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Abstract 

A novel honeycomb core made of a natural-fiber reinforced composite consisting of 

a vinylester matrix reinforced with jute fabric is introduced. Six-mm- and 10-mm-cell 

honeycombs are manufactured using two compression-molding techniques. Best 

results are obtained for the mold with lateral compression. Experimental tests are 

conducted to characterize the elastic response of the composite and the core 

response under flatwise compression. The effective elastic properties of the core 

are computed via a homogenization analysis and finite element modeling. The 

results of the homogenization analysis are in very good agreement with estimations 

done using analytical formulas from the bibliography. The flatwise compression 

tests show that the core failure mechanisms are yarn pull-out and fiber breaking. 

The large wall thickness relative to the cell size of the jute-vinylester cores, which 

inhibits buckling, and the heterogeneities in the composite, which are preferential 

damage initiation sites, explain the observed behavior. When compared in terms of 

the specific strengths, the jute/vinylester cores introduced in this work show similar 

performances to those of their commercially available counterparts. The results from 

this study suggest that jute-reinforced cores have the potential to be an alternative 

to standard cores in applications that sustain compressive static loads.  

 

Keywords:  honeycomb cores; natural fibers; mechanical characterization; effective 

elastic properties. 
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1. Introduction 

Sandwich panels are widely used as a means to build high-performance lightweight  

structures [1, 2]. Sandwich panels consist of two thin and stiff face-sheets (or skins) 

bonded to a thick and light core. The face sheets provide the flexural stiffness and 

strength to the panel, while the role of the core is to transmit the shear between the 

face sheets. A strong core can also contribute to the flexural stiffness and to the out-

of-plane shear and compressive strength of the panel [1, 3]. On the other hand, a 

core with poor mechanical properties undermines the performance of the panel [3]. 

Typically, cores are made of foams or balsa [4, 5] or they are fabricated using 

corrugated, truss or honeycomb structures [6, 7]. Corrugated cores provide 

unidirectional support to the skins [8, 9], while honeycomb cores provide 

bidirectional support [1]. The most used materials in honeycomb fabrication are 

aluminum, polymers and composites like Nomex [10]. 

Sandwich panels are used not only because of their advantages in terms of weight 

saving and structural performance, but also as an effective means to reduce costs 

[11]. Thus, there is always an interest in the development of new materials and 

designs for low-cost high-performance cores. In particular, the large cell-size of the 

sandwich structures for civil applications (typically in the range from 500 mm to 

1500 mm) allows the fabrication of cores using fiber-reinforced polymers [12]. For 

example, Ji et al [12] introduced a glass-fiber reinforced-polymer corrugated-core 

which is fabricated via the assembly of pultruded and thermoformed shapes [13].  

At the same time, there is also an increasing interest to substitute glass and carbon 

fibers by natural ones [14]. Natural fibers present some advantages when compared 

to their synthetic counterparts: they are cheaper, they have lower mass per unit 

area, they are eco-friendly, recyclable and biodegradable by nature, they do not 
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produce skin irritation, and they provide good acoustic-insulating properties [15-17]. 

In contrast, natural-fiber reinforced composites have substantially inferior 

mechanical performance and water resistance properties than conventional glass-

fiber reinforced composites [18, 19]. In any case, natural-fiber reinforced materials 

have found uses in several novel applications, ranging from furniture and packaging 

to more complex engineering uses, such as building materials and structural parts 

for automobiles [20-22].  

There are developments towards the use natural fibers for the reinforcement of 

sandwich-panels cores. In this sense, Rao et al. [23, 24] have introduced hollow 

cores made of polypropylene with chopped sisal fibers as reinforcement. These 

cores are fabricated using thermoforming and assembling process. Thin continuous 

rolls of the sisal–polypropylene composite are produced in conical twin screw 

extruders and then thermoformed into half hexagonal or sinusoidal profiles. Finally, 

the profiles are attached together by ultrasonic bonding. Rao et al. [23, 24] conclude 

that their panels are suitable in automobile, aerospace, packaging and 

building/construction industries. Recently, Petrone et al. have studied polymeric 

honeycombs reinforced with short and continuous flax fibers. They report results 

about the impact and dynamic behaviors of the panels [25] and about the feasibility 

to  use them in structural and functional applications [26] . 

It is introduced in this paper a novel honeycomb core made of a natural-fiber 

reinforced composite. The composite consists of a thermoset-polymer (vinylester) 

reinforced with jute fabrics. The paper reports the details of two methods for the 

fabrication of 6-mm and 10-mm cell-size cores, the experimental characterization of 

the anisotropic elastic behavior of the composite, and the experimental 

characterization of the core response under flatwise compression. The failure 
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mechanisms of the core in the compression tests are identified and discussed. In 

addition, there are also reported the effective elastic properties of the 10-mm cell 

core, which are computed via a computational homogenization method. The specific 

strengths of the cores are compared to those of commercially available products.  

 

2. Materials and experimental methods 

2.1 Honeycomb fabrication 

The matrix material was prepared using the general-purpose vinylester resin 

Derakane Momentum 411-350 (Dow Chemical) provided by Poliresinas San Luis 

(Argentina). Methyl ethyl ketone peroxide (MEKP) was used as catalyst in a weight 

ratio of 1:0.05. The reinforcement material was a commercially available woven jute 

fabric provided by Casthanal Textil CIA (Brazil). The fabric surface density was 

around 300 g/m2 and the average yarn diameter of the jute was 0.9 mm. The jute 

fabrics were washed with distilled water and detergent solution, and then dried to 

constant weight in a vacuum oven at 80 ºC.  

The honeycomb cores were manufactured by compression molding at 

laboratory scale using two molds:   

a) Mold with fixed inserts. The walls and the inserts with the shape of the cells were 

kept in place by screwing them to the bottom plate from behind, see Figure 1. The 

mold dimensions were 120 mm in length (ribbon direction), 30 mm in width and 10 

mm in height, and it contained a 5×18 array of 6-mm (cell size) hexagonal inserts. 

The clearance between the inserts, and thus the honeycomb wall thickness, was t= 

1.4 mm.  

To prepare the fiber-reinforced honeycombs, the jute fabric was placed between the 

inserts following a zigzag pattern in the ribbon direction. In order to facilitate the 
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placement of the reinforcement and its uniform distribution along the walls, the jute 

fabric was put in place at the same time the inserts were fixed to the bottom plate. 

No longitudinal force was applied to the jute fabric while disposing it into the mold. 

Afterwards, the vinylester was poured into the mold at 20°C. Then, the ensemble 

was molded under a 50-MPa pressure in a hydraulic press during 1 h at 80 ºC. 

Finally, the cores were post cured during 2 h at 140 ºC in an oven. The wall 

thickness resulted in t=1.43 ± 0.10 mm. It is worth to note that as consequence of 

the manufacturing process, the average fiber-volume contents are different for the 

longitudinal and diagonal walls. Since the longitudinal walls contain two fabric-

layers, its fiber content should double that of the diagonal walls, which have a single 

fabric layer. This was confirmed by the experimental measurements, which resulted 

in fiber volume contents of 29% and 14% for the longitudinal and the diagonal walls, 

respectively. A picture of the honeycomb core is shown in Figure 2. 

Although effective, this fabrication method has a drawback due to the fixed position 

of the inserts: it is not possible to press the walls in the direction of the thickness 

during the curing process. This limitation undermines optimum consolidation of the 

fibers into the cell wall. A second manufacturing method is proposed next to walk 

around these problems. 

b) Lateral compression mold. The second mold allowed for the lateral compression 

of the ensemble. It consisted in a series of aluminum “combs” with the shape of the 

cells, which could displace laterally, see Figure 3. This mold was used to 

manufacture samples of size 120 mm×60 mm×10 mm with a 12×6 cell array. In 

order to improve ease of manipulation the cell size was changed to 10mm.  

To fabricate the honeycombs, the resin-wetted jute fabrics were intercalated 

between the combs in the ribbon direction. As in the previous method, no 
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longitudinal force was applied to the jute fabric while disposing it into the mold. 

Then, the ensemble was laterally pressed and clamped to remove the excess of 

resin and to drag entrapped air bubbles. The process was completed with the 

thermal treatments to cure and post-cure the resin, like in the previous method.  

A picture of the honeycomb is depicted in Figure 4. When compared to the previous 

manufacturing method, the wall thickness diminished to t=1.11 ± 0.10 mm. The fiber 

volume contents augmented accordingly to 40% and 20% for the longitudinal and 

the diagonal walls, respectively.  

In addition to the honeycombs, there were also manufactured plane sheets of the 

jute-vinylester composites to prepare samples for the mechanical characterization of 

the wall materials. Thus, there were prepared sheets containing one and two fabric 

layers, as in the longitudinal and diagonal walls. Special care was taken to replicate 

the manufacturing conditions of the honeycomb in order to obtain samples with the 

same thicknesses and fiber contents.  

 

3. Experimental characterization 

3.1 Core characterization  

The mechanical characterization of the honeycombs comprised the tests to evaluate 

the flatwise compression strength and flexural modulus. Compression (crushing) 

tests were practiced on both cores according to the ASTM: C365/C365M standard 

using an Instron 4467 machine. The test speed was 0.5 mm/min and the sample 

dimensions were 55 mm×22 mm×10 mm. A set with 6 samples was tested in each 

case.  

The flexural modulus of the cores was measured for the 10 mm-cell core only. The 

test was performed according to the ASTM: D790, with crosshead speed of 1.5 
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mm/min and a span S=70 mm. Six specimens with length L=80 mm (ribbon 

direction), width W=36 mm and height H=10 mm were tested and their flexural 

moduli, Eflex, computed using Eq (1), 

3

3

4WH

mS
E flex =       (1) 

                

where m is the slope of the linear portion of the load-displacement record.  

Failure mechanisms resulting from the compression tests were studied by means of 

Scanning Electron Microscopy (SEM) observations. Samples were gold-plated 

using standard procedures.  

In order to compare the performances of the honeycombs in terms of their specific 

mechanical properties, the specimens were weighted and their densities computed. 

The density results and geometrical data of the honeycombs are listed in Table 1 

(see Figure 5a for the identification of the geometrical parameters). There are also 

given in Table 1 the data of commercially available honeycombs, which will be used 

later for comparison. 

 

4. Results and discussion 

4.1 Honeycomb cores mechanical response 

The stress–strain curves of the two jute-vinylester honeycombs are plot in Figure 6. 

There are also plot in Figure 6 the stress–strain response curves of Nomex and 

aluminum cores [27, 28] in order to show the typical compression behavior of 

honeycomb structures. The compression behavior of honeycombs allows identifying 

three distinct stages. In the first stage the stress rises linearly until a peak load is 

reached. After this point, there is a sudden drop of the curve due to the buckling of 

the cell walls. This is the starting point for the second stage, in which the folding of 
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the cells develops under an almost constant load. In the case of aluminum 

honeycombs, the walls deform plastically while folding. On the other hand, the 

folding of the Nomex, which is relatively brittle compared to aluminum, results in 

fractures in the cell walls. In both cases, the amount of folding increases and 

eventually extends over the entire height of the cells. The third stage is usually 

referred as the “densification” stage, and it results in the rapid increment in the 

stress due to the contact between the cell walls. 

It can be observed from Figure 6, that the cores produced in this work do not exhibit 

the abrupt stress drop between the initial linear behavior and the stress plateau. In 

contrast, they present a gradual transition between these two stages. The 10-mm-

cell core attains the stress plateau at 55% strain while the 6-mm-cell one does at 

35% strain. At the same time, the jute-vinylester cores possess relatively high 

compression strengths when compared to the commercially available cores: σc = 

15.5 MPa for the 6-mm-cell core and σc= 13.5 MPa for the 10-mm-cell one (see 

Table 1). 

The characteristic behavior of the honeycombs produced in this work is 

consequence of their failure mechanisms. In contrast to the Nomex and aluminum 

cores described above, the jute-vinylester cores do not suffer of the unstable failure 

due to buckling of the cell walls, but a progressive damage due to typical fiber-

composite failure mechanisms: yarn pull-out, fiber breaking and axial splitting. 

These failure mechanisms are shown in Figures 7 and 8. In particular, the 

micrograph in Figure 8a shows a typical yarn pull-out, while the closed-up in Figure 

8b allows observing the fiber breakage and axial splitting. Figure 8b also shows the 

plastic deformation in the matrix. The cell geometry and the heterogeneous nature 

of the material can explain this behavior. On one hand, the relative high aspect ratio 
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between the wall thickness to the cell size (see from Table 1 that t/c =0.24 and 0.11 

for the 6-mm-cell and the 10-mm-cell cores, respectively, in contrast to 0.016 ≤ t/c ≤ 

0.047 for the commercially available cores) results in higher critical buckling loads. 

On the other hand, it can be argued that the heterogeneities in the jute-vinylester 

composite due to local variations in the fiber properties and orientation are 

preferential damage initiation sites. Thus, the damage of the composite starts before 

the critical buckling load is attained. It is worth to note that this behavior has been 

also observed in Nomex cores. There is evidence in the bibliography showing that 

the failure mode can switch from buckling to fracture for high density Nomex cores 

[29].   

Finally, the performance of the cores is compared in terms of their specific 

compression strengths. It is interesting to see from Table 1, that even when it 

presents a compression strength lower than the 6-mm-cell core, the 10-mm-cell 

jute-vinylester honeycomb results in the best performance due to its lower density. 

The specific compression strength for the 10-mm- and the 6-mm-cores are σcs 

=0.085 MPa/Kg and σcs =0.051 MPa/Kg, respectively. These results are compared 

in Figure 9 to the specific compression strengths of the commercially available 

cores listed in Table 1. It can be observed that the cores produced in this work have 

a performance comparable to those of the commercially available products. 

Moreover, the 10-mm-cell jute-vinylester core has superior specific compression 

performance than any of the listed cores. 

The resulting value for the flexural modulus of the 10-mm-cell jute-vinylester core 

was Eflex =115.48 ± 1.35 MPa. It is observed that the dispersion of Eflex is relatively 

high, around 40% the mean value. This dispersion is attributed to the heterogeneity 
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and dispersion of the properties of the jute reinforcement. This result will be used 

later for the validation of the finite element models. 

4.2 Elastic characterization of the composite 

The elastic properties of the composite were appraised by means of uniaxial tensile 

tests monitored with Digital Image Correlation (DIC) strain measurements. Tensile 

tests were performed according to the ASTM: D3518/D3518M to obtain the Young 

Modulus and the Poisson’s Ratio, and ASTM: D3039/D3039M to obtain the Shear 

Modulus. All tests were carried out using an Instron 4467 machine. The test speed 

was 1 mm/min. The specimen geometry and dimensions are depicted in Figure 10. 

Specimens were laser-cut from the jute-vinylester sheets using two orientations: 

with their transversal and longitudinal directions, (i1,i2), coincident and rotated 45º 

with the fabric orthotropic directions (e1,e2), see Figures 10a and 10b, respectively. 

Three specimens were tested for each orientation, for both, the composites with one 

and two fabric layers. 

DIC was chosen due to its ability to measure the complete displacement field, what 

it is especially suitable to characterize the anisotropic elastic response of the 

composites. DIC measurements were carried out using an in-house developed set-

up based on a Canon EOS Rebel XSI 12.2 Megapixel digital camera commanded 

via a computer. The data processing was made using the software Digital Image 

Correlation and Tracking due to Eberl and available at Matlab Central [30]. This 

software uses the zero-normalized cross-correlation criterion [31] and reaches a 

sub-pixel resolution using peak-finding algorithm [32]. The software capabilities 

were extended to compute the strains via the differentiation of the displacement field 

using a point wise least squares algorithm [33].  
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The DIC experimental setup was calibrated and validated via a set of tests. 

Synthetic computer-generated distortion patterns were used to assess the 

performance of the algorithms in the absence of experimental artifacts. Besides, 

measurements performed on specimens made of expanded polystyrene, ethyl-vinyl-

acetate and polymethyl-methacrylate, and instrumented with a mechanical 

extensometer were used to devise and calibrate the methods for the specimen 

preparation, camera alignment and to account for the camera-lens optical 

aberrations. The preparation of specimen surface consisted in the deposition of a 

fine black spray over a matte-white coating. This resulted in a random speckle 

pattern like that illustrated in Figure 11a. The overall measurement error of the DIC 

was estimated less than 2%.  

The composite in-plane elastic constants were computed using the load and strain 

fields measured in the tensile tests. As an example, Figure 12 depicts the stress vs 

strain plots resulting from three tensile specimens for the composite with two-fabric-

layers and the load oriented 45º with respect to the fabric orthotropic directions. 

Figure 11b shows the corresponding strain fields calculated by DIC for the stress 

level σ= 12 MPa. The scatter of the DIC results in Figure 11b is consequence of the 

presence of the fibers, and the local variations in their spatial distribution and 

orientation (see Figure 10).  

The resulting in-plane elastic properties of the composites are reported in Table 2. 

As it was expected, the Young modulus of the two-fabric-layer composite nearly 

doubles that of the one-fabric-layer one, while Poisson ratios and the shear moduli 

are practically the same for both composites. Assuming an orthotropic symmetry, 

the stiffness tensors for the one- and two-fabric layer composites expressed in the 

(e1, e2, e3) system are computed using standard procedures [34]: 
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�1 =
��
��
��
4666 1593 1577 0 0 01593 4666 1577 0 0 01577 1577 3994 0 0 00 0 0 1231 0 00 0 0 0 1231 00 0 0 0 0 1240��

��
�� [���] 

 

 

(2) 

 

and 

�2 =
��
��
��
8549 2635 1451 0 0 02635 8549 1451 0 0 01451 1451 3580 0 0 00 0 0 1231 0 00 0 0 0 1231 00 0 0 0 0 1211��

��
��  [���], 

 

 

(3) 

respectively. 

It is worth to mention that due to impossibility of performing tests in the direction of 

the sheet thickness, the elastic properties in the e3 -directions were assumed equal 

to those of the neat isotropic vinylester matrix, E33= EM= 3200 [MPa] and ν13 = νm = 

0.3. 

 

4.3 Effective elastic properties  

Homogenization with periodic boundary conditions [35] was used to estimate the 

effective elastic properties of the 10-mm-cell core. The use of periodic boundary 

conditions was chosen because it provides the closest agreement with the actual 

material behavior [36]. 

Following the standard finite element approach, a set of six linear-independent 

boundary value problems with periodic boundary conditions was solved for the core 

unit cell. The software Abaqus 6.10 [34] was used for the finite element analyses. 

The model for the unit cell was discretized using regular mesh of quadratic 

hexahedral elements (C3D8R), see Figure 13a. The black elements are in the solid 

portion of the unit cell, while the gray ones correspond to the void portion. The 
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elastic properties of the solid part were specified as C1 or C2 (see equations (2) and 

(3)), whether they corresponded to the one or two fabric-layer material, respectively. 

Besides, relatively pliant elastic properties, Evoid = 10-5 MPa and νvoid =0 were 

assigned to the elements in the void part. The periodic boundary conditions were 

specified via the *EQUATION command using the strategy proposed by Barbero 

[37]. As an example, Figure 13b illustrates the periodic deformation for the unit cell 

model for the in-plane shear load case. The effective elastic properties for the core 

were computed from the finite element results using the homogenization method via 

an in-house developed Matlab function [36]. The accuracy of the implementation 

was verified by comparison of results for some benchmark problems reported by 

Guedes and Kikuchi [38]. There was also carried out a convergence analysis to 

assess the effects of the mesh size, and it was found that a regular discretization of 

98×56×19 elements provides mesh independent results. 

The homogenization analysis resulted in the following effective stiffness tensor for 

the 10-mm-cell core:  

���� =
��
��
��
333 275 168 0 0 0275 316 162 0 0 0168 162 1316 0 0 00 0 0 31 0 00 0 0 0 170 00 0 0 0 0 174��

��
�� [���]. 

 
 

 
 
(4) 

 
The result in Eq.(4) is expressed in the core reference system (x, y, z), see Figures 

5(a) and 13. Furthermore, the effective engineering elastic constants were 

computed from Ceff using standard procedures [34]: Exx =93.09 MPa, Eyy =88.46 

MPa, Ezz =1225  MPa, Gxy =31 MPa, Gxz =170 MPa and Gyz =174 MPa. 

The above results were verified by comparison to analytical formulae from the 

bibliography. It is worth to note that in every case, the analytical solutions from the 
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bibliography were checked for its applicability to the present case. Particular care 

was taken in what respected to the hypotheses about the thickness and behavior of 

the diagonal walls when compared to those of the longitudinal ones.  

The formulae due to Gibson and Ashby [39] was used to compute the in-plane 

equivalent Young moduli  and . These formulae reduce the in-plane rigidity of 

honeycombs to depend on the elasticity and the dimensions of the diagonal walls 

only. In particular, for regular hexagonal cores,  is estimated using the 

following equation:  

���∗ = ���∗ = 2.3  !
"#3 �11$ = 60.62 ��� 

 
 

(5) 

where l = 5.77 mm is the wall length (see Figure 5a), and the Young modulus of the 

diagonal walls, Ed
11 =3811 MPa,  is that  for the one-fabric-layer composite in Table 

2. The result in Eq.(5) underestimates  the effective  values Exx =93.09 MPa,  

Eyy=88.46 MPa that resulted from the homogenization analysis.  

No analytical formulas were found in the bibliography that can be used or adapted 

to estimate G*
xy and E

*
zz . Thus, a formula based on the relative transversal areas of 

the longitudinal and diagonal walls was developed to estimate E
*
zz . Consider to this 

purpose the unit element of the core depicted in Figure 5(b). The transversal areas 

of the diagonal and longitudinal walls are 

%$ = 2" ∙ !  
 

%" = 2" ∙ !
2, 

 

 (6) 

(7) 

 
while the area for the unit element is 

 

 
 

(8) 
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Then, the equivalent Young modulus in the direction of the thickness can be 

estimated as follows 

�((∗ = %$ ∙ �11$ + %" ∙ �11"
%� = 1102 ���, 

  

(9) 

where E
d
11 and E

l
11 are the Young modulus for the one- and two-fabric layer 

composites reported in Table 2. The E
*
zz  estimated by Eq.(9) underestimates E

*
zz = 

1225 MPa from the homogenization analysis by 10%. 

For the verification of the out-of-plane elastic constant, we used the formulae due to 

Kelsey et al. [40], which specifies upper and lower bounds for the Gxz shear 

modulus. When specialized to regular hexagonal cores, the formulas due to Kelsey 

et al. [40] yield 

 

 
√3 ! ∙ +123" ≤ +�(∗ ≤ 4√3! ∙ +129"  

 
 134.81 ��� ≤ +�(∗ ≤ 179.74 ���,  
 
 

 
(10) 

 
 
(11) 

 

where the shear modulus G12= 1226 MPa was taken as the average between the 

values measured for the  one- and two-fabric-layer composites reported in Table 2. 

It is worth to note here that the almost identical shear response of the two 

composites (there is less than 2.5% difference in their shear modulus) allows using 

the formulae due to Kelsey et al. [40] for the present analysis. In what respects to 

the comparison of the results, it can be observed that the effective shear modulus of 

the core resulting from the homogenization analysis, Gxz= 170 MPa lies between the 

bounds of Eq. (10). Besides, G*
xz was also computed using the formula proposed by 

Meraghni et al. [41], but it resulted in the same value that the upper bound due to 

Kelsey et al. [40] reported in Eq. (11). 
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Two formulas due to Kelsey et al. [40] and Meraghni et al. [41] were used to verify 

the Gyz . These are 

 

 

+�(∗��-�. ℎ01 = +12 ∙ !2! + √3"3
3" 4! + √32 "5

= 141.63 ���. 
 
 
 
 
 

+�(∗��-�. ℎ01 = +12 ∙ !2! + √3"3
3" 4! + √32 "5

= 141.63 ���. 
 
 
 

 
 

(12) 
 
 
 
 
 
 

(13) 
 

The above results overestimate the effective value Gyz = 174 MPa in about 20%.  

According to Gibson and Ashby [39] the regular hexagonal cores can be considered 

to have an isotropic elastic behavior in the xy plane. In this sense, it is interesting to 

observe that the results of the homogenization analysis provide evidence in that 

direction. We can see that computed values for the Young moduli Exx and Eyy differ 

in less than 5.23%, while the difference between the shear moduli Gxz and Gyz is 

less than 2.5%. 

Finally, the homogenized elasticity tensor was validated by comparison with the 

experimental results of the flexural modulus reported in Section 3.1.2. To this end, 

the bending test was modeled using three different approaches: 

• Full-detail model: the geometry of the specimen was represented in full detail and 

shell elements (S4R) were used for its discretization, see Figure 14a. The elastic 

properties of the core walls were specified as C1 or C2, whether they 

corresponded to the one or two fabric-layer material, respectively. In order to 

study the effect of the element size on the value of the flexural modulus, a 
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convergence analysis was performed using element sizes ranging from 0.3 mm 

to 1 mm. 

• Solid model: the specimen was represented as a prismatic body, which was 

discretized using hexahedral elements (C3D8R), see Figure 14b.  The elastic 

properties were specified using the Ceff. The convergence analysis for the flexural 

modulus was performed using element sizes ranging from 0.7 mm to 1.5 mm.  

• Shell model: the specimen was represented as a shell, which was discretized 

using S4R elements, see Figure 14c. The elastic properties were specified using 

the Ceff. The convergence analysis for the flexural modulus was performed using 

element sizes ranging from 0.2 mm to 1 mm.  

The bending moments to the three models were applied by means of rigid cylinders, 

which interact to the specimens via friction-less contact boundary conditions, see 

Figure 14. 

The results of the convergence analyses for the computation of the flexural modulus 

using the three models are plot in Figure 15. The modulus values computed via the 

extrapolation of the FEA results to zero-element size are compiled in Table 3. The 

shell-element model predicts a slightly higher modulus (around 3.5%) than the full-

detail and the solid models. This result is coherent with the simpler and stiffer 

description of the problem associated to the shell model. At the same time, it can be 

observed that there is an excellent agreement between the experimental result and 

FE predictions (see Table 3). Maximum differences of 3.61% are for the full-detail 

and solid models, while for the shell model the difference is only 0.42%. 

 

5. Conclusions 
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A novel honeycomb core made of a natural-fiber reinforced composite consisting of 

a vinylester matrix reinforced with jute fabric was introduced in this work. Six mm- 

and 10mm-cell honeycombs were manufactured by compression molding using two 

molds: a mold with fixed inserts and a mold that allows for lateral compression. The 

second method led to better results, as the lateral pressure allowed to obtain thinner 

walls and to better remove the excess of resin and to drag entrapped air bubbles. 

The flatwise compression tests showed that the cores produced in this work do not 

exhibit the classical behavior observed for typical honeycombs, this is, they do not 

suffer of the unstable failure due to buckling of the cell walls, but a progressive 

damage due to typical fiber composite failure mechanisms, like yarn pull-out and 

fiber breaking. The large wall thickness relative to the cell size of the jute-vinylester 

cores, which inhibits buckling, and the heterogeneities in the composite material, 

which are preferential damage initiation sites, explain this behavior. 

The jute-vinylester cores possess high compression strengths when compared to 

the commercially available cores: σc = 15.5 MPa for the 6mm-cell core and σc = 13.5 

MPa for the 10mm-cell one. On the other hand, although the cores have relatively 

high densities, ρ =290 Kg/m3 for the 6mm-cell core and ρ =157 Kg/m3 for the 

10mm-cell one, their specific compression strengths, σcs=  0.085 MPa/Kg and σcs= 

0.05 MPa/Kg, are similar to those of commercially available cores. 

The effective stiffness tensor of the 10-mm core was successfully computed via the 

experimental characterization of the elastic response of the composites and a finite 

element homogenization analysis. The results of the homogenization analysis are in 

good agreement with estimations of the effective engineering elastic constants 

computed via analytical formulas. Besides, very good agreement was found for a 

validation analysis where the flexural modulus of the core measured in experiments 
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was compared to the computed via finite element models with the homogenized 

stiffness tensor. 

The results from this study suggest that jute-reinforced cores have the potential to 

be an alternative to standard cores in applications that sustain compressive static 

loads. Further research is needed to assess the performance of jute-reinforced 

cores when subjected to other loading configurations, like bending or dynamic 

loads. 
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FIGURE CAPTIONS 

Figure 1: Mold with fixed inserts: a) bottom plate and inserts, b) pre-assembled honeycomb mold 

Figure 2: Honeycomb core manufactured using the mold with the fixed inserts.  

Figure 3: Mold with lateral compression: (a) Schematic of the manufacturing process; actual pictures 

of the (b) open and (c) closed mold. 

Figure 4: Honeycomb manufactured using the lateral compression mold.  

Figure 5: (a) Core coordinate system and (b) unit element and geometrical parameters 

Figure 6: True stress vs strain curves resulting from the flatwise compression test. 

Figure 7: Honeycomb core after compression test 

Figure 8: SEM micrographs of the honeycomb cores failure mechanisms: (a) typical yarn pull-out, 

(b) closer view showing the fiber breakage and matrix plastic deformation.  

Figure 9: Comparison between of the specific compression strengths of the jute/VE cores and those 

of the commercially available cores. Error bars in the jute/VE data indicate the dispersion of the 

experiments. Data obtained from product data sheet (*) and the **bibliography (**). 

Figure 10: Specimens with a) their longitudinal and transversal directions coincident with the fabric 

orthotropic directions and b) rotated 45º. 

Figure 11: a) Specimen for the uniaxial traction test with the speckle pattern for DIC measurements; 

b) Strain fields calculated by DIC for the load σ= 12 MPa. 

Figure 12: Stress vs strain plots for the traction tests of the two-fabric-layer specimens with the load 

oriented 45º with respect to the fabric orthotropic directions. 

Figure 13: FE model of the honeycomb unit cell: (a) model discretization and (b) deformed model for 

a shear load case. 

Figure 14: Finite element models of the bending test: (a) full-detail model, (b) solid model, (c) shell 

model. 

Figure 15: Results of the convergence analyses for the FEA analyses for computation of the flexural 

modulus of the 10mm-cell core. 
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Core type 
Cell size 
c [mm] 

 

Wall 
thickness t 

[mm] 

Core height    
h [mm] 

Density 

[kg/m3] 
 

Compressive 
Strength 

[MPa] 

Jute/VE 
honeycomb 

core 
6 1.43 10 290 14.99 

Jute/VE 
honeycomb 

core 
10 1.11 10 157 13.48 

Aluminium 
Plascore* 6.4 0.1 15.8 126 9.37 

Stainless 
Steel 

Plascore* 
9.5 n/a 12.7 92 2.41 

Euro 
composite 
(special 
fiber)* 

6.4 n/a 12.7 42 1.4 

Hexcel 
HRH 10 
Nomex** 

4.7 0.15 19 32 0.9 

 

* Data obtained from the product data sheet 

** Data obtained from literature  [23]  
Table 1: Geometrical and compressive strength data of the honeycombs. 
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Material Young´s Modulus,  
 [MPa] 

Poisson’s 
ratio,  

Shear 
modulus,   

[MPa] 
One-fabric-layer jute-
vinylester composite 3811 ± 399 0,24 ± 0,03 1240 ±136 

Two-fabric-layer jute-
vinylester composite 7399 ± 302 0,26 ± 0,04 1211± 126 

 

Table 2. Elastic properties of the jute-vinylester composites expressed in the fabric 

orthotropic directions. 
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 Flexural 
modulus [MPa] 

Difference with respect to the 
experimental value 

Experimental 115.48 ± 1.35  — 
Full-detail model 111.31 3.61% 
Solid model 111.55 3.40% 
Shell model 114.99 0.42% 

 

Table 3. Comparison between the flexural modulus measured in the experimental tests and 

those computed using finite element models with the homogenized elastic properties.  
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Highlights 
 

• Honeycomb cores consisting of a vinylester matrix reinforced with jute fabrics were 

manufactured and tested. 

• Experimental tests were conducted to characterize the elastic response of composite 

and core. 

• The elastic properties were computed by homogenization analysis and finite element 

modeling. 

• Fabricated cores can be a potential alternative to standard cores in several 

applications. 

• Jute-vinylester cores have high density and compression strength in comparison to 

commercially available cores. 


