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Abstract Open- and closed-loop control of a turbulent mixing layer is experimentally per-
formed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated
by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter
plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate
in the mixing layer. The control goal is the manipulation of the local fluctuating energy
level. The mixing layer’s response to the control is tested with open-loop forcing with a
wide range of actuation frequencies. Results are discussed for different closed-loop control
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approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control.
In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop
control method. MLC arrives reproducibly at the near-optimal in-time control.

Keywords Shear flow · Turbulence · Active flow control · Extremum seeking · POD ·
Machine learning · Genetic programming

1 Introduction

Controlling the mixing layer properties such as initial transition, turbulence level, expansion
rate, redistribution and mixing, is a problem frequently addressed in the literature over sev-
eral decades. Passive control parameters such as the shape of the trailing edge, the presence
of initial span-wise perturbation, the external turbulence level or the presence of longitudinal
pressure gradients can have a large influence on the mixing layer’s stream-wise evolution
[5, 17, 21]. In a zero pressure gradient configuration, numerous experiments have been per-
formed leading to a doubling of the expansion rate of the mixing layer. Open-loop flow
control using acoustic perturbations in the plenum chamber, vibrating trailing edge, or syn-
thetic jets at the wall , have been studied. Such control scenarios are based on the excitation
of the most amplified initial perturbations which can be directly related to the initial momen-
tum thickness of the boundary layer over the splitter plate [9]. This can lead to actuation on
either relatively low frequency [5], or at high frequency [24].

A major issue to be considered in experimental flow control is the definition of the physi-
cal plant to which the control is applied, i.e. what are the boundaries of the physical domain,
and what are the possible communications across these boundaries? Some examples of
external influences to be taken into account include perturbations of the inflow conditions,
sensor drifts and stability of actuator output. A good control process has to be able to deal
with such variations, explicitly or even better implicitly. As a consequence, if for a given
plant an open-loop control is performed and found to be the best, no guaranty exists that
this control remains optimal with respect to large or even small external perturbations.

In a mixing layer, the shear created by the difference of external velocities leads asymp-
totically to a linear stream-wise growth of the mixing layer scales. By nature, this kind of
flow is an amplifier of initial perturbations, subject to convective instabilities. The design
and optimization of closed-loop control are then challenging. The development of modern
actuators, such as micro-valves, piezoelectric, synthetic jets, plasmas, etc. [1, 2, 8], and of
real-time systems with a large input/output data rate and computational power, makes it
possible to envisage such closed-loop control being performed.

This paper will focus on a simple plant featuring an experimental mixing layer flow,
where a control is applied at the trailing edge of the splitter plate with the goal of maximizing
the turbulent kinetic energy at a given downstream location. The sensors placed at the loca-
tion of interest, downstream of the trailing edge, are subject to a convective time delay. An
essential question is: what useful information is present in the mixing layer flow, and how
can it be used in a sensor-based, closed-loop control design? Can we create a framework for
a fully automated flow control system, without a priori knowledge of the plant properties?

The main features of the experimental installation and the sensor/actuator system are
described in Section 2. The wind tunnel conditions are chosen so that the mixing layer
flow comprises spatial and temporal scales which can be addressed using the operational
performance range of the actuator, and real-time data acquisition/processing systems. An
objective function is defined, based on the energy of local velocity fluctuations.
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Fig. 1 Experimental setup: a) layout of the TUCOROM mixing layer wind tunnel, b) a close-up diagram of
the splitter plate with the actuation system, and c) illustration of the mixing layer flow and sensors
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Properties of the un-actuated mixing layer are briefly discussed in Section 3.1. Using a
‘blind’ open-loop strategy, we show in Section 3.2 that the mixing layer is receptive to the
periodic perturbations injected through micro-jets located at the trailing edge of the splitter
plate. We compare the resulting effects on the spatial development of the mixing layer with
the literature. The impact on the objective function of open-loop actuation frequencies is
mapped for one actuation amplitude and duty cycle setting.

In Section 4 we present the methodology and results of several approaches for closed-
loop control. Section 4.1 considers an automatic search for the best open-loop actuation
frequency by applying an extremum-seeking adaptive control. In Section 4.2, we describe
a simple feed-back control, where a POD analysis [16] of the flow at a given stream-wise
location is used to provide the control signal for the actuators. The most energetic POD
modes can provide information which leads to an enhanced local organization of the mix-
ing layer. Finally, in Section 4.3, a model-free, closed-loop control design is proposed,
based on genetic programming [10, 11]. Genetic programming is a function optimization
technique belonging to the panoply of biologically-inspired methods from machine learn-
ing [23]. We refer to this approach as Machine Learning Control (MLC). This approach is
designed to find, in an unsupervised manner, the best sensor-based control law for a given
objective function. MLC has been successfully applied to dynamical systems and other
experiments [4, 6]. Here, results will be discussed for the transitional mixing layer.

2 Experimental Setup and Measurements

The TUCOROM1 mixing layer facility, shown in Fig. 1a, is an open-circuit wind tunnel
with two driving fans, each generating a separate air stream. The two streams meet at the
trailing edge of a splitter plate, and depending on the stream velocity or the type of the
splitter plate terminus used, the resulting flow can be either a mixing layer, a step flow or a
wake of an infinitely long bluff body. The test section is lx × ly × lz = 3.0m×1.0m×1.0m,
with a square cross-section. A porous diffuser is used at the outlet of the test section in order
to prevent resulting large scale perturbations returning into the inlets. Each stream can be
driven independently in a range of velocities [0.5 : 12] ms−1. The splitter plate between the
two streams is 80mm thick and, in the current configuration, ends with a 3mm thick trailing
edge. The taper is introduced only on the lower velocity side of the splitter plate which is
angled at 8◦, while the upper surface is horizontal. The plane of interest, xy, coincides with
the centerline of the splitter plate span, with the origin located at the trailing edge as shown
in Fig. 1b. A head loss device (foam) is placed a few centimeters upstream of the bevel in
order to stabilize the low velocity stream. This addition limits the maximum operational
velocity for the lower stream to 1.7 ms−1.

The trailing edge contains 96 circular nozzles, with a diameter φ = 2mm, along its span.
Each of them is individually connected to a micro-valve actuator, which can be controlled
separately. We employ a span-wise mode 0 actuation, where all micro-valves are driven
simultaneously by a common square wave signal, of adjustable frequency and duty cycle
(dc). The actuators are capable of frequencies higher than 800Hz and of mean exit velocities
of the order of the convection velocity of the mixing layer, blowing in the stream-wise
direction. The velocity response of the micro-valves, shown in Fig. 2, was characterized with
a single miniature hot-wire probe positioned at x = 1mm. At low actuation frequencies the

1From ANR project name: “turbulence control using Reduced-Order Models.”
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Fig. 2 Velocity response unozzle(t) of micro-jet actuators with dc=50 % for actuation frequency fa: a) 10Hz,
b) 50Hz, c) 100Hz and d) 400Hz. Actuation square wave signal is represented with a thick black line, and
the mean nozzle velocity unozzle with a dashed line

velocity response contains strong transients, while at higher frequencies a response close to
a sinusoidal wave is obtained.

Compressed air for the actuators is supplied from a plenum chamber which is also situ-
ated in the splitter plate as shown in Fig. 1b. The pressure inside the plenum is controlled,
in order to maintain a constant average actuation amplitude. The actuation amplitude in
this experiment can be represented by a momentum coefficient Cμ = ṁa/ṁθ , where ṁa

is the mean mass flow rate of air entering the plenum (measured by a flow meter) and ṁθ

is the mass flow rate through the upper boundary layer. Let θ be the momentum thickness
of the boundary layer and lz the span-wise length of the splitter plate. ṁθ is then defined
as ṁθ = ρθlzU1. The mass flow rate meter type used is Brooks 5863S. The momentum
coefficient used is in a range of 0.25 < Cμ < 0.5 for different experiments presented.

Measurements comprise Particle Image Velocimetry (PIV) using a Spectra-Physics Lab-
130 Nd:YAG laser, coupled with two Lavision Image Pro cameras with an acquisition rate
of 5Hz. The PIV cameras are positioned so that the initial part of the developing mixing
layer can be observed in a range of −50mm < x < 440mm. Since smoke visualization uses
the same cameras , the covered domains are identical with PIV.

Local velocity measurements are performed using a rake of 24 hot-wire probes (illus-
trated in Fig. 1c) which can be displaced in a xy plane from x = 50 to 1400mm in
stream-wise, and y = ±230mm in transverse directions. The two outer hot-wires in the rake
are 184mm apart; hence, the rake can cover from 0.5 to 4 times the local thickness of the
un-actuated flow, depending on its stream-wise location. The dynamic response of hot-wire
anemometers is calibrated up to 20kHz. Each channel is simultaneously sampled at 5kHz.
The hot-wire velocity measurements have a precision of 0.05ms−1 and are corrected for
temperature drifts using a reference temperature sensor at the inlet of the test section. Data
acquisition and control are performed by a Concurrent iHawk real-time system.



Flow Turbulence Combust

The goal of the control is to maximize the local energy in the mixing layer. The single
hot-wire sensors used, provide a measure of the local fluctuating part of the stream-wise
component of the velocity. Therefore an objective function J can be introduced as an
approximation of the local turbulent kinetic energy:

J = 1

TJ

∫ TJ

0

[
24∑
i=1

u′
i
2
(t)

]
dt, (1)

where u′
i (t) is the velocity fluctuation as recorded by the hot-wire anemometer i and TJ =

10s is the evaluation time. The mean velocity used for retrieving fluctuations is estimated on
Tmean = 2s interval. Averaging on a short time scale serves as a high-pass filter to eliminate
the contribution of phenomena such as mixing layer flapping in the estimation of energy.
This objective function is used to evaluate the efficiency of both open- and closed-loop
control approaches presented in this paper. A standard deviation of the objective function for
the un-actuated flow Ju is 3 %. This value is calculated on a sample of 50 flow realizations,
for a total evaluation time of 500s. Total evaluation time corresponds to 500 cycles of the
wind tunnel, based on the convective velocity and the test section length.

3 Mixing Layer Under Periodic Forcing

In Section 3.1 we present the basic features of the un-actuated mixing layer. The response
of the mixing layer to periodic forcing is evaluated in Section 3.2 using a few open-loop
actuation frequencies from the opposite extremes of the frequency range available to the
actuator system. A detailed mapping of the open-loop actuation frequencies is performed
and evaluated using the objective function J .

3.1 Un-actuated flow

The initial conditions of the flow used in the experiment are defined as the low speed con-
figuration of U1 = 4.7ms−1 and U2 = 1.2ms−1 leading to a velocity ratio r = 0.255 and
a convective velocity Uc = (U1 + U2)/2 = 2.95ms−1. The magnitude of velocity U1 was
selected to provide a stable laminar boundary layer on the upper surface of the splitter plate.
The magnitude of U2 is correspondingly chosen to have a velocity ratio close to r =0.3,
taking into account the limitations imposed by the wind tunnel design (see Section 2).
The boundary layer on the high speed side of the splitter plate is laminar (δ99 = 6.9mm,
θ = 0.73mm and H = 2.44). The thickness of the boundary layer on the low speed side is
δ99 < 1mm, due to very low velocity U2 and the inserted foam flow stabilizer. The impact
of this boundary layer on the development of the mixing layer can be considered negligi-
ble. Based on the initial momentum thickness of the upper boundary layer and trailing edge
thickness, an initial Reynolds number is estimated as Reθ = Ucθ/ν ≈ 500. Various data on
the un-actuated case are shown in Figs. 3 to 7 as reference. They will be further commented
in the text in comparison to the actuated cases.

3.2 Periodic forcing

Smoke visualization and PIV measurements are performed as a preliminary investiga-
tion of the receptivity of the mixing layer to open-loop actuation. Actuation frequencies
are selected for this test from two extremes of the actuator system operational range:



Flow Turbulence Combust

a) y

x

λKH

b)

100 mm

c)

Fig. 3 Smoke/laser visualization of the mixing layer by seeding the top (high speed) stream. The field of
view covers −50mm to 440mm in x direction. a) un-actuated flow, b) low frequency forcing (fa = 10Hz)
and c) high frequency forcing (fa = 400Hz)

fa = 10Hz and fa = 400Hz. A duty cycle of 50 % is used. Figure 3a shows the un-actuated
case, with clearly visible Kelvin-Helmholtz vortices in the initial part of the mixing layer,
followed by vortex pairing and a change in the un-actuated mixing layer growth rate. The
natural frequency of the mixing layer in the region of the laminar vortices is estimated
from the wavelength of the vortices in this picture as fKH ≈ 90Hz. Actuating at a much
lower frequency fa � fKH provokes an earlier creation of larger scale structures (Fig. 3b),
while forcing at high frequencies fa > fKH introduces small scale turbulence immediately
downstream of the trailing edge, as shown in Fig. 3c.

The effects on fluctuating quantities in the mixing layer can be observed for all three
cases using PIV measurements shown in Fig. 4. The PIV measurements show that actuating
at low frequencies increases both stream-wise and cross-stream fluctuations, while the high
frequencies have a damping effect.

The hot-wire rake has been used to recover local mean velocity and mean velocity fluc-
tuation profiles in xy plane at various locations downstream of the trailing edge. From
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Fig. 4 Mean fields of Reynolds stress components u′2 and v′2 obtained from PIV on a basis of 300 snapshots:
a) un-actuated flow, b) fa = 10Hz and c) fa = 400Hz

the mean stream-wise velocity U(y) profiles we can observe the evolution of vorticity
thickness, shown in Fig. 5, and calculated as:

δω = U1 − U2

(∂U/∂y)max
. (2)
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Fig. 5 Influence of the actuation frequency fa on the local vorticity thickness δω
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The un-actuated flow shows a linear evolution of vorticity thickness, with a slope of
∂δω/∂x = 0.119 which corresponds well to the data in [5] for similar cases of experimental
mixing layers. The low frequency actuation of fa = 5Hz and fa = 10Hz both double the
initial vorticity thickness growth rate until x = 800mm in the former and x = 350mm in the
latter case. The high frequency actuation fa = 400Hz initially reduces the vorticity growth
rate, but further downstream at around x = 800mm, the growth rate changes again ; the
vorticity thickness becomes higher compared to the un-actuated flow, but the growth rates
are similar in both cases. Such behavior of the forced mixing layer was explored in [20].

These results correspond well with the fact that the actuation affects the transition point
of the laminar part of the mixing layer. For the low frequency actuation, the initial part of
the mixing layer is dominated by large structures which are created by the tendency of the
flow to synchronize itself on the actuation frequencies. For initial stream-wise positions
the measurements of the un-actuated flow, shown in Fig. 6, feature energy contained in
the broad frequency range up to 100Hz. For fa � fKH the energy in the spectra becomes
concentrated at fa until a certain downstream position, where a re-emergence of base flow
frequencies appears. The stream-wise location of these transitions are consistent with the
change in vorticity thickness growth rate for corresponding fa if compared to results in
Fig. 5.
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The same behavior is observed from the distribution of fluctuation energy shown as

u′2/	U2 in Fig. 7, where 	U2 = (U1 −U2)
2. An initial linear growth features energy con-

tained in a single, well defined peak (Fig. 7a for x from 200mm to 500mm). In the regions
of the first growth rate change, the fluctuation energy profiles feature two or more peaks, as
can be seen for fa = 5Hz between x = 1000mm and x = 1400mm. Around x = 1400mm
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for this case, a resurgence of a single-peak profile can be observed, which indicates that far
enough downstream this configuration will establish a growth rate similar to the un-actuated
flow, just as is the case with fa = 10Hz in Fig. 7c between x = 500mm and x = 800mm.

Compared to the un-actuated flow, actuation with fa = 60Hz and fa = 400Hz reduces
the initial fluctuation energy as can be seen in Fig. 7(d) and (e), respectively. This corre-
sponds to the reduced initial vorticity thickness growth rate, as seen in Fig. 5. High actuation
frequency is not able to synchronize the mixing layer as low actuation frequencies do;
instead the momentum injected in this way into the mixing layer diffuses as a part of the
turbulence cascade. It should be noted that actuation at fa = fKH produced results very
similar to fa = 400Hz.

The response of the mixing layer to open-loop forcing was then explored in detail for
two stream-wise measurement positions, to create a base of reference for local frequency
selection. In order to truncate the experimental time needed for complete mapping of the
frequency/duty cycle space, the actuation was limited to a 50 % duty cycle and frequencies
of 1Hz < fa < 500Hz, applied in steps of 	fa = 1Hz. The results can be observed in Fig. 8
as the objective function normalized by the un-actuated flow value Ju for each actuation
frequency. We can see that actuating in low band (fa � fKH) provokes an increase of J/Ju.
At x = 200mm, a maximum of (J/Ju) max = 2.5 is obtained for fa = 14Hz. Using high
band actuation (fa > fKH) results in J/Ju < 1. When measuring further downstream, at
x = 500mm, a maximum of (J/Ju) max = 3.2 corresponds to fa = 4Hz. In this case, a
minimum of J/Ju can be observed around fa = 60Hz.

It is important to note that the best actuation frequencies for maximization of J/Ju are
unique for different measurement locations. If the best actuation frequency fa = 14Hz for
x = 200mm is applied when measurements are taken at x = 500mm, the objective function
is not optimally enhanced, as shown in Fig. 8.

4 Closed-Loop Control

In this section, we present experiments with three different closed-loop approaches. A
classical extremum-seeking adaptive control (Section 4.1) is applied to detect the optimal
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0001001011
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Fig. 8 Normalized objective function J/Ju for 1 Hz < fa < 500 Hz, where actuation frequency is varied in
steps of Δfa = 1 Hz (shown in logarithmic scale). Thick line denotes results for sensors at x = 200 mm and
thin line for x = 500 mm
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frequency of actuation at x = 200mm. A simple POD mode feedback control (Section 4.2)
is used to distill and directly feed back an actuation signal based on the intrinsic informa-
tion contained in the mixing layer at x = 200mm or x = 500mm. Finally, machine learning
control (Section 4.3) is employed to find an optimal solution for maximizing the objective
function J at x = 200mm using velocity fluctuation signals as variables for the generated
control law.

4.1 Extremum seeking control

Extremum-seeking is an adaptive control strategy that is ideal for finding the minimum
or maximum value of an objective function for a dynamical system that is nonlinear and
may be difficult to characterize [12, 13]. Many tools in feedback control theory only apply
to linear systems or linearized systems near a fixed point. In contrast, Extremum-Seeking
Control (ESC) is a model-free method, and recent results establish conditions for stable
convergence, even with nonlinear systems [13]. ESC has been applied to a wide range of
problems in fluid mechanics and electrical engineering. The underlying principle of ESC is
the injection of a sinusoidal perturbation signal, which passes through the nonlinear system
and results in a sinusoidal output perturbation of the objective, perhaps with a phase delay.
The demodulated signal obtained by multiplying the input and output perturbations provides
an estimate of the gradient of the objective function in the input variable, which is larger
away from the extremum point of a quadratic objective function. This signal may then be
added to the best guess for the maximizing (or minimizing) input, causing the estimate
to move towards the local maximum (or minimum). There are a number of engineering
practicalities that arise when designing an extremum-seeking controller. First, the time-scale
of the dynamics must be fast with respect to the sinusoidal perturbation, so that transients
relax and we obtain a sinusoidal output perturbation. In addition, the amplitude of the input
perturbation must be large enough to provide a decent signal-to-noise ratio. Finally, the
method only finds the local maximum of a objective function, and it may be necessary
to design a larger input amplitude to average over local maxima in the objective function.
Because of the time-delays and nonlinearities in the underlying system, it may be necessary
to include a time-delay on the input signal when demodulating with the high-pass filtered
output perturbation.

In the experiment, the input variable is the actuation frequency fa; we vary this
actuation frequency sinusoidally, with an amplitude A and frequency fmod, so that
fa(t) = f̂a + An(fmodt). As mentioned in Section 2, measurements are made over a
window of 10 seconds for the objective function evaluation. This establishes an effec-
tive time delay of 10 seconds, which we incorporate into the input perturbation for the
demodulation step. This also determines the fast timescale on which the objective function
transiences change with changing inputs. We therefore choose an oscillation frequency on
fa of fmod = 1/20Hz, which is slower compared with the averaging window.

Results of searching for a maximum of J with a modulation amplitude of A = 2Hz
are shown in Fig. 9. The initial actuation frequency is a sub-optimal value, and the ESC
manages to converge to an optimal solution of fa = 14Hz after a little less than 300 sec-
onds. However, the initial frequency fa = 26Hz is close to the maximum and from Fig. 8
(for x = 200mm) a well defined slope is observed between these two points which signifi-
cantly simplifies the task for the ESC. Attempts to find the global maximum from an initial
point in frequency space more distant from the target, have necessitated the use of greater
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modulation amplitudes up to A = 10Hz. The larger oscillation amplitudes provide more
robust convergence to the global maximum (because small local maxima are averaged out),
but with more steady-state perturbation errors.

4.2 POD mode feedback control

The Proper Orthogonal Decomposition (POD) of the sensor signals in real time can provide
efficient feedback information for a closed-loop control as shown in [7]. POD analysis
reveals an energy-based composition of a flow. The aim is to generate a feedback control
signal, based on the time series of the most energetic POD mode, which would automatically
contain the optimum frequency that will synchronize and enhance this mode in the mixing
layer. Amplification of the energetically most dominant mode should lead to maximization
of the energy-based objective function at a given location.
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Fig. 10 First two POD modes of the fluctuating velocity obtained in the un-actuated case, using the hot-wire
rake. POD mode 1 (closed symbols) and POD mode 2 (open symbols) are plotted on a scale normalized by
the local vorticity thickness for x = 200 mm (top) and x = 500 mm (bottom), with y0 corresponding to the
local coordinate of the mean velocity profile inflexion point
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For a selected stream-wise location x of the hot-wire rake, a POD is first performed on
a time history of velocity fluctuations u′(yi, t) of the un-actuated flow. These signals are
decomposed as:

u′u(yi, t) =
N∑

n=1

au
n(t) Φu

n(yi), (3)

where N , the number of POD modes, corresponds to the number of hot-wires used in the
rake. Real time velocity signals can then be projected onto a given POD mode �u

n in such
a way that a real-time estimate of the contribution of this mode (a projection coefficient)
an(t) is obtained as:

an(t) =
N∑

i=1

u′(yi, t) Φu
n(yi). (4)

Figure 10 illustrates the shapes of the first two POD modes, i.e. the two most energetic
ones, that were obtained at the stream-wise locations x = 200mm and x = 500mm. For both
stream-wise positions, the shapes of these modes are similar. Mode 1 is an even function
of y and exhibits one maximum located close to the local mixing layer axis while mode
2 crosses zero at this location and is an odd function of y. In terms of instantaneous flow
organization, these modes are then related to two different topologies of the fluctuation
velocity field. Mode 1 is more representative of the mixing layer inner region, close to the
mixing layer axis, while mode 2 is more representative of convected large scales structures
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Fig. 11 Pseudo flow visualizations at x = 200 mm and x = 500 mm. Greyscale maps correspond to iso
levels of the time history of the fluctuating velocity from the hot-wire rake. The vertical direction corresponds
to the hot-wire probe yi position. The horizontal direction corresponds to time (0.5 s), plotted from right to
left, following a Taylor’s hypothesis, to match a spatial organization. Fields indicate a) un-actuated flow, b)
POD feedback control using mode 1, c) POD feedback control using mode 2. Black rectangular fields above
each greyscale map indicate actuation (black for active)
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and the spatial anti-phase relationship they create between the two outer limits of the mixing
layer [3].

A threshold denoted athr is introduced such that for a1(t) > athr the actuators are open.
This threshold is tuned manually in such a way that a synchronization appears. This strategy
has been applied successfully to the mixing layer as illustrated in Fig. 11. From the visu-
alizations of the un-actuated configuration (Fig. 11a) no specific low-frequency/large-scale
organization of the flow is apparent. When the feedback is applied, based on mode 1, the
resulting flow (shown in Fig. 11b) is very well synchronized by a self-triggering mode at a
characteristic frequency naturally present at this particular stream-wise location. A spectral
analysis of the feedback signal leads to a dominant frequency fa ≈ 10Hz and fa ≈ 6Hz
at locations x = 200mm and x = 500mm, respectively. When mode 2 is used to drive the
actuators (Fig. 11c), dominant frequencies are found to be fa ≈ 15Hz and fa ≈ 10Hz, for
the corresponding stream-wise locations. These results show that mode 1 and 2 do not syn-
chronize at the same frequency: mode 1 leads to a frequency that is of the order of 2/3 of
that of mode 2. It is remarkable that such a ratio, previously observed for a natural turbu-
lent mixing layer [3], exists in the case of a forced mixing layer. The best obtained values
of the objective function, using mode 1 actuation, are (J/Ju)POD = 2.65 at x = 200mm,
and (J/Ju)POD = 2.74 at x = 500mm.

These experiments show that a feedback control can take into account the local flow
information at a given downstream location. Furthermore, such control gives rise to a
significant increase of the local turbulent activity and leads to a possible self-triggering
synchronization of the flow. The key feature in obtaining the optimal actuation using POD
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modes is the selection of the threshold for the generation of the actuation signal. A process
is needed where such optimization would be automatically obtained.

4.3 Machine learning control

For determining an optimal control law, we propose a model-free control design using the
tools from machine learning [18], in particular the Genetic Programming (GP) [10, 11] tech-
nique. GP is a biologically inspired [23] function optimization method. The best control
law is searched iteratively as a composition of elementary functions of constants and sensor
signals. A objective function, pertinent to the problem in question, grades how a given con-
trol law performs. This objective function can be formulated to put the system in a desirable
state or to maximize (or minimize) a given measure of the system, such as the turbulent
kinetic energy (our case). A first set of control law candidates (called individuals) is gener-
ated through random composition of the elementary functions and constants. The exploited
GP algorithm [15] combines these operations in the form of a tree (see examples in Fig. 12),
which allows it to generate any linear or non-linear function in order to build the initial gen-
eration of individuals. Each individual is attributed a objective through the evaluation of J

defined in Eq. 1. The next set of individuals (called generation) is generated through muta-
tion, cross-over or replication of individuals with a specific rate for each process. These
operations are illustrated in Fig. 12. Typically for genetic programming, a global extremum
of the objective function is obtained in 50 generations, provided that the population of each
contains enough diversity for the algorithm to exploit. There is no general mathematical
proof for convergence but the method has been proved successful [14, 19].

The current MLC code uses constant-size populations. Population size can range from
100 up to 1000 individuals for each generation, depending on the experiment. The goal is
to find an individual for a maximization of the objective function J . Functions used com-
prise (+,−,×, /, n, cos, exp, log, tanh), with up to 24 hot-wire probe velocity fluctuation
signals u′

i (t) as variables and values from a range of [-1:1] are available to be selected as
constants. The value returned by the control function is compared to a threshold of 0 so that
the micro-valves are turned on when the value is above the threshold and off otherwise. The
GP process is set to run until the 50th generation, after which the best individual is selected.
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Fig. 13 Pseudo-visualization of the reference un-actuated flow (a), and the best MLC individual (b), for
maximization of J at x = 200 mm. Black fields on top of the visualization represent actuation
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Choosing the best individual from the last generation of the GP testing run effectively means
that the MLC learning phase is finished and the obtained function can be applied for a
continuous closed-loop control of the flow.

Figure 13 shows the reference un-actuated flow and the resulting best individual of an
MLC experiment with sensors placed at x = 200mm. MLC has found the same mechanism
of self-synchronization of the flow at a local characteristic frequency (as in Section 4.2),
with a normalized objective function value of (J/Ju)MLC = 2.59. The spectral analysis
yields a frequency of around 14Hz. The actuation properties of the best MLC individual
correspond very well to the best open-loop frequency (Fig. 8) and the best ESC solution
(Fig. 9). This control law was obtained without using any a priori knowledge of the system
response. The open-loop reference is only used to confirm that the process converged on
an optimal solution. Compared to the POD feedback control, the actuation signal of the
best MLC control law incorporates automatically an optimal relationship with regard to the
threshold for actuation signal generation. If it were not so, this control law would not have
the best performance and would not have been selected. We can conclude that MLC has
provided the optimization process missing in the POD feedback control. A coupling of these
two methods may provide further improvements.

5 Conclusions

The experimental investigation shows good control authority of the actuator system on the
basic features of the mixing layer. The actuation provokes different effects on the mixing
layer properties with regard to its stream-wise evolution. The initial “perturbed” part of
the mixing layer will experience either an increased (up to double) or a decreased vorticity
thickness growth rate. For a given frequency of actuation, the flow will be synchronized at
fa up to a stream-wise location at which the local natural frequency of the un-actuated flow
is approximately fa. At this point the mixing layer begins a transition into a state similar to
the un-actuated flow corresponding to this point, and adopts a growth rate of the un-actuated
flow (but not necessarily the same local vorticity thickness).

An extremum seeking control is applied based on the mapping of the mixing layer
responsiveness to periodic forcing on a wide range of frequencies allowed by design limits
of the actuation system. While this type of control has no problem of reaching local max-
ima, the complexity of the response amplitudes makes it difficult to know whether a global
maximum has been reached. Finding a global maximum requires initially a very high ampli-
tude of actuating frequency modulation which reduces the steadiness of the solution once it
has been reached.

It should be noted that sensor-based closed-loop control is per se not necessarily per-
forming better than periodic forcing. There is no guarantee that this closed-loop control can
emulate, for instance, a periodic clock-work of actuation. Closed-loop control performance
may be mitigated by time-delays, noise amplifications, etc. We explore the possibilities of
closed-loop control using two approaches; one based on physical insight and another based
on machine learning which by definition requires no a priori knowledge.

A simple feedback approach was tested, where the local organization of the flow obtained
by a POD approach at a given stream-wise location is used to trigger the perturbations. A
synchronization occurs that enhances this local organization, and comes as a direct conse-
quence of the natural spatial selection of the dominant frequency of the flow, inherent in
the unperturbed mixing layer. This effectively means that with this type of feedback control
no previous frequency sweep is necessary for revealing the optimal parameters; the flow
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itself will feed back the optimal actuation frequency. This self-synchronization constitutes a
simple mechanism in otherwise highly non-linear problem, and is known as a fundamental
phenomenon in dynamical systems [22].

Finally, a model-free machine learning control method, as exemplified for a non-linear
dynamic system [4] is proven capable of finding and exploiting the same intrinsic infor-
mation in the flow that were observed in the POD mode feedback experiment, but using
directly velocity signals from several sensors. The difference is that while the threshold of
actuation imposed on POD mode feedback signal needs to be carefully adjusted by hand,
the MLC will create the best individual which already contains this kind of optimization. An
even more interesting possibility is to use POD modes as variables in MLC instead or even
in parallel with velocity fluctuations. In this case, the MLC process will determine which
kind of signal is best used for obtaining a given objective.

The success of feedback control approaches implies that we can harness the informa-
tion directly from the flow in order to create a desired control input. This is even of more
importance when we consider that the control of a turbulent mixing layer involves highly
non-linear dynamics, which are difficult to model with currently available methods. It also
removes the need for parametric studies of open-loop actuation for different flow regimes.
A systematic search of the best actuation amplitude, frequency and duty cycle is a lengthy
process even for one set of initial flow conditions, let alone for an entire range of velocities
to which the control would have to respond if applied to a practical engineering problem.
As shown in this article, an optimal open-loop actuation for one stream-wise sensor posi-
tion (x = 200mm) is significantly under-performing when used for maximization of the
objective function for a different sensor position (x = 500mm). Contrary to this, the POD
feedback control, using the same mode, is capable of auto-adapting and producing effective
maximization of the objective function for both stream-wise locations tested.

The POD analysis provides the information needed for local synchronization of the
mixing layer at different stream-wise measurement locations. The MLC can use such infor-
mation in order to find the most efficient control law. Development of the MLC method
continues by introducing new types of variables and by optimization of the time needed
to converge on the best control law solution. In perspective, one can envisage a multitude
of different filtering approaches applied on the sensor signals and using the resulting func-
tions as variables in MLC. Additionally, time can be introduced as an input variable. This
would enable an automatic MLC based optimization of open-loop control when closed-loop
control is less effective.

Ongoing experimental campaigns will deal with stabilization of the mixing layer using
MLC, testing of robustness of best individuals to different initial conditions or perturbations
and exploring different stream-wise locations. The authors are also actively pursuing the
application of this method in several other experiments. For more in-depth information on
MLC we kindly invite the reader to look at [4].
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