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Abstract 

The impact of sub-lethal doses of herbicides on human health and the environment is a matter 

of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the 

central nervous system of rat offspring by in utero exposure is scarce, the purpose of the 

present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-

containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were 

exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate 

(corresponding to a concentration of 0.65 or 1.30 g/L of glyphosate, respectively) during 

pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The 
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postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and 

negative geotaxis) and that on which eyes and auditory canals were fully opened were 

recorded for the assessment of sensorimotor development. Locomotor activity and anxiety 

levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-

old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff 

aversion reflex and early auditory canal opening. A decrease in locomotor activity and in 

anxiety levels was also observed in the groups exposed to a glyphosate-containing 

herbicide. Findings from the present study reveal that early exposure to a glyphosate-based 

herbicide affects the central nervous system in rat offspring probably by altering mechanisms 

or neurotransmitter systems that regulate locomotor activity and anxiety. 

Keywords 

Glyphosate-based herbicides – Perinatal exposure – Sensorimotor reflexes – Locomotor 

activity – Anxiety –Rats 

 

 

Highlights 

� Early exposure to glyphosate formulation had neurobehavioral effects in offspring.  

� Glyphosate-based herbicide (Gly-BH) caused early onset of cliff aversion reflex. 

� Pups exposed to Gly-BH showed early auditory canal opening. 

� Gly-BH exposure caused hypoactivity and anxiety reduction in the offspring.     

 

1. Introduction 

The massive influx of genetically modified (GM) crops resistant to glyphosate (Gly) in 

Argentina is the main reason why the most widely marketed herbicides within this country are 

those containing Gly in their formula. In 1996, Gly-resistant soybean became the first GM 

crop approved in Argentina and since then the area dedicated to GM crops has been growing 

steadily, reaching 22 million hectares at present (GRAIN, 2009; Trigo, 2011). As these crops 
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are sprayed with 200 million liters of Gly per year (Teubal, 2009; Teubal et al., 2005) its 

residues are often found in the environment (soil, water and food) (Bohn et al., 2014; Peruzzo 

et al., 2008; Van Stempvoort et al., 2014). A study carried out in the central area of soybean 

sowing in Argentina revealed that Gly levels in sediments and soils range between 0.5 and 5.0 

mg/Kg, while in water they range from 0.10 to 0.70 mg/L (Peruzzo et al., 2008). In this 

respect, the highest level of Gly allowed in water for human consumption is 0.7 mg/L (US-

EPA, 2011).  

Little is known on the impact of sub-lethal doses of Gly on human health and the 

environment and although Gly is considered to be safe for living beings, its safety has been 

questioned worldwide. 

Pesticides are postulated as the main environmental factor associated with the etiology of 

neurodegenerative disorders, such as Parkinson´s and Alzheimer´s disease (Le Couteur et al., 

1999; Richardson et al., 2014) and many of the most commonly used pesticides exert their 

toxic effects via oxidative stress mechanisms (Astiz et al., 2009). The central nervous system 

(CNS) is highly sensitive to free radical damage (Chong et al., 2005). In line with this, it has 

been extensively demonstrated that exposure to Gly (either the active ingredient or the 

commercial formulation) leads to oxidative stress in several tissues, including the brain 

(Beuret et al., 2005; Cattani et al., 2014; El-Shenawy, 2009; Larsen et al., 2012; Modesto and 

Martinez, 2010). Previous research reported the case of a 54-year-old man who, after having 

been accidentally sprayed with an herbicide containing Gly, developed a symmetrical 

Parkinsonian syndrome as well as alterations in the globus pallidus and substantia nigra, the 

latter being shown by magnetic resonance imaging two years after the initial exposure 

(Barbosa et al., 2001). More recently, Wang et al. (2011) reported the case of a healthy 

woman who at the age of 44 had parkinsonism as a result of chronic occupational exposure to 

a Gly-containing herbicide. 
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Experimental in vitro and in vivo studies have demonstrated the neurotoxic effects of Gly 

and Gly-based herbicides. For example, in mouse neuroprogenitor cells, it was observed to 

increase the activation of the marker of potential apoptosis p53 without producing changes in 

caspase 3, another indicator of apoptosis (Culbreth et al., 2012). Further recent research using 

the MTT mitochondrial assay showed that Gly causes cytotoxicity in human neuroblastoma 

cell line SH-SY5Y (Chorfa et al., 2013). It was also demonstrated that Gly alters 

acetylcholinesterase activity in the brain and muscle of fishes exposed either to pure Gly 

(Menendez-Helman et al., 2012; Sandrini et al., 2013) or to Gly formulations (Modesto and 

Martinez, 2010; Samanta et al., 2014). Research on the nematode Caenorhabditis elegans 

revealed that exposure to Gly-containing herbicides causes neuronal degeneration, 

particularly, neurodegeneration of GABAergic and dopaminergic neurons (Negga et al., 

2012). Further work showed that whereas oral administration of Gly in rats decreases 

serotonin (5-HT) and dopamine (DA) levels in the frontal cortex, midbrain and striatum, it 

increases 5-HT and DA metabolites (Anadón et al., 2008). More recently, Hernández-Plata et 

al., (2015) have shown that rat exposure to Gly decreases locomotor activity, binding to D1-

DA receptor in the nucleus accumbens, and extracellular DA levels in striatum. In pregnant 

rats, the oral exposure to a Gly-containing herbicide, which has been reported to have the 

ability to cross the placenta (Mose et al., 2008; Poulsen et al., 2009), alters the activity of 

brain enzymes both in mothers and offspring (Daruich et al., 2001). In addition, Cattani et al. 

(2014) showed that oral exposure to the Gly-based herbicide Roundup® during pregnancy 

and lactation in rats causes a decrease in glutamate uptake by glial cells in the hippocampus of 

exposed offspring, thus leading to glutamate excitotoxicity.  

As pesticides are used in formulations which combine an active ingredient with 

adjuvants, the toxicity exerted by Gly-based herbicides cannot therefore be exclusively due to 

the active ingredient but either to the intrinsic toxicity of adjuvants or to the possible synergy 

between Gly and the other formulation ingredients (El-Shenawy, 2009; Mesnage et al., 2013).  
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 Little is known to date on the effects of Gly-based herbicides on the CNS of rat offspring 

by in utero exposure. The purpose of the present study was therefore to assess the 

neurobehavioral effects of chronic exposure to a Gly-containing herbicide during pregnancy 

and lactation. To this end, pregnant Wistar rats were supplied orally with 0.2% or 0.4% of a 

Gly commercial formulation corresponding to a concentration of 0.65 or 1.30 g/L of Gly, 

respectively, during the complete gestational and lactation periods, and offspring were 

subjected to a series of neurobehavioral tests. The postnatal day (PND) on which each pup 

acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which 

eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor 

development. Furthermore, locomotor activity and anxiety levels were analyzed in 45- and 

90-day-old offspring by means of the open field test and plus maze test, respectively. 

 

2. Materials and methods 

2.1. Materials 

The pesticide used in this study is a commercial formulation marketed in Argentina as 

Glifloglex® from Gleba S.R.L., which contains 48 g of Gly isopropylamine salt per 100 cm3 

product (equivalent to 35.6% w/v of Gly acid).  

 

2.2. Animals 

Sexually mature male and female Wistar rats (90-120 days old) from our own breeding 

center were used. They were maintained under constant temperature (22º ± 1ºC) and humidity 

(50% - 60%) conditions in a 12 h light-dark cycle, with food (Ganave®, Alimentos Pilar S.A., 

Argentina) and water ad libitum. Both animal care and handling followed the internationally 

accepted standard Guide for the Care and Use of Laboratory Animals (Garber et al., 2011) 

and were controlled by the institutional committee for the care and use of research animals of 

the Universidad Nacional del Sur. 
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Nulliparous female rats at the proestrus stage were housed overnight with fertile males. 

The presence of spermatozoa in vaginal smears was registered as an index of pregnancy and 

was referred to as gestational day (GD) 0. Pregnant females were weighed and housed 

individually in boxes and were randomly assigned to one of the following groups: control 

group (n=10), provided with tap water, Gly-based herbicide (Gly-BH)-treated group I (n= 10), 

provided with 0.65 g/L (0.065%) of Gly in drinking water (0.2% of the commercial 

formulation), equivalent to 100 mg of Gly/kg/day, and Gly-BH-treated group II (n= 10), 

provided with 1.30 g/L (0.13%) of Gly in drinking water (0.4% of the commercial 

formulation), equivalent to 200 mg of Gly/kg/day. These doses were selected based on Gly 

no-observed adverse effect level (NOAEL) of 1000 mg/kg/day for maternal toxicity 

(Williams et al., 2000). Although Gly half-life in water varies from 49 to 70 days (Mercurio et 

al., 2014), Gly solutions were prepared daily to minimize the risk of degradation. 

Dams received the treatment from GD 0 to weaning on post-gestational day (PGD) 21. 

Maternal weight gain and food intake were recorded on different GDs (GD 0, 3, 6, 9, 12, 15, 

18 and 20) and PGDs (PGD 1, 4, 7, 10, 13, 16, 19 and 21). Drink consumption was recorded 

on a daily basis. Within 24 h after delivery, all pups were weighed and litters were randomly 

culled to five males and five females whenever possible. The following data were analyzed: 

length of gestation, litter size, number of males and females, and body weight of pups on 

different PNDs (PND 1, 4, 7, 10, 13, 16, 19 and 21). After weaning, offspring were housed in 

groups of six rats according to sex and treatment, receiving tap water and food ad libitum. 

One male and one female from each litter were randomly assigned for the open field and plus 

maze tests. These neurobehavioral tests were performed on PNDs 45 and 90. The animals 

analyzed on PND 45 were different from those analyzed on PND 90. The total number of 

animals used in each test was 10 per group and per sex. 

 

2.3. Sensorimotor development 
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Starting on PND 3, each pup was subjected to a battery of developmental tests. One trial 

test per day was given to the pups on each test: righting reflex, cliff aversion, negative 

geotaxis and eye and ear opening. The dependent variable analyzed for each test was the PND 

of first achieving either maturity of the reflex or the conditions listed below (Molina et al., 

1987). 

2.3.1. Righting reflex: The pup was placed on its back on a cloth-covered supporting surface, 

and allowed to right itself. Time for regaining normal position was recorded. This reflex was 

completed if the pup performed this response within 5 s on 2 consecutive days. 

2.3.2. Cliff aversion: Offspring were placed with their forepaws on the edge of a wooden 

platform and the snout protruded beyond the edge of the same platform. Latency to retract 

their body 1.5 cm from the edge was registered. The cliff aversion criterion was registered as 

mature when the pup performed this response in less than 5 s on 2 consecutive days. 

2.3.3. Negative geotaxis: Each rat was placed on an inclined wire mesh ramp (angle of 

inclination from the base: 30º) with the head facing down. The reflex was considered to be 

acquired when pups performed a 180º body rotation and when they could climb up within 10 

s on 2 consecutive days. 

2.3.4. Eye and auditory canal opening: The PNDs on which both eyes were opened and on 

which both auditory canals were fully opened were registered. 

 

2.4. Open field  

Motor activity, which is considered to be a test of nervous system function, shows the 

integrated output of the sensory, motor and associative processes of the nervous system in 

case of absence of systemic toxicity (Hübler et al., 2005). Behavior in the open field (OF) test 

is used to assess locomotor activity as well as emotionality (Walsh and Cummins, 1976). 

Each rat was placed in a 50 cm × 50 cm × 60 cm open area box whose floor was divided into 

12 cm × 12 cm squares by black lines. The number of squares entered by each rat with all four 
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paws, rearings (episodes of animals standing on their hind legs), grooming episodes (face 

washing, forepaw licking and head stroking) and fecal boluses were scored every 5 min for 15 

min. Both the number of squares crossed and rearings were recorded as parameters of 

locomotor activity, whereas the number of grooming episodes and the number of fecal 

boluses deposited were recorded as parameters of emotionality (Choleris et al., 2001). Once 

each animal was removed, the floor was carefully cleaned with a cloth embedded with a 10% 

ethanol solution. The test was always carried out between 09:00 am and 03:00 pm in a quiet 

room intended only for this purpose. 

 

2.5. Plus maze 

Anxiety levels in offspring after exposure to a Gly-BH during pregnancy and lactation 

were analyzed using the plus maze (PM) test, which represents a valid behavioral model to 

study the emotional response of animals (Pellow et al., 1985). The PM was made up of wood 

and consisted of four arms, all with the same dimensions (50 x 10 cm), which were elevated 

50 cm above the floor. Two of these arms were enclosed by 40 cm high lateral walls with an 

open roof and were located perpendicularly to the other two opposed open arms. The four 

arms delimited a central area of 10 cm2. This test exploits a rodent’s natural conflict between 

avoidance and exploration of open and elevated areas. Rats were placed in the centre of the 

maze facing an enclosed arm and were allowed to explore the maze freely for 5 min. The 

following parameters were assessed: i) percentage of time spent in open arms, ii) percentage 

of entries to open arms, and iii) total number of entries in open and closed arms. An increment 

in parameters i) and/or ii) are consistent with a decrease in anxiety behavior whereas 

parameter iii) is indicative of locomotor activity (Pellow et al., 1985). The floor of the maze 

was wiped thoroughly with a cloth embedded with a 10% ethanol solution after each test. The 

test was carried out in a quiet room from 09:00 am to 03:00 pm. 
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2.6. Statistical analysis 

The data about mothers and their litters were analyzed by one-way ANOVA and 

repeated-measures ANOVA. The litter was used as the statistical unit. Sensorimotor 

development tests were analyzed by two-way ANOVA (group x sex). The data derived from 

the15 min OF test were analyzed using three-way ANOVA (group x sex x age). A repeated-

measures ANOVA was performed for a comparative analysis of the OF parameters evaluated 

every 5 min. A t-test for paired samples was carried out to analyze the differences in each 5 

min period within each group whereas a t-test for independent samples was carried out in 

order to analyze the differences among groups in each 5 min period. The PM variables were 

analyzed by three-way ANOVA (group x sex x age). Differences between groups were 

assessed using LSD post hoc test. A value of p<0.05 was considered statistically significant. 

All statistical analyses were carried out using software SPSS Statistics 21 for Windows. 

 

3. Results 

3.1. Data about mothers and their litters 

Compared to the control group, water and food intake during pregnancy and lactation was 

not affected in mothers exposed to the two Gly-BH concentrations tested (Fig 1A-D).  
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Fig. 1. Maternal consumption of water and food under control condition and under exposure to a Gly-BH. A) 

and C) Water and food intake on the indicated GDs. B) and D) Water and food intake during the indicated 

PGDs. Gly-BH I corresponds to a concentration of 0.65 g/L of Gly; Gly-BH II corresponds to a concentration of 

1.30 g/L of Gly. All data are presented as mean ± SEM. n=10 for each group. 

 

 

There were neither statistical differences in the dams´ body weight on GD0 nor in body 

weight gain during pregnancy, and gestational length and litter size were not affected by Gly-

BH treatment (Table 1). 
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Table 1. Animal weights and characteristics of mothers and their litters in control and Gly-BH-exposed groups.  

 

 Control (n = 10) Gly-BH I (n = 10) Gly-BH II (n = 10) 

Body weight of dams (g)    

GD0 279.1± 16.2 256.1 ±  9.9 283.6 ± 15.7 

Weight gain (g)    

GD 0-3 12.3 ± 1.4 11.5 ± 3.0 8.4 ± 3.0 

GD 3-6 9.4 ± 1.8 6.4 ± 2.3 7.9 ± 1.9 

GD 6-9 10.6 ± 2.1 8.0 ± 1.0 13.1 ± 1.4 

GD 9-12 18.1 ± 1.9 18.0 ± 2.1 14.0 ± 1.1 

GD 12-15 15.7 ± 2.6 13.4 ± 1.5 14.8 ± 1.7 

GD 15-18 32.9 ± 3.9 27.1 ± 3.2 36.0 ± 3.0 

GD 18-20 25.1 ± 2.6 26.5 ± 2.3 22.1± 1.8 

GD 0-20 124.1 ± 5.6 110.9 ± 6.6 116.3 ± 7.2 

Length of gestation (days) 22.0 ±  0.0 22.0 ± 0.5 22.1 ±  0.4 

Litter size    

Female 4.9 ± 1.2 4.8 ± 0.5 5.4 ± 0.9 

Male 6.4 ± 1.2 4.1 ± 1.0 5.1 ± 1.1 

Total 11.3 ± 1.2 8.9 ± 1.4 10.5 ± 1.5 

 

Gly-BH I corresponds to a concentration of 0.65 g/L of Gly; Gly-BH II corresponds to a concentration of 1.30 

g/L of Gly. Values are mean ± SEM. 

 

 

There were neither visible external malformations in any of the groups analyzed, nor was 

pups´ body weight affected as a result of Gly-BH intake by mothers during pregnancy and 

lactation (Fig. 2A and B). 
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Fig. 2. Body weight of female (A) and male (B) rat pups on the indicated PNDs. Gly-BH I corresponds to a 

concentration of 0.65 g/L of Gly; Gly-BH II corresponds to a concentration of 1.30 g/L of Gly. All data are 

presented as mean ± SEM.  

 

3.2. Sensorimotor development 

Two-way ANOVA revealed significant differences between groups for the cliff aversion 

reflex, (F(2,54) = 10.34, p<0.001). Post hoc comparisons showed an early onset in the 

development of the cliff aversion reflex in Gly-BH I and II groups with respect to controls. 

This was significant in female pups (p<0.01 and p<0.05 for Gly-BH I and Gly-BH II, 

respectively) as well as in male pups (p<0.05 and p<0.01 for Gly-BH I and Gly-BH II, 

respectively). Two-way ANOVA revealed no statistical differences in the development of 

negative geotaxis and righting reflex (Table 2). 

As to the day when eye and auditory canal opening occurred in offspring, differences 

were observed among the groups analyzed only for auditory canal opening (two-way 

ANOVA, F(2,54) = 10.74, p<0.001). Post hoc comparisons showed an early auditory canal 

opening with respect to controls in female and male pups exposed to the two Gly-BH 

concentrations tested (females: p<0.001 for Gly-BH I and p<0.05 for Gly-BH II; males: 

p<0.01 for Gly-BH I and p<0.05 for Gly-BH II) (Table 2). 
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Table 2. Postnatal day (PND) on which sensorimotor reflexes were acquired and physical parameters of 

maturation were recorded in rat pups from female rats treated orally with water or with a Gly-BH during 

pregnancy and lactation. 

 

 Control Gly-BH I Gly-BH II 

Sensorimotor reflexes (PND) Females Males Females Males Females Males 

Righting Reflex 4.21 ± 0.12 4.43 ± 0.20 4.64 ± 0.13 4.45 ± 0.16 4.28 ± 0.11 4.21 ± 9.6E-2 

Cliff Aversion 6.37 ± 0.19 6.64 ± 0.32 5.31 ± 0.17 **  5.50 ± 0.17 * 5.72 ± 0.25 * 5.63 ± 0.26 **  

Negative Geotaxis 11.26 ± 0.53 11.00 ± 0.30 11.50 ± 0.66 10.91 ± 0.39 11.50 ± 0.53 11.00 ± 0.41 

Physical parameters (PND)       

Eye opening 13.89 ± 0.23 14.36 ± 0.17 14.21 ± 0.11 14.27 ± 0.14 14.00 ± 0.18 14.00 ± 0.20 

Auditory canal opening 12.26 ± 0.21 12.57 ± 0.31 11.43 ± 0.17 ***  11.45 ± 0.16 **  11.78 ± 0.10*  11.79 ± 0.16* 

 

Gly-BH I corresponds to a concentration of 0.65 g/L of Gly; Gly-BH II corresponds to a concentration of 1.30 

g/L of Gly. All data are shown as mean ± SEM. n=10 per sex and per group. * p<0.05, ** p<0.01, *** p<0.001 

compared to the respective control group. 

 

3.3. Open field 

Three-way ANOVA of the number of squares crossed during total 15 min OF test 

revealed significant differences among the factors Group (F(2, 108) = 26.61, p<0.001), Age (F(1, 

108) = 33.87, p<0.001) and Sex (F(1, 108) = 5.68, p<0.02) as well as in the interaction of factors 

Age x Sex (F(1, 108) = 8.74, p<0.001). Post hoc comparisons of 45-day-old offspring showed 

that female rats from Gly-BH II-treated group exhibited a significant decrease in the number 

of squares crossed with respect to the control group (p<0.01). In contrast, no significant 

differences were observed in male rats (Fig. 3A). Post hoc comparisons in 90-day-old rat 

offspring showed that female and male rats exposed to the two Gly-BH concentrations tested 

crossed a significantly lower number of squares with respect to controls (female rats: p<0.001 

for Gly-BH I and Gly-BH II; male rats: p<0.05 and p<0.001 for Gly-BH I and Gly-BH II, 

respectively) (Fig. 3B). 
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The comparison of the number of squares crossed every 5 min by ANOVA for repeated 

measures showed significant intra-subject differences (F(2,216) = 622.46, p<0.001). The 

number of squares crossed in each 5 min period was used to analyze the animals’ habituation 

to the OF. All groups of rats showed greater locomotor activity during the first 5 min period 

which declined in the second and in the third period (p<0.05 for all groups with respect to the 

first 5 min period) (Fig. 3A’ and B’). This gradual and significant decrease in their locomotor 

activity throughout the test session indicated that all animals were habituated to the OF. 

As to the number of rearings performed, statistically significant differences were 

observed among the groups analyzed (F(2, 108) = 9.56, p<0.001; three-way ANOVA). Post hoc 

comparisons showed a significant decrease in the number of rearings only in 90-day-old 

female and male rats from the Gly-BH II-treated group in comparison with the control group 

(p<0.05 for both sex) (Fig. 3D). 

Analysis by three-way ANOVA of emotionality parameters showed significant 

differences in grooming between Age (F(1, 108) = 11.25, p<0.001) and Sex (F(1, 108) = 5.29, 

p<0.05) and in the interaction of Age x Group (F(2, 108) = 3.95, p<0.05). Post hoc comparisons 

showed significant differences only in 90-day-old offspring, particularly in the male rats 

exposed to the two Gly-BH concentrations tested. Compared to the control group, these rats 

performed a higher number of grooming episodes (p<0.05 for Gly-BH I and Gly-BH II) (Fig. 

3F). No statistically significant differences were observed in the number of fecal boluses (data 

not shown). 
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Fig. 3. Open field (OF) evaluation. Total number of squares crossed by 45- (A) and by 90-day-old (B) 

offspring during the 15 min test.  The number of squares crossed by 45- and 90-day old offspring in each 5 min 

period of the OF test is shown in A’) and B’) respectively. Total number of rearings performed by 45- (C) and by 

90-day-old (D) offspring. Total number of grooming episodes in 45- (E) and 90-day-old (F) animals. Gly-BH I 

corresponds to a concentration of 0.65 g/L of Gly; Gly-BH II corresponds to a concentration of 1.30 g/L of Gly. 

Values are mean ± SEM. n= 10 per sex and per group. * p<0.05, ** p<0.01, *** p<0.001 compared to the 

respective control group. # p<0.05 compared to the respective first 5 min period. 
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3.4. Plus Maze  

Three-way ANOVA showed significant differences in the percentage of time spent in 

open arms between the factors Group (F(2, 108) = 15.84, p<0.001) and Age (F(1, 108) = 22.56, 

p<0.001). Post hoc comparisons in 45-day-old offspring showed that female rats from Gly-

BH I and Gly-BH II treated groups exhibited a significant increase in this parameter with 

respect to the control group (p<0.01 and p<0.05 for Gly-BH I and Gly-BH II, respectively), 

whereas no significant differences were observed in male rats (Fig. 4A). In PM observations 

of 90-day-old offspring, post hoc test revealed that the animals exposed to a Gly-BH spent 

more time in open arms than controls (female rats: p<0.05 and p<0.005 for Gly-BH I and Gly-

BH II, respectively; male rats: p<0.005 and p<0.05 for Gly-BH I and Gly-BH II, respectively) 

(Fig. 4B). 

As to the percentage of entries to the open arms, three-way ANOVA showed significant 

differences among the factors Group (F(2, 108) = 8.41, p<0.001), Age (F(1, 108) = 25.02, p<0.001) 

and Sex (F(1, 108) = 4.16, p<0.05). For this parameter, post hoc comparisons showed significant 

differences only in 90-day-old offspring, with a higher percentage of entries to the open arms 

in the Gly-BH exposed groups with respect to controls (female rats: p<0.005 for Gly-BH II; 

male rats: p<0.05 for both Gly-BH I and Gly-BH II) (Fig. 4D). 

When the total number of arm entries was analyzed, three-way ANOVA test showed no 

statistically significant differences (Fig. 4E and F). 
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Fig. 4. Plus maze analysis of control and Gly-BH-exposed offspring. A) Percentage of time spent in open 

arms, C) percentage of entries to open arms, and E) total number of arm entries, on PND 45. B) Percentage of 

time spent in open arms, D) percentage of entries to open arms, and F) total number of arm entries, on PND 90. 

Gly-BH I corresponds to a concentration of 0.65 g/L of Gly; Gly-BH II corresponds to a concentration of 1.30 

g/L of Gly. Data are mean ± SEM. n= 10 per sex and per group. * p<0.05, ** p<0.01, *** p<0.005 compared to 

the respective control group. 

 

4. Discussion 

 The present study shows that exposure to a Gly-BH in rats during pregnancy and 

lactation affects neither maternal weight gain during pregnancy nor gestational length, litter 
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size, and body weight of rat pups on different PNDs. However, an early onset in the 

development of cliff aversion reflex and auditory canal opening was observed in the offspring 

whose mothers had been exposed to the two Gly-BH concentrations tested. In addition, the 

fact that neither changes in the development of negative geotaxis and righting reflex nor 

modifications in the age of eye opening were observed seems to indicate that exposure to a 

Gly-BH alters only certain restricted patterns of development. In agreement with our results, 

Tamburella et al. (2012) observed that rats prenatally exposed to the organic compound 

trimethyltin chloride (TMT) evidenced an earlier onset in the development of several neonatal 

reflexes as compared to the control group. These authors claimed that neonatal reflexes can be 

considered to be an index of brain maturation. The changes in their development and 

expression could represent a predictive factor of other behavioral alterations in adulthood 

(Fox, 1965; Iezhitsa et al., 2001) as demonstrated by impaired cognitive performance via 

cognitive tests in rats prenatally exposed to TMT (Tamburella et al., 2012). In line with this, 

our OF results showed that 45-day-old female rats from the Gly-BH II-treated group crossed 

significantly less squares with respect to the control group, this being indicative of a decrease 

in locomotor activity in the females exposed to the highest Gly-BH concentration. In contrast, 

no significant differences were observed in male rats. This finding was not unexpected 

because, compared to males, female rats are in general more sensitive to the toxic effects of 

chemicals (Gad and Chengelis, 1988; Mugford and Kedderis, 1998). In addition, the fact that 

the 90-day-old female and male rats exposed to the two Gly concentrations tested crossed a 

significantly lower number of squares with respect to controls could be interpreted as an 

indicator of an increase in the effects of the Gly-BH treatment on locomotor activity in 

adulthood. The statistical analysis of the number of rearings showed a significant decrease in 

female and male rats from the Gly-BH II-treated group with respect to the control group. The 

decrease in the number of squares crossed as well as in the number of rearings are positively 

correlated to deficits in arousal, an increase in emotional response or motor activity 
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impairments (Prut and Belzung, 2003). Our analysis of an emotionality parameter, such as 

grooming, showed that 90-day-old male rats exposed to the two Gly concentrations tested 

performed a higher number of grooming episodes than controls in agreement with the general 

assumption that male rats are more fearful than females (Aguilar et al., 2003; Gray, 1971). 

Under control conditions, no significant differences between females and males were 

observed in relation to this parameter although the exposure to a Gly-BH seemed to 

exacerbate the natural emotional condition of males, a phenomenon which was not observed 

in females. 

Results derived from the PM test revealed that exposure to a Gly-BH during pregnancy 

and lactation significantly increased the percentage of time spent in open arms in 45-day-old 

female offspring with respect to the control group. In contrast, no significant differences were 

observed in male rats. This could be due to the increased sensitivity to toxics in females with 

respect to males (Gad and Chengelis, 1988; Mugford and Kedderis, 1998). In 90-day-old 

offspring it was observed that rats exposed to a Gly-BH not only spent more time in open 

arms than controls, but also registered a higher percentage of entries to open arms. These 

findings were observed in female and male rats at the two Gly-BH concentrations tested and 

they revealed a decrease in anxiety levels (Pellow et al., 1985). 

Our observations from the PM test were found to be consistent with our results derived 

from the OF test. In line with this, OF tests carried out in previous research have also 

demonstrated that rats either with low emotionality or treated with anxiolytic drugs show a 

decrease in the total distance travelled as well as in rearing frequency (Cannizzaro et al., 

2001; Denenberg, 1969). It has also been well documented that anxiety and locomotor 

activity are often interlinked (Courvoisier et al., 1996; Steimer et al., 1997). Therefore, taking 

into account our results from the OF and PM tests performed, it can be postulated that 

exposure to a Gly-BH during pregnancy and lactation induces a decrease in locomotor 

activity and anxiety levels in rat offspring. In this regard is important to highlight that in the 
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present work we used a formulated product instead of pure Gly. Pesticide formulations are 

mixtures of an active ingredient with adjuvants, many of which have intrinsic toxic effects. In 

the present experiments, the components of the formulation are not available, thus we could 

not compare our results against a control group treated with all the formulation ingredients 

except Gly. Because of these uncertainties, the observed results cannot be attributed solely to 

Gly, and could be due solely to the components of the formulation, or to interactions between 

Gly and other formulation ingredients (El-Shenawy, 2009; Mesnage et al., 2013). Our results 

certainly apply most directly to pesticide handlers and applicators, as they would be exposed 

to the formulated product. Further, depending on the environmental fates of the different 

components of the formulation, our results may also have implications for the general 

population. 

Another important issue that we must deal with is the fact that the neurobehavioral 

changes observed in the offspring upon Gly-BH exposure could be a consequence of the 

direct action of the herbicide on the offspring's CNS, or an indirect effect, affecting brain 

development of the pups due to the induction of changes in the behavior of the mothers. In 

favor of the first possibility, we have to consider that the animals were exposed to Gly-BH so 

as to achieve doses of Gly that were the fifth and the tenth of the NOAEL for maternal 

toxicity (1000 mg/kg/day). On the other hand, although the ability of Gly to cross the placenta 

has been demonstrated (Mose et al., 2008; Poulsen et al., 2009), the presence of this 

compound in the offspring's blood was not determined in the present work. Additionally, 

several studies have shown the influence of maternal behavior on offspring’s brain 

development (Cummings et al., 2010; Ricceri et al., 2006), so the possibility that Gly-BH 

exposure was indirectly affecting the offspring as a result of the effects exerted on the mothers 

should be considered.  

Locomotor activity in the OF test is positively correlated with the levels of DA and/or 

DA receptors (Bano et al., 2014; Gallo et al., 2015; Kim et al., 2013). Degeneration and loss 



Page 21 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

21 
 

of dopaminergic neurons as well as alterations in the levels of DA and/or DA receptors have 

been reported in cases of locomotor disorders, such as Parkinson's disease and dystonia 

(Antonelli and Strafella, 2014; Giannakopoulou et al., 2010; Joyce and Millan, 2007; Michel 

et al., 2013). As to the neurotransmitters involved in anxiety modulation, the influence of 5-

HT and GABA and of its receptors has been extensively documented (Liu et al., 2013; Liu et 

al., 2015; Olivier et al., 2013). Further studies have also well documented that either an 

increase in GABA activity or a decrease in 5-HT neurotransmission triggers anxiolytic effects 

(Chopin and Briley, 1987; Gray et al., 1984; Treit et al., 1993). In line with these findings, 

Näslund et al. (2015) found that 5-HT depletion reduced anxiety levels in the Wistar rats most 

inclined to avoid the open arms of the PM (“anxious” rats). In addition, Vaz et al. (2015) 

observed that GABA administration to Wistar rats produced an anxiolytic effect, i.e. the 

animals that received GABA spent more time in the open arms of the PM compared to the 

control group. It has also been reported that the oral administration of Gly in rats decreases 5-

HT and DA levels in the frontal cortex, striatum and midbrain, whereas it increases 5-HT and 

DA metabolites (5-hydroxyindole-3-acetic acid, for 5-HT; 3,4-dihydroxyphenylacetic acid 

and homovanillic acid, for DA) (Anadón et al., 2008). In line with these findings, Hernández-

Plata et al., (2015) have shown recently that exposure of rats to Gly caused hypoactivity, 

together with a decrease in the binding to D1-DA receptors in the nucleus accumbens and in 

the extracellular DA levels in striatum. 

Taken together, our findings demonstrate that exposure to a Gly-BH during the 

gestational period and lactation produces alterations in locomotor activity, emotionality and 

anxiety in rat offspring. These observations could be a consequence of alterations in the 

GABAergic, dopaminergic and/or serotoninergic neurotransmitter systems. Further 

experimental research including measurements of DA, 5-HT and GABA levels as well as an 

analysis of the number of their corresponding receptors in specific brain areas are planned to 

evaluate this hypothesis. 
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