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By means of heuristic optimization techniques, we estimate the unknown refractive index of one layer of a peri-
odic natural multilayer system from far-field reflectance data. To take into account the dispersive characteristics of
the material, we employ two different strategies. The first is based on the retrieval of Lorentz model-related
parameters, to describe the unknown dielectric permittivity within a specific spectral range. The second strategy,
based on a wavelength-by-wavelength approach, takes into account the reflectance values for each wavelength at
a time. Through some examples, we compare the performance of both strategies when they look for the best
estimates and analyze the error involved in each case. The applicability of both approaches to the case of noisy
reflectance spectra is also explored. © 2017 Optical Society of America
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1. INTRODUCTION

It is well known that structural colors are produced by the in-
teraction between light and microstructures with variation
scales of the order of the visible wavelengths. Over millions
of years of evolution, nature has developed an enormous variety
of microstructures, present in the cover tissues of animals and
plants [1], that give rise to attractive color effects such as iri-
descence and metallic appearance [2,3]. In recent years, the
design and development of artificial photonic structures mim-
icking natural ones have become a novel branch of biomimetics
with applications ranging from cosmetics, textiles, and paints
to light-emitting sources and reflective color displays [4].

Multilayer interference is one of the most widespread physi-
cal mechanisms that produces structural colors in nature and
especially in beetles. The remarkable color effects displayed
by coleoptera are originated by light interference at the external
part of their cuticle [5–10], which is composed by alternating
layers of more- and less-dense chitinous material and melanin,
among other substances [5–7]. The accurate modeling of the

electromagnetic response of such complex systems is thus quite
a challenging task because it requires precise knowledge of the
optical parameters of the materials that constitute the related
structures [7,11]. Consequently, a significant amount of work
has been devoted to develop inversion techniques to retrieve
the unknown optical parameters from experimental information.
Some pioneer contributions estimated the refractive index em-
ploying experimentally measured reflectance spectra assuming
ideal or nonideal quarter-wave stacks [5,6,12,13]. Also, Noyes
et al. found the constant complex refractive indices of the beetle
Chrysochroa raja through a fitting scheme that considered several
angles of incidence and two polarization states [9]. Furthermore,
Stavenga et al.modeled the electromagnetic response of the jewel
beetle Chrysochroa fulgidissimawith the classical multilayer theory
and estimated the refractive index assuming a quarter wave stack
structure [8]. In previous contributions, we have applied heuris-
tic optimization techniques to estimate the refractive indices
present in the multilayer structure of Ceroglossus suturalis beetle
[14,15]. In those references, we assumed the refractive indices of
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the layers to be constant, and we found a good agreement
between the spectra numerically generated using the retrieved
indices, and the experimental measurements [15].

In spite of the important amount of studies concerning the
frequency-dependent characteristics of chitin, which is one of
the most abundant materials found in beetles’ cuticle [16,17],
dispersive phenomena related to biological materials had not been
taken into account within the framework of structural colors, un-
til recently. That is, most of the works assumed, for wavelengths
in the visible range of the spectrum, an average chitin’s refraction
index ranging between 1.4 and 2 and between 0 and 0.14 for the
real and imaginary parts, respectively. As a consequence, there are
not many contributions making explicit use of dispersion or re-
laxation models to characterize the constitutive parameters of bio-
logical tissues. Some examples are the works of Yoshioka et al.,
who have recently retrieved the refractive index of a jewel beetle by
means of a parametric model based on Cauchy’s law, for the real
part, and an empirically established decreasing exponential for the
imaginary part [18], and that of Azofeifa et al. [16], that made use
of Sellmeier’s model to characterize the frequency-dependent re-
fractive index of chitin. Another interesting approach is the one
described in Ref. [19] where, to take into account the polarization
properties exhibited by certain species of beetles, Arwin et al. used
spectral Mueller matrices to extract the relevant parameters of the
multilayer cuticle from ellipsometry data.

In this work, we enhance our previous approach [14] to have
a more accurate and useful computational tool to retrieve the
relevant parameters of biological structures. To this end, we
include in our inversion scheme the polarization information
of several reflectance spectra generated at different angles of
incidence. Also, we take into account the dispersive nature of
the layer materials. To achieve this objective, we employ two
different approaches. The first is based on the Lorentz Model
(LMA), which provides an analytical expression for the fre-
quency-dependent response of dielectric materials. The second
approach is an extended version of the wavelength-by-
wavelength approach (WWA) described in Ref. [20].

The organization of this paper is as follows. In Section 2 we suc-
cinctly describe the theoretical methods employed in our inversion
scheme, which includes the solution of the direct and inverse prob-
lems. Also, we briefly outline the LMA and the extended WWA.
In Section 3, we assess the performance of our enhanced inversion
schemes through some examples. To compare them in an objec-
tive manner, we conduct a statistical data processing and compute
the intervals of confidence related to each approach. Additionally,
we study the behavior of both approaches when noisy reflectance
spectra are used to retrieve the parameters of interest. Some pre-
liminary results concerning the presence of absorption are also dis-
cussed. Finally, we give our concluding remarks in Section 4.

2. SUMMARY OF THE THEORETICAL
APPROACH

A. Direct Problem: The 4 × 4 Method
We employ, as forward solver, the 4 × 4 transfer matrix method
for one-dimensional multilayer systems as the one shown in
Fig. 1 [21]. This method combines Maxwell’s equations with
the corresponding constitutive relations to obtain a differential
system for the unknown electric and magnetic field components

in each layer. For structures with translational invariance, assum-
ing plane wave illumination, this system can be reduced to
a 4 × 4 differential system whose unknowns are the tangential
components of the electric and the magnetic fields. Imposing
the boundary conditions at each interface, one ends with
a 4 × 4 matrix system for the unknown amplitudes outside
the structure, i.e., transmitted and reflected.

It is noted that none of the approaches proposed depend on
the forward solver. Therefore, other formalisms such as, for exam-
ple, the finite-elements method [22] or the finite-difference time-
domain method [23] could be equally suited to compute the
reflectance spectra Rthe

α �λ; θinck jpT �. Consequently, the inversion
scheme proposed here could also be applied to more complex
natural structures that cannot be modeled by the 4 × 4 method.

B. Inverse Problem
As in Ref. [14], in this contribution we formulate the inverse
problem in terms of least-squares approximation and write the
fitness functional defined in that reference as

f �pT ��
X
α�p;s

�Xn
k�1

‖Rexp
α �λ;θinck �−Rthe

α �λ;θinck jpT �‖2
�
; (1)

where ‖‖ is the Euclidean Norm, θinck are different angles of
incidence, and the components of vector pT are the variables
of interest to be retrieved. Also, Rexp

α �λ; θinck � and
Rthe
α �λ; θinck jpT �, respectively, represent the experimentally mea-

sured and numerically generated reflectance spectra for each
polarization state α � s; p. The goal is then to find a set of
parameters that minimizes Eq. (1) and reproduces, if the sol-
ution is unique, the experimental optical signals Rexp

α �λ; θinck �.
This new form of the fitness functional [Eq. (1)] takes into

account more spectral and polarization information that, in prin-
ciple, should serve to guide the inversion scheme toward what
could be thought to be the unique solution of the problem. At
this point, however, it is worth mentioning that none of the
global optimization techniques reported in the literature guaran-
tees the uniqueness of the solution. Nevertheless, the numerical
evidence found in our previous contributions [14,15] suggests

Fig. 1. Multilayer structure studied in this paper. Each layer is char-
acterized by its dielectric permittivity ε1 and ε2�ω�, respectively. The
period Λ is equal to the sum of the thicknesses d 1 and d 2 of each layer.
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that providing the algorithm with more spectral data could con-
tribute to constrain the search space because the dielectric per-
mittivities are independent of the illumination conditions.

Although the functional [Eq. (1)] provides the inversion
algorithm with more information, it does not explicitly take
into account the dispersion effects that might be present in
the multilayer structure. Then, to accomplish this second task,
we explore two strategies based on different operational prin-
ciples. The first makes use of a simple dispersion model to gen-
erate the frequency-dependent dielectric permittivity that
should be used, in turn, to compute the reflectance spectra
Rthe
α �λ; θinck jpT � included in the functional [Eq. (1)]. The sec-

ond strategy is a wavelength-by-wavelength approach (WWA)
that could be considered as a natural extension of the inversion
scheme used for the dispersionless case [14].

It is important to remark that almost any of the optimization
techniques reported in the literature could be used for the min-
imization of the functional [Eq. (1)] [24]. In this work, we use
the bioinspired population-based heuristic optimization tech-
niques described in Ref. [14].

1. Lorentz Model Approach (LMA)
This approach lies on the functional [Eq. (1)], which measures
the closeness between the experimental spectrum and that gen-
erated with the dielectric function found through the Lorentz
model related parameters.

Our starting point is the Lorentz dispersion model with one
harmonic oscillator given by [25]

εL�ω� � ε∞ � ω2
p

�ω2
0 − ω

2� − iγω ; (2)

where ε∞ is the limiting value of εL�ω� at high frequencies, ωp
is the plasma frequency associated with collective oscillations of
bound electrons, and ω2

0 and γ are phenomenological coeffi-
cients related with the restoring and the damping forces acting
on the oscillator, respectively. To facilitate its numerical imple-
mentation, we write Eq. (2) in the more convenient form

εL�ω� � ε∞ � Δε�
1 − ω2

ω2
0

�
− iγ ω

ω2
0

; (3)

where we have done ω2
p � ω2

0Δε with Δε � εL�0� − ε∞.
Then, by setting ω � 2πc∕λ, ω0 � 2πc∕λ0 and using the nor-
malization λ � NΛ, with Λ equal to the period and N is a
positive integer, one arrives, through some straightforward
algebraic operations, to the expression

εL�N � � ε∞ � Δε�
1 − �η�2� 1

N

�
2
�
− i�β��η�2� 1

N

� ; (4)

where the variables of interest to be optimized are the dimen-
sionless parameters: ε∞, Δε, η � λ0

Λ , and β � γΛ
2πc .

2. Wavelength-by-Wavelength Approach (WWA)
The essence of this approach lies also on the functional
[Eq. (1)] written in the slightly different form

f ww�pT � �
X
α�p;s

(Xn
k�1

�Rexp
α �λl ; θinck � − Rthe

α �λl ; θinck jpT ��2
)
;

with l � 1…nl : (5)

In this way, the functional [Eq. (5)] not only includes the in-
formation of several reflectance spectra generated at different
angles of incidence and polarization states, but it also explicitly
takes into account the dependency of the dielectric permittivity
on the wavelength through the variation of the index l . The
main feature of the WWA is that the variables of interest
are each layer’s dielectric constants, for each wavelength in
the spectral range considered. That is, in the general case,
the components of the vector pT could be, for instance, the
real and imaginary parts of the dielectric constants of the layers
that comprise the multilayer structure.

3. RESULTS

To assess the performance of our extended inversion method, in
this section we present some examples. The layers comprising the
multilayer structure shown in Fig. 1 are characterized by their
refractive indices n1 and n2, such that εi � n2i , with i � 1; 2.
To keep the complexity of the problem into a manageable level,
throughout this section we look for n2�λ� while keeping n1 fixed.
In the first examples, we assume that n2�λ� is real.

Although the target spectra shown in Fig. 2 could be exper-
imentally acquired, to evaluate the performance of the inversion
strategies we generate them numerically using the 4 × 4 method
described in Section 2.A, assuming the following material and
illumination conditions. As described in Ref. [15] for the beetle
Ceroglossus suturalis, the number of periods is fixed to nine, and
the respective thicknesses of each layer are d 1 � 60 and
d 2 � 100 nm. The refractive index of layer 1 is n1 � 1.7
and because chitin is frequently found in the exoskeleton and
in the internal structures of invertebrates, we assume that layer
2 is filled with it, and the values of Refn2�λ�g are taken from
Table 1 of Ref. [16]. The incidence medium is air, and the
dielectric constant of the substrate is assumed to be ns � n1.
Unless otherwise mentioned, we include within the functional
[Eq. (1) or Eq. (5)] seven input curves, shown in Figs. 2(a) and
2(b), that correspond to the angles of incidence θinc � 0°, 30°,
45°, and 60°, and to the s– and p– polarization states, respectively.

In most cases, natural materials cannot be defined as a
unique chemical structure, but they should rather be regarded
as effective media comprising two or more components, and
then, they exhibit high variability in their chemical and physical
properties [26]. Therefore, it is somewhat expected that the
Lorentz model could not account for the dispersive character-
istics of chitin within a broad spectrum range. According to
this, and taking into account the abrupt dispersive behavior
of chitin in the UV range [16], we restrict the application
of the Lorentz model to the visible range.

In what concerns the inversion scheme, we employ the Elitist
(EL) Evolution Strategy described in Ref. [14]. The sizes of the
initial and secondary populations are μEL � 14 and λEL � 100,
respectively. Also, the number of elements to be recombined was
fixed to ρ � 2. The numerical evidence found in [14] suggests
that g � 50 iterations (generations) of the evolutionary loop are
enough to converge to a solution, and it also serves as a stop cri-
terion for the evolutionary loop. The number of realizations of
the inversion scheme, i.e., the number of initial states from where
we searched for the solution, was set to r � 250 in the case of the
LMA and to r � 100 for the WWA. Once the inversion process
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is over, independently of the fitness functional employed, we sta-
tistically process the results obtained from the inversion schemes.
The main objective of this postprocessing stage is to avoid a some-
how arbitrary choice of the best solution by using two statistical
estimators: the mean (AV) and the median (MED).

A. Retrieval of n2�λ�
In this first example, we look for n2�λ� from the target spectra
in Fig. 2 making use of the LMA. As a consequence, the param-
eter of the Lorentz model related to the imaginary part in
Eq. (4) is β � 0.

The thin dashed and solid lines in Fig. 3(a), respectively,
correspond to values of n2�λ� generated using the central ten-
dency estimators AV and MED obtained from the AV and
MED estimators of the three parameters of the Lorentz model.
For the retrieval, we consider the search space (set 1)
ε∞ ∈ �1; 10�, Δε ∈ �0; 10�, and η ∈ �0; 10�. To facilitate the
comparison, the target n2�λ� extracted from Table 1 of
Ref. [16] is represented with squares. It is observed that
the median gives an acceptable estimation of n2�λ�, whereas
the mean significantly deviates from the expected values.
This result suggests that there is an important statistical

Fig. 3. Retrieved values of n2�λ� using the Lorentz model. Both statistical estimators, the mean (AV) and the median (MED), are shown for two
different sets of ranges for the search space of the unknown parameters. (a) Using set 1, the retrieved Lorentz model parameters for the AV estimator
are: ε∞ � 3.10� 0.16, Δε � 1.47� 0.21 and η � 9.37� 0.19, and for the MED we obtained: 2.73428 ≤ ε∞ � 2.73448 ≤ 2.73460, 0.938 ≤
Δε � 0.940 ≤ 0.941 and 9.979 ≤ η � 9.990 ≤ 9.995. (b) Using set 2, the retrieved Lorentz model parameters for the AV estimator are:
ε∞ � 1.419� 0.032, Δε � 1.096� 0.028, and η � 0.930� 0.013, and for the MED we obtained: 1.33 ≤ ε∞ � 1.36 ≤ 1.42, 1.09 ≤ Δε �
1.13 ≤ 1.16 and 0.97 ≤ η � 0.98 ≤ 0.99. The reported uncertainty is based on a standard error multiplied by a coverage factor k � 1.96, provid-
ing a confidence level of 95% [27]. The input values of n2�λ� extracted from Table 1 of Ref. [16] are also shown.

Fig. 2. Numerically computed reflectance spectra used as target functions Rexp
α �λ; θinck � within the functional [(1) or (5)]. We considered incidence

angles θinc � 0°; 30°; 45°; 60°. (a) s polarization; (b) p polarization.
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dispersion among the solutions obtained throughout the differ-
ent realizations of the inversion scheme. Consequently, the
median seems to provide a better statistical estimation, pri-
marily because it is less sensitive than the mean to the presence
of outliers. This situation can also be explained through the
computation of the statistical error (SE) and the 95% confi-
dence interval (Δ) for both estimators AV and MED [27].
With reference to Fig. 3(a), we found that ΔMED ≈ 10−4 for
all the wavelengths considered. However, ΔAV is much larger
and this reinforces the idea that the mean did not converge to
the searched solution.

One possible way to improve the performance of the inver-
sion scheme could be to restrict the search space of the un-
known variables. In Fig. 3(b) we show the results obtained
when using the search space (set 2) ε∞ ∈ �1; 5�, Δε ∈ �0; 3�,
and η ∈ �0; 1�. For consistency, we keep the same line styles
as in Fig. 3(a). It is clear that the AV and MED curves become
closer to each other, and the MED is different from that ob-
tained for set 1. It is noteworthy that in this case the concavity
of the function n2�λ� shows a better agreement with the target
values, and with the curve reported in [16].

We show in Fig. 4 the 95% confidence interval ΔAV com-
puted when the restricted search space (set 2) is used. In this
case ΔAV ≈ 0.04, which is now similar to ΔMED (not shown).
This result clearly illustrates the significant effect of the search
space on the convergence of the inversion scheme to a physical
solution.

For completeness, we repeat our numerical experiments em-
ploying the WWA. This approach requires the solution of the
optimization problem for each wavelength individually, which
means that the algorithm searches for the best value of n2�λ�,
for each wavelength λl , taking into account the reflectance data
provided by the target spectra for this particular wavelength.
Then, if we discretize the spectral interval of interest in N val-
ues, the WWA solves N optimization problems, each of which
aims at retrieving a single unknown variable. Unlike the
Lorentz model, the retrieved values of n2�λ� for different wave-
lengths are independent from each other. Consequently, the
WWA is much more computationally demanding than the

LMA. However, it has the advantage that, in principle, it could
be applied to any substance, and it does not assume any par-
ticular dispersion dependence of the unknown medium.

In Fig. 5 we show the values of n2�λ� retrieved by the
WWA, using both estimators AV and MED, for a range of
n2�λ� ∈ �1; ffiffiffi

5
p �. Taking advantage of the versatility of the

WWA regarding the frequency dependence of the unknown
dielectric permittivity, in this case we extend the spectral range
under study to cover also the UV range, which is also of interest
for the study of natural systems. It is observed that there is an
excellent agreement between the MED estimation and the pub-
lished data. The AV estimator gives also a very good result for
most wavelengths, although a few peaks (at λ � 250, 315, and
400 nm) can be noticed, at which the retrieved n2 deviates from
the correct value. The confidence interval ΔAV remains small
(<10−4) for most wavelengths, except at the wavelengths men-
tioned above, at which it increases considerably (not shown). It
is precisely at these wavelengths that the difference between the
AV and MED estimations also increases. On the other hand,
ΔMED is <10−4 even at these values, and this suggests that also
for the WWA the median is a more suited estimator than the
mean [27].

The reflectance spectra obtained employing the values of
n2�λ� retrieved by the WWA-MED are shown in Fig. 6 for
θinc � 0° and 45° and for s and p polarization. An excellent
agreement is observed between the retrieved spectra and those
used as target. However, it is mentioned that reflectance spectra
are not very sensitive to small changes in n2�λ� and, conse-
quently, spectra obtained using less good estimates are equally
good on the scale shown.

B. Influence of Noise in the Target Spectra
To be close to the experimental situation, in this section we
study the effect of noise on the convergence of the LMA
and WWA to the searched value of n2�λ�. The target spectra
required to feed the optimization methods are usually acquired
experimentally. Nevertheless, the measurement of reflectance
spectra from natural systems involves important difficulties that

Fig. 4. Retrieved values of n2�λ� using the Lorentz model, and the
confidence interval of the AV estimator ΔAV using set 2 [Fig. 3(b)].

Fig. 5. Retrieved values of n2�λ� using the WWA. Both statistical
estimators, the mean (AV) and the median (MED), are shown. The
input values of n2�λ� extracted from Table 1 of Ref. [16] are also shown.
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can arise from the irregularity of the structure, the inhomoge-
neities in the material, the spot size or the curvature of the sam-
ple, to name but a few examples. These issues may have an
important effect on the measurement and can be a source of
error [5,8,18]. Therefore, the question arises about the effect,
on the convergence of the inversion scheme, of taking noisy
spectra as the target from where the values of n2�λ� are
searched. It is noteworthy that our inversion scheme has been
validated and successfully applied to retrieve experimental
parameters from near-field noisy data [28] and also from exper-
imental near-field information [29].

In this subsection, we analyze this problem by adding nor-
mally distributed random noise to the reflectance spectra of
Fig. 2. The noisy spectra depicted in Figs. 7(a) and 7(b), where
we assumed a standard deviation σ � 0.01, correspond to four
different incidence angles and to the s and p polarization states,
respectively. To avoid unphysical results that may arise from the
addition of random noise, we assigned zero reflectance to the
wavelengths for which the reflectance value would be negative,
as a consequence of random noise addition. These reflectance

Fig. 6. Reflectance spectra obtained by introducing the values of
n2�λ� retrieved by the WWA, for θinc � 0° and 45°, for both polari-
zation modes (α � s; p).

(a) (b)

Fig. 7. Noisy reflectance spectra generated by the addition of random noise with Gaussian distribution of σ � 0.01 to the target curves of Fig. 2.
The incidence angles are θinc � 0°; 30°; 45°; 60°. (a) s polarization; (b) p polarization.
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curves are used as target curves Rexp
α �λ; θinck � within the func-

tional [Eq. (1) or (5)], for the retrieval of n2�λ�.
In Figs. 8(a) and 8(b) we plot the values of n2�λ� retrieved

using the Lorentz model, for σ � 0.01 and σ � 0.05, respec-
tively. To facilitate the visualization, we also include the values
of n2 extracted from Table 1 of Ref. [16]. In both cases, the
ranges of the search space are those of set 2 in Fig. 3(b).

Both estimators (AV and MED) are shown in Fig. 8. A good
agreement is observed between the results for the AV and the
MED even for σ � 0.05, which corresponds to very noisy
target spectra. The 95% confidence intervals ΔAV and
ΔMED for the numerical experiments with these noisy spectra
are similar to those obtained, in the noiseless case (Fig. 4), for
all the wavelengths considered. Besides, the agreement between
the estimated curves and the input values is very good all along
the visible range.

The retrieved values of n2�λ� obtained using the WWA for a
standard deviation σ � 0.01 are shown, for both estimators AV
and MED, in Fig. 9(a). In Fig. 9(b) we show the AV curve with
its corresponding confidence intervals. The estimated values of
n2�λ� are in good agreement with the input values of Ref. [16]
for most wavelengths, not only within the visible but also for
the UV range. However, both estimators exhibit peaks at cer-
tain wavelengths at which the estimated n2 deviates from the
expected values. Notice that some of these peaks appear in both
the MED and the AV curves, but there are others that only
appear in the AV curve, at λ ≈ 315 and 515 nm (not observed
because of the scale used in the figure). The 95% confidence
interval for the MED estimator remains very small, <10−5, for
all the wavelengths considered (not shown). However, Fig. 9(b)
shows that ΔAV exhibits peaks at these wavelengths (indicated
by arrows), and therefore, the AV is not a satisfactory estimator
of n2 in these cases. It is notable that Fig. 9(a) exhibits two

peaks (at λ ≈ 300 and 400 nm) at which the results with both
estimators are coincident with each other, but they do not cor-
respond to the expected value of n2. At these wavelengths, ΔAV

andΔMED are both smaller than 10−5, and this suggests that the
optimization algorithm has converged to a local optimum,
instead of the required solution.

For σ � 0.05 [Fig. 9(c)], i.e., for very noisy target spectra,
the WWA cannot yield as good results, and n2�λ� starts to de-
viate from the expected values. ΔAV presents peaks at several
wavelengths [Fig. 9(d)], although ΔMED remains very small
for all wavelengths (not shown). Consequently, also for highly
noisy spectra the MED is still the best estimator. However,
notice that in this case there are more wavelengths at which
the algorithm converges to a local optimum.

C. Toward the Retrieval of Refn2�λ�g and Imfn2�λ�g
The numerical evidence found in previous sections not only
provides some confidence in our approach, but it also settles
the basis for the study of more complex structures. In this sense,
a natural step is to retrieve the complex value of n2�λ� that re-
sults when the material’s absorption is taken into account. In
this subsection, we show some preliminary results obtained
with our enhanced inversion scheme and target spectra gener-
ated considering the presence of an imaginary part in n2�λ�.

The numerical results to be discussed throughout this sub-
section were obtained keeping the same conditions as those
established when absorption was neglected. Furthermore, the
search space for the objective variables was the same as in
set 2. Also, for the sake of simplicity, we only present the results
obtained when the Lorentz Model is included in the inversion
scheme. As previously, the target spectra are generated with the
data reported in [16], taking into account the imaginary part of
the refractive index of chitin, which remains smaller than

Fig. 8. Retrieved values of n2�λ� using the Lorentz model, taking noisy spectra as target functions. (a) Case σ � 0.01; the obtained parameters
of the Lorentz model are: ε∞ � 1.483� 0.031, Δε � 1.026� 0.028 and η � 0.9918� 0.0030 for the AV estimator, and
1.40 ≤ ε∞ � 1.44 ≤ 1.49, 1.02 ≤ Δε � 1.05 ≤ 1.09 and 0.9985 ≤ η � 0.9989 ≤ 0.9993 for the MED estimator. (b) Case σ � 0.05; the
obtained parameters are: ε∞ � 1.408� 0.029, Δε � 1.089� 0.026 and η � 0.9942� 0.0022 for the AV estimator, and
1.34 ≤ ε∞ � 1.37 ≤ 1.41, 1.08 ≤ Δε � 1.11 ≤ 1.14 and 0.9988 ≤ η � 0.9991 ≤ 0.9993 for the MED estimator. The reported uncertainty
is based on a standard error multiplied by a coverage factor k � 1.96, providing a confidence level of 95% [27]. The input values of n2�λ� extracted
from Table 1 of Ref. [16] are also shown.
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Fig. 9. Retrieved values of n2�λ� and confidence intervals using the WWA. (a) σ � 0.01, AV and MED estimators; (b) ΔAV for σ � 0.01;
(c) σ � 0.05, AV and MED estimators; (d) ΔAV for σ � 0.05. The input values of n2�λ� extracted from Table 1 of Ref. [16] are also included
as a reference.

(a) (b)

Fig. 10. (a) Retrieved values of Refn2�λ�g using the Lorentz model and noiseless spectra as target functions. (b) Imfn2�λ�g. The obtained model-
related parameters for the AV estimator are: ε∞ � 1.420� 0.028, Δε � 1.086� 0.025, η � 0.9732� 0064, and β � 0.00524� 00051. The
reported uncertainty is based on a standard error multiplied by a coverage factor k � 1.96, providing a confidence level of 95% [27]. Notice that the
values of ε∞, Δε, and η are very close to those obtained for the corresponding purely real case [Fig. 3(b)]. Values of n2�λ� extracted from Table 1 in
Ref. [16] are also shown.
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4 × 10−4 for the whole wavelength range considered. It is im-
portant to remark that for such a small imaginary part, the tar-
get reflectance curves obtained in this case overlap with those in
which absorption is neglected (Fig. 2). We restrict this example
to the visible region of the spectrum, and we do not consider
the presence of noise. To facilitate the visualization, we keep
the same line style convention we employed in previous sec-
tions. That is, the target values of the refractive index are de-
picted with specific markers, whereas the results related with
the mean and the median estimators are drawn with thin solid
and dashed lines, respectively.

The values of Refn2�λ�g retrieved with both statistical
estimators are compared with the target data in Fig. 10(a).
We observe a very good agreement with respect to the target
values and also, as it could be expected for such a small imagi-
nary part of the refractive index, the curves are very close to
those shown in Fig. 3(b).

In Fig. 10(b) we compare the target and retrieved values of
Imfn2�λ�g. The closeness between the curves obtained with the
AV and MED estimators suggests that the distribution of sam-
ples is rather symmetrical and that statistical dispersion is not
significant. Nevertheless, an important disagreement with re-
spect to the target values is observed. This discrepancy, which
is amplified by the scale used in the figure, can be interpreted as
a direct consequence of using the Lorentz model to approxi-
mate the target data, because it imposes a bell-like shape that
should not necessarily be the most well suited model to describe
the imaginary part. Although the light absorption is overesti-
mated with respect to the input values, this does not affect
the retrieved reflectance spectra. In fact, the reflectance curves
generated at different angles of incidence using the retrieved
complex frequency-dependent refractive index, completely
overlap with the target spectra depicted in Fig. 2 (not shown).

4. SUMMARY AND CONCLUDING REMARKS

In this contribution, we have studied the possibilities and limi-
tations of two inversion schemes employed to retrieve the dielec-
tric permittivity of the constitutive materials present in multilayer
biological structures, from reflectance spectral information. The
first of these approaches makes use of the Lorentz model, whereas
the second is an enhanced extension of our previously validated
wavelength-by-wavelength inversion method. To improve their
performance, we include multiple angular and polarization infor-
mation in the target reflectance spectra that serves as input to the
algorithm. Furthermore, to quantitatively assess the performance
of the approaches, we include a statistical data processing stage
involving the computation of central tendency estimators, stan-
dard errors, and confidence intervals.

In the case of the Lorentz model approach, the numerical
evidence found suggests that the bounds of the search spaces of
each of the model-related parameters (ε∞, Δε and η) are critical
to arrive at an acceptable solution. Also, in most cases, the
median is a more robust estimator than the mean. In this sense,
the use of intervals of confidence provides a more reliable way
to determine the unknown refractive index. The Lorentz model
approach has also proven successful for the case of noisy target
spectra and concerning the computing time. Nevertheless, an
important drawback is that the Lorentz model based on a single

oscillator cannot reproduce the dispersion characteristics of any
material along a wide wavelength range.

On the other hand, theWWA is more versatile, and it is able
to find the unknown refractive index for a wider spectrum. In
this sense, it is useful to retrieve the refractive index of com-
pound biological materials with unknown dispersive properties,
although it is much more time consuming. In the case of highly
noisy spectra, the WWA does not give a satisfactory solution for
most wavelengths.

The results presented in this contribution are encouraging.
Different ways of improving the solution could be explored,
such as the inclusion of more target spectra and the optimiza-
tion of the computation time. Currently, work is in progress to
retrieve simultaneously the dispersive complex dielectric con-
stants of several layers. Also, numerical simulations are con-
ducted to apply these inversion schemes to more general
materials as, for example, anisotropic media.
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