B W Far East Journal of Dynamical Systems
© 2016 Pushpa Publishing House, Allahabad, India
q-p \  Published: December 2016
8 y http://dx.doi.org/10.17654/DS028040277
Volume 28, Number 4, 2016, Pages 277-288 ISSN: 0972-1118

.

ERGODIC THEOREM FOR AMENABLE GROUPS
AND WEAKLY INTEGRABLE FUNCTIONS

Alglandro Meson and Fernando Vericat

Instituto de Fisicade Liquidosy Sistemas Biologicos (IFLY SIB)
CONICET-UNLP
Grupo de Aplicaciones Mateméticas y Estadisticas
de la Facultad de Ingenieria (GAMEFI) UNLP
LaPlata, Argentina

Abstract

We analyze averages of amenable groups along Feiner sequences
in the way considered by Lindenstrauss but for weakly integrable
functions. The objective is to generaize the quantitative results of
Haynes, adapting the technique of trimmed sums for classical ergodic
averages.

|. Introduction

In the setting of classical ergodic theory, a probability space (X, B, p)
and a measure preserving transformation f : X — X are considered. If
¢: X —> R, thenthe N-statistical sumat x € X is

-1

o((x)).

MZ

1
SN» ¢(X) = N
0

>
Il

Received: September 13, 2016; Accepted: October 19, 2016
2010 Mathematics Subject Classification: 37C85.
Keywords and phrases: multiergodic averages, Markov groups, complexity of systems.



278 Alejandro Meson and Fernando Vericat

The Birkhoff ergodic theorem states the pointwise convergence of

the sequence {Sy, ¢(x)} for any x, p-a.e. and for @ e L(X, p). If the

transformation is ergodic, then lim Sy, @(x)= J ody.
N—o

The extension of the ergodic theorem to the action of groups as dynamics
was the matter of meaningful investigations. The classical ergodic theorem
considers measure preserving Z-actions, thus the extension consists in
dealing with more general ['-actions. One capital contribution was the work
of Lindenstrauss [5] who generalized the classical Birkhoff ergodic theorem
to the action of amenable groups. Previous meaningful work about pointwise
convergence of ergodic averages for the action of groups can be seen, for
instance, in [7] and [4]. In the first one, Nevo and Stein proved the pointwise
ergodic convergence for finite measure preserving actions of the free group

F., r2>2; in the second one, Fujiwara and Nevo established an ergodic
convergence for exponentially mixing actions of word-hyperbolic groups.
One formulation of amenability is the following: a topological locally

compact group I" is amenable if for any compact K — I and for any o > 0,

there exists a compact // < I' such that

| FAKF |

7| <9, 1

where |- | denotes the left invariant Haar measure on I'. This measure will be
also denoted by m(-).

The averages analyzed by Lindenstrauss in [5] for actions of amenable
groups I on a Lebesgue space (X, ) and map ¢ : X — R, are of the form

ﬁ I . o(yx)dmr(y),

with £ < I'. In that article, the convergence of these averages provided the
existence of adequate sequences (F),) in T, called Folner sequences was

proved. More particularly, the so-called tempered sequences are considered.
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A sequence (F),) of compact subsets of I' is a Folner sequence if for any
compact subset K of I" and for any & > 0, then

| F,AKF, | _

0, 2
A @

for large enough n. A sequence (F),) is tempered if there is a C > 0 such

that

LnJ Fk_an
k=1

| £y |

<C. 3)

Lindenstrauss calls (3) the Schulman condition. In [5], it was proved

that for Felner sequences (F),) satisfying Schulman condition and for

¢ e (X, p), there is a T-invariant map ¢ such that
_ 1 _
St o) = g |, PO () > ) @

for p-a.e. x. The sequence N — | Fjy_; | grows super-exponentially [5].

The possibility of extending the ergodic theory to functions outside the
class of integrable maps was contemplate, for the classical case, by several
researchers. In [1], Aaronson and Nakada considered ergodic sums for a

R-valuated ergodic stationary process (X, X5, ...) with E(X;)=o0. The

aim of that article was to analyze the possibility of a weak law of large

n
numbers for the statistical sums S, = ZX x> since there is not a strong law
k=1

of large numbers due to E(Xj) = . Weak law means that there exists a

sequence (b,) such that Su stochastically converges. In [1], the authors

b

n
used technique of “trimming” which, roughly speaking, consists into

excluding (trimming) the maximal terms of {X;, X», ..., X,,} in each sum
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S,. In that article, a law of large numbers for dependent process in which

one term is removed from the statistical sums is proved. The main theorem in
[1] generalizes a previous result of Mori [6] for i.i.d. random variables and
one by Diamond and Vaaler [2] for the particular case of continued fractions.
The assumption on the process is the condition of continued fraction mixing.
In [3], Haynes established a quantitative version of the classical Birkhoff

ergodic theorem for non-integrable maps using trimmed sums. In the context
of classical dynamical systems, the stationary process is X, = ¢(T"(x)).
The class of potentials ¢ is the weakly integrable maps and of the dynamics
is imposed a kind of continued fraction mixing. The objective of this work is
to do a similar analysis of [3] but in the context of amenable action groups on
a probability space (X, p).

Let A ={4;},_y be a measurable partition of (X, u) and let
a(y): X - X be the T-action on X for any element y. The following kind

of weak-mixing condition is considered. Let g : R* — [0, ) and a tempered

Folner sequence (F,,) such that

[ ML) )< ) rEy). )

vy (4)u(4;)

Definition. Let ¢ : R" — R" be an increasing function, the class of

d-weakly integrable functions is constituted by maps ¢ such that
sup{o(1)u({x : | @(x) [ > £})} < 0. (6)

The class of ¢-weakly integrable functions will be denoted by ",

If ¢ =id, then we have the usual class of weakly integrable functions.

For ¢ : R* — R™, increasing and continuous, let us consider the map

Ty o(0) = 07 (t10g?*8 1),
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for ¢ e L*»" and for Felner sequence (F,), denote

H N = d ’
(V) I{(psq),a(FN)}“
Ho(N) = 24
2(N) I@szb,g(FN)(P :
and
H3(N) = H(N(N + G(N)) + Hy(N),
where

N
GV) = 3 (glmr (F,))
n=l1

The following theorem is the main result to be proved.

Theorem. Let I be an amenable group action on a probability space
(X, w), let ¢ be a measurable and non-negative map in the class 1%® and

assume the existence of a map g satisfying equation (5). If

(N + 1) H (N + 1) = NH|(N) < Hy(N +1) - H3(N) < Hy(N)3,  (7)
then for a given € > 0 and for a tempered sequence (Fy), there is a cutoff
function 8; g, + X — {0, 1} such that

SFN,(P(X) = H(N) + de, Fy (x) m%x o(yx) + 03(13(]\7)2/3 log H3(N)1/3+8)’
YELN

for almost every x.

I1. Lindenstrauss Theory

Let us consider a measure space (X, n) and an amenable group I' acting

on it. The way to establish the theorem is the following: Firstly, it is proved

that for functions ¢ € L?(X, p), the error in ‘SFN,‘P(X) - J.(pdu‘ can be
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estimated as O, (I3(N)?logI3(N)/3*%), with I3(N)=I2(N +G(N))+ I,
where in this case, /] = .[X ¢@dun and [, = IX (pzdu. This is the route followed

in [3], but here we will use a version of the Lindenstrauss maximal
inequality. Then it is proved that for ¢, a weakly integrable map and with
the existence of the function g, there are infinities N such that the set

{v € Fy : ¢(yx) > Ty (| Fy |)} has zero Haar measure.

We review the necessary background from the Lindenstrauss theory. Let

(F,,) be a tempered sequence in an amenable group and let F be a compact
subset of I, Lindenstrauss introduced collections of right translates of sets

K, F,, ..., Fy, which cover F. The collection Fis specified by subsets 4 i
of I" with FjAj cF,j=12,..,N,and

?z{Fja:aeAj,jzl, 2, .., N}.

Then random subcollections of F are introduced in the following way, let Q
be

F Q> P(F),

and a counting function is defined as

A" . F -5 N,
A%()= D Ig(y),
BeF(w)

with I the characteristic function of B. For any B € P(F), let | S| =

2 |Bl.

BeS

The covering lemma of Lindenstrauss [5] says that for a given 6 > 0, the

map F can be chosen such that

(i) E(A®(Y)| A®(y) 2 1]) <1+3,
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N
. )

< . =9

(i) E(|F(@)|) < (3, C) JUIA , where h(3, C) s © the
constant for the tempered sequence (Fy ) and E the expectation value.
~ N ~

It can be chosen as a compact set /' < I' such that F = U F;F and

j=1

fore >0, |[F|<(1+¢)| F|.

For a fixed left invariant Haar measure m, the modular function of I" is a

map A : ' > R with
A(Y)J.E ydm = -[E R, ydm, forany map y € c(n), (8)
Y

where R, is the right translation. In particular,

E
s -T2,

for any measurable set E.

The following proposition is a version of the Lindenstrauss maximal

inequality:

Proposition 1. Let

| afN‘ Spy.0(X) - Iq)du‘ > a}. )

DN,(X ={x: |
j=1..

Then
C
H(Dy o) < a” D .

Proof. For a fixed x € X, set

4; = {y € ﬁ:‘SFN,(P(x) —I(pdu

> a}. (10)
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Thus, we have, for any a € 4 7

b

IFJ ﬁ(p(yx)dm(y) - I(pdu

and so
%‘ IFj o(yx)dm(y) - | F; chpdu
=|8(a) |  ovax)an(y) - aa)| £ | [ odu
= I F o(yx)dm(y) | Fja Ij@du :
Then
ol 7@ ¥ |[ otwnts)-| 81 o
BeF(w)

By the covering lemma, with & =1,

N
an(l, O)| | J4; | < B(| F(w)]),
j=1
but also
N
[ 1oy gamtn) = | J 4/,
j=1
so that
N
ah(l, )| J4; | = oh(t. O)f _1p,,  dm(y) < E(| F(@)]).
j=1

(1)
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We have
E(| 7 (=) )

o s

o(yx)dm(y) —| B || edu
BeF(w) jB J

N——

j 5 ((p(vx) - I @du) dm(y)

JSE > H(p(vx) J‘@du‘dm(v)

BeF(w)

oz

BeF(w)

= 5[ [, 870 o) [ antr)| < 2f | @(22) (),
where, in the last inequality, the covering lemma is used with 6 =1 and
®(x) = ¢(x) - [ dp.

Therefore,
K
[ 1oy dm(r) < 5[ 106 |dm(y),

2

Wlth K = m

Then we have

WDy, o) = %jﬁ IX Ipy o dm(v)du(x)

< —m [ [ 1ot lan(rdnt)

K 1 K
<TFIF [l o)ldu < o1+ o) @],

recalling that | F | < (1 +¢)| F |. O
II1. Proof of the Theorem

The next proposition extends to amenable groups as a result in [3].
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Proposition 2. Let ¢ : X — R™ and belong to Lz(X , W). Assume that
NI, < Ii(N +1) = I3(N) < L(N)*.
Then
Sy~ [ odi = 0u(1 (V) og (W),
Proof. Let j € N, & > 0, and let us consider a sequence {N J-} such that
(Njo = NI < BN ) = B(V;) < 2 log ™(j +1). (1)

It can be possible if N; is the smallest integer such that (N i) >

72 1og!™#(j + 1). From above proposition, we get

e

and so, by the Borel-Cantelli lemma, we obtain

St o0~ fodu | 7 tog 0} | ol 013

j210g1+8(j+1

.2 1 . .
¥y, (x) = SFNj,(p(x) - I@du = O0g(j~ log "*(j +1)), for large j.
We have N; < N < N;,; such that lI’Nj <YWy < ‘I’Nj+1 and from the
hypothesis, N can be interpolated N such that
21 lteq s
Wy (x) = Spy (%) - jq)d,u = 0,( 1og"*?(j +1)), for N; < N < N,

For N > Ny, we have

j2 10g1+8(]~ n 1) < I3(N)2/3 log 13(N)1/(3+8). 0

To complete the proof of the theorem, it must be seen that for weakly

integrable maps, {y € Fy : ¢(yx) > Ty ¢(| Fy |)} has zero Haar measure for

infinites N.
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Lemma 1. Let ¢ : X — R be a measurable map in the class L¢’W,

for a increasing and continuous function ¢ :RT — R*. Let Td)’g(t) =
ot 10g1/2+s t), and g : R™ = [0, ) be a function satisfying

w(4; Naly)4;)
Joon —itagmta dmr = gl By D+ i

for a measurable partition {4;};,_y of (X, n). Then mp({y € Fy : ¢(yx) >
Ty,e( Fy )}) > 0 forae. x € X and for finites N.

Proof. Let

By = ijN -[?FN u(x o) > Ty (| Ex ), 0(x) > Ty o (| Fy )} dmp (v) dimp (7).

Let us consider a sequence {i;} such that

u(tr o) > Ty o Fy D) = | 4,
j=1
Thus,

By = [, [ e 0m) > Tysll Ay D o) > Ty oll i D) (1) (7)

) j;ﬂ’[ Fy I vy (4, N a(y) 4, )dmr(y)dmr(7)

< D ul4y; Na@ ;) (el Fy ) +| Fy )
J, k=1
< u(fx o) > Ty (| Fy )] Fy

Since ¢ € I»", we have

| sup{o()u({x : | (x)| > £})}
n(lx s () > Ty o Fy D] Py | < =2 1og%<2+8>(TFN )
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[e 0]
Therefore, z Bz’" < o and, by the Borel-Cantelli lemma, there are just

m=1

finites m such that o(yx) > Ty (| Fom D, o) > Ty (] Fom ), for y = 7.

Considering 2" < N < 2m+1, it can be concluded that there are only finites

N such that mr({y € Fyy : 9(yx) > Ty ¢(| Fy [)}) > 0 forae. x € X, O

Each N-ergodic average can be separated in sets of points of X in which

¢ <Ty (| Fy|) and sets in which @ > T (| Fyy [). For ¢ < Ty (| Fy |)

Proposition 2 applies, whereas for ¢ > T¢,8(| Fy |), Lemma 1 applies, so that

the theorem is proved.

[7]

(8]
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