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On the trapping of stars by a newborn stellar supercluster
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ABSTRACT
Numerical experiments conducted by Fellhauer et al. (2006)suggest that a supercluster may
capture up to about 40 per cent of its mass from the galaxy where it belongs. Nevertheless, in
those experiments the cluster was created making appear itsmass out of nothing, rather than
from mass already present in the galaxy. Here we use a thoughtexperiment, plus a few simple
computations, to show that the difference between the dynamical effects of these two scenarios
(i.e., mass creation vs. mass concentration) is actually very important. We also present the
results of new numerical experiments, simulating the formation of the cluster through mass
concentration, that show that trapping depends criticallyon the process of cluster formation
and that the amounts of gained mass are substantially smaller than those obtained from mass
creation. Besides, the criterion used by Fellhauer et al. (2006) to decide the membership to
the supercluster is not adequate, and the use of a more sensible criterion, based on Jacobi’s
integral, renders a number of captures at the very least an order of magnitude smaller. All
things considered, the captures cannot exceed, at most, a few percent of the mass of the cluster
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1 INTRODUCTION

Fellhauer et al. (2006, FKE06 hereafter) have recently proposed the
capture of old stars by massive stellar superclusters during their for-
mation process as a possible explanation for the different age and
metallicity populations found in some clusters (e.g.,ω Centauri).
They used numerical experiments to show that up to about 40 per
cent of the initial mass of the cluster can be gained from stars of
the galaxy where the cluster belongs and they even suggest that the
captured mass might exceed the mass of the cluster in some cases.

One problem with the numerical simulations of FKE06 is that,
since essentially all the captures take place during the formation of
the cluster, it is obvious that the formation process itselfshould
strongly affect the dynamics of capture and, therefore, it is crucial
to use an adequate model of the formation process in order to get
reasonable estimates of the gained mass. Nevertheless, in FKE06
the clusters are created as Plummer models whose masses increase
linearly from zero to their final values. In other words, the mass of
the cluster iscreatedrather than, as it should, taken from mass al-
ready present in the galaxy. Although they acknowledged that prob-
lem, FKE06 argued that, since the cluster is much less massive than
the galaxy, the adjustment of the galaxy potential due to thecluster
formation is a tiny effect, which is true, but of little relevance to the
process of capture. Besides, they perform a test using a Plummer
model of constant mass that starts with a large scalelength which
is subsequently reduced (i.e., simulating the collapse that forms the
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cluster), obtaining almost exactly the same result as with the Plum-
mer model with variable mass. Although this outstanding coinci-
dence seems to give strong support to the results of FKE06 we will
explain below that, in fact, it does not. Here we will show that, al-
though the trapping effect invoqued by FKE06 indeed exists,when
the supercluster is created from mass already present in thegalaxy
the amount of captured mass is substantially smaller than what they
found.

Besides, FKE06 took as members of the cluster those particles
that had negative energy relative to the cluster and were within its
tidal radius. In the original version of the present paper, we adopted
without hesitation the same criterion because a similar criterion had
been used by us in the past for several different investigations (see
Muzzio 1987 for references to previous works that go back to 1982
and Bassino et al. 1998 for a somewhat more recent application of
the same criterion). Nevertheless, the referee asked us to check the
effect of the tidal effects on that criterion and the surprising result
was that the effect is actually huge! The only excuse for our past
pecadillos is that the orbits of the capturing bodies investigated at
that time were not circular but, in the present case, with circular
orbits for the superclusters, it is plainly obvious that oneshould use
the Jacobi integral (and not the energy with respect to the cluster,
without centrifugal terms) to decide membership. When the meme-
bership criterion is based on Jacobi’s integral, the numberof cap-
tures plummets by an order of magnitude, or more.

The next section presents a thought experiment and some
computed results to show that the difference between aggregat-
ing matter already present and creating it is absolutely crucial for
the result of the capture process and, besides, we explain why the
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test done by FKE06 does not avoid the problem of creating matter
from nothing. The third section describes our own numericalexper-
iments, using the FKE06 scenario and our own, for both member-
ship criteria. Their results are presented in the fourth section. The
fifth and final section discusses our results.

2 THE DYNAMICAL DIFFERENCE BETWEEN
CREATING AND CONCENTRATING MASS

Let us consider a spherical galaxy with a cluster being formed at
its centre, so that we can apply Newton’s theorems for spherical
systems (see, e.g., Binney and Tremaine 2008), and let us further
assume that, except for the mass related to the cluster formation,
the rest of the mass of the galaxy keeps its original distribution. If,
following FKE06, we start with a zero mass cluster and increase its
mass up to a final value,all the masses of the system will experi-
ence an additional central force of an amount depending on the dis-
tance of the mass to the centre of the system. If, instead, we mimic
the cluster formation selecting as the primordial cloud a sphere cen-
tered at the centre of the stellar system, with a radius smaller than
that of the system, and we take from every spherical shell of that
sphere a certain fraction of its mass and move it to the centreof
the system to form there the cluster, the result is very different: 1)
Any mass at a radius that places it outside the primordial cloud
will experience no extra force, because the mass within thatradius
will be the same; 2) The masses within the radius of the primordial
cloud will experience new radial forces that will be very small near
the border of the cloud and will increase as we consider masses
closer to the centre. Notice that, as the largest differences between
the two cases correspond to the largest radii, they also involve the
largest volumes within the galaxy.

Of course, the parameter relevant to the capture process is not
the force but the potential: a star will be captured by the cluster
if, after the cluster formation, the potential at the location of the
star is reduced by an amount larger than one half the squared ve-
locity of the star; that is, the quantity we should be interested in
is the variation of the potential due to the formation of the clus-
ter. We used the force in the previous discussion because, while in
a spherically symmetric case the force at a certain radius depends
only on the mass within that radius, the potential depends also on
the distribution of mass outside that radius (see, e.g., Binney and
Tremaine 2008) and that would have complicated the discussion.
Nevertheless, if we supplement our thought experiment witha few
simple computations, we can use the potential rather than the force
for our analysis. Let us consider again a spherical galaxy with a
cluster being formed at its center —either by creating or concen-
trating mass— and let us assume that, except for the matter used
to form the cluster by concentration, the density distribution of the
galaxy is not altered by the formation of the cluster. If the mass
of the cluster is created, the difference in the potential ata certain
point of the galaxy, before and after the creation of the cluster, will
be independent of that density distribution. Instead, whenthe clus-
ter is created taking matter from the primordial cloud centered at
the center of the system, the potential will not change outside that
cloud and its change within the cloud will depend only on the den-
sity distribution within the cloud.

A simple numerical example will illustrate this. Let us con-
sider the cluster as a point mass,Mcls = 1, and let us take the
gravitational constant asG = 1. We took the density distribution
of the primordial cloud asρ(r) = Cr−γ , wherer is the radius,
andC andγ are parameters of the distribution (we recall that the
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Figure 1. The potential difference vs. radius when the cluster is formed by
either creating mass or concentrating mass already presentwithin a primor-
dial cloud of density inversely proportional to radius for two different radii
of the cloud.

density distribution beyond the cloud radius,rcld, is irrelevant for
this computation); two different radii were chosen for the primor-
dial cloud, i.e.,rcld = 0.1 andrcld = 0.2. To form the cluster by
concentration, we simply reducedC by the amount needed to take
from the primordial cloud a mass equal toMcls and we placed that
mass at the centre of the galaxy. Fig. 1 presents our results:the full
line gives the change in the potential for the case of mass creation
and the dotted and dashed lines give the same for the case of mass
concentration, respectively forrcld = 0.1 andrcld = 0.2; here, we
adoptedγ = 1, but the result is very similar withγ = 0. Now, if
we draw a horizontal line at an ordinate equal to−0.5v2 wherev
is the star’s velocity, the captured stars will be those at radii such
that the full line (in case of mass creation), or the dotted ordashed
lines (in case of mass concentration), lie below that horizontal line.
Thus: 1) There will be captured stars beyondr = 0.1, or r = 0.2,
in the case of mass creation, but not in the case of mass concen-
tration; 2) Withinr = 0.1, or r = 0.2, there will always be more
captures in the case of mass creation, and the difference with the
case of mass concentration will diminish as we go to smaller radii,
becoming zero only at the centre of the system; 3) The smallerthe
radius of the primordial cloud, the larger is the differencebetween
the mass creation and mass concentration scenarios. As indicated
previously, the difference between the mass gain in both cases is
smaller for smaller volumes, but we now see that in those smaller
volumes can be captured stars that move faster than those that can
be captured in larger volumes, so that there is some compensation
of the volume effect.

It is now evident that the dynamics of capture will be strongly
affected by the process of formation of the cluster and that creating
matter leads to more captures than concentrating it. Nevertheless,
our thought experiment and simple computations do not allowus to
go beyond this qualitative conclusion and, to reach quantitative re-
sults, we need to resort to numerical experiments. However,before
turning to them, let us analyze why the check perfomed by FKE06
attempting to simulate mass concentration, rather than creation, of-
fers no check at all.

FKE06 adopt their set-up corresponding to (small disc, heavy
supercluster, one scalelength distance), they create a cluster with
a mass of107M⊙ and a scalelength equal to the disc scalelength
(0.5 kpc) and, finally, they shrink that scale distance to theone of
the cluster (25 pc) on a time scale equal to the crossing time of the
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cluster (3.7 My). The problem is that, again, they create mass from
nothing. If we assume that the shrinking process is fast enough so
that the stars of the galaxy change their positions very little during
that process, it is obvious that, in the end, they would have gained
essentially the same (negative) potential energy as if the cluster had
been created instantaneously with the final scalelength. From Fig.
1 of FKE06 we can estimate the velocity dispersion at one disc
scalength radius as about 40 km s−1 for the small disc, that is, it will
take an average star about 10 My to traverse the scale length of the
original cloud which is an interval long enough, compared tothat
of the scalelength change, to accept that the stars have not moved
much during the shrinking process. In other words, the coincidence
of the result of this model with the original one is exactly what one
could have expected, and it is no proof that the creation of matter
to build the cluster does not affect the amount of gained mass.

3 DESCRIPTION OF THE NUMERICAL EXPERIMENTS

In order to establish a quantitative proof of the abovementioned
qualitative discussion, we performed a series of numericalexper-
iments. We first set up a background galaxy in equilibrium com-
posed of a disc and an analytic halo, without a bulge. The discis
realized using5× 106 particles laid down according to the follow-
ing distribution function:
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that is, isothermal in the vertical direction with scaleheight z0

(Spitzer 1942), exponential in the radial direction with scalelength
Rd, and axisymmetric. The velocities are Gaussian, with disper-
sionsσz , σR and σϕ in each direction respectively, and a mean
acimutal velocityvd(R). The parametersRd andz0 are input pa-
rameters, as well as the total mass of the discMd. From these,
the dispersions andvd(R) were computed following the recipe of
Barnes (1992).

The potential of the halo is given by

Φ(r) = v2

0 ln
(

r2 + R2

c

)

, (2)

that is, a spherical logarithmic potential with asymptoticcircular
velocity

√
2v0 and core radiusRc. Both v0 andRc are input pa-

rameters.
We choose units such that the gravitational constantG = 1,

Rc = 2.5 andMd = 10. With this choice, we setRd = 1.5, z0 =
0.25, andv0 = 2.287. Using the equivalencesMd = 1010M⊙
andRc = 2.5 kpc, these units correspond to the high-mass galaxy
of FKE06, although our model differs somewhat from theirs inthe
velocity space, as can be seen comparing Fig. 2 with Figure 1 of
FKE06.

Our cluster is built up in two different ways: a) By letting the
potential of an analytical Plummer sphere with scalelengthbP and
total massMP to grow from zero to its maximum strength. The
growth is achieved by varyingMP linearly with time during an in-
terval tP equal to the crossing time of the final Plummer sphere.
The centre of the potential is put in a circular orbit of radius RP.
This approach implies assuming that the mass of the cluster is taken
from outside the galaxy. b) By letting a fraction of the particles in-
side a sphere of total massMs and radiusrs move as if, instead
of their original velocities, they were in free fall with respect to
the centre of the sphere. The particles are randomly chosen among
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Figure 2. Circular velocity (solid line) and three-dimensional velocity dis-
persion (dashed line) of the galaxy, usingMd = 10

10M⊙ andRc = 2.5

kpc.

those inside the radiusrs. The total mass of the infalling particles
is Mff , the mass of the future cluster. This in turn determines the
radiusrs as that which is required forMff to be the desired frac-
tion. The centre of the sphere is put in a circular orbit of radiusRff .
The free fall is achieved by adding to the acceleration of thecho-
sen particles that of a homogeneous sphere, the density of which
is such that the free fall time is a desired valuetff . The particles
are kept under the influence of the added acceleration until they
reach a small fiducial radiusbff with respect to the centre of the
sphere, from which point they are given the velocity of that centre
and freed from the falling. After that, if any of those particles leaves
the sphere of radiusbff , it is forced to fall again. This second ap-
proach implies that the mass of the cluster is taken from the galaxy
itself.

Table 1 shows the parameters used for the different cluster
models in our experiments. Model names starting with P referto
experiments in which the cluster is simulated through a Plummer
sphere; names starting with C indicate simulations in whichthe
mass of the cluster is concentrated from the environment, that is,
the free fall generated clusters (although these models arenot free
fall experiments in a strict sense, we will still call them free fall
models for simplicity).

Model P1 is our basic model: the growing time corresponds to
the crossing time of the Plummer sphere, the radius of the circular
orbit equals the scalelength of the disc, and the mass of the cluster
is 1/500 of the mass of the disc. Model P1b is like model P1 but
has a Plummer’s scalelength equal to the radius of the free fall final
sphere. This is to verify whether the difference betweenbP andbff

is affecting the comparison between the Plummer and the freefall
models. Model C1 has the same mass as model P1, and the same
circular orbit. The free fall time was chosen equal to that ofModel
P1, and the free fall radiusbff was chosen 1/100 of the scalelength
of the disc, comparable to the scalelength of model P1. The falling
mass corresponds to a 10 per cent of the mass inside radiusrs.

Models P2 and C2 are the same as P1 and C1, respectively,
but the radius of the circular orbit is doubled, in order to probe a
different ambient for the cluster. Models C2b and C2c are identi-
cal to model C2, but the falling masses correspond to a 5 per cent
and a 20 per cent of the mass inside the sphere of radiusrs, re-
spectively. These models, which vary only the radius of the sphere
from which the mass to be concentrated is taken, allow a verifica-
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Table 1. Parameters of the models

Model bP,bff
MP

Md

,Mff

Md

tP,tff RP,Rff
rs

Rd

Mff

Ms

Ma

MP
, Ma

Mff

Ma

MP

∣

∣

t
, Ma

Mff

∣

∣

t

P1 0.025 0.002 0.175 1.5 – – 0.0993 0.0068
P1b 0.015 0.002 0.081 1.5 – – 0.1011 0.0083
C1 0.015 0.002 0.175 1.5 0.54 0.10 0.0392 0.0027
P2 0.025 0.002 0.175 3.0 – – 0.1494 0.0146
C2 0.015 0.002 0.175 3.0 0.56 0.10 0.0322 0.0100
C2b 0.015 0.002 0.175 3.0 0.77 0.05 0.0417 0.0118
C2c 0.015 0.002 0.175 3.0 0.41 0.20 0.0273 0.0092
P3 0.025 0.001 0.250 1.5 – – 0.0550 0.0030
C3 0.015 0.001 0.250 1.5 0.54 0.05 0.0134 0.0008
P4 0.025 0.003 0.143 1.5 – – 0.1401 0.0109
C4 0.015 0.003 0.143 1.5 0.54 0.15 0.0292 0.0051
P5 0.025 0.010 0.078 1.5 – – 0.2953 0.0293
C5 0.015 0.010 0.078 1.5 1.13 0.10 0.2256 0.0102
C5b 0.015 0.010 0.078 1.5 0.81 0.20 0.1981 0.0164
C5c 0.015 0.010 0.078 1.5 0.54 0.50 0.1188 0.0096
S1 1.5 to 0.025 0.002 0.175 1.5 – – 0.0991 0.0105
S1b 0.25 to 0.025 0.002 0.175 1.5 – – 0.0980 0.0107

tion of what was said in Section 2 with respect to changing thesize
of the cloud. Models P3 and C3 are also the same as P1 and C1, but
the respective clusters have half the mass, and, correspondingly,
a larger crossing/free fall time. Models P4 and C4 have 1.5 times
the mass of models P1 and C1, respectively, and a corresponding
shorter crossing/free fall time. These four last models were run in
order to assess how much the results are affected when the mass of
the cluster is changed.

Model P5 corresponds to a Plummer sphere that grows to a
whole 1 per cent of the mass of the disc. Model C5 is the corre-
sponding free fall experiment, where the mass of the clusteris 10
per cent of the mass inside the sphere of radiusrs. Models C5b and
C5c are identical to model C5, but the falling masses correspond
to a 20 per cent and a 50 per cent of the mass inside the sphere of
radiusrs, respectively. Model S1 corresponds to a Plummer sphere
that is born with all its mass, but with an initial scalelength bP,0

equal to the scalelength of the disc,Rd. This scalelength is shrunk
according to

bP(t) = (bP,0 − bP,f)
1 − exp(t − tP)

1 − exp(−tP)
+ bP,f 0 6 t 6 tP, (3)

wherebP,f is the final value of the scalelength, after a timetP equal
to the crossing time of the final Plummer sphere. This model corre-
sponds to a cluster similar to that of the last numerical experiment
of FKE06 (by the way, there is probably an error in their Equation
(3), since att = 0 the Plummer radius is not the initial radius).
Model S1b is similar to model S1 but with the initial Plummer ra-
dius reduced to a sixth, in order to probe whether the size of the
initial radius has any influence in the capture of mass duringthe
shrinking stage.

The experiments were run untilt = 3, corresponding to al-
most one period of the cluster when put in a circular orbit of ra-
dius Rd. The code used was aFORTRAN77+MPI version of the
paralellized tree code of Viturro and Carpintero (2000). Itran in a
cluster of twenty-four 1.86 GHz processors; each experiment took
approximately10.5 × 24 hours of CPU time.

In order to assess which particles were added to a cluster when
modelled as a Plummer sphere, following FKE06, we computed
the energy of the particles with respect to the sphere, as well as the
tidal radiusrt of the latter. We then considered as acquired by the

cluster those particles with both negative energy and position inside
rt. In order to determine the value ofrt for each experiment, we
followed the working out of Binney and Tremaine (2008,§8.3.1),
but replacing the acceleration of a point mass galaxy by thatof our
disk plus halo system, and the acceleration of a point mass satellite
by that of our cluster. The resulting equation is:

GMh(RP − x)

(RP − x)2
+

V 2

cd(RP − x)

RP − x
− GMC(x)

x2
−

GMh(RP)
(RP − x)

R3

P

− V 2

cd(RP)
RP − x

R2

P

= 0, (4)

where0 < x < RP, Mh(r) is the mass of the halo inside distance
r of its center,MC(r) is the mass of the cluster inside distancer of
its center, andV 2

cd(r) is the squared circular velocity of the disk at
a distancer of its center given by (see, e.g. Binney and Tremaine
2008)

V 2

cd(r) = 4πGΣdRdy2 [I0(y)K0(y) − I1(y)K1(y)] , (5)

whereΣd is the surface density of the disc,y ≡ r/(2Rd) andI0,
I1, K0 andK1 are modified Bessel functions. The value ofx that
satisfies Eq. (4) is our tidal radiusrt.

We also used the tidal radius as one of the criteria to define
membership in the free fall models. In these cases, however,we
have replacedMC(x) in Eq. (4) byMff , that is, the total mass of
the cluster. This amounts to considering the cluster as a point mass,
which is a good approximation provided that the free fall hasal-
ready finished and that its radiusbff is smaller than the computed
rt —that was the case in all the experiments. The other criterion,
negative energy, was computed by first finding which particles were
geometric neighbours of the center of the free fall with the aid of
a friend-of-friend algorithm, taking 0.70 of the mean interparticle
distance of the 90 per cent most bounded disc particles as thefidu-
cial maximum neighbour distance, which sufficed to neatly isolate
the cluster from its surroundings. We then computed the energy of
these particles with respect to the set, and discarded thosewith pos-
itive energy and/or outside the tidal radius. This step –computation
of the energy and discarding– was repeated with the remaining par-
ticles until only particles inside the tidal radius and withnegative
energy were left; these particles were considered the members of
the cluster. Also, during the free fall, the list of members was con-
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Figure 3. Percentage of mass acquired by the cluster in models P1 through
P4 and C1 through C4, as a function of time.

sidered empty, since the tidal radius along that period is not well
defined.

Nevertheless, for a supercluster in a circular orbit aroundthe
galaxy, the membership criterion should not be based in the energy
of the particles with respect to the cluster, but on the Jacobi integral,
i.e., that energy corrected by the tidal effects. In fact, wehad used
the criterion based on the Jacobi integral in a series of papers on
orbits inside galactic satellites (see, e.g., Carpintero et al. 1999 and
Muzzio et al. 2001). Therefore, we also decided membership with
a different criterion requesting, first, that the Jacobi integral was
negative and, second, that the particle was within the tidalradius.
The Jacobi integral of each particle was computed adding to its
energy with respect to the cluster its potential energy withrespect
to the galaxy and its centrifugal energy; the constant of thepotential
was chosen so that the total potential energy was zero at the tidal
radius.

4 RESULTS

Fig. 3 shows the percentage of trapped particles of the basicmod-
els P1 and C1, when the orbit of the cluster is at2Rd (models P2
and C2), and when the mass of the cluster is half and one and a
half that of models P1 and C1 (models P3, C3, P4 and C4, respec-
tively). It is clearly seen that the analytical Plummer model traps
more mass than the free fall in all the cases, that is, the trapped
mass depends on whether the mass of the cluster is taken from out-
side the galaxy or from the galaxy itself. Model P3 (the less masive
Plummer model) is the only one that captures a mass comparable
with the free fall models (but substantially larger than that captured
by its equivalent model C3). In all cases, the fluctuations inthe cap-
tured mass after the cluster finished its growth are due to particles
close to the tidal radius and with energies close to zero, therefore
oscilating between trapped and non trapped stages.

Table 1 shows in its last column the massMa acquired by the
cluster in each experiment, as a fraction of the mass of the cluster
MP or Mff . These data were taken at a representative timet = 2,
that is, after about two thirds of an orbit of the cluster since its birth,
a long enough interval compared to the growing time of any of
the models. Clearly, all the free fall models captured considerably
less mass than the corresponding Plummer models. We can see that
there is no significant difference between model P1 and modelP1b;
therefore, the accreted mass does not depend significantly on the

details of the final scalelength of the Plummer sphere. We canalso
see that model C2b traps more mass than model C2: as we had
anticipated, it is the expected behaviour when a larger initial radius
rs is used. Model C2c, on the other hand, having a smallerrs than
model C2, acquires a little less mass than the latter.

The heavy models P5, C5, C5b and C5c also show the same
trends. Although in the case of model C5 the trapped mass is ofthe
same order of that in the corresponding Plummer model, the other
two acquired much less mass. These models clearly show that the
percentage of trapped mass depends on how the mass of the cluster
is gathered from the galaxy: the smaller the region of ambient mass
that is used to build the cluster, the more additional mass isacquired
after the cluster is formed.

Finally, the trapped mass of the experiments S1 and S1b, as
expected, is almost the same as in model P1, that is, the shrinking
of the scalelength of the Plummer sphere has no effect whatsoever
on the accumulated mass, as could be expected from our discussion
of Section 2. Besides, since the crossing time of the original cloud
is reduced by to one–sixth when going from model S1 to model
S1b (from 1.54 units of time to 0.25), whereas the shrinking time is
held constant (equal to the crossing time of the final configuration,
0.175 units of time), a typical galactic star can cross almost the
entire radius of the cloud in the time that that cloud reducesits
size. Therefore, the assumption of instant collapse, adopted in the
discussion of Section 2, is not critical.

5 CONCLUSIONS

Our results confirm the finding of FKE06 that, during the forma-
tion of a supercluster in a dwarf galaxy, some mass can be addi-
tionally gained from trapped disc stars and that the captureprocess
essentially ends with the formation of the cluster, with virtually no
gains afterwards; the exceedingly small amount of capturesby an
already formed cluster has been also found by Mieske and Baum-
gardt (2007).

Nevertheless, while FKE06 do not assign much importance to
the process of formation of the cluster and simply simulate it with
a mass that grows linearly with time from zero to its final value, we
consider that the details of such process are crucial for thetrapping
dynamics. We have shown in Section 2 that, in particular, creating
the mass of the cluster from nothing originates forces and potentials
fairly different from those that appear when the cluster is formed
concentrating matter already present in the galaxy and that, as a
result, less trapping should be expected from the latter scenario.

We performed several numerical simulations similar to those
of FKE06, where the mass of the cluster is created out of noth-
ing (our P models), together with others that only differ from the
former in that the cluster is formed concentrating mass fromthe
galaxy (our C models). In all cases, the mass gained by the C mod-
els was smaller than that gained by the P models, the most extreme
examples being those of models C2c and C4 which gain only about
one–fifth of the mass gained by their equivalent models P2 andP4,
respectively.

The difference in gain depends critically on the size of the pri-
mordial cloud from which the C models get their cluster material:
the smaller the primordial cloud, the larger the differencein gained
material. Since in our models the mass taken from the cloud to
build the cluster is uniformly distributed all over the cloud, the size
of the cloud correlates inversely with the fraction of mass taken,
i.e., the larger the fraction of mass the smaller the cloud. Most of
our models take that fraction between 0.05 and 0.20, i.e., one might

c© RAS, MNRAS000, 1–6
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assume that that is the fraction of gas in the galaxy and that all
the gas within a certain region (our primordial cloud) collapses to
form the cluster. As a result, the less massive clusters are formed
from smaller regions and for them the differences between the mass
creation and mass concentration scenarios are the largest.On the
other hand, our model runs into trouble for the most massive super-
clusters. To create a supercluster with one–hundredth the mass of
the galaxy we need either to assume an implausibly high fraction
of collapsing mass of 0.50 (model C5c) or, for a more reasonable
fraction of 0.10 (C5) or 0.20 (C5b), to accept that the mass comes
from a primordial cloud of radius1.13Rd (≃ 1.7 kpc) or0.81Rd

(≃ 1.2 kpc), respectively. Now, clouds of such size should be suf-
fering the effect of the differential rotation and the tidalforces of
the galaxy, making very unlikely their collapse to form the super-
cluster. The formation of such a huge supercluster probablypro-
ceeds by separate stages, with smaller clusters being formed first
and later coallescing to create the supercluster, so that the amounts
of trapping predicted for this case by the simple models of FKE06
and ours should be regarded, at best, as very doubtful.

Cluster formation is certainly a very complex process with ef-
fects ignored by the models of FKE06 and ours, such as gas dynam-
ics and magnetic fields playing a significant role (see, e.g. Stahler
and Palla 2004), and supercluster formation is probably even more
complex. It is clearly an understatement to say that our models are
only a very crude representation of the dynamics of this process,
but our point is precisely that, since the trapping takes place dur-
ing the cluster formation, it is vital to take into account the details
of that process to correctly evaluate the amount of matter trapped.
Crude as they are, our models have over those of FKE06 the big
advantage that they use mass already present in the galaxy ina
way that is undoubtedly far from how real clusters are formed, but
which is certainly closer to reality than creating mass fromnoth-
ing. Moreover, the results of our models confirm what a simple
reasoning suggests, i.e., the amount of matter trapped in our some-
what more realistic scenario of mass concentration is substantially
smaller than that which results from creating the mass of thecluster
out of nothing.

ACKNOWLEDGMENTS

We thank an anonymous referee for calling our attention to the im-
portance of using, not just the cluster potential, but that potential
corrected by the tidal effects, to determine membership. The tech-
nical assistance of Ruben E. Martı́nez and Héctor R. Viturro and
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