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The micromagnetic domain structure of MnAs films gave place to an intense research activity in the

last few years due to its potential application in magneto-electronic devices such as domain-wall

track memories and logic circuits. These applications require a full knowledge of miniaturization

effects on the magnetic properties of the material. In this work, X-ray photoemission electron micros-

copy has been used for imaging magnetic domains in lithographically fabricated MnAs ribbons,

addressing the dependence of the domain configuration on film thickness and ribbon width. Our

experiments show a transition from head-on to regular stripe domains below a critical width/thick-

ness ratio wc� 6. Micromagnetic simulations suggest that this transition is correlated to the magnetic

structure of the surface plane. Depending on the ribbon width and thickness, the magnetic configura-

tion is shown to evolve from flux-closure domain structure to a state of almost homogeneous magne-

tization, observed for narrower ribbons. The evolution of the domain structure, magnetic fraction,

and magnetization with temperature has been studied across the ferromagnetic/paramagnetic transi-

tion. Our experiments show that the magnetic configuration in ribbons exhibits higher stability to

temperature variations than in as-cast films. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961501]

I. INTRODUCTION

The potential of magnetic semiconductors for develop-

ing magnetocaloric1 and spintronic2–4 devices has recently

spurred the research activity in MnAs films. Characterizing

and understanding the magnetic configuration of MnAs

mesoscopic structures have thus become an essential clue for

device design.

Bulk MnAs5 exhibits a first-order magneto-structural

transition above room temperature that drives the system from

a hexagonal ferromagnetic (FM) phase (a) to an orthorhombic

paramagnetic phase (b). In MnAs thin films, the a and b
phases coexist over a rather wide temperature range below

TC.6,7 The crystal orientations of film and substrate determine

the geometrical arrangement of the a and b phases in the

coexistence regime (CR). In the case of MnAs/GaAs (001)

and other ½1�100� oriented films, the a and b phases form a

stripe pattern where ferromagnetic (FM) ridges alternate with

paramagnetic grooves along the MnAs [0001] direction

(c-axis). The period k of the stripes and the height h of the

ridges increase almost linearly with the film thickness, t.8

The strong crystal-field interaction arisen in the MnAs

hexagonal structure produces a large uniaxial magneto-

crystalline anisotropy (MC),9 with the hard-axis oriented

parallel to [0001]. The MnAs anisotropy constant, Kuniax

� 0.7 MJ/m3, is comparable to those of permanent magnets.10

The magnetic properties of MnAs films are highly sensitive to

film thickness and substrate orientation.11 Extensive work has

been done to characterize the domain structure of these

films.12 A variety of domain types can be observed as a func-

tion of temperature in MnAs/GaAs(001) films, depending on

the thickness and the a-stripe width.13 The large MC anisot-

ropy and demagnetizing fields ensure that all magnetic

domains are aligned along the ½11�20� easy axis (a-axis) at the

surface of thin films for t> 10 nm.14 The simplest domain

configuration observed in the demagnetized state in a-stripes

are slabs oriented in both sense of the easy direction along the

magnetic stripe, having the same width of the stripes. In the

demagnetized state, the simplest domains observed in a-

stripes are slabs oriented in both sense of the easy direction

along the magnetic stripe, having the same width of the

stripes. Other domains are composed of two or three head-on

subdomains, all oriented along the easy direction within the

ferromagnetic stripe. Due to the effect of demagnetizing

fields, the out-of-plane direction is an intermediate9 axis, and

consequently, domain reversal exhibits 180� Bloch walls. X-

ray magnetic circular dichroism photoemission electron

microscopy (XMCD-XPEEM) confirmed the domain struc-

tures observed by magnetic force microscopy (MFM) while

providing a deeper insight into the properties of the patterns.15

MnAs properties are affected by vertical confinement as

demonstrated by studies performed on thin films. The change

of the domain patterns with temperature in the a–b phase

coexistence regime (CR) has been shown to be remarkable.16

Engel-Herbert and Hesjedal examined the evolution of
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MnAs domain structure with film thickness, finding a transition

from three-dimensional flux-closure to single-domain states for

films thinner than 120 nm.14 A recent study performed on

MnAs nano-disk arrays showed that the CR is affected by the

structures’ size as it approaches the nanoscale.17 Size effects

were also reported in other studies on the magnetic properties

of MnAs micro and nanoribbons.18,19 Despite these efforts, it is

not yet possible to draw a complete picture of the ribbon mag-

netism. An exhaustive characterization complemented by simu-

lations is clearly necessary to reveal the magnetic domain

characteristics in the FM phase and also at the CR.

Here, we investigate the influence of the lateral and verti-

cal dimensions of MnAs ribbons on their magnetic domain con-

figuration by means of XMCD-XPEEM imaging. We analyze

the size and shape of domains as a function of the transverse

cross-section dimensions and crystallographic orientation. One

of the aims of our work is to evaluate the formation of regular

patterns in the ribbons, depending on the parameters such as

aspect ratio, thickness, and ribbon orientation. In fact, the char-

acteristics are particularly important for future applications in

Domain Wall (DW) based memory devices.

Moreover, imaging the ribbon domain structure through

the magnetic phase transition makes it possible to simulta-

neously determine the evolution of the a phase fraction and

of the magnetization as a function of temperature. The experi-

ments are complemented by micromagnetic simulations,

which give a deeper knowledge of three-dimensional domains.

II. EXPERIMENTAL DETAILS

Ribbons of different size and crystallographic orienta-

tion were prepared by e-beam lithography followed by Ar

ion milling on 50 nm and 30 nm thick MnAs films grown

by molecular beam epitaxy (MBE) on GaAs(100) substrates

following the procedure described previously.9 The films

were capped with a thin GaAs layer to avoid oxidation. Prior

to the XMCD-XPEEM imaging, the samples were decapped

in situ by Ar-etching. After sputtering, the samples were

heated in UHV up to about 350 �C, in order to restore crys-

talline order. To avoid partial lifting of the MnAs films, the

removal of the capping GaAs layer was monitored by the

x-ray absorption intensity at the MnL3 edge.

The ribbons were all 20 lm long, with their long axis

either parallel or perpendicular to the MnAs [0001] direction

(see Fig. 1). The ribbons width w varied from 0.2 lm to

5 lm. The samples were indexed as Sw–PA(PE)–t where

PA(PE) indicates the parallel (perpendicular) orientation of

l with respect to [0001] and t is the thickness of the films.

Reference 30 nm and 50 nm thick MnAs/GaAs(100)

films were characterized using a superconducting quantum

interference device magnetometer (SQUID). The magnetiza-

tion of these samples lay in the plane of the films with the

hard-axis oriented along the MnAs [0001] direction.

The XMCD-PEEM measurements were carried out using

the SPELEEM microscope at the undulator beamline

Nanospectroscopy20 of the Elettra storage ring in Trieste, Italy.

This instrument can perform x-ray absorption spectroscopy

(XAS) and XMCD-PEEM measurements, achieving routinely a

lateral resolution of �30–40 nm.21 The XMCD images shown

here were obtained by acquiring secondary photoemission

images at the Mn L3 edge with opposite photon helicity and

performing the following image arithmetic, pixel by pixel:

IXMCD¼ (I�� Iþ)/(I�þ Iþ), where I� and Iþ correspond to the

intensity of the images acquired with negative and positive hel-

icities. In our measurements, the MnAs samples were positioned

onto a Mo plate, which was kept in close contact with a Mo ring

onto which a C type thermocouple was spot-welded. The sam-

ple temperature was varied in the range from�10 �C to 70 �C.

A magnetic field of 2.5 kOe applied parallel to the easy-

axis was employed to saturate the samples at low tempera-

ture. Once saturated, the samples were heated until reaching

the paramagnetic state and cooled down again to the ferro-

magnetic state to study the magnetic domain structures in

both saturated and remnant states. The micromagnetic simu-

lations were performed using the MuMax3 package.22 The

simulation parameters for MnAs were taken from Ref. 14:

exchange stiffness constant A¼ 1� 10�11 J/m, saturation

magnetization MS¼ 8� 105 A/m, and magnetocrystalline

anisotropy constant K¼�7.2� 105 J/m3. The calculations

were performed at zero temperature, not taking into account

the effects of thermal fluctuations.

III. RESULTS AND DISCUSSION

A. Magnetic domain configuration

1. Lateral and vertical confinement

XPEEM images of the typical domain structure of the rib-

bons are shown in Fig. 2, as a function of the ribbon width and

orientation. In all cases, the domains are oriented along the

FIG. 1. (a) Layout of the micro-

fabricated MnAs ribbons patterned

along mutually perpendicular crystal-

lographic axes and (b) AFM scan of a

S5-PE-50 ribbon.
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MnAs easy-axis, pointing either in the direction parallel

and antiparallel to it (black and white contrast, respectively).

The type of the domains observed in thin ribbons is different

from those found in thick films (t> 100 nm). Wedge shaped

domains elongated along the easy-axis direction were observed

at temperatures below Tc for wider 30 nm and 50 nm thick-

ribbons. This kind of pattern is known to develop in thin ferro-

magnetic films with strong uniaxial in-plane anisotropy in

order to reduce the magnetic charge density when the magneti-

zation of two adjacent domains meets head-on.23 A transition

between head-on domains and a regularly stack of open stripe-

domain states is observed as the ribbons become narrower.

The boundary between both configurations is set by the ribbon

aspect ratio w/t. A detailed discussion of this result will be

given in Section III A 2. The observation of domain walls is

limited by the XPEEM lateral resolution.

The analysis of the domain sizes and the wedge angle

in wide ribbons, w/t> 10, provides additional information

about the domain structure. A qualitative look at the images

shows that thinner ribbons have a larger number of domains

together with a larger distribution of sizes and wedge angles

(Fig. 3). A quantitative description of the domain size distri-

bution along the ribbons was deduced from analysis of

the frequency histograms of the domain width, D, measured

along the [0001] direction (Fig. 4(a)). Both Sw–PA and Sw-PE

ribbons present similar characteristics. The average domain

width hDi for ribbons of different widths and thicknesses is

shown in Fig. 4(b). As can be appreciated by a visual inspec-

tion of the XPEEM images, the mean width hDi of the 50 nm-

thick ribbons is larger than those of 30 nm-thick ones, and

increases from 0.17 lm to 0.56 lm with the ribbon width.

Instead, in 30 nm-thick ribbons hDi remains nearly constant

at 0.2 lm and exhibits a wider distribution size. The broader

ribbons behave as continuous thin films. As their thickness

decreases, they exhibit a larger split of domains whose aver-

age size decreases.24,25 These results are understood by noting

that in these ribbons, the domain size is smaller than the rib-

bons width but larger than their thickness.

The angle at the edge of the head-on domains (Fig. 4(a))

has been also examined and plotted in Figs. 4(c) and 4(d) for

Sw-PA and Sw-PE samples, respectively. The patterned area is

associated to h2/i6 r intervals, evaluated for each ribbon’s

width and thickness. The \\\\ (///) pattern corresponds to 30 nm-

thick (50 nm-thick) structures. As can be noticed from the

image, the wedge angles depend on the ribbon thickness. While

the average h2/i remains almost constant around h2/i30¼ 25�

down to w¼ 1 lm for 30 nm-thick ribbons, it decreases almost

linearly to zero for the thicker ones. Wedge boundaries are

formed in order to reduce the magnetostatic energy and mag-

netic charge density. The saw-tooth angle 2/ is determined by

the competition between the domain wall and dipolar energies.

For thin films,23,24 2/¼ cw/4MS.t where cw is the domain wall

energy and MS is the saturation magnetization of the sample.

The type of domain walls is similar for all the samples accord-

ing to micromagnetic simulations (see Section III A 2) so we do

not expect any functional change of cw with the anisotropy and

the exchange stiffness constants. The variation of the wedge

angle with the ribbons width for 50 nm-thick structures would

mean that the effective anisotropy changes as w varies. Our

simulations indicate that the width of the walls varies between

50 nm and 80 nm in Sw-PA–50 and Sw-PA–30 samples, respec-

tively, which is comparable to the film thickness and is in

agreement with Shippan Dennis and coworkers.25,26 The larger

FIG. 2. XPEEM images of (a) S5-PE-30, (b) S1-PE-30, (c) S0.2-PE-30, (d) S5-PA-30,

(e) S1-PA-30, and (f) S0.3PA-30, measured at 25 �C in remnant state. Arrows

indicate [0001] direction. Field of view: 5 lm.

FIG. 3. XPEEM images of (a) S5-PA-50 and (b) S5-PA-30, measured at room

temperature in remnant state.

FIG. 4. (a) Details of a XPEEM typical image corresponding to a S5-PA-30

MnAs ribbon measured at room temperature where the angle at the edge of

head-on domains, 2/, and the domain size D are indicated. (b) Domain size

D as a function of ribbons width w measured along the c-axis for (�)

Sw-PA-50 and (�) Sw-PA-30 ribbons. (c and d) 2/ angle distribution as a

function of the ribbons width w, for (c) Sw-PA and (d) Sw-PE ribbons. Green

\\\ (magenta ///) shaded areas correspond to 30 nm (50 nm)-thick ribbons.
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effect of lateral confinement on the wedge angle and domain

sizes in 50 nm-thick larger ribbons would indicate a critical size

of the structures. Below this film thickness, the effect of surfa-

ces would dominate the magnetic domain properties and so the

variation of the size parameters does not affect significantly.

2. Dependence on the aspect ratio w/t

The shape and size of the domains do not change with w/t
for ribbons aligned perpendicular to the MnAs c-axis (Sw-PE).

Instead, in Sw-PA the wedge-shape (Fig. 2(d)) domains turn

into a regular stacking of anti-parallel domains with homoge-

neous magnetization across the width of the ribbons and ori-

ented parallel to the easy-axis below a critical aspect ratio w/t
� 6, as seen in the experiments (Figs. 2(e) and 2(f)). In order

to get a deeper understanding of our experimental results,

micromagnetic simulations23 were performed on a large vari-

ety of SPA samples: thicknesses varying from t¼ 10 nm to

160 nm and widths ranging from w¼ 10 nm up to 1000 nm.

The surface magnetic domain configuration measured by

XMCD-PEEM is related to the x-y plane view magnetic con-

figuration of the ribbons.20 Our simulations reproduce the pro-

gressive variation of the domain arrangement with w/t
observed in our measurements and provide additional informa-

tion about the domain structure phases for 0�w/t� 35 and

10 nm� t � 160 nm. The domains were classified into six dif-

ferent phases, identified from I to VI (Figure 5(a)), taking into

account the domain shapes (Figure 5(b)), the magnetization

uniformity along the ribbons thickness, y-z plane (Figure 5(c)),

and domain wall types in the x-z easy plane (Figure 5(d)).

The competition of the strong uniaxial anisotropy of

MnAs together with the shape anisotropy of the structures

FIG. 5. (a) Phase diagram of MnAs Sw-PA-t ribbons of various thicknesses (from t¼ 10 nm to 160 nm) and w/t ranging from 1 up to 35. The dots correspond to

the simulated configurations. The samples studied experimentally are indicated by squares. Boundaries between different colored regions separate different

domains and/or DW structures (I!VI). (b) Surface magnetization; (c) domain structure in the cross-sectional y-z plane of ribbons with different thickness—

increasing from bottom to top; and (d) examples of different domain wall types observed along the x-y easy plane.

093905-4 Steren et al. J. Appl. Phys. 120, 093905 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  168.96.66.145 On: Wed, 07 Dec 2016

18:09:23



determines that, for w/t	 2, the magnetization is aligned

along the x-axis (for PA geometry, along the ribbons width).

The DW-type depends not only on the w/t ratio but also

on the structures’ thickness. As reported in Ref. 20 for

thin films, three-dimensional arrangement of magnetic states

(Fig. 5(a)-region I), i.e., Landau, diamond, and double-

diamonds, is observed for 2�w/t� 4 and thickness varying

from 160 nm down to 80 nm. In this region, the DWs are typ-

ically rounded in the x-y plane, separating head-on domains.

The development of these kinds of flux closure structures

allows to reduce the demagnetizing energy arising when two

domains meet head on, thus stabilizing the straight bound-

aries and wedge structures on the surface of the sample (see

Fig. 5(b-I) and upper image of Fig. 5(c)). As the width of the

structures broadens (Fig. 5(a)-region II), the shape anisot-

ropy forces the magnetization to lie uniformly in the plane of

the ribbons. The boundaries between domains are still

rounded at the surface of the ribbons and tilted along the

z-axis (see Fig. 5(b-II) and second image of Fig. 5(c) from

the top). The DWs at the cross-sectional x-z easy plane are

composed of Bloch lines with vortex substructures that serve

to reduce stray fields26 (Fig. 5(d)). In broad but thinner rib-

bons, the magnetic domains become wedges in the x-y plane

(Fig. 5(a)-region III). This kind of wedge structure was

observed by XPEEM for w/t� 150 to 20 and corresponds to

images shown in Figs. 2(a), 2(b), 2(d), and 2(e). As the thick-

ness decreases, the DWs straighten along the x-direction

(Fig. 5(a)-region IV; Fig. 5(b); Fig. 5(c) third image from

the top) and become completely aligned for 6�w/t� 10

(Fig. 5(a)-region V; Fig. 5(a); Fig. 5(c) image at the

bottom)). These structures correspond to the experimental

images in Figs. 2(c) and 2(f): the ribbons present simple

domains. For w/t� 1 (Fig. 5-region VI), there is a coexis-

tence of in-plane and out-of-plane magnetized domains, sep-

arated by Bloch and vortex DW.

Despite the fact that both the domain shape and DW-type

are similar for 50 nm and 30 nm-thick structures, subtle

differences are observed in the micromagnetic simulations.

However, the phase boundaries between III, IV, and V for

samples with these thicknesses are essentially defined by the

w/t ratio. The DWs are composed of Bloch lines alternated

with different substructures (Fig. 5(d)). Walls and lines are of

comparable sizes for S500-PA–50 ribbons, while the Bloch lines

are ultrathin for S500-PA–30 ones. As the width of the samples

is reduced, this tendency is kept. For 2�w/t� 6 and thin struc-

tures, the DWs broaden and so the Bloch lines. In this aspect

ratio range, the effective demagnetizing factor Nx decreases

to 0.5, affecting notably the orientation of the magnetization

within the domain. Progressively, the out-of-plane component

of the magnetization increases with decreasing w/t.

B. Temperature dependence of the sample
magnetization and ferromagnetic fraction

As can be seen in Fig. 6, the remnant micromagnetic

structure does not show significant changes as the tempera-

ture increases from low temperature to TC. The XPEEM

images of the thicker ribbons show a progressive loss of

magnetic contrast as the samples are heated from low

temperature, but the overall domain pattern within the a
stripes is preserved even at high temperatures. No effect was

observed as the temperature was increased, even for a

b phase width of the order of �250 nm close to TC. Ribbon

domains seem to be more stable than those of films, where a

progressive decoupling is observed together with a change of

the domain pattern19 as the ferromagnetic stripes become

narrower and separated by b ones.

We were not able to resolve the presence of b-stripes

in the thinner ribbons (not shown). However, an anisotropic

behaviour related to the existence of stripes was appreciated

in transport measurements and reported recently.27 It has to

be noted that according to Ref. 8, the a/b period should be

ke¼ 144 nm and the height of the FM ridges h¼ 0.3 nm for

t¼ 30 nm films. Moreover, an earlier work28,29 showed that

the long-range order of a/b stripes along the films is lost

for films thinner than 50 nm, and only bunches of short

stripes are observed by MFM in saturated MnAs films.

Hence, this lack of long-range order could explain the diffi-

culty of observing any feature of the a/b stripes array in

XPEEM images of SwPA(PE)-30 ribbons.

We have determined from the XPEEM measurements the

variation of the a fraction of the MnAs phase, n, with tempera-

ture for the S5PAR–50 sample (Fig. 7). This parameter was

directly estimated from the images, calculating the surface

occupied by magnetic regions normalized to the total sample

surface. The evaluation of the n-temperature dependence was

done by heating the samples from both the saturated and rem-

nant states, respectively. The ferromagnetic fraction decreases

above 7 �C, following a T2 law until�30 �C and drops towards

the Curie temperature (TC� 43 �C), although the progressive

decrease in the magnetic contrast makes it difficult to deter-

mine the phase fraction when approaching the TC. The behav-

ior reported in this manuscript differs from the results obtained

in thin films by X-ray diffraction spectroscopy.9 The authors

found a quasi-linear dependence of n with temperature in a

narrow temperature interval (DT� 10 K). We believe that

the qualitative difference of the temperature behavior of n lies

on the fact that the phase coexistence is examined at different

stages and with a different resolution. Moreover, while

FIG. 6. XPEEM images of the S5-PA-50 ribbons measured in saturated

(a)–(d) and remnant (e)–(h) states at different temperatures: (a) T¼�10 �C,

(b) T¼ 22 �C, (c) T¼ 32 �C, (d) T¼ 48 �C, (e) T¼ 20 �C, (f) T¼ 32 �C,

(g) T¼ 40 �C, and (h) T¼ 48 �C. Field of view: 10 lm.
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XPEEM is only sensitive to the sample surface, XRD gives an

average measure over the bulk of the sample.

The temperature dependence of the magnetization of the

ferromagnetic phase has been analyzed by quantifying the

change of magnetic contrast of a zones as a function of tem-

perature. In Fig. 8, the magnetization vs. temperature curve

extracted from the XPEEM images is shown for the 50 nm

sample. As a reference, the magnetization of 50 nm thin films

is plotted in the inset. The comparison between the magneti-

zation of the films and the ribbons shows differences in the

behavior of the demagnetization process. In the thin film,

the curve is quite similar to the bulk material, governed by

the ferro-paramagnetic first-order phase-transition. It has to

be noted that the magnetization curves, measured by

SQUID, account not only for the change of the magnetiza-

tion of the a phase with temperature but also for the decrease

of the a phase fraction with increasing temperature.

IV. CONCLUDING REMARKS

We used XPEEM to image the magnetic domain struc-

tures of rectangular micro and nano ribbons lithographed in

30 nm and 50 nm thick MnAs films confined along different

crystallographic axes. The direct analysis of the shape

(wedge angle) and size of the magnetic domains suggests

that there is a critical thickness below which the surface

effects would dominate over the magnetic domain properties

and so the variation of the size parameters does not affect the

domains’ size and shape significantly. On the one hand, the

magnetic domains in samples confined along the c-axis do

not show significant change when their size is reduced. On

the other hand, samples confined along the a-axis present a

transition from head-on domains to regularly stacked rectan-

gular domains for the aspect ratio w/t� 6. Our simulations

showed that this transition is correlated with the formation

of flux closure structures on the x-y surface of the ribbon

that allow to decrease the magnetostatic energy in head-on

domains when the ribbons are wide enough. This behavior

is ascribed to the balance between shape and magneto-

crystalline anisotropies. The magnetic domains’ shape and

size are stable with respect to temperature. We have shown

that it is possible to control the development of regular

domain patterns in MnAs ribbons by a careful choice of their

width, thickness, and orientation.

Finally, the change of ferromagnetic fraction and mag-

netization with temperature was estimated by analyzing

independent parameters, showing that magnetic domains’

shape and size are stable with respect to temperature and that

the magneto-thermal history of the sample plays a role in the

development of the coexistence regime.

In summary, we have shown that the MnAs mesoscopic

structures exhibit a rich variety of magnetic domain struc-

tures that can be tuned by adjusting their size and orientation.

These characteristics are extremely promising for its future

application in DW-based devices, such as memories and

logic circuits.
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