 7

[e2, e3] =
√

6
6 e6

18.1 [e1, e2] = f1(s)((s − 1) e4), Diag(1, 1, 1, 2, 2, 2) 3
2 8

[e1, e3] = f1(s)(s e5),

[e2, e3] = f1(s)e6

18.2 [e1, e2] = f2(t)(−2t e4), Diag(1, 1, 1, 2, 2, 2) 3
2 8

[e1, e3] = f2(t)(−t e5 + e6),

[e2, e3] = f2(t)(e5 + t e6)

18.3 [e1, e2] =
√

3
12 e4 −

√
3

4 e5, Diag(1, 1, 1, 2, 2, 2) 3
2 10

[e1, e3] =
√

3
4 e4 −

√
3

12 e5

[e2, e3] = −
√

3
6 e6

23.1 [e1, e2] = 1
2 e5, [e1, e3] = 1

2 e6
1
4 Diag(4, 5, 6, 8, 9, 10) 7

4 9

23.2 [e1, e2] = − 1
2 e4, [e2, e3] = 1

2 e6 Diag(1, 1, 1, 2, 2, 2) 3
2 8

23.3 [e1, e2] = 1
2 e5, [e1, e3] = − 1

2 e4 Diag(1, 1, 1, 2, 2, 2) 3
2 8

24.1 [e1, e4] = 1
2 e6, [e2, e3] = 1

2 e5
1
2 Diag(1, 1, 2, 2, 3, 3) 1 6

24.2 [e1, e4] = 1
2 e6, [e2, e3] = − 1

2 e5
1
2 Diag(1, 1, 2, 2, 3, 3) 1 6

25 [e1, e2] =
√

2
2 e6

1
2 Diag(3, 4, 5, 5, 6, 7) 5

2 12

Here, f1(s) = 1
2

√
(s2 − s + 1)−1 and f2(t) = 1

2

√
(3 t2 + 1)−1

Although we have only considered a specific family of symplectic nilpotent Lie
algebras in dimension 6, we must say that we have also studied symplectic solvable
Lie algebras in dimension 6 and 8 (in a full-computational manner) and we have
found evidence that soliton almost Kähler structures on nilpotent Lie algebras are
determined by minimal compatible metrics with the respective Chern–Ricci operator
being a derivation. We think that results in this direction can be important, because
the problem of existence and uniqueness of such structures on nilmanifolds could
be understood by using powerful results from real GIT. In fact, we think that many
structural results on solvsolitons are true in this context.
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