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Abstract. In this note we study the norm convergence of multiple er-
godic spherical averages from actions of word hyperbolic groups or more
generaly strongly Markov groups. The objective is the generalization of
the results by Bufetov, Khristoforov and Klimenko and by Pollicott and
Sharp. We use the techniques that Walsh introduced for proving the norm
convergence of multiple ergodic averages from measure-preserving trans-
formations and for integer valuated polynomials.
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1 Introduction

The classical Birkhoff ergodic theorem on a probability space (X,B, µ) states the con-
vergence of averages of real valuated maps on X along orbits of measure preserving
transformations T : X → X. One important subject is the extension of the ergodic
theorem with action groups as dynamics. Among the most relevant contributions
about the pointwise convergence of ergodic averages for action groups the following
works can be mentioned. In [12] Nevo and Stein proved the pointwise ergodic con-
vergence for finite measure preserving actions of the free group Fr, r ≥ 2,and in [5]
Fujiwara established an ergodic convergence for exponentially mixing actions of word-
hyperbolic groups. Lindenstrauss[11] considered actions of amenable groups Γ on a
Lebesgue space (X,µ) and maps φ : X → R, to analyze averages of the form

1

mΓ(E)

∫
E

φ (γx) dmΓ(γ),

where E ⊂ Γ and mΓ is the Haar measure on Γ. In that article was proved the con-
vergence of these averages under the condition of the existence of adequate sequences
(Fn) in Γ, called Følner sequences. Bufetov[2] proved an ergodic theorem of spherical
averages for free semigroups. Later Bufetov and Series[4] applied this result to prove
the ergodic convergence for a class of Fuchsian groups which includes surface groups,
i.e. the fundamental groups of surfaces of genus g ≥ 2.
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Let Γ be a finitely generated Markov groups Γ and let S(n) be the sphere of radius
n word metric, i.e.

S(n) = {γ : |γ| = n} ,

where |γ| , is the minimal number of generators needed to represent γ. If γ ∈ Γ, then
by Tγ is denoted the transformation in X given by T = Tγ (x) = γx, now for a map
φ ∈ L∞ (X) , can be considered the following average

SN,φ(x) :=
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

φ (Tγ (x))

(When cardS(n) = 0 then we set SN,φ(x) = 0). Recently Bufetov, Khristoforov and
Klimenko[3] analyzed these spherical averages and proved the pointwise convergence
of Cesáro averages for the spherical sequence {SN,φ(x)} .The word-hyperbolic groups
are Markov groups, for this special case Pollicott and Sharp [15] gave a more concise
proof of the main result of [3].

Multiple ergodic averages appeared as a dynamical version of the Szemeredi the-
orem in combinatorial number theory. The analogy was made by Furstenberg[6] who
studied ergodic averages in a measure-preserving probability space (X,B, µ, T ) of the
form

(1.1)
1

N

N−1∑
n=0

µ
(
A ∩ T−nA ∩ ... ∩ T−knA

)
,

where A ∈ B and j ∈ N. Furstenberg established that if µ (A) > 0 then

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A ∩ T−nA ∩ ... ∩ T−jnA

)
> 0.

This relevant result serves to prove by arguments from Ergodic Theory the Szemeredi
theorem, which states that if S is a set of integers with positive upper density then
S contains arithmetic progressions of arbitrary length. After this the task was the
study of the convergence of averages like

(1.2)
1

N

N−1∑
n=0

j∏
i=1

φi

(
T in

)
,

where T : X → X is an invertible measure preserving transformation and φ1, φ2, ..., φj

∈ L∞(X). Furstenberg proved the L 2−convergence for the case j = 2, of course for
the case j = 1 is obtained the L 2− Von Neumann ergodic theorem. For any j, Host
and Kra have demonstrated the convergence in L 2(X) of the multiergodic averages
(1.2). The machinery used was mainly the theory of factors developed by Host-Kra-
Ziegler and the approximation of multiergodic averages by averages on nyl-systems.
A more general problem is to consider the following averages
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(1.3)
1

N

N−1∑
n=0

j∏
i=1

φi

(
T pi(n)x

)
,

where pi are polynomials valuated in Z. The average (1.3) corresponds to the case of

linear polynomials. Bergelson [1] proved the existence of lim
N→∞

1

N

N−1∑
n=0

j∏
i=1

φi

(
T pi(n)

)
under the assumption that T ergodic. Later Leibman[10] proved convergence without
assuming ergodicity. A more ambitious problem was to consider a nilpotent group
G of measure preserving transformations of a probability space (X,µ) and study the
norm convergence of averages

(1.4)
1

N

N−1∑
n=0

j∏
i=1

T
pi,1(n)
1 ...T

pi,,ℓ(n)
ℓ φi,

where T1, ..., Tℓ ∈ G and pi,1, ..., pi,ℓ ∈ Z [n]. The average (1.3) corresponds to
the case of T1 = ... = Tℓ, i.e. when G is a cyclic group. The L2−convergence of
(1.4) was recently proved by Walsh[16], who used for the demonstration an argument
based doing induction on the complexity of systems of polynomial sequences in G. He
also adapted results by a decomposition theory of functions developed by Gowers[8].
Another contribution in this direction is the work of Zorin-Kranich[17] who proved,
using theWalsh argument, the convergence in norm of averages along Følner sequences
in an amenable group.

The aim of this article is to study multiple ergodic spherical averages for hyper-
bolic, or more generally Markov action groups, in order to obtain a multiergodic
version of the results in [3] and [15]. The novelty of our work with respect to the
Walsh one is that we consider nonconmutative action groups and with respect to
the Zorin-Kranich article is that we have no need to impose the existence Følner
sequences.

The result to be proved herein is

Theorem 1.1: Let (X,µ) be a measure space and let Γ be a finitely generated
Markov group. Let us consider actions h1, h2, ..., hj of Γ on X, i.e. for any γ ∈ Γ
are defined measure-preserving maps hi(γ) : X → X , i = 1, 2, .., j. If the actions
commute in the sense that hi (γ2)hk (γ1) = hk (γ1) hi (γ2) , for any γ1, γ2 ∈ Γ and
i ̸= k then for any φ1, φ2, ..., φj ∈ L∞ (X) , the multiergodic sequence

(1.5)
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

φ1 (h1(γ)x)φ2 (h1(γ)h2(γ)x) ...φj(h1(γ)...hj(γ)x),

converges in L2−norm.
In order to apply the Walsh techniques notice the following, if hi, i = 1, 2, ..., j is

a measure-preserving action of Γ on X then can be defined maps gi : Γ → G, where
G is a group of unitary operators on a space of maps, for our purposes we can take
G a nilpotent group of unitary operators on L2 (X) . Thus each map gi, i = 1, 2, ..., j,
is defined as gi(γ) [φ] (x) = φ (hi(γ)(x)) . The maps gi are ¨antihomomorphisms¨, i.e.
gi (γ1γ2) = gi (γ2) gi (γ1) . Thus Theorem 1.1 can be proved from this more general
result:
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Theorem 1.2. Let (X,µ) be a measure space and let Γ be a finitely generated
Markov group. Let g1, g2, ..., gj : Γ → G, with G a nilpotent group of unitary
operators on L2 (X) . If the system g =(g1, g2, ..., gj) has finite complexity then the
sequence

(1.6)
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

g1(γ)φ1g2(γ)φ2...gj(γ)φj

converges in L2−norm, for any φ1, φ2, ..., φj ∈ L∞ (X) .
The concept of complexity of a system of polynomial sequences was given by Walsh

[16] who considered the maps g1, g2, ..., gj : Z → G, with

(1.7) gi (n) = T
pi,1(n)
1 ...T

pi,,ℓ(n)
ℓ ,

where T1, ..., Tℓ ∈ G and pi,1, ..., pi,ℓ ∈ Z [n] . The definition of complexity can be
extended for non commutative groups. The innovative argument of [16] consists in
using the complexity as induction parameter, so that is necessary that the system
of maps g1, g2, ..., gj have finite complexity. Systems with finite complexity can be
reduced to the trivial system (1G) in a finite number of steps. The polynomial systems

are special systems of maps, for instance if Γ = Z, then g (n) = T
p1(n)
1 ...T

p,ℓ(n)
ℓ with

T1, ..., Tℓ measure-preserving transformations and each pi ∈ Z [n]. Polynomial systems
have finite complexity, this was proved for Γ = Z in [16], and for non commutative Γ
in [17].

2 Markov groups

Let Γ be a group with a finite symmetric set of generators S. If G is a directed graph
then E [G] denotes the set of edges of G and P [G, v] denotes the set of finite paths in
G starting in the vertex v. The group Γ is a Markov group if there is a labelling map

λ : E [G] → S,

and a distinguished vertex v0, such that
i) λ can be lifted to a map λ : P [G, v0] → Γ which is a bijection, so that for to a

path of vertices v0, v1, ..., vn can be assigned the value λ (v0v1)λ (v1v2) ...λ (vn−1vn) .
ii) if γ is represented by the labelling λ (v0v1)λ (v1v2) ...λ (vn−1vn) then |γ| = n.
The word metric in a group Γ, with a finite symmetric set of generators S, is

defined by d (γ1, γ2) =
∣∣γ−1

1 , γ2
∣∣ , where |γ| = |γ|S is the minimal number of elements

of S needed to represent γ. A group Γ is word hyperbolic, in Gromov sense, if there
is a number δ > 0 if in any geodesic triangle every point in one side of it is within
distance δ of the other sides. A group is hyperbolic if and only if its Cayley graph is
hyperbolic.

Any word-hyperbolic group is a Markov group[7].
Recall that S(n) = {γ : |γ| = n} , a known fact is that a word hyperbolic group has

exponential growth rate with respect to the word length, i.e. if ρ = lim
n→∞

1

n
log cardS(n)
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then there are constants C2 > C1 > 0

C1ρ
−n ≤ cardS(n) ≤ C2ρ

−n.

Thus for ergodic averages for word hyperbolic actions groups can be considered

weights ρ−n instead of
1

cardS(n)
.

3 Complexity of systems

Let g =(g1, g2, ..., gj) be an ordered tuple of maps from Γ to G, which is called a
system. If a, b ∈ Γ then derivative with respect to (a, b) of map g : Γ → G at the
point γ is

(3.1) D(a,b) (g) (γ) := g (γ)
−1
g (aγb) ,

and D(a,b)

(
g−1

)
(γ) := g(γ)g (aγb)

−1
. Let g, h : Γ → G, and set

(3.2) ⟨g, h⟩(a,b) (γ) := D(a,b)

(
g−1

)
(γ)T(a,b) (h) (γ),

where T(a,b) (h) (γ) = h (aγb) . The (a, b)−reduction of the system g =(g1, g2, ..., gj)
is defined to be the system

(3.3) g∗
(a,b) =

(
g1, g2, ..., gj−1, ⟨gj , g1⟩(a,b) , ... ⟨gj , gj−1⟩(a,b)

)
.

.
The concept of complexity is given by induction in the following way. A sys-

tem constituted only by the identity 1G map has complexity ≤ 0, it is denoted by

cplx ({1G}) ≤ 0. If cplx
(
g∗
(a,b)

)
≤ C − 1, for any a, b ∈ Γ then cplx(g) ≤ C. The

property known as cheating says that if are added constants, repeated maps or re-
peated maps multiplied by a constant to a system it does not change its complexity.
For example cplx(g1, c1g1, c1, g1, g2, c2g2) = cplx(g1, g2).

A filtration on a group G is a sequence of subgroups

G• = G0 ≥ G1 ≥ ... ≥ ...,

such that G0 = G and [Gi, Gi] ⊂ Gi+j . The length of the filtration is d when Gd+1 is
the identity. Let us denote by G•+t the filtration given by (G•+1)t = Gi+t. If G• has
length d then G•+t has length d− t.

A map g : Γ → G is polynomial with respect to a filtration G• on G of length
d ∈ N ∪ {−∞} , or just G•−polynomial, if g = 1G, so d = −∞ or D(a,b) (g) is
G•+1−polynomial. When G is a nilpotent group a map g : Γ → G is a polynomial of
scalar degree ≤ d if for any a1, b1, ..., ad+1, bd+1 ∈ Γ

D(a1,b1)...D(ad+1,bd+1) (g) ≡ 1G. If G is not nilpotent then the set of polynomials
of degree≤ d, may be not a group.
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The system g =(g1, g2, ..., gj), where gi : Γ → G are polynomial maps and G is
nilpotent, has finite complexity. For more details and justification of the mentioned
results see[17].

The following concept was introduced by Walsh. We present herein an adapted
definition for Markov groups. Let σ ∈ L∞ (X) , with ∥σ∥∞ ≤ 1, L ∈ N, 0 < ε < 1.
The function σ is reducible with respect to L and to a system g =(g1, g2, ..., gj), or just
(L,g)−reducible if there is a number M > 0 and functions b0, b1, ..., bj−1 ∈ L∞ (X) ,
∥bi∥∞ ≤ 1, i = 0, 1, ..., j − 1, such that fore any ℓ ≤ L and for any γ ∈ S(ℓ) holds∥∥∥∥∥∥gj(γ)σ − 1

M

M−1∑
r=0

1

cardS(r)

∑
γ′∈S(r)

⟨gj , 1G⟩(a,γ′) (γ)b0

j−1∏
i=1

⟨gj , gi⟩(a,γ′) (γ)bi

∥∥∥∥∥∥
∞

< δ,

for any a ∈ Γ, and where δ is a constant depending on ε, to be specified later.

For N ∈ N, let us denote

(3.4) Sg
N ′ [φ1, φ2, ..., φj ] =

1

N

N−1∑
n=0

1

cardS(n)

∑
γ′∈S(n)

j∏
i=1

gi(γ)φi

and forN,N ′ ∈ N, let Sg
N,N ′ [φ1, φ2, ..., φj ] = Sg

N [φ1, φ2, ..., φj ]−Sg
N ′ [φ1, φ2, ..., φj ] .

Let ϕ : R+→ R+, η > 0, and let Cη,ϕ
[2η−2], ..., C

η,ϕ
1 be constants defined recursively as

Cη,ϕ
[2η−2] = 1, Cη,ϕ

n−1 = max
{
Cη,ϕ

n , 2ϕ (Cη,φ
n )

−1
}
.

For ε > 0 let C∗ = C∗ (ε) := Cη,ϕ
1 with η =

ε

253
and ϕ(x) =

ε2

2333x
. In the definition

of L−reducible of above will be taken δ = ε/16C∗ (ε) .

Proposition 3.1: Let g =(g1, g2, ..., gj) with cplx(g) ≤ C, for any ε > 0 there
exists a K = K (ε, C) ∈ N such that for anyM∗ ∈ N and for any function F : N → N
there is a sequence

M∗ ≤Mε,C,F
1 ≤ ... ≤Mε,C,F

K ≤M∗ = OM∗,δ,c,ω (1) ,

in such a way, that if φ1, φ2, ..., φj−1 ∈ L∞ (X) , ∥φi∥∞ ≤ 1, i = 1, ..., j − 1 and

φ =
k−1∑
t=0

λtσt, where σt is (L,g)−reducible for any L < F (M∗) and
k−1∑
t=0

|λt| < C∗

then ∥∥∥Sg
N,N ′ [φ1, φ2, ..., φj−1,φ]

∥∥∥
L2(X)

<
ε

4
,

for N ≥Mi , N
′ ≤ F (Mi), for some i ∈ {1.2, ...,K} .

Proof. Let us consider a system g =(g1, g2, ..., gj) with cplx(g) ≤ C, and ε > 0. Let
Mt and b0,t, b1,t, ..., bj−1,t ∈ L∞ (X) be the integer and the functions corresponding
to the (L,g)−reducibility of σt. Thus

Sg
N ′

[
φ1, φ2, ..., φj−1,

k−1∑
t=0

λtσt

]
=

1

N

N−1∑
n=0

k−1∑
t=0

λt
1

cardS(n)

∑
γ∈S(n)

j−1∏
i=1

gi (γ)φigj(γ)σt.
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If in this average gj(γ)σt is replaced by

1

Mt

Mt−1∑
r=0

1

cardS(r)

∑
γ′∈S(r)

⟨gj , 1G⟩(a,γ′) (γ)b0

j−1∏
i=1

⟨gj , gi⟩(at,γ′) (γ)bi,t

with at ∈ Γ, then is obtained an average with respect to a system of lower complexity,
but with an error of δ = ε/(16C∗). Thus∥∥∥∥∥Sg

N,N ′

[
φ1, φ2, ..., φj−1,

k−1∑
t=0

λtσt

]∥∥∥∥∥
L2(X)

≤
k−1∑
t=0

1

Mt

Mt−1∑
r=0

|λt|
cardS(r)

∑
γ′∈S(r)

∥∥∥∥Sg∗
(at,γ

′)
N,N [φ1, φ2, ..., φj−1, b0,t, b1,t, ..., bj−1,t]

∥∥∥∥+
ε

8
,

with N,N ′ ≤ L. Recall that the coefficients λt were chosen such that
k−1∑
t=0

|λt| < C∗.

Using the complexity as induction parameter each term of the sum can be bounded
for N, N ′ belonging to some integer interval of the form

[
M,F (M)

]
, but the bound

is not uniform in the sense that the integer M may depend on the average. By a
direct application of the Walsh techniques the norms can be uniformly bounded, with

respect to the weights
|λt|

cardS(r)
, by a given δ.

Let F1, F2, ..., Fr : N → N, with r = r (ε, C), be functions defined recursively

by F1 = F and Fi = max
1≤Mi≤N

{
F
(
Mδ,C−1,F

i

)}
, where the Mi are given by the

hypothesis of induction. Let i1, i2, ..., ir ∈ {1.2, ...,K} and define

M (i1) =Mδ,C−1,F1

i1

M (i1,i2,) =
(
Mδ,C−1,F2

i1

)δ,C−1,F1

i2
...

M (i1,i2,...,is) =

((
Mδ,C−1,F2

i1

)δ,C−1,F1

i2,
...

)δ,C−1,Fs

is

.

Let s = 1 ≤ r and (t, γ′) ∈ {0.1., ..., k − 1} × S(Mt), by induction hypothesis there is
some i1 ∈ {1.2, ...,K} such that for a given δ > 0 and for N, N ′ ∈

[
M (i1), F1(M

(i1))
]

holds ∥∥∥∥Sg∗
(at,γ

′)
N,N [φ1, φ2, ..., φj−1, b0,t, b1,t, ..., bj−1,t]

∥∥∥∥
L2(X)

< δ,

for at least
1

K
of the pairs (t, γ′) , with respect to the weights

|λt|
cardS(r)

. γ′ ∈ S(r) .

Continuing this process for the pairs (t, γ′) with weights
|λt|

cardS(r)
.γ′ ∈ S(r), can be

found an i2 ∈ {1.2, ...,K} such that for δ > 0 and for N, N ′ ∈
[
M (i1,i2), F1( M

(i1,i2))
]

holds ∥∥∥∥Sg∗
(at,γ

′)
N,N [φ1, φ2, ..., φj−1, b0,t, b1,t, ..., bj−1,t]

∥∥∥∥
L2(X)

< δ,
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for at least a proportion of

(
K − 1

K

)2

C∗ of the pairs (t, γ′) , with respect to the

weights
|λt|

cardS(Mt)
. By repeatedly applying the process, one can find an is ∈ {1.2, ...,K} ,

s ≤ r, such that for any N, N ′ ∈
[
M (i1,i2,...,is), F1( M

(i1,i2,...,is))
]
holds∥∥∥∥Sg∗

(at,γ
′)

N,N ′ [φ1, φ2, ..., φj−1, b0,t, b1,t, ..., bj−1,t]

∥∥∥∥
L2(X)

< δ,

for at least a proportion of

(
K − 1

K

)r

C∗ of the (t, γ′) , with respect to the weights

|λt|
cardS(r)

. Thus we have

k−1∑
t=0

∑
γ′∈S(Mt)

|λt|
cardS(Mt)

∥∥∥∥Sg∗
(at,γ

′)
N,N ′ [φ1, φ2, ..., φj−1, b0,t, b1,t, ..., bj−1,t]

∥∥∥∥
L2(X)

≤
k−1∑
t=0

|λt| δ +
(
K − 1

K

)r

C∗ +
ε

8
.

Choosing r such that

(
K − 1

K

)r

C∗ <
ε

16
, we obtain

∥∥∥Sg
N,N ′ [φ1, φ2, ..., φj−1,φ]

∥∥∥
L2(X)

<
ε

16
+

ε

16
+
ε

8
=
ε

4
,

for any N, N ′ ∈
[
M (i1,i2,...,is), F1( M

(i1,i2,...,is))
]

�

Lemma 3.2. Let ε > 0, and φ1, φ2, ..., φj−1, with ∥φi∥∞ ≤ 1. Let us assume that
there is a map ψ and a constant C ∈ [1, C∗] such that ∥ψ∥∞ ≤ 3C. If

∥Sg
N [φ1, φ2, ..., φj−1,ψ]∥L2(X) > ε/6,

for some N, then there is a (L,g)−reducible function σ, L < N, such that

C(ψ, σ) :=

∫
ψσ > 2ϕ(C),

where ϕ is defined above Proposition 3.1.

Proof. Let h0 =
Sg
N [φ1, φ2, ..., φj−1,ψ]φ1

∥ψ∥∞
, and hi = φi, i ≥ 1.

We have
∥SN [φ1, φ2, ..., φj−1,ψ]∥2L2(X)

∥ψ∥∞
> 2ϕ(C), and

C

 1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

j−1∏
i=1

gi(γ)φigj(γ)ψ,
∥SN [φ1, φ2, ..., φj−1,ψ]∥2L2(X)

∥ψ∥∞

 =
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C

ψ 1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

gj(γ)
−1h0

j−1∏
i=1

gi(γ)hi

 .

So that if

(3.5) σ :=
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

gj(γ)
−1h0

j−1∏
i=1

gi(γ)hi

then holds C(ψ, σ) > 2ϕ(C). It remains to prove that σ is (L,g)−reducible. Let
L < C1N, with 0 < C1 < 1, if ℓ ≤ L and γ′ ∈ S (ℓ) then∥∥∥∥∥∥σ − 1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

gj (γ
′γ)

−1
h0

j−1∏
i=1

gi (γ
′γ)hi

∥∥∥∥∥∥
∞

< ε/(16C∗),

since ∥Sg
N [φ1, φ2, ..., φj−1,ψ]∥L2(X) ≤ 3C ≤ 3C∗. If we change γ ∈ S(1), ..., γ ∈ S(N)

by γ ∈ S(1+ ℓ), ..., γ ∈ S(N + l) then the magnitude of σ changes at most in
6ℓC∗

N
<

ε/(16C∗). Thus applying gj(γ) to σ we get∥∥∥∥∥∥gj(γ)σ − 1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

⟨gj , 1G⟩(a,γ) (γ)h0
j−1∏
i=1

⟨gj , gi⟩(a,γ) (γ)hi

∥∥∥∥∥∥
∞

< ε/(16C∗),

with γ ∈ S(ℓ), ℓ ≤ C1N, C1 = ε/[96(C∗)2]. Therefore the definition of (L,g)−reducibility
is verified, with M = N, bi = hi. �

4 Gowers theory for decomposition of maps

One of the main ingredients in the Walsh techniques are the Gowers results[8] which,
by an adequate adaptation of the Hahn-Banach theorem, give a decomposition of
map in a ¨structured¨ component and a ¨random¨ component. More specifically,
the problem posed in Gowers´s survey is when a real map ϕ can be written as ϕ =
ϕ1 + ϕ2 with ϕ1 with an structure enough strong such that the properties of ϕ1 can
be explicitly analyzed and ϕ2 such that the properties of ϕ1 are not affected by the
perturbation by ϕ2. In [8], as a corollary of the Hahn-Banach theorem, was obtained
the following result: let K1,K2, ...,Kr open, convex subsets of a Hilbert space (H, ⟨⟩),
such that 0 ∈ K2, for any i, let c1, c2, ..., cr > 0 such that any φ ∈ H cannot be

written as φ =
r∑

i=1

ciφi, with φi ∈ Ki. Then there is a L ∈ H such that ⟨L, φ⟩ ≥ 1

and ⟨L, φi⟩ ≥ c−1
i , for any i = 1, 2, ..., r.

Let (H, ⟨ · , · ⟩) be a Hilbert space and let ∥ · ∥ be the norm induced by ⟨ · , · ⟩ .
If ∥ · ∥N is a norm in H equivalent to ∥ · ∥ then for φ ∈ H set

(4.1) ∥φ∥∗N = sup {⟨φ,ψ⟩ : ∥ψ∥N ≤ 1} .
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The norm ∥ · ∥∗N is called the dual norm of ∥ · ∥N and is equivalent to ∥ · ∥N . It can
be considered a family of norms {∥ · ∥N} indexed by N. Walsh considered families
{∥ · ∥N}

N∈N decreasing with N and such the family of dual norms also decreases with
N.

Recall the definition of the constants Cη,ϕ
[2η−2], ..., C

η,ϕ
1 by Cη,ϕ

[2η−2] = 1, Cη,ϕ
n−1 =

max
{
Cη,ϕ

n , 2ϕ (Cη,φ
n )

−1
}
,with ϕ : R+→ R+.

Proposition 4.1.[16] Let {∥ · ∥N}
N∈N be a family of norms in H with the above

property, let 0 < δ, c < 1 and ϕ : R+→ R+ be a decreasing function. Let ω : N → N
be a map such that ω (N) > N for any N. Then for any M∗ > 0 there is a sequence

M∗ ≤M1 ≤ ... ≤M[2δ−2] ≤M∗ = OM∗,δ,c,ω (1) ,

independent of the norms, such that for any φ ∈ H can be found some i ∈
{
1, ...,

[
2δ−2

]}
and some A,B ∈ N with M∗ ≤ A ≤ Mi ≤ ω (Mi) ≤ B, in such a way that φ can be
decomposed as φ = φ1 + φ2 + φ3 with

∥φ1∥B < Cη,ϕ
i , ∥φ2∥A < ϕ (Cη,φ

n ) , ∥φ3∥ < δ.

Other result adapted by Walsh from Gowers theory is

Lemma 4.2. ([16],[8]) Let H0 be a bounded subset of a Hilbert space H and set

∥φ∥H0
= inf


k−1∑
j=0

|λi| : φ =

k−1∑
j=0

cjσj , σj ̸= 0


If it is assumed that the norm ∥∥H0

is well defined and equivalent to ∥∥, then its dual
norm is given by

∥φ∥∗H0
= sup {⟨φ, σ⟩ : σ ∈ H0} .

5 Norm convergence of spherical averages

Let us consider the following family of spaces ΣL,g = {σ : σ is (L,g)− reducible} ,
and the norms ∥ · ∥L := ∥ · ∥ΣL

and ∥ · ∥∗L := ∥ · ∥∗ΣL
. If L1 > L2, then ΣL1 ⊂ ΣL2 .

We have:

Theorem 5.1. Let ε > 0 and g =(g1, g2, ..., gj) be a system with cplx(g) ≤ C,
then there exists a natural K = Kε.C such that for any function F : N → N and
for any M ∈ N, there are natural numbers Mε,C,F

1 , ...,Mε,C,F
K ≥ M such that for

any maps φ1, φ2, ..., φj ∈ L∞ (X,µ) , with ∥φi∥∞ ≤ 1, i = 1, , , .j there is a number
i ∈ {1, 2, ...,Kε.C} with the property that for any N, N ′ ∈ [Mi, F (Mi)] holds

(5.1)
∥∥∥Sg

N ′,N ′ [φ1, φ2, ..., φj ]
∥∥∥
2
< ε.

Proof. For any M ∈ N and for any function F : N → N, by the Proposition 3.1
there is a sequence M ≤ Mε,C,F

1 ≤ ... ≤ Mε,C,F
K ≤ M∗ , thus set ω (M) = F (M∗) .
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By the decomposition theorem φj can be written as

φj =

k−1∑
t=0

λtσt + ψ + ζ,

with
k−1∑
t=0

|λt| < Ci, with Ci ∈ [1, C∗] , given by the Lemma 3.2 and σt ∈ ΣB,g with

B ≥ ω (M) = F (M∗) . Moreover, ∥ψ∥∗Mi
< ϕ (Ci) and ∥ζ∥2 < δ, with δ =

ε

253
.

To apply Lemma 3.2, a control on ψ is needed. Let S = {x ∈ X : |ζ(x)| < Ci} ,
The issue is to see that the points outside S may be neglected. Since

φj =
k−1∑
t=0

λtσt + ψ + ζ,

we have

|ψ| ISC ≤
k−1∑
t=0

|λt| |σt| ISC |+ |ζ|| ISC + |φj | ISC

≤
k−1∑
t=0

|λt| |σt| ISC + |ζ| ISC ≤ 3 |ζ| ISC ,

where IA is the characteristic function of A. Since σt ∈ Σω(M),g holds ∥ψISC∥ ≤
3 ∥ζ∥2 . By the Chebyshev inequality

(5.2) µ (Sc) ≤
∥ζ∥22
C2

i

<
δ2

C2
i

.

Let σ ∈ ΣM,g,replacing if necessary ψ by ψISC and ζ by ζ+ψISC , it can be assumed
that ∥ζ∥∞ < 3Ci. In this case we would have ∥ψ∥∗Mi

< 2ϕ (Ci) and ∥ζ∥2 < 4δ. We

have
∣∣⟨ψISC ,σ

⟩∣∣ < ϕ (Ci) + 3 ∥ζ∥2 µ (Sc)
1/2 ≤ ϕ (Ci) + 3δ2 + δ/Ci < 2ϕ (Ci) . Thus,

by the counter reciprocal of the lemma 3.2 for N, N ′ ≥M∥∥∥Sg
N ′,N ′ [φ1, φ2, ..., ζ]

∥∥∥
2
≤ ε/3.

By hypothesis ∥φj∥∞ ≤ 1, and therefore

∥Sg
N ′ [φ1, φ2, .., ψISC + ζ]∥2 ≤ 3δ + ∥ζ∥2 < 8δ, for any N.

Thus
∥∥∥Sg

N ′,N ′ [φ1, φ2, ..., ζ]
∥∥∥
2
< 16δ = ε/6. Moreover,∥∥∥∥∥Sg

N ′,N ′

[
φ1, φ2, ...,

k−1∑
t=0

λtσt

]∥∥∥∥∥
2

<
ε

3
,

for any N, N ′ ∈ [Mi, F (Mi)] , for some Mi ∈ [M,ω (M)] . Finally∥∥∥∥∥Sg
N ′,N ′

[
φ1, φ2, ...,

k−1∑
t=0

λtσtψ + ζ

]∥∥∥∥∥
2

<
ε

3
+
ε

3
+
ε

3
= ε,
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for any N, N ′ ∈ [Mi, F (Mi)] , for some Mi ∈ [M,ω (M)] . �

The result of Theorem 1.2 is obtained as follows: if the averages Sg
N ′ [φ1, φ2, ..., φj ]

were not convergent in norm, there would be and ε > 0 and a function F : N → N
such that for any N ∥∥∥Sg

N ′,F (N) [φ1, φ2, ..., φj ]
∥∥∥
2
> ε.

Theorem 1.1 will be proved as an immediate consequence of the following:

Proposition 5.2. Let g1, g2, ..., gj be antihomorphisms from Γ to G, and such
that gi (γ2) gk (γ1) = gk (γ1) gi (γ2) , for any γ1, γ2 ∈ Γ. Then the system

G =(g1, g1g2, ..., g1g2...gj)

has finite complexity.

Proof. Let Da (g) (γ) := g (γ)
−1
g (γa) and Ta (g) (γ) := g (γa) , i.e., the derivative

and the translation with one of the element the identity of Γ. If the map g is an
antihomorphism, i.e., g (γ1γ2) = g (γ2) g (γ1) , then

−Da

(
g−1

)
(γ) = g(γ)g (γa)

−1
= g(γ) (g (a) g(γ))

−1
= g (a)

−1

−Ta (g) (γ) := g (γa) = g (a) g(γ).

Thus, following [17], let i < j and a fixed. Then

⟨ g1g2, ...gj , g1g2, ...gi⟩a (γ) = Da

(
( g1g2, ...gj)

−1
)
(γ)Ta (g1g2, ...gi) (γ) =

= ( g1g2, ...gj)
−1

(a) (g1g2, ...gi) (a) (g1g2, ...gi) (γ) =

= ( g1g2, ...gj)
−1

(a) g1 (a) g1(γ)g2 (a) g2(γ)...gi (a) gi (γ) =

= (g1g2, ...gi) (γ)gi+1 (γ)
−1
...gj(γ)

−1gi+1 (a)
−1
...gj (a)

−1
.

Recall that if c is the constant map given c ∈ G, then cplx(g,c) = cplx(g) holds.
Hence

cplx(G∗) = cplx(G),

and the result follows by continuing the induction process on j. �
Thus, recall that if hi, i = 1, 2, ..., j are measure-preserving actions of Γ on X,

we can define maps gi from Γ a nilpotent group of unitary operators on L2 (X) by
gi (γ) [φ] (x) = φ (hi(γ)(x)) , where each gi result antihomomorphisms. Therefore,
Theorem 1.1 is proved from Proposition 5.1.
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