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Abstract 18 

Background: The development of statistical software has enabled food 19 

scientists to perform a wide variety of mathematical/statistical analyses and 20 

solve problems. Therefore, not only sophisticated analytical methods but also 21 

the application of multivariate statistical methods have increased considerably. 22 

Herein, principal component analysis (PCA) and hierarchical cluster analysis 23 

(HCA) are the most widely used tools to explore similarities and hidden patterns 24 

among samples where relationship on data and grouping are until unclear. 25 

Usually, larger chemical data sets, bioactive compounds and functional 26 

properties are the target of these methodologies. Scope and approach: In this 27 

article, we criticize these methods when correlation analysis should be 28 

performed and results analyzed. Key findings and conclusions: The use of PCA 29 

and HCA in food chemistry studies has increased because the results are easy 30 

to interpret and discuss. However, their indiscriminate use to assess the 31 

association between bioactive compounds and in vitro functional properties is 32 

criticized as they provide a qualitative view of the data. When appropriate, one 33 

should bear in mind that the correlation between the content of chemical 34 

compounds and bioactivity could be duly discussed using correlation 35 

coefficients. 36 

 37 

Keywords: chemometrics; principal component analysis; cluster analysis; 38 

correlation analysis; bioactive compounds; functional properties. 39 

 40 

Abbreviations  41 

ABTS - 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)  42 
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ANN - artificial neural networks  43 

CAIMAN - classification and influence matrix analysis  44 

DD-SIMCA - data-driven soft independent modeling of class analogy 45 

DPPH - 2,2-diphenyl-1-picrylhydrazyl 46 

FRAP - ferric reducing antioxidant power  47 

FuRES - fuzzy rule-building expert system 48 

HCA – hierarchical cluster analysis 49 

HPLC – high performance liquid chromatography 50 

IMS - ion mobility spectrometry  51 

k-NN - k-nearest neighbors 52 

LDA – linear discriminant analysis 53 

NMR – nuclear magnetic resonance 54 

OPLS-DA - orthogonal partial least squared discriminant analysis  55 

ORAC – oxygen radical absorbance capacity 56 

PCA – principal component analysis 57 

PLS-DA - partial least squared discriminant analysis 58 

PRIMA - pattern recognition by independent multi-category analysis  59 

QDA - quadratic discriminant analysis  60 

RF - random forests  61 

SIMCA - soft independent modeling of class analogy 62 

sPLS-DA - super partial least squared discriminant analysis 63 

SVM - support vector machine  64 

UHPLC-MS – ultra-high performance liquid chromatography – mass 65 

spectrometry 66 

67 
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Introduction 68 

As well stressed by Ropodi, Panagou, and Nychas (2016), in the 21st 69 

century, governmental, industrial, and academic problems need to be 70 

addressed by using sophisticated analytical tools with proper data collection, 71 

analysis and interpretation. In this sense, data mining and data analysis are two 72 

interrelated approaches developed rapidly to address problems related to 73 

engineering and technology, as well as medicine, economics, biology, and food 74 

science (Brown, 2017). 75 

Chemometrics is an interfacial discipline that extracts useful information 76 

from large chemical and biochemical data sets using different mathematical and 77 

statistical methods (Nunes et al., 2015, Brown, 2017). In applied chemistry, the 78 

use of chemometrics has been spread and well recognized since 1960 79 

(Brereton, 2014), but in food sciences and technology the applications of 80 

chemometrics and sensometrics (multivariate methods applied to sensory data 81 

and studies consumers) are somewhat new (Munck, Nørgaard, Engelsen, Bro, 82 

& Andersson, 1998; Aquino et al., 2014; Qannari, 2017). Conversely, the 83 

application of chemometrics for assessing the adulteration and geographical 84 

origin of foods based on chemical markers is well established in food science 85 

(Granato, Koot, Schnitzler, & van Ruth, 2015; Granato, Margraf, Brotzakis, 86 

Capuano, & van Ruth, 2015; Paneque, Morales, Burgos, Ponce, & Callejón, 87 

2017; Giannetti, Mariani,  Mannino, & Marini, 2017; Opatić et al., 2018). For 88 

example, Garrido-Delgado, Muñoz-Pérez, and Arce (2018) used ion mobility 89 

spectrometry (IMS) to determine the origin of the olive oil, quality and 90 

adulteration with low-cost vegetable oils. Using different statistical tools, authors 91 

were able to predict the level of contaminating oil in olive oil. Therefore, there is 92 
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no doubt that chemometric tools is of fundamental importance to solve real life 93 

problems. 94 

Granato, Nunes, and Barba (2017) stated that the use of design of 95 

experiments together with appropriate statistical data analysis is of pivotal 96 

importance to assess the association between nutrition, biology, pharmacology, 97 

functional properties and the chemical components of foods and their extracts. 98 

In this sense, chemometric tools and other statistical methodologies may be of 99 

interest when different food extracts and bioactivities need to be evaluated 100 

(Granato, de Araújo Calado, & Jarvis, 2014). 101 

In real life applications, chemometrics may be employed in food science 102 

and technology studies either to assess similarities/differences between multiple 103 

objects (samples) or to project the objects in a two/three-dimensional factor-104 

plane based on various characteristics. Therefore, clusterings can be observed 105 

and the reasons for the grouping can be pinpointed (Jandrić, & Cannavan, 106 

2017; Lund, Brown, & Shipley, 2017; Erasmus, Muller, Butler, & Hoffman, 107 

2018). Additionally, multivariate techniques have been widely used to 108 

authenticate/trace the geographical origin of foods, to verify the farming system 109 

employed by a company and check whether it complies to the information 110 

declared on the label, and to check for adulterations (intentional or not) of foods 111 

and raw materials (Granato, Koot, & van Ruth, 2015; Chiesa et al., 2016; 112 

Müller-Maatsch, Schweiggert, & Carle, 2016; Tavares et al., 2016; Zhu, Wang, 113 

& Chen, 2017; Karabagias et al., 2017; Chung et al., 2017; Giannetti, Mariani, 114 

Mannino, & Marini, 2017; Acierno et al., 2018).  115 

For example, Luo, Shi, and Feng (2017) aimed to characterize the 116 

metabolites of Zhi-Zi-Hou-Po decoction, a traditional Chinese medicine, in rat 117 
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bile, urine and feces after oral administration, using untargeted liquid 118 

chromatography time of flight mass spectrometry combined with orthogonal 119 

partial least squared discriminant (OPLS-DA). After analyzing the experimental 120 

data, authors were able to identify 83 compounds, in which 39 were 121 

metabolites, in the biological samples. In addition, the metabolic pathway 122 

(glucoronidation) by which these metabolites formed after oral administration of 123 

the decoction was identified by using OPLS-DA. This research is an example on 124 

how chemometric tools are important aids in not only in the food chemistry field 125 

but also in the experimental nutrition studies. 126 

According to Brereton (2015), chemometrics users tend to ‘follow the 127 

crowd’ and use indiscriminately the available software without knowing the 128 

principles and fundamentals of each method applied in their research data 129 

analysis. In food chemistry studies, Principal Components Analysis (PCA) and 130 

Hierarchical Cluster Analysis (HCA) are widely (and, sometimes, improperly) 131 

applied as “unsupervised classification” methods to assess the association 132 

between bioactive compounds and in vitro functional properties (i.e., antioxidant 133 

and inhibition of enzymes). Herein, a critical perspective on these display 134 

techniques (PCA and HCA) is made together with some comments on their use 135 

in the field of bioactive compounds.  136 

 137 

Study of bioactive compounds and in vitro potential functional properties 138 

with the use of chemometrics 139 

Chemometrics may be used for both qualitative and quantitative analysis 140 

of experimental data (Szymanska et al., 2015; Martínez et al., 2017). 141 

Determining whether a rice sample comes from European countries or 142 
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elsewhere based on the NMR spectra or the presence or absence of a chemical 143 

compound in a HPLC chromatogram are two typical examples of qualitative 144 

data. On the other hand, assessing the correlation between the content of 145 

chlorogenic acid derivatives and antioxidant activity of coffee brews represents 146 

a quantitative approach. A summary of selected multivariate statistical methods 147 

is shown in Figure 1.  148 

Overall, chemometrics may be divided into calibration, classification and 149 

exploratory methods. According to Oliveri and Simonetti (2016), chemometrics 150 

may be divided into supervised and unsupervised methods. The first class 151 

encompasses a varied number of methods/algorithms, including both qualitative 152 

and quantitative approaches. Among qualitative methods, k-nearest neighbors 153 

(k-NN), partial least squares discriminant analysis (PLS-DA), super PLS-DA 154 

(sPLS-DA), fuzzy rule-building expert system (FuRES), soft independent 155 

modeling of class analogy (SIMCA) and linear or quadratic discriminant analysis 156 

(LDA or QDA) are the most used techniques. However, some methods, such as 157 

classification and influence matrix analysis (CAIMAN), pattern recognition by 158 

independent multi-category analysis (PRIMA), support vector machine (SVM), 159 

random forests (RF), and artificial neural networks (ANN), show several 160 

applications in food science and technology, especially in the classification and 161 

authentication problems (Tian et al., 2017; Torkashvand, Ahmadi, & Nikravesh, 162 

2017; Aloglu et al., 2017; Mehretie, Al Riza, Yoshito, & Kondo, 2018). 163 

Unsupervised methods, also named clustering or displays methods, are 164 

used to study the data structure, look for similarities between multiple objects, 165 

and check for outliers in the data set (Liu, Koot, Hettinga, de Jong, & van Ruth, 166 

2018). Mixture models, self-organizing maps, k-means, HCA and PCA are 167 
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representatives of unsupervised methods. However, PCA and HCA are the 168 

most used in food and chemistry field, representing both sub-classes 169 

visualization and agglomerative algorithms, respectively (Wang, Zeng, 170 

Contreras, & Wang, 2017). 171 

The goal of multivariate unsupervised methods is to evaluate whether 172 

clustering exists in a dataset without using class membership information in the 173 

calculations (Beebe, Pell, & Seasholtz, 1998). Natural clustering of 174 

samples/objects is the result of understanding the measurement system used to 175 

characterize the samples and this union between statistical analysis and 176 

analytical methods aids in elucidating the physical reasons for the 177 

presence/absence of clustering in the data. For further information on these 178 

methods, the reader is referred to existing literature (Oliveri & Downey, 2012; de 179 

Oliveira et al., 2015).  180 

Here we show some recent applications of unsupervised multivariate 181 

techniques in the field of bioactivity of food components. When it comes to 182 

studies relating bioactive compounds, almost all reports aim to associate the 183 

level of certain chemical compounds, i.e., phenolic compounds and carotenoids, 184 

with antioxidant activity and other functionalities. Additionally, a critical 185 

perspective on the use of display techniques (PCA and HCA) is made together 186 

with some comments on their use in the field of bioactive compounds. 187 

 188 

Principal component analysis 189 

 The term PCA is statistical test that belongs to a group of factor analysis. 190 

PCA is a mathematical tool that aims to represent the variation present in the 191 

dataset (i.e., responses used to characterize the samples) using a small 192 
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number of factors. For visual analysis, usually two-dimensional or three-193 

dimensional projection of samples is constructed having the axes (principal 194 

components, PC) as the factors. Each PC is a linear combination of the original 195 

responses (that retain some correlation among) and PCs are orthogonal to each 196 

other. PCs iteratively calculated hold as much variation from original data set as 197 

possible, in a way that PC1 explains more the data variation than PC2, and PC2 198 

explain more data variation than PC3 and so on. That is why a few PCs explain 199 

the variation of a large number of original responses. One possible way to 200 

determine the number of PC is based on the Kaiser criterion (Kaiser, 1960): 201 

eigenvalues higher than 1 are considered as “significant” in the PCA analysis. In 202 

addition, the use of Bartlett’s test of sphericity is of interest to check for 203 

correlation between responses. This test indicates that the responses are 204 

(un)related and therefore (un)suitable for structure detection. 205 

Figure 2 contains an example of PCA of fruit juices (i.e., orange, lemon 206 

and grape) based on chemical composition and antioxidant activity: the 207 

responses used to generate the 2D-scatter plot are based on correlation 208 

analysis of each response with the first three PCs. As first step an exploration of 209 

cumulative variance explained should be carried out and the Kaiser criterion 210 

(eigenvalues higher than 1) may be used to define the number of significant PC. 211 

Usually this decision is taken according to pre-established level of variance (90, 212 

95, 99, or 99.9%) or based on experimental error.  213 

Using a factor loadings analysis (Table 1), PC1 retained about 50% of 214 

data variation and differentiate the juice samples according to the contents of 215 

caffeic acid, (-)-epicatechin, (+)-catechin, quercetin, luteolin and antioxidant 216 

activity (2,2-diphenyl-1-picrylhydrazyl – DPPH, 2,2'-azino-bis (3-217 
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ethylbenzothiazoline-6-sulfonic acid – ABTS, and ferric reducing antioxidant 218 

power - FRAP). Similarly, PC2 explained another 30% of variability in the 219 

original responses and separates the juices based on FRAP, gallic acid, and 5-220 

O-caffeoylquinic acid. PC3 and PC4 explain only 11% of data variance and 221 

barely does not differentiate the juice samples. The factor loadings from PC3 222 

and PC4 were very low (except for quercetrin/luteolin and ellagic acid, 223 

respectively). Factor loadings lower than 0.60 indicate that those variables that 224 

do not fit well with the factor solution should possibly be dropped from the 225 

analysis, especially if the projection of samples on a factor-plane is based on a 226 

2-dimensional graph. As a final comment, the first two PCs explain about 81% 227 

of data variance but there remains room for about 19% unexplained variation. 228 

Once the representative PCs were found, on the basis of samples 229 

differentiation/grouping and variance explained, loading analysis is started in 230 

order to find the underlying relationships in the original data structure. In this 231 

step loading could be visualized as a regression vector (a vector of correlation 232 

coefficients between the original variables with each PC-score). The positive 233 

factor loadings indicate that the factor will be higher in the positive axis of that 234 

PC. For example, for DPPH, a factor loading of 0.69 was obtained with PC1, 235 

which means that the samples located in the right-hand side (i.e., violet stars) of 236 

the graph have higher mean DPPH values than the samples located in the left-237 

hand side (i.e., red stars). Similarly, the negative factor loadings indicate that 238 

the factor will be higher in the positive axis of that PC. For example, for (-)-239 

epicatechin a factor loading of -0.75 was obtained for PC1, meaning that the 240 

samples located in the right-hand side (i.e., violet stars) of the graph have lower 241 
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mean concentrations than the samples located in the left-hand side (i.e., red 242 

stars). 243 

As a complementary analysis, as an illustrative example, PCA data may 244 

be compared to correlation coefficients (Table 2). As shown, the antioxidant 245 

activity measured by three different assays (i.e., ABTS, FRAP, and DPPH) is 246 

mainly correlated (p < 0.05) to caffeic acid, (-)-epicatechin, (+)-catechin, 247 

quercetin, and luteolin. FRAP also correlated significantly with gallic acid and 5-248 

O-caffeoylquinic acid. However, if the main objective is to check for association 249 

between bioactive compounds and functional properties, correlation analysis 250 

should be carried out.  251 

For instance, Pearson’s correlation coefficients or Spearman’s rank 252 

correlation coefficients are the choices for normally distributed data and for data 253 

do not conform to the normal distribution, respectively (de Oliveira et al., 2015). 254 

As a final comment on this topic, there is no scientific need to perform 255 

PCA or HCA for data sets that have a similar conclusion as the one shown in 256 

the above-mentioned example. However, if the number of responses and 257 

samples is quite large and data are quite complex (i.e., NMR spectra), PCA is 258 

highly indicated. 259 

Dos Santos et al. (2017) quantified 13 phenolic compounds in 96 guava 260 

fruit pulps (Psidium guajava L.) by HPLC, including (+)-catechin, gallic, ferulic, 261 

trans-cinnamic, chlorogenic, caffeic, p-coumaric, syringic, vanillic, and ellagic 262 

acid, rutin, quercetin, and kaempferol. The extraction procedure was optimized 263 

using different concentrations of ethyl alcohol and methyl alcohol for 15 to 90 264 

min using a sample to solvent ratio between 1:30 and 1:100 w/v. The extracts 265 

were also analyzed for total phenolic content, ascorbic acid, and flavonoids, 266 
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together with the antioxidant activity toward DPPH and ABTS radicals. PCA was 267 

able to explain only 60% of data variability with 2 PC, but a clear separation 268 

between ripe and green guava fruits was observed from the scatter plot. The 269 

main responses that separated the groups were syringic acid, (+)-catechin, p-270 

coumaric acid, caffeic acid, ellagic acid, trans-cinnamic acid and rutin for the 271 

green guava, while for ripe and white guava, the better markers were gallic acid 272 

and chlorogenic acid.  As rational subsequent step, authors applied ANN (a 273 

supervised algorithm) on same data set to obtain a reliable methodology to 274 

classify their samples. ANN showed a suitable separation between not only 275 

green and white variety but also ripe and unripe guava fruits. It should be 276 

stressed that as data were successfully analyzed by PCA, a linear algorithm, 277 

LDA or PLS-DA was the logical way to try. 278 

However, in some cases, the differentiation between classes is not so 279 

clear (Figure 3A) and outliers (one or more observation point(s) that is/are 280 

unusually distant from the other observations) can be detected in the dataset. In 281 

this case, the researcher cannot expect a straightforward separation between 282 

classes. Almost perfect segregation was obtained when all samples are 283 

analyzed after outliers removal (in synthetic data) using only two principal 284 

components (PCs), as shown in Figure 3B.  285 

Fidelis et al. (2017) evaluated multiple juices from different botanical 286 

origins (fruits and other vegetables) in relation to some classes of 287 

phenolics/bioactive compounds (tannins, total phenols, flavonoids, ortho-288 

diphenols, flavonols, total anthocyanins, and betalains), physicochemical 289 

properties (pH, soluble solids, and acidity), and antioxidant effects (Fe2+ 290 

chelating properties, antiradical effect (DPPH, ABTS, and FRAP), Folin-291 
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Ciocalteu’s reducing capacity, and total reducing capacity. A total of 570 data 292 

points (38 juices and 15 responses) were analyzed for patterns using PCA, 293 

which explained 72% of data variability with 2 PC and it was possible to pinpoint 294 

the juices with higher bioactive compounds and antioxidant activity. PLS-DA 295 

was used to discriminate juice groups and authors were able to separate Citrus 296 

juices from Super juices (made with berries) with correct classification rates 297 

above 73%, while data-driven SIMCA, which is a one-class classification 298 

method, was able to discriminate the juices samples with accuracy higher than 299 

86%. In this research, authors concluded that the use of DD-SIMCA may be of 300 

interest when the authentication of juices based on phenolic compounds and 301 

antioxidant activity need to be performed, especially in quality control programs 302 

in the juice industry. 303 

Kalaycıoğlu, Kaygusuz, Döker, Kolaylı, & Erim (2017) used PCA to 304 

explore only n = 10 Turkish honeybee pollens from distinct origins based on 305 

organic acids, carbohydrates, 14 minerals, total phenolic content, and 306 

antioxidant activity measured by the DPPH assay. Not surprisingly, the first 307 

three principal components explained 71% of data variability and authors claim 308 

they “classified” the pollen samples according to the geographical origin of the 309 

samples (less than five samples per class, in which, n = 2 chestnuts, n = 1 oak, 310 

n = 1 Abana, n = 1 Bayburt, n = 1 Balikesir, n = 1 buckwheat, and n = 3 Anzer). 311 

However, results are untrustworthy when such low number of samples are 312 

available, so conclusions based on the PC plots should be pondered. According 313 

to de Oliveira et al. (2015), for PCA, at least five responses and five objects 314 

(samples) need to be part of the dataset.  315 
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Santos et al. (2016) used PCA to reveal the effects of time (5 – 10 min) 316 

and extraction temperature (65 – 85 oC) on phenolic composition and functional 317 

properties of aqueous extracts of fermented rooibos (Aspalathus linearis). For 318 

this purpose, a 22 factorial design with three central points was used to 319 

manufacture beverages in which some phenolic acids and flavonoids were 320 

quantified using LC-MS/MS, the antioxidant activity (ABTS, FRAP, and total 321 

reducing capacity), and the inhibition of α-amylase and α-glucosidase were 322 

determined. As a large amount of data were generated (210 data points), 323 

authors performed a PCA to reduce dimensionality of the data. Authors verified 324 

that rooibos extracted at 85 oC, regardless of the extraction time, presented the 325 

highest levels of phenolic compounds, in vitro antioxidant activity, and highest 326 

inhibition of the digestive enzymes. Although correlation coefficients were 327 

calculated to know which compounds exerted the in vitro antioxidant effect, 328 

PCA was effective in showing the best technological conditions to produce the 329 

infusions with higher bioactive compounds. 330 

Farag, Ezzat, Salama, and Tadros (2016) studied the anti-331 

acetylcholinesterase activity and bioactive compounds of four sweet basil 332 

species (Ocimum basilicum, Ocimum africanum, Ocimum americanum and 333 

Ocimum minimum) by ultra-performance liquid chromatography quadrupole 334 

time of flight mass spectrometry (UPLC/qTOF/MS), PCA was used as 335 

exploratory tool and OPLS-DA was used for its further analysis. Twenty one 336 

hydroxycinnamic acids, 4 benzoic acid conjugates, 14 flavonoid conjugates, 2 337 

alcohols, 5 acyl sugars, 4 triterpenes and 12 fatty acids were identified in the 338 

extracts. Using these responses, authors applied PCA and HCA to pinpoint the 339 

sweet basis species with higher anti-acetylcholinesterase activity: O. 340 
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americanum, O. africanum, and O. basilicum. Additionally, OPLS-DA was used 341 

to distinguish between O. basilicum (official drug) from O. americanum, with 342 

more than 96% of data variability explained by the classification model. 343 

 344 

Hierarchical cluster analysis 345 

 HCA is a clustering method which explore the organization of samples in 346 

groups and among groups depicting a hierarchy (Lee & Yang, 2009). The result 347 

of HCA is usually presented in a dendrogram, a plot which shows the 348 

organization of samples and its relationships in tree form. There are two main 349 

approaches to resolve the grouping problem in HCA, agglomerative or divisive 350 

(Figure 4). 351 

In the first one, each sample is initially considered a cluster, and 352 

subsequently pairs of clusters are merged. In divisive approach algorithm start 353 

with one cluster including al samples, recursive splits are performed. Clustering 354 

is achieved by use of an appropriate metric of samples distance (usually, 355 

Euclidean, Mahalanobis or Manhattan distance) and linkage criterion among 356 

groups. Complete, single and average and Ward’s linkage are the more 357 

common variants of linkage criterions.  Ward’s method, based in optimal value 358 

of a target function, is a possible choice (Granato, Karnopp, & van Ruth, 2015). 359 

HCA has also been extensively used to evaluate the multivariate 360 

association between bioactive compounds and bioactivity of foods, beverages 361 

and their extracts. For instance, Viapiana et al. (2016) used HCA aiming to 362 

associate the relationship between phenolic composition measured by HPLC 363 

with the in vitro antioxidant activity (FRAP and DPPH assays) of 19 chamomile 364 

commercial samples (Matricaria chamomilla L.). Overall, caffeic, ferulic, and 365 
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syringic acids were the most effective phenolics in exerting antioxidant activity 366 

in the herbal extracts (MeOH:H2O, 80:20 v/v). Linear correlation coefficients 367 

were also calculated to display a mathematical proof of such findings (r>0.70, 368 

p<0.05). HCA and PCA were used with the aim to tentatively “classify” the 369 

commercial samples based on the HPLC fingerprint but no differentiation 370 

between samples was achieved. This study shows that PCA/HCA methods not 371 

always provide sufficient means to group samples according to the 372 

concentrations of bioactive compounds and antioxidant activity indices. 373 

Sánchez-Salcedo et al. (2016) used HCA as a tool to propose a 374 

polyphenolic fingerprint of white (Morus alba L., n=4) and black (Morus nigra L., 375 

n=4) mulberry leaves clones. UHPLC-MS identified 31 phenolic compounds, 376 

mostly important 20 flavonoids, in more than 120 spectrums analyzed, a very 377 

high number of variables for such low number of samples. Ward’s method 378 

based on Euclidean distance generated three major groups, first characterized 379 

by 4 clones of both species presenting high amount of caffeic acid-hexoside, 380 

caffeoylquinic acid and kaempferol-malonyl-rutinoside and low content of O-381 

hexoside flavonols. Only one clone of Morus nigra formed the second group, 382 

representing caffeic acid and cryptochlorogenic acid as characteristics. The last 383 

group was formed of 3 clones of two mulberry species, presenting high 384 

flavonols containing O-hexoside and a low content of caffeic acid. 385 

To study the geographical influence on phenolic content and antioxidant 386 

activity in Napirira bean (Phaseolus vulgaris L.), Fan and Beta (2017) applied 387 

an unsupervised pattern recognition method (HCA) based on the Euclidean 388 

distance and Ward’s method. Total phenolic content, antioxidant activity, and 389 

phenolic compounds (protocatechuic acid, p-hydroxybenzoic acid, catechin, p-390 
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coumaric acid, ferulic acid and sinapic acid) were analyzed in eighteen bean 391 

samples from four locations in Malawi. HCA was able to differentiate 3 major 392 

groups: group 1 clustered samples with high contents of phenolic compounds 393 

and antioxidant activity which were from the high-altitude region; group 2 394 

clustered samples that presented low contents of phenolic compounds and 395 

antioxidant activity which were from a lower-altitude region; and group 3 396 

contained samples with intermediate values of phenolic compounds and 397 

antioxidant activity and included samples from both intermediate regions of 398 

Malawi. As a conclusion, HCA was a useful tool to associate the phenolic 399 

compounds/antioxidant activity with the cultivation region. 400 

A good example where algorithm configuration could be decisive to 401 

obtain a valid conclusion is illustrated by Kaškonienė et al. (2015). Authors 402 

analyzed the total phenolic and flavonoids contents, antioxidant activity and 403 

individual phenolic compounds (gallic acid, caffeic acid, ferulic acid, 2-404 

hydroxycinnamic acid, rutin naringenin and quercetin) in 14 pollen samples 405 

collected in the Baltic region (Latvia and Lithuania) and two others from Spain 406 

and China. Data were treated by HCA using both Spearman’s distance and 407 

Euclidean distance. Samples were clustered in two groups according to the 408 

antioxidant activity. Similarly, Euclidean distance clustered the samples into 409 

three major groups according to the geographical regions with clear differences 410 

in the phenolic composition. As a conclusion the choice of distance function is 411 

not a trivial matter and should be tested when HCA is applied. The use of the 412 

only one clustering technique (i.e., k-means or tree-clustering), amalgamation 413 

rule (i.e., single linkage, complete linkage, or Ward’s method), and distance 414 

measure (i.e, Euclidean, Manhattan, 1- Pearson r) is not recommended. 415 
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Nayik and Nanda (2016) analyzed the minerals, phenolic composition 416 

and antioxidant activity of n = 37 unifloral honeys from Kashmir, India. PCA and 417 

HCA were used to assess the effects of the botanical origins of those samples 418 

based on the quality parameters and verified that PCA was able to group the 419 

samples according to the origin (apple, cherry, saffron and wild bush). The 420 

authors claimed that “minerals presented the highest discriminating power” in 421 

PCA while samples were “classified” using HCA. The terms “discriminating 422 

power” and “classification” are related to supervised chemometric tools, such as 423 

LDA/QDA or SIMCA, among other techniques (Popek, Halagarda, & Kursa, 424 

2017; Mapelli-Brahm, Hernanz-Vila, Stinco, Heredia, & Meléndez-Martínez, 425 

2018; Kasprzyk, Depciuch, Grabek-Lejko, & Parlinska-Wojtan, 2018). 426 

Therefore, such terms should be avoided when PCA or HCA are employed. 427 

 428 

Overall comments on PCA and HCA 429 

 Both PCA and HCA are usually used concomitantly in studies covering 430 

bioactive compounds and functional properties. To illustrate what is widely seen 431 

in published articles, consider the following: n = 20 samples coming from two 432 

fruits (A and B) are analyzed for the concentrations of total phenolics, 433 

carotenoids, antioxidant activity measured by the oxygen radical absorbance 434 

capacity (ORAC) assay, and inhibition of amylase and lipase. Results were 435 

analyzed using PCA and the 2D projection is given in Figure 5A: it is possible to 436 

see a defined cluster containing fruit “B” and another group containing most “A” 437 

fruits. However, there are n = 3 “A” samples that are far from the main “A” 438 

group. One could say they are outliers simply by looking at the projection, but 439 

this cannot be done as PCA does not “classify” objects. In Figure 5B, HCA was 440 
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applied using the Ward’s method as the amalgamation rule and Euclidean 441 

distances were calculated between fruits. Using a linkage distance of 15, only 442 

two groups are formed, one containing the “A” fruits and the other containing all 443 

“B” fruits. Similarly, if a distance of 5 is considered, there are 1 group containing 444 

the “B” fruits and two other groups containing the “A” fruits, which is similar to 445 

the PCA results. However, if a linkage distance of 1.5 is considered, a total of 6 446 

small groups can be visualized. Using this simple example, it is possible to 447 

conclude that HCA is an arbitrary method and should be used for exploratory 448 

purposes only. Additionally, neither PCA nor HCA creates a “mathematical 449 

model” for classification and authentication purposes. Rather, they only project 450 

or display the objects under investigation based on selected responses and 451 

grouping of samples may be identified by the user. Moreover, neither PCA nor 452 

HCA provides a statistical significance of such similarities (Andrić, Bajusz, 453 

Rácz, Šegan, & Héberger, 2016). 454 

 If the aim is to find an association between bioactive compounds and 455 

functional properties using HCA, the method may be applied (Figure 5C). It is 456 

an easy and straightforward result: total phenolics and carotenoids are 457 

associated with ORAC and inhibition of α-amylase. Conversely, the inhibition of 458 

lipase does not seem to be associated with any of the responses. Although 459 

HCA shows the existence of association between responses,  however it does 460 

not provide a measure of the association (qualitative approach). One alternative 461 

to overcome this limitation is to calculate the correlation coefficient and provide 462 

a quantitative measure of the correlation between responses. As a matter of 463 

fact, the inhibition of lipase is not correlated to the concentrations of total 464 

phenolics (r = -0.022, p = 0.927), carotenoids (r = 0.213, p = 0.367), and ORAC 465 
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(r = 0.304, p = 0.193). In this case, the use of HCA is near meaningless as 466 

correlation coefficients are robust enough to draw the association between the 467 

chemical composition and the functional properties of the fruits. 468 

Although PCA and HCA are very useful to study the data structure and 469 

find similarities among samples, in most cases, linear correlation coefficients 470 

would render very similar interpretations of the results. Indeed, it is widely 471 

known and recognized that higher levels of phenolic compounds will render a 472 

higher antioxidant activity measured by chemical reactions in vitro (Guo, Sun, 473 

Yu, & Qi, 2017; Lv, Zhang, Shi, & Lin, 2017). Another main disadvantage of 474 

using PCA/HCA in those studies is the real applicability of the observations: it 475 

seems that most researchers only use PCA and HCA to increment their data 476 

analysis rather than to explain the mechanisms of action and have a strong and 477 

in-depth discussion based on a solid hypothesis. In fact, in the field of bioactive 478 

compounds, when in vitro assays are used, it is somewhat obvious that almost 479 

all carotenoids and phenolic compounds will exert antioxidant activity. In this 480 

case, correlation coefficients should be calculated and results analyzed. 481 

 482 

Final comments and recommendations 483 

The use of PCA and HCA in food chemistry studies has increased in the 484 

past years because the results are easy to interpret and discuss, especially of a 485 

large data set is analyzed. However, the indiscriminate use of multivariate 486 

exploratory statistical techniques (PCA and HCA) to assess the association 487 

between bioactive compounds and in vitro functional properties is criticized as 488 

the results will be, in most cases, a sine qua non observation. When 489 

appropriate, the researcher should bear in mind that the correlation between the 490 
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content of chemical compounds and bioactivity could be duly discussed using 491 

simple linear correlation coefficients.  492 
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FIGURE HEADINGS 705 

 706 

Figure 1: Summary of selected multivariate statistical methods applied in food 707 

research. 708 

Figure 2: PCA of juice samples based on chemical composition and antioxidant 709 

activity: A – represents the number of PCs e the explained variance. B- 710 

represents the projection of samples on the factor-plane. For illustration 711 
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purposes, red starts represent orange juice, green stars represent lemon juices, 712 

and violet stars represent grape juices. 713 

Figure 3: Principal components analysis, PCA, to project different samples (i.e., 714 

fruits from different varieties) based on some selected responses: outlier 715 

detection with no separation between varieties (A), no outliers with a clear 716 

separation between fruit varieties (B). 717 

Figure 4: HCA dendrogram for agglomerative algorithm (A) and divisive 718 

algorithm grouping flow (B).  719 

Figure 5: Example of PCA (A) and HCA (B, C) applied to a data set composed 720 

of n = 20 fruit samples (A and B) according to the concentrations of total 721 

phenolics, carotenoids, antioxidant activity measured by the ORAC assay, and 722 

inhibition of lipase and α-amylase. 723 

 724 
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Table 1: Factor loadings for illustrating the interpretation of Figure 2. 

Factor PC1 PC2 PC3 PC4 
DPPH 0.69 -0.47 0.16 -0.42 
ABTS 0.68 0.06 -0.40 0.44 
FRAP 0.63 -0.65 -0.12 -0.02 

Gallic acid 0.50 -0.66 0.09 -0.30 
Caffeic acid 0.81 -0.23 0.22 0.15 

5-O-caffeoylquinic acid 0.04 -0.70 -0.50 0.27 
(+)-Epicatechin -0.75 -0.54 -0.30 -0.09 

(+)-Catechin -0.90 -0.07 0.08 -0.17 
Quercetin -0.90 -0.19 0.03 -0.08 
Quercetrin -0.52 -0.26 0.70 -0.36 

Luteolin -0.78 -0.05 -0.65 0.09 
Ellagic acid 0.13 0.48 -0.46 -0.73 
Eigenvalue 5.39 3.78 0.56 0.23 

Explained variance (%) 50.35 30.56 8.05 3.18 
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Table 2: Illustrative correlation coefficients to help in the interpretation of the 

example shown in Figure 2. 

Responses DPPH ABTS FRAP 
DPPH 1 
ABTS 0.899 1 
FRAP 0.946 0.947 1 

Gallic acid 0.564* 0.529* 0.608 
Caffeic acid 0.895 0.911 0.935 

5-O-caffeoylquinic acid 0.523* 0.518* 0.622 
(+)-Epicatechin 0.875 0.812 0.804 

(+)-Catechin 0.926 0.874 0.935 
Quercetin 0.873 0.924 0.901 
Quercetrin 0.425* 0.378* 0.333* 

Luteolin 0.788 0.829 0.845 
Ellagic acid 0.238* 0.356* 0.458* 

Note: * denotes p > 0.05 while the other correlation coefficients present p < 

0.05. 
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HIGHLIGHTS 

 

• Chemometric tools are widely used for classification, calibration and exploratory 

issues 

• Unsupervised statistical methods are used to study data structure and look for 

clusters of samples 

• PCA and CA are the most widely used methods 

• PCA and CA can be useful in studies regarding bioactive compounds in foods 

• We criticize the indiscriminate use of PCA and CA  


