


## **Molecular Physics**



An International Journal at the Interface Between Chemistry and Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: http://www.tandfonline.com/loi/tmph20

# Structures and energetics of $Be_nGe_n$ (n = 1–5) and $Be_{2n}Ge_n$ (n = 1–4) clusters

Silvina E. Fioressi & Daniel E. Bacelo

**To cite this article:** Silvina E. Fioressi & Daniel E. Bacelo (2017): Structures and energetics of  $Be_nGe_n$  (n = 1–5) and  $Be_{2n}Ge_n$  (n = 1–4) clusters, Molecular Physics, DOI: 10.1080/00268976.2017.1303204

To link to this article: <a href="http://dx.doi.org/10.1080/00268976.2017.1303204">http://dx.doi.org/10.1080/00268976.2017.1303204</a>

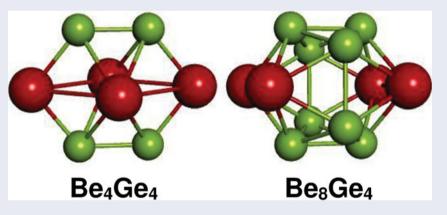
|                | Published online: 20 Mar 2017.        |
|----------------|---------------------------------------|
|                | Submit your article to this journal 🗷 |
| Q <sup>L</sup> | View related articles ☑               |
| CrossMark      | View Crossmark data 🗗                 |

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmph20



#### **RESEARCH ARTICLE**




### Structures and energetics of Be<sub>n</sub>Ge<sub>n</sub> (n = 1-5) and Be<sub>2n</sub>Ge<sub>n</sub> (n = 1-4) clusters

Silvina E. Fioressi and Daniel E. Bacelo

Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Buenos Aires, Argentina

#### **ABSTRACT**

Cluster geometries and energies of  $Be_nGe_n$  (n=1-5) and  $Be_{2n}Ge_n$  (n=1-4) have been examined in theoretical electronic structure calculations. Structure optimisations were carried out using DFT B3LYP/6-31G(2df) and the energies of the optimum geometries were ordered in QCISD(T) calculations. Be and Ge bond to each other and to other atoms of their own kind, creating a great variety of low-energy clusters in a variety of structural types. Comparisons of the germanide clusters with previously explored silicide and carbide structures reveal some structural similarities, but the germanides have much more in common with the beryllium silicides than with the carbides. However, germanide clusters show a greater tendency to form cage-like structures with potential in technological applications.



#### **ARTICLE HISTORY**

Received 26 December 2016 Accepted 25 February 2017

#### **KEYWORDS**

Beryllium germanide; germanium clusters; density functional theory

#### 1. Introduction

Clusters of germanium atoms are of interest as possible sources of materials with new electronic and structural properties. Theoretical study of small Ge clusters began early [1], and they continue to be important [2-5]. Pure germanium clusters containing up to 25 atoms has been well characterised. Among the smallest clusters, Ge3 is an isosceles triangle ( $C_{2\nu}$ ) with bond length 2.40 Å and apex angle of 84.9°, the Ge<sub>4</sub> cluster is a  $D_{2h}$  rhombus with Ge– Ge distances larger than Ge<sub>3</sub>, Ge<sub>5</sub> is a trigonal bipyramid, Ge<sub>6</sub> a distorted octahedron, and the most stable geometries for Ge7, Ge8, and Ge9 are pentagonal bipyramid, capped pentagonal bipyramid and bicapped pentagonal bipyramid, respectively [4,5]. More recently, the study of doped clusters has begun, primarily as potential sources of new nanostructures. Doping with Li has, in fact, been shown to permit formation of incipient nanowires [6-10].

A variety of theoretical and experimental explorations of germanium nanostructures have been recently published, including metal- and nonmetal-doped clusters [11–13], nanowires [14] and germanium-organics combinations [15]. Cage clusters, in which transition metals, Be, B, Al, and nonmetal dopants are encapsulated by Ge atoms, have been examined [11,16]. A single atom of Be added to small Ge clusters can lead to Be@Ge8, a Ge8 cage with an endohedral Be [17,18]. King et al. [19], in density functional theoretical (DFT) calculations, have explored Be@Ge<sub>10</sub> cage clusters and shown that Be stabilises the cluster. Uță and King [18] studied 6-, 7- and 8-Ge cage clusters through DFT to examine the smallest Ge cluster size capable of encapsulating a Be atom. They found that the lowest energy structures of the Ge<sub>8</sub> clusters possess an enclosed Be, but that the most stable forms of smaller clusters do not. Hung and coworkers [17]

studied by DFT pathways both the exohedral and endohedral BeGe<sub>8</sub>. They found Be-Ge bonding to be covalent and that Be is hypervalent in the complexes, assisted by back-donation of electrons from Ge.

The present study is grounded in previous examinations of beryllium silicides and carbides [20-22] and motivated by the need to understand stability, bonding and structure in germanide clusters per se and in comparison to the other group clusters. Hitherto, cluster studies have concentrated on germanium as the structural element, with no studies of clusters in which the number of Be atoms is equal to or greater than Ge. Therefore, we explore this realm by examining small low-energy clusters formed by beryllium and germanium combined in equal proportions (Be<sub>n</sub>Ge<sub>n</sub>) or containing twice beryllium atoms than germaniums ( $Be_{2n}Ge_n$ ). The study extends prior examinations of beryllium carbides [22], silicides [20] and larger beryllium silicide cage clusters [21], and it may identify trends in cluster type, bonding and stability for the carbon group clusters with beryllium.

The study of small beryllium carbide clusters [22] revealed great structural variety owing to the capacity of carbon to form multiple bonds and planar pentagons and hexagons. In contrast, the silicide clusters [20] displayed fewer structures, with no Si-Si multiple bonds, but lowenergy silicide cluster structures were still found among the low-energy types of carbides. Carbon is capable of forming stable cage clusters, whereas silicon can form cages only with endohedral Si atoms [23]. However, combination of Si with Be was found to yield several stable cage clusters, Be<sub>12</sub>Si<sub>8</sub>, Be<sub>24</sub>Si<sub>8</sub> and Be<sub>20</sub>Si<sub>12</sub> [21], the latter a symmetrical Be<sub>20</sub> dodecahedron with each face capped by a Si atom. The principal motifs from which the large cage structures were constructed were identified in the study of small Be-Si clusters [20].

The present study, though it examines structures found in previous studies, is focused upon  $Be_nGe_n$  (n =1–5) and  $Be_{2n}Ge_n$  (n = 1-4) clusters and aims to identify as many of the most stable isomers of each as possible. The analysis of a large fraction of the lowest energy clusters may identify essential elements of stability and structural motifs useful in synthesising larger clusters. Comparison of the results of the present with the former studies on silicides [20] and carbides [22] may offer additional structural insight.

#### 2. Methods

Starting geometries for optimisation of the smaller clusters were taken from stable geometries of the individual atomic clusters [4,5,24], of beryllium carbides reported in previous studies [22], of  $Be_nSi_n$  and  $Be_{2n}Si_n$  clusters [20] and of variations on the foregoing. Extensive potential surface searches were performed using DFT Monte Carlo simulated annealing (DFT-MCSA). In simulated annealing [25], the temperature is gradually lowered to 'freeze' the system in a minimum energy configuration. Lowering the temperature slowly enough yields the global minimum; more rapid annealing locates local minima. In DFT-MCSA [26], geometries are Monte Carlo sampled, and the energy at each step is evaluated in a DFT calculation. Final geometries and harmonic frequencies were obtained in B3LYP/6-31G(2df) optimisations. B3LYP contains Becke's [27] three-parameter exchange functional and the correlation functional of Lee, Yang and Parr [28]. Calculations were done with Gaussian09 [29].

In previous work on beryllium silicide clusters [20], energies were ordered in G3XMP2 [30] calculations. Gaussian-n theory employs a QCISD(T)/6-31G\* singlepoint calculation at the optimised geometry as the principal correlation energy correction. The present study replaces the multistep G3XMP2 process with a two-step estimation of the energy ordering via a single-point QCISD(T)/6-31G(2df) evaluated at the B3LYP/6-31G(2df) geometry. This is a time-saving approach, considering the more than 100 energy evaluations to be done, though it assumes that the 6-31G(2df) basis adequately describes the germanide clusters.

#### 3. Results and discussion

Tables 1-7 list the calculated ground-state B3LYP/6-31G(2df) and QCISD(T)/6-31G(2df) energies of clusters and selected interatomic distances, while Figures 1-7 depict low-energy structures of each isomer. The three rightmost columns of the Tables show, respectively, cluster atomisation energies, atomisation energies divided by number of atoms less one, and the QCISD(T) energy of each structure relative to the most stable. In each Figure, germanium atoms are depicted as larger and darker in colour, and berylliums smaller and lighter in colour. We discuss the clusters ordered by n, the number of germanium atoms.

BeGe and Be<sub>2</sub>Ge. BeGe has a spin triplet ground state (see Table 1) at the QCISD(T)/6-31G(2df) level with bond length 2.14 Å. A singlet lies 0.77 eV (17.82 kcal/mol) above the ground state and a quintet somewhat higher. The ground states of BeC and BeSi are also  ${}^{3}\Sigma^{-}$  with bond lengths of 1.67 [20] and 2.12 Å [22], respectively, so the germanide geometry is similar to that of the silicide.

Three Be<sub>2</sub>Ge structures were found (Figure 1), with Isomer A being a nearly equilateral triangle, the lowest in energy. Be<sub>2</sub>C and Be<sub>2</sub>Si [20,22] also have low-energy <sup>1</sup>A<sub>1</sub>

Table 1. Energies and minimum distances of BeGe, Be<sub>2</sub>Ge and Be<sub>2</sub>Ge<sub>2</sub> clusters. Column contents are described in the text.

| Species            | State                           | B3-LYP <sup>a</sup> | QCISD(T) <sup>a</sup> | d(Ge–Ge) | d(Ge−Be) | d(Be-Be) | $E_{\mathrm{At}}^{\mathrm{b}}$ | $E_{\rm At}/(N-1)^{\rm b}$ | $\Delta \textit{E}_{Rel}^{b}$ |
|--------------------|---------------------------------|---------------------|-----------------------|----------|----------|----------|--------------------------------|----------------------------|-------------------------------|
| BeGe               |                                 |                     |                       |          |          |          |                                |                            |                               |
|                    | $^3\Sigma^-$                    | - 2089.83668        | <b>- 2088.14923</b>   |          | 2.140    |          | 54.90                          | 54.90                      | 0.00                          |
|                    | $^{1}\Sigma^{+}$                | -2089.80659         | -2088.12084           |          | 2.140    |          | 37.08                          | 37.08                      | 17.82                         |
|                    | $^5\Sigma^-$                    | <b>- 2089.79474</b> | -2088.11274           |          | 2.134    |          | 32.00                          | 32.00                      | 22.90                         |
| Be <sub>2</sub> Ge |                                 |                     |                       |          |          |          |                                |                            |                               |
| Α                  | $^{1}A_{1}$                     | <b>– 2104.57963</b> | -2102.83377           |          | 2.066    | 2.122    | 99.15                          | 49.57                      | 0.00                          |
| Α                  | ${}^{3}B_{1}^{'}$               | <b>– 2104.58127</b> | -2102.82746           |          | 2.177    | 2.055    | 95.19                          | 47.60                      | 3.96                          |
| В                  | $^3\Sigma^+$                    | <b>- 2104.54261</b> | -2102.79550           |          | 2.107    | 2.114    | 75.13                          | 37.57                      | 24.01                         |
| C                  | ${}^5\Sigma_u^+$ ${}^5\Sigma^+$ | <b>– 2104.54490</b> | — 2102.79187          |          | 2.135    | 4.270    | 72.86                          | 36.43                      | 26.29                         |
| В                  |                                 | <b>– 2104.53244</b> | -2102.78330           |          | 2.125    | 2.085    | 67.48                          | 33.74                      | 31.67                         |
| В                  | $^1\Sigma^+$                    | <b>– 2104.51935</b> | -2102.77009           |          | 2.123    | 2.069    | 59.19                          | 29.60                      | 39.96                         |
| C                  | $^{1}\Sigma_{g}^{-}$            | — 2104.49431        | -2102.74627           |          | 1.910    | 3.821    | 44.24                          | 22.12                      | 54.90                         |
| $Be_2Ge_2$         |                                 |                     |                       |          |          |          |                                |                            |                               |
| Α                  | <sup>1</sup> A                  | - 4179.84886        | - 4176.47378          | 2.987    | 2.088    | 2.919    | 219.81                         | 73.27                      | 0.00                          |
| В                  | <sup>1</sup> A                  | — 4179.83497        | <b>– 4176.46179</b>   | 2.795    | 2.217    | 1.868    | 212.28                         | 70.76                      | 7.53                          |
| В                  | $^3$ A $^\prime$                | — 4179.83399        | — 4176.45672          | 2.979    | 2.159    | 2.120    | 209.11                         | 69.70                      | 10.70                         |
| C                  | <sup>1</sup> A                  | — 4179.82902        | <b>- 4176.45410</b>   | 2.294    | 2.207    | 2.010    | 207.46                         | 69.15                      | 12.35                         |
| Α                  | <sup>3</sup> A                  | <b>- 4179.81320</b> | <b>- 4176.43160</b>   | 2.855    | 2.211    | 3.377    | 193.34                         | 64.45                      | 26.47                         |
| Α                  | <sup>5</sup> A                  | <b>– 4179.79552</b> | <b>– 4176.41937</b>   | 3.988    | 2.251    | 2.089    | 185.67                         | 61.89                      | 34.14                         |
| В                  | <sup>5</sup> A′                 | <b>– 4179.78134</b> | <b>- 4176.40491</b>   | 2.679    | 2.238    | 2.614    | 176.59                         | 58.86                      | 43.22                         |
| D                  | $^{1}\Sigma^{+}$                | <b>- 4179.77003</b> | — 4176.39401          | 2.188    | 2.001    | 2.050    | 169.76                         | 56.59                      | 50.05                         |
| E                  | $^{5}\Sigma^{+}$                | <b>— 4179.74105</b> | <b>- 4176.36423</b>   | 6.397    | 2.171    | 2.055    | 151.07                         | 50.36                      | 68.74                         |
| E                  | $^1\Sigma^+$                    | <b>– 4179.71629</b> | <b>- 4176.35840</b>   | 6.458    | 2.220    | 2.018    | 147.41                         | 49.14                      | 72.40                         |
| D                  | $^{3}\Sigma^{+}$                | <b>– 4179.77763</b> | <b>- 4176.35588</b>   | 2.229    | 2.144    | 2.116    | 145.82                         | 48.61                      | 73.99                         |
| E                  | $^{3}\Sigma^{+}_{a}$            | <b>– 4179.74750</b> | <b>- 4176.35197</b>   | 6.566    | 2.243    | 2.080    | 143.38                         | 47.79                      | 76.44                         |
| D                  | $^5\Sigma^{^{9}}$               | — <b>4179.73491</b> | - 4176.32480          | 2.431    | 2.138    | 2.102    | 126.32                         | 42.11                      | 93.49                         |

<sup>&</sup>lt;sup>a</sup>Energies in atomic units.

triangular structures. At the B3LYP level, the triplet is the more stable, also the case with Be<sub>2</sub>Si. Second in order of energy is isomer B triplet, a Ge–Be–Be linear structure and only 0.1 eV (2.28 kcal/mol) above the triplet, is the linear isomer C with the germanium atom between the berylliums at a distance of 2.135 Å, larger than the Be–Ge distances of isomers A and B. For each isomer, the singlet,

triplet, and quintet states are near in energy (Table 1). The linear structures are similar to those of Be $_2$ C [22], with the Be–C distance significantly smaller than the Be–Ge but with Be–Be about the same. Some charge transfer is seen in Be $_2$ Ge; about one-quarter of an electron charge is transferred from Ge to the Be atoms. The magnitude of charge transferred is about the same as that seen in Be $_2$ Si

Table 2. Energies and minimum distances of Be<sub>4</sub>Ge<sub>2</sub> clusters. Column contents are described in the text.

| Species | State           | B3-LYP <sup>a</sup> | QCISD(T) <sup>a</sup> | d(Ge-Ge) | d(Ge-Be) | d(Be-Be) | E <sub>At</sub> | $E_{\rm At}/(N-1)^{\rm b}$ | $\Delta E_{Rel}^{b}$ |
|---------|-----------------|---------------------|-----------------------|----------|----------|----------|-----------------|----------------------------|----------------------|
| Α       | <sup>1</sup> A′ | <b>– 4209.35405</b> | <b>- 4205.86024</b>   | 3.387    | 2.138    | 2.006    | 319.22          | 63.84                      | 0.00                 |
| В       | <sup>1</sup> A  | -4209.34299         | <b>- 4205.85256</b>   | 2.504    | 2.094    | 2.016    | 314.40          | 62.88                      | 4.82                 |
| C       | <sup>1</sup> A  | <b>- 4209.34148</b> | <b>- 4205.85152</b>   | 3.332    | 2.146    | 1.961    | 313.75          | 62.75                      | 5.47                 |
| D       | <sup>3</sup> A  | -4209.33424         | <b>- 4205.84489</b>   | 3.207    | 2.208    | 2.147    | 309.59          | 61.92                      | 9.64                 |
| Α       | $^3A''$         | -4209.33556         | -4205.83959           | 2.976    | 2.099    | 1.966    | 306.26          | 61.25                      | 12.96                |
| E       | <sup>1</sup> A  | -4209.32488         | -4205.83871           | 3.107    | 2.217    | 1.948    | 305.71          | 61.14                      | 13.51                |
| C       | <sup>3</sup> A  | -4209.33017         | -4205.83760           | 3.044    | 2.200    | 2.063    | 305.01          | 61.00                      | 14.21                |
| D       | <sup>1</sup> A  | <b>- 4209.31444</b> | <b>- 4205.82799</b>   | 3.223    | 2.189    | 2.094    | 298.99          | 59.80                      | 20.24                |
| F       | <sup>1</sup> A′ | -4209.32377         | -4205.82527           | 2.471    | 2.136    | 1.933    | 297.28          | 59.46                      | 21.95                |
| В       | <sup>3</sup> A  | -4209.31558         | -4205.82469           | 2.398    | 2.281    | 2.002    | 296.91          | 59.38                      | 22.31                |
| D       | <sup>5</sup> A  | -4209.30810         | <b>- 4205.81701</b>   | 3.542    | 2.282    | 1.966    | 292.10          | 58.42                      | 27.13                |
| G       | <sup>1</sup> A  | -4209.31172         | -4205.80966           | 2.537    | 2.029    | 2.011    | 287.48          | 57.50                      | 31.74                |
| Α       | <sup>5</sup> A′ | -4209.30529         | -4205.80859           | 3.828    | 2.165    | 2.038    | 286.81          | 57.36                      | 32.41                |
| E       | <sup>5</sup> A  | -4209.29529         | -4205.80513           | 2.935    | 2.214    | 2.041    | 284.64          | 56.93                      | 34.58                |
| C       | <sup>5</sup> A  | -4209.29980         | -4205.80162           | 4.240    | 2.205    | 1.909    | 282.44          | 56.49                      | 36.79                |
| G       | <sup>3</sup> A  | <b>- 4209.31151</b> | <b>– 4205.79576</b>   | 2.583    | 2.045    | 1.918    | 278.76          | 55.75                      | 40.46                |
| В       | <sup>5</sup> A  | <b>- 4209.27708</b> | <b>- 4205.76750</b>   | 2.591    | 2.270    | 2.140    | 261.03          | 52.21                      | 58.20                |

<sup>&</sup>lt;sup>a</sup>Energies in atomic units.

<sup>&</sup>lt;sup>b</sup>Energies in kcal/mol. Distances in angstroms.

<sup>&</sup>lt;sup>b</sup>Energies in kcal/mol. Distances in angstroms.

Table 3. Energies and minimum distances of Be<sub>3</sub>Ge<sub>3</sub> clusters. Column contents are described in the text.

| Species | State                       | B3-LYP <sup>a</sup> | QCISD(T) <sup>a</sup> | d(Ge–Ge) | d(Ge–Be) | d(Be-Be) | E <sub>At</sub> | $E_{\rm At}/(N-1)^{\rm b}$ | $\Delta E_{ m Rel}^{ m b}$ |
|---------|-----------------------------|---------------------|-----------------------|----------|----------|----------|-----------------|----------------------------|----------------------------|
| Α       | <sup>1</sup> A <sub>1</sub> | <b>– 6269.86852</b> | <b>– 6264.82125</b>   | 2.596    | 2.154    | 2.250    | 399.10          | 79.82                      | 0.00                       |
| В       | <sup>1</sup> A              | -6269.86742         | -6264.81450           | 2.284    | 2.154    | 1.980    | 394.87          | 78.97                      | 4.23                       |
| C       | <sup>1</sup> A              | -6269.86064         | -6264.80640           | 2.431    | 2.077    | 2.007    | 389.79          | 77.96                      | 9.31                       |
| D       | <sup>1</sup> A              | -6269.85805         | -6264.80482           | 2.404    | 2.080    | 1.979    | 388.80          | 77.76                      | 10.30                      |
| E       | <sup>1</sup> A              | -6269.85824         | -6264.80467           | 2.949    | 2.171    | 2.150    | 388.70          | 77.74                      | 10.40                      |
| F       | <sup>1</sup> A              | -6269.85844         | -6264.80455           | 2.493    | 2.128    | 1.970    | 388.63          | 77.73                      | 10.48                      |
| Α       | <sup>3</sup> A              | — 6269.85561        | -6264.80139           | 2.504    | 2.190    | 2.034    | 386.64          | 77.33                      | 12.46                      |
| G       | <sup>1</sup> A′             | -6269.85280         | <b>- 6264.79907</b>   | 2.419    | 2.129    | 1.965    | 385.19          | 77.04                      | 13.92                      |
| E       | <sup>3</sup> A              | -6269.84802         | <b>- 6264.79554</b>   | 2.630    | 2.182    | 2.062    | 382.98          | 76.60                      | 16.13                      |
| Н       | <sup>3</sup> A              | - 6269.84718        | <b>- 6264.79218</b>   | 2.695    | 2.145    | 2.034    | 380.86          | 76.17                      | 18.24                      |
| Н       | <sup>1</sup> A              | -6269.83817         | -6264.78730           | 2.526    | 2.152    | 2.024    | 377.81          | 75.56                      | 21.30                      |
| G       | $^3A'$                      | -6269.83944         | <b>- 6264.78016</b>   | 2.444    | 2.181    | 1.979    | 373.32          | 74.66                      | 25.78                      |
| 1       | <sup>1</sup> A              | -6269.82638         | <b>- 6264.76960</b>   | 2.616    | 2.077    | 3.045    | 366.69          | 73.34                      | 32.41                      |
| Α       | <sup>5</sup> A <sub>1</sub> | <b>- 6269.81916</b> | -6264.76840           | 2.640    | 2.232    | 2.093    | 365.94          | 73.19                      | 33.16                      |
| 1       | <sup>3</sup> A              | -6269.82720         | <b>- 6264.76775</b>   | 2.832    | 2.115    | 2.239    | 365.54          | 73.11                      | 33.57                      |
| В       | <sup>5</sup> A              | -6269.81772         | <b>- 6264.76096</b>   | 2.679    | 2.137    | 2.039    | 361.27          | 72.25                      | 37.83                      |
| Н       | <sup>5</sup> A              | <b>– 6269.79735</b> | <b>- 6264.74060</b>   | 2.558    | 2.197    | 1.981    | 348.49          | 69.70                      | 50.61                      |

<sup>&</sup>lt;sup>a</sup>Energies in atomic units.

[20] though opposite in direction, while a much smaller effect was found in Be<sub>2</sub>C [22].

Be<sub>2</sub>Ge<sub>2</sub>. The global minimum energy structure (Figure 1, Isomer A) is a singlet of  $D_{2h}$  symmetry; a rhombus of alternating Be and Ge. The structure is similar to the most stable isomer of Be<sub>2</sub>Si<sub>2</sub>. In Be<sub>2</sub>C<sub>2</sub>, the most stable cluster more closely resembles isomer C in Figure 1, probably stabilised by the presence of a C-C triple bond. A triplet lies more than 25 kcal/mol above the ground state, with similar geometry though with

shortened Ge-Ge distances and elongated Be-Ge bond. These structures are similar to those found for Be<sub>2</sub>Si<sub>2</sub> and Be<sub>2</sub>C<sub>2</sub> although not in the same energy order. The only nonplanar isomer (Figure 1, isomer B) resembles a distorted tetrahedron displaying the shortest Be-Be bond noted in this study (1.87 Å), even shorter than that of tetrahedral Be<sub>4</sub> (2.03 Å) [24]. The Be-Be distances in structures B and C are similar for the germanide and silicide analogues. Isomer B was not found among the carbides; in fact, no three-dimensional structures for

Table 4. Energies and minimum distances of Be<sub>6</sub>Ge<sub>3</sub> clusters. Column contents are described in the text.

| Species | State                 | B3-LYP <sup>a</sup> | QCISD(T) <sup>a</sup> | d(Ge–Ge) | d(Ge-Be) | d(Be-Be) | $E_{At}^{b}$ | $E_{\rm At}/(N-1)^{\rm b}$ | $\Delta \textit{E}_{Rel}^{b}$ |
|---------|-----------------------|---------------------|-----------------------|----------|----------|----------|--------------|----------------------------|-------------------------------|
| Α       | <sup>1</sup> A        | <b>– 6314.17809</b> | <b>- 6308.95613</b>   | 2.652    | 2.114    | 1.953    | 582.86       | 72.86                      | 0.00                          |
| В       | <sup>1</sup> A′       | -6314.17748         | -6308.95155           | 3.972    | 2.258    | 2.010    | 579.98       | 72.50                      | 2.88                          |
| C       | <sup>1</sup> A        | -6314.17356         | -6308.94848           | 2.704    | 2.169    | 1.971    | 578.05       | 72.26                      | 4.81                          |
| D       | <sup>1</sup> A        | <b>– 6314.16155</b> | -6308.94053           | 2.674    | 2.111    | 1.991    | 573.07       | 71.63                      | 9.79                          |
| E       | <sup>3</sup> A        | -6314.15500         | -6308.92937           | 2.586    | 2.157    | 1.988    | 566.06       | 70.76                      | 16.80                         |
| Α       | <sup>3</sup> A        | -6314.14832         | -6308.92084           | 2.691    | 2.115    | 1.963    | 560.71       | 70.09                      | 22.15                         |
| F       | <sup>3</sup> A        | -6314.14327         | -6308.91722           | 2.735    | 2.127    | 2.006    | 558.44       | 69.80                      | 24.42                         |
| G       | <sup>1</sup> A        | -6314.13490         | -6308.91499           | 2.513    | 2.171    | 1.946    | 557.04       | 69.63                      | 25.82                         |
| Н       | <sup>1</sup> A        | <b>- 6314.13492</b> | -6308.91348           | 2.429    | 2.178    | 1.933    | 556.09       | 69.51                      | 26.77                         |
| Н       | $^{3}A$               | <b>- 6314.13321</b> | -6308.90845           | 2.402    | 2.212    | 1.965    | 552.93       | 69.12                      | 29.92                         |
| D       | <sup>3</sup> A        | -6314.13727         | -6308.90788           | 2.806    | 2.104    | 2.037    | 552.58       | 69.07                      | 30.28                         |
| В       | <sup>5</sup> A′       | <b>- 6314.12724</b> | -6308.90397           | 3.784    | 2.235    | 2.040    | 550.13       | 68.77                      | 32.73                         |
| C       | <sup>5</sup> <b>A</b> | <b>- 6314.11786</b> | <b>- 6308.89516</b>   | 2.545    | 2.199    | 1.988    | 544.60       | 68.07                      | 38.26                         |
| 1       | <sup>1</sup> A        | -6314.12219         | -6308.89495           | 2.671    | 2.099    | 1.898    | 544.46       | 68.06                      | 38.39                         |
| Н       | <sup>5</sup> A        | <b>– 6314.11219</b> | -6308.88626           | 2.416    | 2.170    | 1.986    | 539.01       | 67.38                      | 43.84                         |
| Α       | <sup>5</sup> <b>A</b> | <b>- 6314.10699</b> | -6308.88270           | 2.690    | 2.162    | 1.980    | 536.78       | 67.10                      | 46.08                         |
| 1       | <sup>5</sup> <b>A</b> | -6314.10134         | -6308.87634           | 2.691    | 2.145    | 1.974    | 532.79       | 66.60                      | 50.07                         |
| G       | <sup>5</sup> <b>A</b> | <b>- 6314.09700</b> | -6308.87145           | 2.439    | 2.185    | 1.990    | 529.72       | 66.21                      | 53.14                         |
| E       | <sup>5</sup> <b>A</b> | - 6314.09667        | -6308.86896           | 2.513    | 2.229    | 2.061    | 528.16       | 66.02                      | 54.70                         |
| D       | <sup>5</sup> <b>A</b> | -6314.09376         | -6308.86777           | 2.710    | 2.146    | 2.017    | 527.41       | 65.93                      | 55.45                         |
| J       | <sup>1</sup> A        | -6314.09148         | -6308.84860           | 2.535    | 2.066    | 1.998    | 515.38       | 64.42                      | 67.48                         |
| J       | <sup>3</sup> A        | - 6314.06704        | - 6308.82068          | 2.549    | 2.060    | 2.022    | 497.86       | 62.23                      | 85.00                         |

<sup>&</sup>lt;sup>a</sup>Energies in atomic units.

<sup>&</sup>lt;sup>b</sup>Energies in kcal/mol. Distances in angstroms.

<sup>&</sup>lt;sup>b</sup>Energies in kcal/mol. Distances in angstroms.

Table 5. Energies and minimum distances of Be<sub>4</sub>Ge<sub>4</sub> clusters. Column contents are described in the text.

| Species | State                 | B3-LYP <sup>a</sup> | QCISD(T) <sup>a</sup> | d(Ge–Ge) | d(Ge–Be) | d(Be-Be) | E <sub>At</sub> | $E_{\rm At}/(N-1)^{\rm b}$ | $\Delta \textit{E}_{Rel}^{b}$ |
|---------|-----------------------|---------------------|-----------------------|----------|----------|----------|-----------------|----------------------------|-------------------------------|
| Α       | <sup>1</sup> A        | <b>– 8359.93421</b> | <b>— 8353.21146</b>   | 2.685    | 2.126    | 1.962    | 605.22          | 86.46                      | 0.00                          |
| В       | <sup>1</sup> A        | -8359.93489         | <b>- 8353.21006</b>   | 2.715    | 2.168    | 2.050    | 604.34          | 86.33                      | 0.88                          |
| C       | <sup>1</sup> A        | -8359.92193         | <b>- 8353.19640</b>   | 2.652    | 2.164    | 1.972    | 595.77          | 85.11                      | 9.45                          |
| D       | <sup>1</sup> A        | -8359.91952         | <b>— 8353.19225</b>   | 2.423    | 2.166    | 1.980    | 593.17          | 84.74                      | 12.05                         |
| E       | <sup>1</sup> A        | -8359.92090         | -8353.19088           | 2.290    | 2.058    | 2.022    | 592.31          | 84.62                      | 12.91                         |
| F       | <sup>1</sup> A        | <b>—</b> 8359.91399 | <b>— 8353.18938</b>   | 2.557    | 2.134    | 1.939    | 591.37          | 84.48                      | 13.86                         |
| G       | $^{3}B_{3}$           | <b>- 8359.91708</b> | <b>— 8353.18871</b>   | 2.467    | 2.179    | 2.080    | 590.95          | 84.42                      | 14.28                         |
| C       | $^{3}$ Å              | -8359.91740         | <b>- 8353.18844</b>   | 2.671    | 2.132    | 1.991    | 590.78          | 84.40                      | 14.44                         |
| F       | <sup>3</sup> A        | <b>- 8359.91404</b> | <b>- 8353.18768</b>   | 2.691    | 2.112    | 1.998    | 590.30          | 84.33                      | 14.92                         |
| G       | <sup>1</sup> A        | -8359.91073         | <b>— 8353.18579</b>   | 2.505    | 2.175    | 1.998    | 589.11          | 84.16                      | 16.11                         |
| Н       | <sup>1</sup> A        | <b>— 8359.91191</b> | <b>— 8353.18513</b>   | 2.434    | 2.164    | 2.052    | 588.70          | 84.10                      | 16.52                         |
| В       | $^{3}A$               | <b>- 8359.90974</b> | <b>- 8353.17665</b>   | 2.812    | 2.079    | 2.291    | 583.38          | 83.34                      | 21.85                         |
| 1       | <sup>1</sup> A        | -8359.90267         | <b>— 8353.17579</b>   | 2.515    | 2.235    | 1.917    | 582.84          | 83.26                      | 22.39                         |
| D       | <sup>3</sup> A        | <b>- 8359.90570</b> | <b>— 8353.17565</b>   | 2.510    | 2.149    | 2.016    | 582.75          | 83.25                      | 22.47                         |
| 1       | <sup>3</sup> A        | -8359.89543         | <b>- 8353.16607</b>   | 2.528    | 2.183    | 2.026    | 576.74          | 82.39                      | 28.48                         |
| Н       | <sup>3</sup> A        | -8359.89230         | <b>- 8353.16238</b>   | 2.505    | 2.153    | 1.982    | 574.42          | 82.06                      | 30.80                         |
| J       | <sup>1</sup> A        | <b>- 8359.87897</b> | <b>- 8353.15663</b>   | 2.649    | 2.213    | 2.006    | 570.81          | 81.54                      | 34.41                         |
| K       | <sup>1</sup> A        | <b>–</b> 8359.87994 | <b>— 8353.15355</b>   | 2.413    | 2.170    | 1.941    | 568.89          | 81.27                      | 36.34                         |
| E       | <sup>3</sup> A        | <b>- 8359.88019</b> | <b>— 8353.14711</b>   | 2.312    | 2.143    | 1.917    | 564.84          | 80.69                      | 40.38                         |
| C       | <sup>5</sup> A        | -8359.87270         | <b>- 8353.14416</b>   | 2.680    | 2.118    | 2.092    | 562.99          | 80.43                      | 42.23                         |
| Α       | <sup>3</sup> A        | -8359.88407         | <b>— 8353.14111</b>   | 2.662    | 2.132    | 1.967    | 561.07          | 80.15                      | 44.15                         |
| K       | <sup>3</sup> A        | <b>- 8359.87031</b> | <b>- 8353.13942</b>   | 2.479    | 2.187    | 2.009    | 560.02          | 80.00                      | 45.21                         |
| D       | <sup>5</sup> A        | -8359.85895         | <b>– 8353.12976</b>   | 2.504    | 2.151    | 2.018    | 553.95          | 79.14                      | 51.27                         |
| L       | <sup>1</sup> A        | -8359.87297         | <b>— 8353.12913</b>   | 2.607    | 2.036    | 2.176    | 553.56          | 79.08                      | 51.67                         |
| F       | <sup>5</sup> <b>A</b> | -8359.85393         | -8353.12148           | 2.624    | 2.112    | 1.986    | 548.76          | 78.39                      | 56.47                         |
| Н       | <sup>5</sup> <b>A</b> | <b>- 8359.84811</b> | <b>— 8353.11851</b>   | 2.476    | 2.168    | 2.027    | 546.89          | 78.13                      | 58.33                         |
| 1       | <sup>5</sup> <b>A</b> | -8359.82608         | -8353.09972           | 2.443    | 2.151    | 1.955    | 535.10          | 76.44                      | 70.12                         |
| K       | <sup>5</sup> A        | <b>– 8359.82671</b> | - 8353.09477          | 2.439    | 2.217    | 2.026    | 532.00          | 76.00                      | 73.23                         |

<sup>&</sup>lt;sup>a</sup>Energies in atomic units. <sup>b</sup>Energies in kcal/mol. Distances in angstroms.

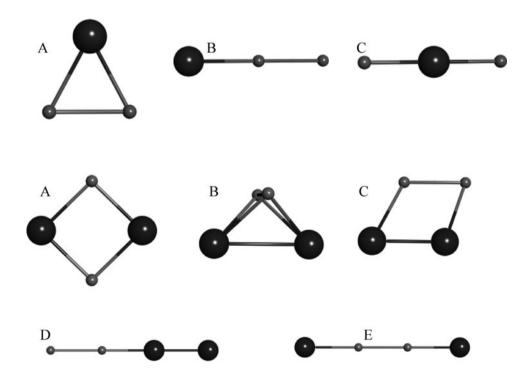



Figure 1. B3LYP/6-31G(2df)-optimised structures of  $Be_2Ge$  and  $Be_2Ge_2$ . Germanium atoms are larger and in darker colour; beryllium atoms are smaller and lighter in colour.

Table 6. Energies and minimum distances of Be<sub>8</sub>Ge<sub>4</sub> clusters. Column contents are described in the text.

| Species | State           | B3-LYP <sup>a</sup> | QCISD(T) <sup>a</sup> | d(Ge–Ge) | d(Ge–Be) | d(Be-Be) | E <sub>At</sub> | $E_{\rm At}/(N-1)^{\rm b}$ | $\Delta \textit{E}_{Rel}^{b}$ |
|---------|-----------------|---------------------|-----------------------|----------|----------|----------|-----------------|----------------------------|-------------------------------|
| Α       | <sup>1</sup> A′ | <b>– 8418.99773</b> | <b>- 8412.04287</b>   | 2.578    | 2.240    | 2.027    | 840.75          | 76.43                      | 0.00                          |
| В       | <sup>1</sup> A  | <b>- 8418.99651</b> | - 8412.03469          | 3.786    | 2.148    | 2.118    | 835.61          | 75.96                      | 5.13                          |
| C       | <sup>1</sup> A  | <b>- 8418.98915</b> | <b>- 8412.03216</b>   | 2.746    | 2.064    | 2.048    | 834.03          | 75.82                      | 6.72                          |
| D       | <sup>1</sup> A  | -8418.98692         | <b>- 8412.02915</b>   | 2.847    | 2.101    | 2.030    | 832.14          | 75.65                      | 8.61                          |
| В       | <sup>3</sup> A  | <b>- 8418.98861</b> | -8412.02644           | 3.694    | 2.127    | 2.092    | 830.44          | 75.49                      | 10.31                         |
| E       | <sup>1</sup> A  | - 8418.97631        | -8412.02020           | 2.676    | 2.125    | 2.051    | 826.52          | 75.14                      | 14.22                         |
| D       | <sup>3</sup> A  | <b>- 8418.97669</b> | -8412.01842           | 2.883    | 2.084    | 2.041    | 825.41          | 75.04                      | 15.34                         |
| F       | <sup>1</sup> A  | -8418.97780         | - 8412.01678          | 3.542    | 2.218    | 2.003    | 824.38          | 74.94                      | 16.37                         |
| C       | <sup>3</sup> A  | <b>- 8418.97614</b> | <b>- 8412.01644</b>   | 2.803    | 2.062    | 2.056    | 824.16          | 74.92                      | 16.58                         |
| G       | <sup>1</sup> A  | - 8418.96747        | -8412.01070           | 2.415    | 2.104    | 2.000    | 820.56          | 74.60                      | 20.19                         |
| Н       | <sup>3</sup> A  | -8418.96888         | -8412.00836           | 2.593    | 2.211    | 2.058    | 819.09          | 74.46                      | 21.65                         |
| Н       | <sup>1</sup> A  | <b>- 8418.95655</b> | -8412.00144           | 2.535    | 2.116    | 1.998    | 814.75          | 74.07                      | 26.00                         |
| 1       | <sup>3</sup> A  | <b>- 8418.95696</b> | <b>– 8411.99772</b>   | 2.676    | 2.133    | 1.972    | 812.42          | 73.86                      | 28.33                         |
| G       | <sup>3</sup> A  | <b>- 8418.94691</b> | <b>- 8411.98787</b>   | 2.443    | 2.129    | 2.005    | 806.23          | 73.29                      | 34.51                         |
| J       | <sup>1</sup> A  | -8418.93820         | <b>- 8411.98312</b>   | 2.612    | 2.064    | 1.951    | 803.26          | 73.02                      | 37.49                         |
| 1       | <sup>1</sup> A  | -8418.94204         | <b>- 8411.98134</b>   | 2.646    | 2.065    | 1.969    | 802.14          | 72.92                      | 38.61                         |
| В       | <sup>5</sup> A  | <b>- 8418.93738</b> | <b>- 8411.97862</b>   | 3.566    | 2.158    | 2.023    | 800.43          | 72.77                      | 40.32                         |
| C       | <sup>5</sup> A  | <b>- 8418.93464</b> | <b>— 8411.97481</b>   | 2.751    | 2.080    | 1.998    | 798.04          | 72.55                      | 42.71                         |
| J       | <sup>3</sup> A  | <b>- 8418.93429</b> | <b>— 8411.97417</b>   | 2.697    | 2.102    | 1.950    | 797.64          | 72.51                      | 43.11                         |
| D       | <sup>5</sup> A  | -8418.93439         | <b>— 8411.97226</b>   | 3.733    | 2.112    | 2.087    | 796.44          | 72.40                      | 44.31                         |
| F       | <sup>5</sup> A  | -8418.92692         | <b>— 8411.96724</b>   | 3.504    | 2.213    | 2.078    | 793.29          | 72.12                      | 47.46                         |
| E       | <sup>5</sup> A  | <b>– 8418.91775</b> | <b>- 8411.96073</b>   | 2.686    | 2.157    | 2.030    | 789.20          | 71.75                      | 51.54                         |
| K       | <sup>1</sup> A  | -8418.91358         | <b>- 8411.95890</b>   | 2.427    | 2.125    | 1.908    | 788.06          | 71.64                      | 52.69                         |
| Н       | <sup>5</sup> A  | <b>- 8418.91804</b> | <b>- 8411.95835</b>   | 2.420    | 2.233    | 2.049    | 787.71          | 71.61                      | 53.04                         |
| K       | <sup>3</sup> A  | <b>- 8418.91074</b> | <b>— 8411.95407</b>   | 2.551    | 2.130    | 1.964    | 785.02          | 71.37                      | 55.72                         |
| G       | <sup>5</sup> A  | <b>- 8418.91224</b> | <b>- 8411.95360</b>   | 2.471    | 2.168    | 1.999    | 784.73          | 71.34                      | 56.02                         |
| 1       | <sup>5</sup> A  | <b>- 8418.90744</b> | <b>- 8411.95134</b>   | 2.575    | 2.170    | 1.972    | 783.31          | 71.21                      | 57.44                         |
| L       | <sup>1</sup> A  | -8418.89529         | <b>- 8411.94059</b>   | 2.715    | 2.172    | 1.967    | 776.56          | 70.60                      | 64.18                         |
| J       | <sup>5</sup> A  | <b>- 8418.89564</b> | <b>— 8411.93741</b>   | 2.676    | 2.109    | 1.932    | 774.57          | 70.42                      | 66.17                         |
| K       | <sup>5</sup> A  | -8418.88044         | <b>— 8411.92576</b>   | 2.519    | 2.140    | 1.985    | 767.26          | 69.75                      | 73.49                         |
| Е       | <sup>3</sup> A  | <b>- 8418.96349</b> | <b>– 8411.91891</b>   | 2.620    | 2.176    | 1.996    | 762.96          | 69.36                      | 77.78                         |

<sup>&</sup>lt;sup>a</sup>Energies in atomic units.

Be<sub>2</sub>C<sub>2</sub> were found. Relatively higher in energy are two linear structures D and E. Linear structures were not explored for Be<sub>2</sub>Si<sub>2</sub>, but in Be<sub>2</sub>C<sub>2</sub>, there are three, and they are also high-lying.

Be<sub>4</sub>Ge<sub>2</sub>. Seven interesting, symmetric structures of Be<sub>4</sub>Ge<sub>2</sub> were identified. Low-lying isomer A (Figure 2) possesses C<sub>s</sub> symmetry, a Be<sub>3</sub>Ge<sub>2</sub> almost-regular pentagonal pyramid. This beryllium-capped pentagonal

Table 7. Energies and minimum distances of Be<sub>5</sub>Ge<sub>5</sub> clusters. Column contents are described in the text.

| Species | State                 | B3-LYP <sup>a</sup>   | QCISD(T) <sup>a</sup> | d(Ge–Ge) | d(Ge-Be) | d(Be-Be) | E <sub>At</sub> | $E_{\rm At}/(N-1)^{\rm b}$ | $\Delta \textit{E}^{b}_{Rel}$ |
|---------|-----------------------|-----------------------|-----------------------|----------|----------|----------|-----------------|----------------------------|-------------------------------|
| A       | <sup>1</sup> A        | <b>– 10,449.96913</b> | <b>– 10,441.56627</b> | 2.569    | 2.144    | 2.105    | 789.12          | 87.68                      | 0.00                          |
| В       | <sup>1</sup> A        | - 10,449.94520        | <b>– 10,441.54291</b> | 2.511    | 2.109    | 2.113    | 774.46          | 86.05                      | 14.66                         |
| C       | <sup>1</sup> A        | -10,449.94620         | <b>- 10,441.54102</b> | 2.701    | 2.113    | 2.034    | 773.28          | 85.92                      | 15.84                         |
| D       | <sup>1</sup> A        | -10,449.94202         | <b>– 10,441.53888</b> | 2.536    | 2.066    | 1.954    | 771.94          | 85.77                      | 17.19                         |
| E       | <sup>1</sup> A        | -10,449.94290         | <b>- 10,441.53828</b> | 2.593    | 2.078    | 1.956    | 771.56          | 85.73                      | 17.56                         |
| В       | <sup>3</sup> A        | - 10,449.93467        | <b>– 10,441.52889</b> | 2.601    | 2.162    | 2.052    | 765.66          | 85.07                      | 23.46                         |
| C       | <sup>3</sup> A        | -10,449.92927         | <b>— 10,441.52274</b> | 2.506    | 2.129    | 2.083    | 761.81          | 84.65                      | 27.32                         |
| E       | <sup>3</sup> A        | -10,449.92770         | <b>- 10,441.52025</b> | 2.666    | 2.076    | 1.962    | 760.25          | 84.47                      | 28.88                         |
| D       | <sup>3</sup> A        | <b>— 10,449.91789</b> | <b>— 10,441.51485</b> | 2.558    | 2.154    | 1.993    | 756.85          | 84.09                      | 32.27                         |
| E       | <sup>5</sup> A        | <b>— 10,449.91701</b> | <b>– 10,441.51418</b> | 2.691    | 2.145    | 1.974    | 756.44          | 84.05                      | 32.69                         |
| В       | <sup>5</sup> A        | <b>- 10,449.91146</b> | <b>- 10,441.50531</b> | 2.548    | 2.132    | 2.120    | 750.87          | 83.43                      | 38.25                         |
| C       | <sup>5</sup> A        | <b>- 10,449.89951</b> | <b>- 10,441.49626</b> | 2.508    | 2.158    | 2.11     | 745.19          | 82.80                      | 43.93                         |
| D       | <sup>5</sup> A        | -10,449.89736         | <b>– 10,441.49116</b> | 2.455    | 2.184    | 2.082    | 741.99          | 82.44                      | 47.13                         |
| F       | <sup>1</sup> A        | <b>- 10,449.91265</b> | <b>- 10,441.48915</b> | 2.284    | 2.079    | 2.049    | 740.73          | 82.30                      | 48.39                         |
| F       | <sup>3</sup> A        | -10,449.89842         | - 10,441.46840        | 2.303    | 2.084    | 2.061    | 727.71          | 80.86                      | 61.42                         |
| F       | <sup>5</sup> <b>A</b> | - 10,449.85425        | - 10,441.42764        | 2.371    | 2.09     | 2.075    | 702.13          | 78.01                      | 86.99                         |

<sup>&</sup>lt;sup>a</sup>Energies in atomic units.

<sup>&</sup>lt;sup>b</sup>Energies in kcal/mol. Distances in angstroms.

<sup>&</sup>lt;sup>b</sup>Energies in kcal/mol. Distances in angstroms.

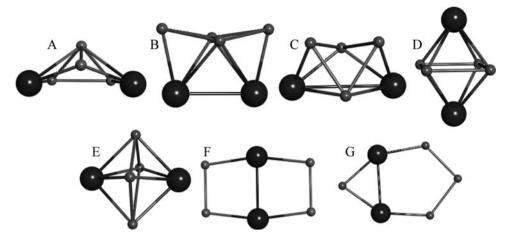



Figure 2. Optimised structures of low-energy Be<sub>4</sub>Ge<sub>2</sub> clusters.

structure is also the low-energy form of Be<sub>6</sub> [24] and Be<sub>4</sub>Si<sub>2</sub>. Structure B, next in energy, is a bent rhombus of berylliums above a pair of germaniums, forming a bicapped tetrahedron with overall  $C_{2\nu}$  symmetry. Be–Be and Be-Ge distances are similar while Ge-Ge is longer. Isomer C is similar to B with the rhombus of berylliums warped into a more compact tetrahedron. D and E follow in energy; both are square bipyramids with the germanium atoms at the apices and the berylliums forming the square base of the pyramids. Both possess  $D_{2h}$  symmetry, but *D* is elongated along the Ge–Ge axis.

There is a close analogy between isomers A-D of Be<sub>4</sub>Ge<sub>2</sub> and the four isomers identified for Be<sub>4</sub>Si<sub>2</sub>. The forms of the isomers and their energy ordering correspond, and in each case, all four isomers lie within 12 kcal/mol of each other, and their bond lengths and angles are similar. Analogous clusters are to be found among the 13 isomers identified for Be<sub>4</sub>C<sub>2</sub>; however, the energy order is quite different. Among Be<sub>4</sub>C<sub>2</sub> clusters, structures that are planar or partly so and which display strong C-C bonding lie relatively lower in energy.

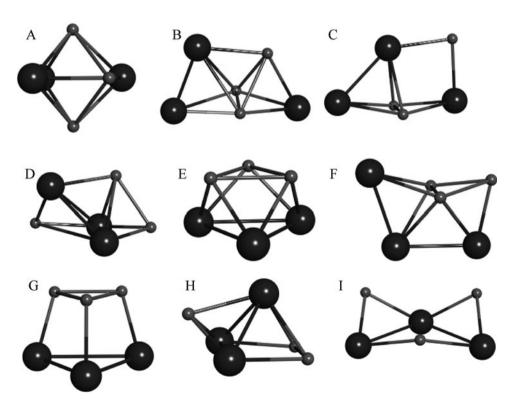



Figure 3. Optimised structures of low-energy Be<sub>3</sub>Ge<sub>3</sub> clusters.

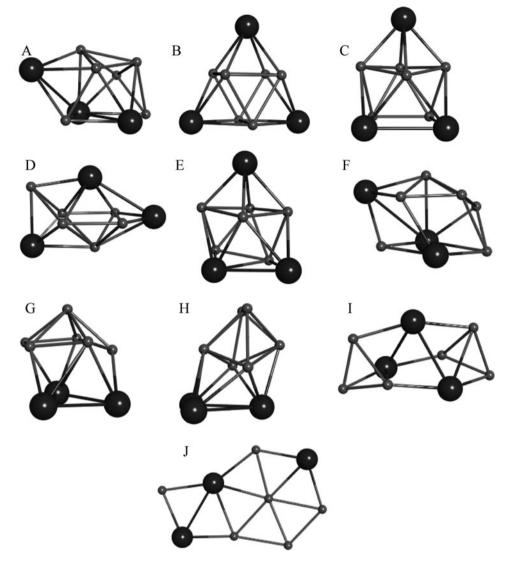
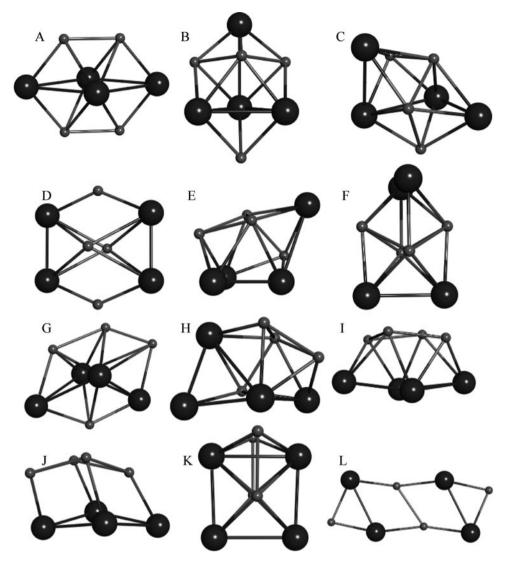
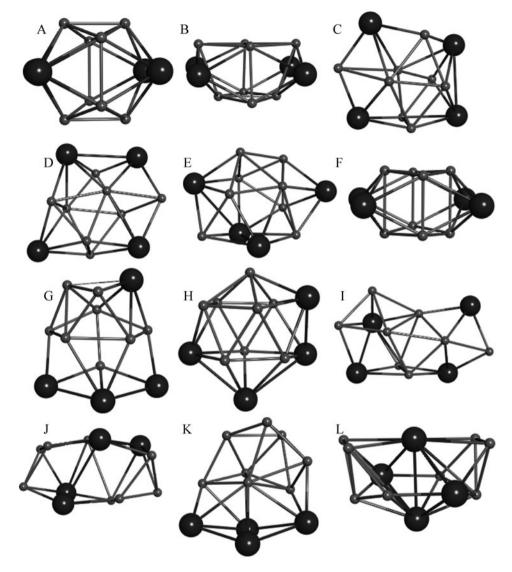



Figure 4. Optimised structures of low-energy Be<sub>6</sub>Ge<sub>3</sub> clusters.

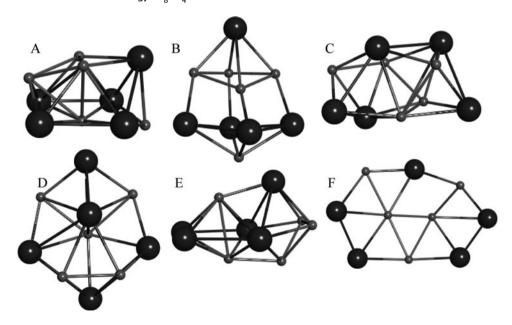
Be<sub>3</sub>Ge<sub>3</sub> and Be<sub>6</sub>Ge<sub>3</sub>. Nine isomers of Be<sub>3</sub>Ge<sub>3</sub> were optimised, the most stable being six of them within 11 kcal/mol of each other. The global minimum energy cluster (Figure 3) is a slightly distorted octahedron, three atoms of each type forming triangles that intersect at right angles. The structure closely resembles the global minimum of Be<sub>3</sub>Si<sub>3</sub> [20], though Ge-Ge distances are longer than Si-Si. This cluster type is also observed in Be<sub>3</sub>C<sub>3</sub> [22], but it is a relatively high-energy structure. Isomers B and C are irregular, asymmetrical cage-like structures. One kcal/mol above C lie the more symmetrical D-F isomers, within one kcal/mol of each other in energy but with distinct geometries. Isomers B, D, and F are bicapped tetrahedrons. Structure E is particularly interesting, formed by triangles, respectively, of Ge and Be, stacked as a trigonal antiprism. It is a relatively expanded structure; Ge-Ge is 2.95 Å and Be-Be 2.15 Å. Higher energy structure G has geometry similar to that of E, but the triangles arranged to form a prism. Structures A, E and G of  $Be_3Ge_3$  have analogues among the  $Be_3C_3$  and  $Be_3Si_3$  isomers.

Ten Be<sub>6</sub>Ge<sub>3</sub> clusters (Figure 4) were found. The lowest energy structure A consists of an irregular square prism capped with a beryllium; it has one degree 6 vertex occupied by a germanium and four degree 4 vertices, forming a 9-vertex *isocloso* structure as it is named in polyhedral borane chemistry [31]. Isomer B is a trigonal prism of berylliums tricapped with germanium atoms, whereas structure C is a capped square antiprism. Each is in the <sup>1</sup>A state and all are within 6 kcal/mol in energy. Isomers B and C exhibit higher symmetry than A, but the three of them have similar Be–Be distances. Clusters A and B are similar to the two most stable clusters of Be<sub>6</sub>C<sub>3</sub> and Be<sub>6</sub>Si<sub>3</sub>. The energy order is followed in the carbides and





Figure 5. Optimised structures of low-energy Be<sub>4</sub>Ge<sub>4</sub> clusters.

reversed in the silicides. Among both the  $Be_3Ge_3$  and the  $Be_6Ge_3$  clusters, substantial transfer of charge from Ge to Be is seen, as much as three-quarters of an electron charge in some isomers. Charge transfer of this magnitude was also observed in the silicide clusters [20] and, given the electron-deficiency of the 2p-subshell of Be, it is likely a source of stabilisation of the three-dimensional clusters.


Be<sub>4</sub>Ge<sub>4</sub> and Be<sub>8</sub>Ge<sub>4</sub>. Twelve low-lying structures of Be<sub>4</sub>Ge<sub>4</sub> are presented in Figure 5. The one planar structure, isomer L, is the highest in energy. Structures A and B are less than 1 kcal/mol apart in energy and both have a ground <sup>1</sup>A state. Isomer A is symmetrical, a Ge square bridged top and bottom by two Be, yielding a hexagonal bipyramid. Isomer B is also a cage hollow structure that can be seen as interlocking triangular pyramids of, respectively, Ge and Be, forming a bicapped octahedron. Neither Be<sub>4</sub>Si<sub>4</sub> nor Be<sub>4</sub>C<sub>4</sub> present structures with these geometries. However, less than 10 kcal/mol above

the global minimum is isomer C, resembling a bisdisphenoid structure which does have a counterpart among the Be<sub>4</sub>Si<sub>4</sub> isomers. Structure D is also a symmetrical hexagonal bipyramid as A, but with beryllium atoms at the apices. Five of the seven Be<sub>4</sub>Si<sub>4</sub> structures identified were found to have counterparts among the clusters of Be<sub>4</sub>C<sub>4</sub>, yet only structure C of Be<sub>4</sub>Ge<sub>4</sub> has a counterpart in the Be<sub>4</sub>Si<sub>4</sub> series and there are none among Be<sub>4</sub>C<sub>4</sub> structures. Though the differences in atomic size and electronic structure between Ge and C might be expected to lead to great differences among their beryllium clusters, the differences between the clusters of Ge and Si with Be are more surprising, given the generally close correspondence between them in some of their sets of clusters.

In the Be<sub>8</sub>Ge<sub>4</sub> global minimum energy cluster, the atoms are arranged at the vertices of a nearly regular icosahedron with  $D_{2h}$  symmetry, also the low-energy structure of Be<sub>8</sub>Si<sub>4</sub>. The structure appears among the



**Figure 6.** Optimised structures of low-energy Be<sub>8</sub>Ge<sub>4</sub> clusters.



**Figure 7.** Optimised structures of low-energy  $\mathrm{Be_5Ge_5}$  clusters.

isomers of Be<sub>8</sub>C<sub>4</sub> but is of relatively high energy. Be<sub>8</sub>Ge<sub>4</sub> isomers B and F are variants of the minimum energy cluster. The four low-energy isomers of Be<sub>8</sub>Ge<sub>4</sub>, all in singlet states, lie within 10 kcal/mol of each other in energy. The same statement is true of Be<sub>8</sub>Si<sub>4</sub>, but in Be<sub>8</sub>C<sub>4</sub> the global minimum energy isomer is some 16 kcal/mol below the next-lowest-energy isomer.

Among the six Be<sub>8</sub>Si<sub>4</sub> clusters optimised, only one, a  $D_{2d}$  structure next in energy to the minimum, does not appear among the Be<sub>8</sub>Ge<sub>4</sub> clusters. Be<sub>8</sub>Si<sub>4</sub> isomer C is similar to Be<sub>8</sub>Ge<sub>4</sub> isomers C and D, Be<sub>8</sub>Si<sub>4</sub> isomer D is similar to Be<sub>8</sub>Ge<sub>4</sub> isomer J and isomers E and F correspond to Be<sub>8</sub>Ge<sub>4</sub> isomers G and E, respectively. The correspondence between the clusters of Be<sub>8</sub>C<sub>4</sub> and those of either Be<sub>8</sub>Ge<sub>4</sub> or Be<sub>8</sub>Si<sub>4</sub> is less straightforward, owing to the preference in Be<sub>8</sub>C<sub>4</sub> for structures in which C–C multiple bonds occur. The two low-energy Be<sub>8</sub>Ge<sub>4</sub> isomers feature Be<sub>8</sub> square prisms with four Ge face caps. The same feature is seen in the low-energy isomers of Be<sub>8</sub>Si<sub>4</sub> but not among the clusters of Be<sub>8</sub>C<sub>4</sub>. Planar clusters or moieties are not present among the germanides, silicides or carbides.

Be<sub>5</sub>Ge<sub>5</sub>. Six stable isomers were found, the same number as were identified for Be<sub>5</sub>Si<sub>5</sub>. All the Be<sub>5</sub>Ge<sub>5</sub> isomers are in the <sup>1</sup>A ground state, and only the highest energy structure F is planar. Fifteen structures were identified for Be<sub>5</sub>C<sub>5</sub>. None of the Be<sub>5</sub>Ge<sub>5</sub> and Be<sub>5</sub>Si<sub>5</sub> clusters are of high symmetry while several striking structures of Be<sub>5</sub>C<sub>5</sub> were found, symmetrical and featuring extensive C-Be-C bridging. Similarities among the three sets of clusters do however present themselves. The low-energy structure of Be<sub>5</sub>Ge<sub>5</sub> has a counterpart in the second-lowest-energy Be<sub>5</sub>C<sub>5</sub> structure. Be<sub>5</sub>Ge<sub>5</sub> isomer C is closely related to Be<sub>5</sub>C<sub>5</sub> isomer D and to the low-energy isomer of Be<sub>5</sub>Si<sub>5</sub>. Be<sub>5</sub>Ge<sub>5</sub> structure D is similar to one of the isomers of Be<sub>5</sub>Si<sub>5</sub> and to the high-energy isomer I of Be<sub>5</sub>C<sub>5</sub>.

Cluster energetics. The stability of each cluster as an atom is added can be estimated from the atomisation energies divided by  $N_{\text{atoms}} - 1$ . This stability alternates between the  $Be_nGe_n$  and the  $Be_{2n}Ge_n$  clusters, being greater for the 1:1 clusters than for the 2:1 counterparts with the same number of Ge atoms. This result may be explained from the fact that each Ge contributes twice the number of valence electrons to each cluster as does each Be. This allows the 1:1 clusters to potentially form more bonds per atom. This behaviour is also seen in the silicides and carbides; however, germanium clusters exhibit higher  $E_{\text{atomisation}}/(N_{\text{atoms}}-1)$  values than silicides and significantly lower values than carbides. For each type of cluster (1:1 or 2:1), stability per atom increases with cluster size. However, the stability increment is greater for the smaller clusters with a tendency to decrease as the cluster size increases. This behaviour is to be expected as the incremental increase should approach zero as cluster sizes approach the bulk solid.

#### 4. Conclusions

The small beryllium germanide clusters examined in this study have much more in common with the beryllium silicides [20] than with the carbides [22]. Be-Ge, Be-Si and Be-Be bonds are similar in length, a fact that allows the germanides and silicides to form clusters of similar form and almost the symmetry of pure Be clusters [24], most often in singlet ground states. The germanides and silicides generally display some significant transfer of electrons in the bonding, from Ge or Si to Be. Charge transfer stabilises moieties within the clusters in which Ge or Si act as capping atoms on a face of Be atoms. Such formations are important in forming stable silicide cage clusters [21], and it is therefore to be expected that similar germanide cages will also form. Furthermore, in some clusters, Ge is found to transfer more charge to electrondeficient Be than does Si, and may therefore stabilise clusters with the face-capping feature more than does Si. The carbides, on the other hand, show multiple bonding among C atoms, a greater tendency to planar structures, more triplet ground states and more nearly pure covalent bonding. C does not act to cap Be faces; the C-Be bond length is too short for such structural motifs to develop.

The cluster stability measured as  $E_{\text{atomisation}}/(N_{\text{atoms}} -$ 1), is greater for the 1:1 Be:Ge clusters than for the 2:1, a result that may arise from the fact that each Ge contributes with more valence electrons to each cluster than Be does, allowing clusters with lower Be:Ge ratio potentially to form more bonds per atom. In general, the highest atomisation energies for similar clusters are found in the carbides, followed by the germanides, and the silicides display the lowest. The reason the germanides are generally more stable than the silicides likely resides in the ability of Ge to donate more charge to the Be atoms than does Si. Whether this property also leads to improved stability of beryllium germanide cage clusters is a question worthy of inquiry, but it is clear from the results presented here that  $Be_nGe_n$  and  $Be_{2n}Ge_n$  clusters have the potential to produce interesting cage-like structures.

#### **Disclosure statement**

No potential conflict of interest was reported by the authors.

#### **Funding**

The authors are members of the scientific researcher career of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET).



#### References

- [1] G. Köhl, Zeitsch Naturforsch A 9, 913 (1954).
- [2] M.F. Jarrold and J.E. Bower, J. Chem. Phys. **96**, 9180 (1992).
- [3] A.A. Shvartsburg, B. Liu, Z.Y. Lu, C.Z. Wang, M.F. Jarrold, and K.M. Ho, Phys. Rev. Lett. 83, 2167 (1999).
- [4] J. Wang, G. Wang, and J. Zhao, Phys. Rev. B 64, 205411 (2001).
- [5] T.B. Tai and M.T. Nguyen, J. Chem. Theory Comput. 7, 1119 (2011).
- [6] G. Gopakumar, P. Lievens, and M.T. Nguyen, J. Chem. Phys. 124, 214312 (2006).
- [7] G. Gopakumar, P. Lievens, and M.T. Nguyen, J. Phys. Chem. A 111, 4353 (2007).
- [8] X.J. Hou, G. Gopakumar, P. Lievens, and M.T. Nguyen, J. Phys. Chem. A 111, 13544 (2007).
- [9] G. Gopakumar, V.T. Ngan, P. Lievens, and M.T. Nguyen, J. Phys. Chem. A 112, 12187 (2008).
- [10] G. Gopakumar, X. Wang, L. Lin, J. De Haeck, P. Lievens, and M.T. Nguyen, J. Phys. Chem. C 113, 10858 (2009).
- [11] M.M. Uţă and R.B. King, J. Coord. Chem. 68, 3485 (2015).
- [12] S. Shi, Y. Liu, C. Zhang, B. Deng, and G.A. Jiang, Comput. Theor. Chem. 1054, 8 (2015).
- [13] L. Feng and S.C. Sevov, Inorg. Chem. 54, 8121 (2015).
- [14] N.I.A.Z. Shanawer, S. Slimani, M.A. Badar, G. Subhan, and M.A. Khan, Sensors Transducers 189, 162 (2015).
- [15] O. Kysliak and A. Schnepf, Dalton Trans. 45, 2404 (2016).
- [16] W. Qin, W.C. Lu, L.H. Xia, L.Z. Zhao, Q.J. Zang, C.Z. Wang, and K.M. Ho, AIP Adv. 5, 067159 (2015).
- [17] Y.M. Hung, G.M. Ho, and Z.F. Zhang, Comput. Theor. Chem. 999, 154 (2012).
- [18] M.M. Uţă and R.B. King, J. Phys. Chem. A 116, 5227 (2012).
- [19] R.B. King, I. Silaghi-Dumitrescu, and M.M. Uţă, J. Phys. Chem. A **115**, 2847 (2011).
- [20] R.C. Binning and D.E. Bacelo, J. Phys. Chem. A **109**, 754 (2005).

- [21] S.E. Fioressi, D.E. Bacelo, and R.C. Binning, Chem. Phys. Lett. 537, 75 (2012).
- [22] S.E. Fioressi, R.C. Binning, and D.E. Bacelo, Chem. Phys. 443, 76 (2014).
- [23] J. Zhao, L. Ma, D. Tian, and R. Xie, J. Comput. Theor. Nanosci. 5, 7 (2008).
- [24] M.K. Beyer, L.A. Kaledin, A.L. Kaledin, M.C. Heaven, and V.E. Bondybey, Chem. Phys. 262, 15 (2000).
- [25] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220, 671 (1983).
- [26] D.E. Bacelo, R.C. Binning, and Y. Ishikawa, J. Phys. Chem. A 103, 4631 (1999).
- [27] A.D. Becke, J. Chem. Phys. 88, 1053 (1988).
- [28] C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B **37**, 785 (1988).
- [29] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision E.01 (Gaussian, Inc., Wallingford, CT,
- [30] L.A. Curtiss, P.C. Redfern, K. Raghavachari, and J.A. Pople, J. Chem. Phys. 114, 108 (2001).
- [31] A. Lupan and R.B. King. Inorg. Chem. 50, 9571 (2011).