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Abstract

Purpose: An adequate understanding of bone structural properties is critical for predicting

fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture

prevention treatments. In this work we aim to develop multi-resolution image analysis techniques

to extrapolate high-resolution images predictive power to images taken in clinical conditions.

Methods: We performed multifractal analysis (MFA) on a set of 17 ex-vivo human vertebræ

clinical CT scans. The vertebræfailure loads (FFailure) were experimentally measured. We com-

bined Bone Mineral Density (BMD) with different multifractal dimensions, and BMD with multi-

resolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict

FFailure. Furthermore we obtained short- and long-term precisions from simulated in-vivo scans,

using a clinical CT scanner. Ground-truth data—high resolution images—was obtained with a

High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner.

Results: At the same level of detail, BMD combined with traditional multifractal descriptors

(Lipschitz-Holder exponents), and BMD with monofractal features showed similar prediction pow-

ers in predicting FFailure(87%, adj. R2). However, at different levels of details, the prediction

power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is

that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting

multifractal curves, predicts 90% (adj. R2) of FFailure.

Conclusions: Compared to monofractal and standard bone measures, multifractal analysis cap-

tured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the

statistics of multifractal curves can be used in several other contexts, facilitating further research.
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I. INTRODUCTION

Understanding the internal micro-structural properties of bone is critical for monitoring

osteoporosis and other related bone diseases. This is especially difficult in trabecular bone of

hips and vertebrae, which have rich micro-structures. Previous researches in bone strength

assessment have addressed bone bio-mechanical properties [1], the osseus growing process

[2, 3], and bone aging [4]. Also, some works applied different technologies in bone imagery

acquisitions, such as ultrasound [5]. Other works focused on modeling the different forces

acting on the bone structure, to more accurately predict conditions of bone fracture [6, 7].

Some authors proposed methods for characterizing the internal trabecular structure fol-

lowing Euclidean geometry since the 1980s [8, 9]. In the late 1990s, true 3D model inde-

pendent methods arose [10, 11]. Since then, the focus moved to the accurate estimation of

physical entities from blurry in-vivo images. The bone research community extended struc-

tural parameters using non-Euclidean fuzzy geometry [12], soft classification approaches

[13, 14] or methods based on the fractal dimension [15, 16].

The literature associates bone health with several standard measures [17]. In particular,

Bone Mineral Density (BMD) is the most common quantity used to diagnose osteoporosis

and other bone health conditions. BMD is able to predict almost 69% (adj. R2) of the bone

failure load [18]. However, combining BMD with other imaging biomarkers, e.g., trabecular

thickness or structure model index, has not been able to add significant predictive informa-

tion to FFailure using High Resolution Quantitative Computed Tomography (HRQCT) [16].

On the other hand, fractal theory can be a valuable tool for feature characterization and

analysis of the porous nature of the trabeculae. It allows assessment of several properties

such as scale invariance, self-similarity, porosity, rugosity and texture [19]. Monofractals

have been successfully applied to analyze bone microstructures [15, 20]. Recent results

showed that a model based on BMD with two fractal parameters could explain 89% (adj.

R2) of FFailure under clinical HRQCT resolution [16].

In other image processing contexts, multifractal analysis (MFA) demonstrated to provide

robust feature extraction, yielding better classification performances compared with the

traditional monofractal approach [21–23]. Nevertheless, so far there are just a few works

focused on MFA of osseus’ porous structures. Also, most authors implemented it only for 2D

images [24, 25]. MFA computes a richer set of descriptors, either in the form of a generalized

This article is protected by copyright. All rights reserved. 



dimension function or as a singularity spectrum. MFA intends to extract the entire set of

fractal dimensions, assuming that fractal-like objects are a superimposition of distinct fractal

sub-structures arising at different spatial scales.

In this work we applied 3D MFA to actual ex-vivo trabecular bone images, exploring

MFA capabilities together with other parameters in predicting FFailure. Preliminary results

in the elaboration of robust linear models predicts 92% (adj. R2) of the bone FFailure under

HRQCT imaging conditions. These results contributes to the most relevant FFailure analysis

techniques in the literature [16, 26]. The main contributions of this work are twofold:

1– the demonstration that multifractal analysis of the trabecular bone produces a richer

characterization of the mechanical properties with respect to non-fractal and mono-fractal

counterparts, and 2– the introduction of a new method for multifractal analysis in multi-

resolution bone imagery, which achieves a higher predictive power for fracture risk than

previous mono-fractal and non-fractal parameters.

II. MATERIALS AND METHODS

In this section we briefly describe the bone datasets, the mathematical foundations un-

derlying our image analysis techniques, and their computational implementation.

A. Sampled data

We conducted two experiments: The first one to obtain parameter correlations and

FFailure prediction models. The second one to determine parameters robustness (short- and

long-term precision). The BioAsset consortium [27] produced the first dataset, consisting of

82 ex-vivo vertebrae scans from 33 patients who suffered from osteoporosis (81.2 ± 7.1 y).

The donors were females aged between 60 and 90, diagnosed with postmenopausal osteo-

porosis. The diagnosed was made from a T-score of −2.5 or less as assessed by DXA. Each

spinal specimen contained three vertebrae T11, T12 and L1 and their intervertebral discs.

The vertebrae were scanned with a clinical CT scanner (Siemens Somatom 64, Siemens AG

Erlangen, Germany) applying a standard HRQCT protocol (360 mAs, 120 kVp, voxel size

188×188×300µm3). Density calibration (mg K2HPO4/cm
3) included a calibration phantom

(Mindways, Austin TX, USA) underneath the vertebral specimens. After that, vertebrae
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were segmented using a Pacman-shaped volume of interest (VOI). The segmentation was

performed with a binary threshold at an average bone volume fraction (BV/TV) of 25%.

The T12 maximum failure load was experimentally collected from a subset of 20 patients.

The spinal segments were fixed to a servohydraulic testing machine (Bionix 858.2, MTS

Systems, Eden Prairie, MN, USA). Once preconditioned, a quasistatic uniaxial compres-

sion (6 mm/min) with a 4 deg flexion angle was applied until middle vertebral body (T12)

failed. After excluding those with an insufficient size, seventeen T12 vertebrae remained for

computing correlations between FFailure and HRQCT parameters. Fig. 1 shows the setup

of a failure load measurement and a computational HRQCT representation of the vertebrae

highlighting the VOI. We used all 82 vertebrae samples to establish parameter correlations,

but only 17 to obtain FFailure linear models.

For the second experiment, we used five human T12 vertebral specimens from human ca-

davers. After removing surrounding soft tissue and marrow the vertebrae were embedded in

epoxy resin. The vertebra phantoms were repeatedly scanned on a clinical CT scanner under

simulated in-vivo conditions. Two protocols, a high-resolution (355 mAs) and a standard

resolution (140 mAs) were applied, both with 120 kVp and voxel size 188× 188× 300µm3.

Three repetitions were performed with image noise as found under in-vivo conditions (ab-

domen phantom) and two with increased image noise (abdomen phantom with additional

body ring). A cylindrical VOI was placed within the trabecular region of all vertebrae,

sub-divided into four segments (volume 1.1− 1.7cm3, 1.02 · 105− 1.64 · 105 voxels) and auto-

matically registered between all repeated scans. After applying a normalization of the noise

spectrum, using a local micro-structural calibration [28], the segmentation was performed

at a threshold with average BV/TV = 25%. For reference purposes, HRpQCT scans of the

vertebra phantoms were obtained (XtremeCT I, Osteoporose Praxis Neuer Wall, Hamburg,

Germany, standard patient protocol), registered, calibrated and segmented with a threshold

with average BV/TV= 10%. Further details of both experiments can be found elsewhere

[16, 29].

We obtained the following standard measurements with the software Structural Insight

(v3.1, Biomedical Imaging, University of Kiel, Germany) [30]: bone mineral density (BMD)

and content (BMC), tissue mineral density (TMD) and content (TMC), total volume

(TV), bone volume fraction (BV/TV), bone surface fraction (BS/BV), trabecular num-

ber (Tb.N), mean intercept length (MIL), trabecular separation (Tb.Sp) and trabecular
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FIG. 1. Human T11-L1 spinal segment and HRQCT representation of T12. (a) setup for measuring

T12 vertebra failure load. (b) volume rendering of a HRQCT volume with a Pacman shaped VOI

in the spongiosa.

thickness (Tb.Th).

B. Generalized Multifractal Dimension and the Sandbox Method

Fractals are objects characterized by self-similarity under scale changes. One of the most

popular methods for fractal image analysis is the box counting algorithm that estimates the

so called capacity dimension. It can be easily implemented in any underlying embedding

space (2D, 3D, etc.). However, natural objects seldom conform to a strict invariability of the

monofractal scale. Instead, they should be considered as a multifractal hierarchy of many

overlapped fractal structures, each with its own scale invariance. Therefore, an adequate

characterization of these objects should encompass the multifractal objects underlying com-

plexity. There are two characterizations of this kind that are basically equivalent, namely

the Generalized Multifractal Dimension and the Multifractal Singularity Spectrum.

The Sandbox method is one of the most frequent used methods for computing the gen-

eralized multifractal dimensions in the literature, especially in 2D imagery [31–33], and

geometrical feature extraction [34].
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Fig. 2 (left) shows the generalized multifractal dimensions of a human vertebra that

we computed through the sandbox method. In Fig. 2 (left) the multifractal nature of the

trabeculæ is quite apparent.

C. Multifractal Spectrum - MFS (Lipschitz-Hölder Exponents)

The MFS is an alternative representation to the generalized dimensions. Both are related

by a Legendre transformation. Despite this equivalence, the MFS seems to have a better

computational counterpart for image description and classification.

q

FIG. 2. Three dimensional MFSs of a vertebra HRQCT scan: Sandbox (left) and Lipschitz-Hölder

(right) methods. The Figure shows the multifractal nature of vertebrae trabecular tissue.

In addition, it allows to extract more information using measure functions and does

not require a prior binarization step. The method can be used to design different features

that attend specific purposes, such as robustness to noise or illumination variation [23, 35].

For instance, the energy of the gradients could highlight features that are robust to volume

illumination changes (Gradient MFS). Another useful definition is the sum of the Laplacians

of the volume (Laplacian MFS). If the input is effectively multifractal, these transformations

provide additional meaningful features over the traditional MFS [22].

We implemented a 3D version of the MFS algorithm presented in [23]. Fig. 2 (right)

shows this representation. The f(α) values lay between 0.5 and 3 (the disjoint sets can

locally look like lines, plates, or solid volumes). As a feature vector, a 3D image MFS

produces n pairs < α, f(α) >.
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FIG. 3. Pyramid-MFS: 3D volume slices at different levels of detail (0: left, top—unmodified—, 4:

left, down—highest downsampling—), and their corresponding MFSs. The resulting feature vector

is composed of these 3D MFS (MFS0 . . . MFS4).

D. Pyramid 3D MFS

The MFS has scale invariance. This means the spectrum features should be—at least

statistically—self-similar at different scales. It is possible to perform an analogous multi-

resolution analysis considering multiple levels of details through successive low-pass filterings

[36, 37]. For this purpose, we computed a pyramid of downsamples successively reducing the

3D image k times to half its size, through trilinear interpolation. Consequently, we obtained

a new set of k 3D images with its k MFSs (MFS0 . . . MFSk−1). The resulting feature vector

has n× k elements (where n is the amount of MFS intervals). Fig. 3 shows five successive

3D image downsamples and its respective multifractal spectra. For clarity, the figure shows

only one slice. The curves exhibit similarities at different levels of detail. However, when

downsampling they differ due to substructure simplifications.
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E. Skewness and Kurtosis

In this study, we introduced two multifractal curve features: Skewness (SK)—that mea-

sures distribution symmetry [38]—and Kurtosis (KT)—that measures the distribution peak

extent—. MFS symmetry indicates whether some sectors have fractal dimension similarities

(i.e., structure semblance in the original volume). This becomes critical to identify common

substructures that may increase fracture risk. Therefore, we used these features as global

descriptors of multifractal distributions.

F. Model Selection Criteria

We combined 3D bone image multifractal analysis with BMD and other classical descrip-

tors of bone health, to improve FFailure predictors. We used several criteria to test linear

model combinations. The main model selection criterion is the Robust R2 score. This indi-

cator uses leave-one-out cross validation scheme (it uses all except one observation to train

a model). Then it predicts the left-out observation. Robust R2 is the result of repeating this

process on every observation and taking the prediction score mean. We selected the final

models as BMD along with the parameters that obtained a higher Robust R2 with respect

to the actual failure load. We also reported the adjusted R2s to be compared with other

published methods. However, we did not apply it as model selection criterion.

The corrected Akaike Information Criteria (AICc) represents a measure of a model infor-

mation, with a penalty for model complexity. It is a derivation of the Akaike Information

Criteria (AIC) [39], an estimation of a model measure of fit. The AICc results more suit-

able than the AIC when there are few phenomenon samples. By having AIC, AICc can be

computed as [40]

AICc = AIC + 2
K(K + 1)

n−K − 1
, (1)

where K represents number of features and n the observation count.

Based on the AICc, we can compute the p-value or probabilistic gain of information of

one model over another. Given two linear models M1 and M2, if AICc1 < AICc2, then the

p-value results

p = e
AICc1−AICc2

2 . (2)
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FIG. 4. Pyramid-gradient-MFS: 3D volumes at different levels of detail (0: left, top—unmodified—

, 4: left, down—highest downsampling—), and their corresponding gradient MFS. The resulting

feature vector is composed of these 3D gradient MFS.

G. Precision and Accuracy

We used normalized short-term-precision (STP) as a precision and repeatability metric,

and normalized long-term-precision (LTP), as an accuracy or trueness metric:

STP =

√ ∑N
i=1

∑M
j=1 (xij − x̄i)2

N(M − 1)(maxi {x̃i} −mini {x̃i})
, (3)

LTP =

√ ∑N
i=1 (yi − ŷi)2

(N − 2)(maxi {yi} −mini {yi})
, (4)

where N = 20, the number of VOIs, M = 10, the number of repeated scans on the VOI, xij

the structural parameter at VOI i and scan j, x̄ the arithmetic mean and x̃i the median at

VOI i, and ŷi = a+ bx̃i, the linear estimate of ŷi from the QCT. LTP relates the median x̃i

at QCT at VOI i with the ground truth HRpQCT (yi).
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H. Correlation coefficients

Since the traditional Pearson coefficient does not assume a linear dependency on the fitted

values, in this work we used the Spearman correlation coefficient instead. It was applied to

determine similarity between new fractal features and traditional bone measures. This is

useful to determine if the fractal features measure new information.

We implemented all presented methods using Python 2.7 and related numerical li-

braries Scipy (http://www.scipy.org), Numpy (http://www.numpy.org) and Statsmodel

(http://statsmodels.sourceforge.net/ for linear model fitting).

III. RESULTS

In this section we show the results of applying linear models to predict FFailure. They are

grouped in 1-fractal: BMD and MFS features, and 2-standard:BMD and standard parame-

ters. We also tested correlations to assess whether the multifractal features represent new

information (i.e., low correlation with standard parameters), and correspondences between

multifractal descriptors. Finally, we reproduce precision and accuracy test results.

A. FFailure Linear Models

In Tables I to V, the first row shows BMD predictions of FFailure. Rows 2-4 show the

best model (higher Rob.R2) found combining BMD with one, two or three features. We

computed their p-value against the BMD model, representing its statistical information

gain. MFSi subindex (i) indicates the considered level of detail: 0 - input image, 4 - highest

downsampling. MFSi[j] entry (j) corresponds to the multifractal dimension j.

Table I shows models using standard bone measures. No significant statistical information

gain is observed over BMD alone (using up to three parameters, p-value 0.357). Table II

shows selected models using the Lipschitz-Hölder exponents. The table shows that MFS

explains FFailure with similar accuracy to literature results [16]. With equivalent performance,

Table III shows gradient MFS models. Finally, Table IV shows models that combine gradient

MFS at different levels of detail, achieving an excellent result without overfitting. However,

these models were identified through an exhaustive feature combination search. So we could
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not deduce an intuitive interpretation. Fig. 4 shows an example from this method, with

resampled volumes and overlapped feature vectors.

TABLE I. Linear model selection using the standard measures for bones.

Model Features Adj R2 Rob. R2 AICc p-value Rob. RMSE

S1 BMD 0.684 0.634 -0.20 - 0.220

S2 BMD + TMC 0.756 0.719 -2.26 0.357 0.203

S3 BMD + BS/BV + MIL 0.762 0.710 0.17 - 0.207

S4 BMD + TMD + MIL + TMC 0.827 0.774 -1.69 0.475 0.182

TABLE II. Linear model selection using the MFS (Lipschitz-Hölder version) to explain FFailure.

Features Adj R2 Rob. R2 AICc p-value Rob. RMSE

BMD 0.684 0.634 -0.20 - 0.220

BMD + MFS0[1] 0.776 0.742 -4.26 0.129 0.187

BMD + MFS0[0, 2] 0.804 0.795 -4.26 0.129 0.176

BMD + MFS0[0, 3, 6] 0.873 0.844 -8.88 0.012∗ 0.142

TABLE III. Selected models using Gradient MFS.

Features Adj R2 Rob. R2 AICc p-value Rob. RMSE

BMD 0.684 0.634 -0.20 - 0.220

BMD + MFS0[8] 0.816 0.772 -7.56 0.025∗ 0.169

BMD + MFS0[9, 13] 0.837 0.802 -7.37 0.027∗ 0.160

BMD + MFS0[3, 4, 5] 0.881 0.848 -9.93 0.007∗ 0.1374

As a more conservative option, in Table V we reproduced selected linear models from

Stats-Pyramid-Gradient MFS, i.e., Stats version of the previous model. The table shows

that at several levels of detail Skewness faithfully model FFailure.
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TABLE IV. Results for the method Pyramid-Gradient MFS. The table shows that some features

from the Gradient MFS at different levels provide descriptive approximation of FFailure.

Features Adj R2 Rob. R2 AICc p-value Rob. RMSE

BMD 0.684 0.634 -0.20 - 0.220

BMD + MFS0[8] 0.816 0.772 -7.60 0.025∗ 0.169

BMD + MFS0[9] + MFS1[15] 0.860 0.820 -9.70 0.009∗ 0.163

BMD + MFS0[13] + MFS1[1] + MFS1[18] 0.924 0.899 -17.56 0.00016∗ 0.109

TABLE V. Results for the method Stats-Pyramid-Gradient MFS. The (gradient) MFSs’ skewness

at different levels of detail.

Model Features Adj R2 Rob. R2 AICc p-value Rob. RMSE

BMD 0.684 0.634 -0.20 - 0.220

F1 BMD + SK0 0.845 0.804 -10.50 0.0058∗ 0.156

F2 BMD + SK0 + KT3 0.870 0.838 -11.20 0.004∗ 0.143

F3 BMD + SK0 + SK1 + SK4 0.901 0.856 -13.20 0.0015∗ 0.124

B. Multifractal vs. Standard models Comparison

To highlight the gain of information, we computed multifractal model p-values over stan-

dard versions. Table V last three rows define fractal models F1−3, and Table I standard mod-

els S1−4. The simplest fractal linear model (BMD with SK0) obtains p(F1 vs. S1−4) = 0.0058∗

to 0.0162∗. F2 (BMD with SK0 and KT3) gets p(F2 vs. S1−4) = 0.004∗ to 0.0114∗. Finally,

taking into account the skewness at different levels, p(F3 vs. S1−4) = 0.0015∗ to 0.0042∗.

Comparisons among fractal models show that F3 and F2 are not statistically more significant

than F1, but F3 predictive capabilities (Rob.R2) suggests it is a more robust predictor of

FFailure. These results support the hypothesis that fractal models provide extra information

over standard models concerning FFailure.
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TABLE VI. Spearman’s Correlation Coefficients between multifractal features and Standard mea-

sures for bones. ∗p < 0.05, bold p < 0.01 (correlation is significant)

Features SK0 SK1 SK4 BMD MIL Tb.Th Tb.Sp BV/TV Tb.N

SK1 0.8996*

SK4 0.1576 0.1478

BMD -0.2030 -0.2899* 0.0772

MIL -0.1390 -0.1777 -0.0258 0.352*

Tb.Th -0.0642 -0.0800 -0.0240 0.2020 0.937*

Tb.Sp 0.0060 0.0056 0.0113 0.1138 0.8800* 0.955*

BV/TV -0.2950* -0.3100* -0.0728 0.2890* -0.3550* -0.6090* -0.7050*

Tb.N -0.0465 -0.0362 -0.0186 -0.1064 -0.8590* -0.962* -0.9833* 0.7594*

FFailure 0.3480 0.0147 0.1862 0.8382* 0.4700 0.2400 0.2000 0.2500 -0.2000

C. Correlations between MFS and standard parameters

Table VI shows low Spearman correlations coefficients between significant MFS features

and standard parameters. This further supports the argument that MFS measures provide

new and robust information. Among fractal parameters, only SK0 is (positively) correlated

to SK1 (∼ 0.89∗). FFailure is (positively) correlated only to BMD (∼ 0.83∗) and it is not

correlated to any fractal parameter.

Fig. 5 shows scatter plots that further explain Spearman correlations found among SK0,

BMD, and FFailure. There is a strong correlation between BMD and FFailure (as shown by the

fitting plane), explaining why BMD accounts for a great percentage of failure load. However,

skewness does not appear related to other variables.

D. Precision and accuracy

On ten repeated scans, results for main parameters are as follows (STP, LTP): BMC

obtained the highest precision and accuracy (6%, 9%), followed by MIL (10%, 7%), BMD
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FIG. 5. 2D Scatter plots of the Skewness at downsampling level 0 (SK0) vs FFailure vs BMD of

vertebrae. The plots show strong correlation between BMD and FFailure.

(6%, 13%), Tb.Th: (10%,7%), BS/BV: (10%, 9%), BV/TV (9%, 12%), TMD (19%, 16%),

TMC (9%, 21%), Tb.Sp: (11%, 19%), Tb.N: (13%, 20%). Regarding fractal parameters

in linear models, SK0 obtained the most robust values (41%, 22%) followed by SK1 - SK4

(69%− 82%, 23%− 25%), KT0 (40%, 23%) and KT1 - KT4 (43%− 63%, 27%− 32%).

IV. DISCUSSION

We omitted Sandbox-based linear models which performed worse than BMD only ver-

sions. The MFS alone (Lipschitz-Hölder approach, Table II) achieved results comparable

to recent literature [16] using up to three parameters (p-value 0.01∗). These results agree

with feature extraction in the gray level domain, particularly the Trabecular Bone Score

(TBS) [41]. Despite this, features represented by raw multifractal dimensions are difficult
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to interpret.

In other works [22], authors produced different MFS transforming input data, obtain-

ing features with certain properties such as robustness to noise and illumination changes.

Following this, we applied Laplacian and gradient transformations to bone volumes, obtain-

ing modified MFS versions. While Laplacian MFS was not statistical relevant (results not

shown for brevity), gradient MFS explained FFailure with similar accuracy to Hölder MFS,

and its level of detail version (pyramid-gradient-MFS) increased its accuracy (92%, adj. R2

of FFailure variability). However, these raw dimensions lack intuitive interpretation, limiting

its use as biological markers.

Finally, we derived statistical method versions. The stats-pyramid-gradient-MFS method

obtained slightly less predictive power than its non-stats version, but using more intuitive fea-

tures (e.g., skewness) (Adj.R2 0.901, Rob.R2 0.856, AICc -13.2, p-value 0.0015∗, Rob.RMSE

0.124)). This means skewness explains more than 90% (Adj.R2) of FFailure variability at dif-

ferent LOD (more precisely at levels 0, 1, and 4). The best results using only two parameters

are given by zeroth level skewness in combination with level 3 kurtosis. Skewness seems to

capture the most relevant multifractal information indicating how and/or when the MFS

peaks. MFSs’ skewness success in explaining FFailure can be attributed to its performance

on noisy inputs [42]. These experiments show that multifractal curves statistics summarizes

key information of a MFS distribution.

The method can also be defined in 2D, replacing the 3D MFS with the traditional 2D

version. Also, it can be extended for use in-vivo, with decrease prediction accuracy associ-

ated. However, MFS and its variations are common choices for high noise scenarios. Future

research should stress this point. Given observed similarities between multifractal curves,

skewness models are worth to study in such cases.

We considered only the spongiosa for micro structural feature extraction. Literature

shows fracture risk can be determined with high accuracy considering this osseus region

only [43, 44]. Precision and accuracy of multifractal parameters, at different levels of de-

tail, are comparable to other state-of-the-art fractal parameters [16]. The lower precision

(STP) of newly introduced parameters skewness and kurtosis result most likely from their

multi-resolution nature and their statistical characterization as a multifractal curve moment.

However, precision might improve in future method versions using alternative skewness and

kurtosis definitions—weighted moments, Pearson’s skewness coefficients, Bowley skewness—,
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or using specifically taylored multifractal distribution statistics. Regarding accuracy (LTP),

the most relevant fractal parameters resulted similar to TMC, Tb.Sp, and Tb.N, even in low

resolution scenarios (e.g. SK1). Since we simulated typical clinical in-vivo resolutions, our

fractal methods are worth being used in human clinical scenarios.

Our work main limitation is the interpretation of multifractal features. While the statistic

methods (e.g., skewness) simplify it, further research may find more intuitive fractal features.

The models obtained will be useful to define procedural algorithms for bone growing and

aging [45], as we did with other porous materials. 3D MFS and its variants can be used in

health bone classification.

V. CONCLUSIONS

In this work we extended bone trabecular tissue analysis from fractal to multifractal,

and the MFS to 3D. Some contributions include multifractal analysis application to 3D

bone images, and a multi-resolution multifractal method with higher failure load predictive

power than previous fractal and non-fractal counterparts.

The sandbox-based version obtained worse results than standard measurements methods.

However, the MFS method produced features that more precisely predicts FFailure, with

surpassing accuracy than current fractal literature. Raw multifractal features were proved

to be excellent descriptors (explaining up to 92% in Adj.R2 of FFailure variability), but their

lack of intuitive interpretations may favor the choice of simpler and almost equally descriptive

features such as MFS skewness and kurtosis.

Further studies will include CT images analysis with different volume resolutions. We

will focus on extending the number of samples and on investigating the influence of X-

ray exposure (QCT vs. HQRCT) on fractal properties, obtained through different capture

equipments.
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[27] Claus-C Glüer, Matthias Krause, Oleg Museyko, Birgit Wulff, Graeme Campbell, Timo

Damm, Melanie Daugschies, Gerd Huber, Yongtao Lu, Jaime Peña, et al. New horizons

for the in vivo assessment of major aspects of bone quality microstructure and material prop-

erties assessed by quantitative computed tomography and quantitative ultrasound methods

developed by the bioasset consortium. Osteologie, 22(3):223–233, 2013.

This article is protected by copyright. All rights reserved. 



[28] Felix Thomsen. Medical 3D image processing applied to computed tomography and magnetic

resonance imaging. Universidad Nacional del Sur, PhD thesis, 2017.

[29] Yongtao Lu, Ghislain Maquer, Oleg Museyko, Klaus Püschel, Klaus Engelke, Philippe Zys-
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