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ABSTRACT The formation control technique called cluster space control promotes simplified specification
and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established
the conceptual foundation of this approach and has experimentally verified and validated its use for various
systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster
space framework and introduce a new cluster space dynamic model. This model represents the dynamics of
the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized
cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented
to transform cluster space compensation forces into robot-level forces to be applied to the robots in the
formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out
the formation dynamics and effectively decouples the cluster space variables. Computer simulations and
experimental results using three autonomous surface vessels and four land rovers show the effectiveness of
the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.

INDEX TERMS Cluster space, multirobot systems, dynamic control, formation control, marine robotics.

I. INTRODUCTION

Autonomous or tele-operated robotic systems offer many
advantages to accomplishing a wide variety of tasks given
their strength, speed, precision, repeatability, and ability
to withstand extreme environments. Whereas most robots
perform these tasks in an isolated manner, interest is grow-
ing in the use of tightly interacting multirobot systems to
improve performance in current applications and to enable
new capabilities. Potential advantages of multirobot systems
include redundancy, increased coverage and throughput, flex-
ible reconfigurability, and spatially diverse functionality [1].
For mobile systems, one of the key technical considerations
is the technique used to coordinate the motions of the indi-
vidual vehicles. A wide variety of techniques have been and
continue to be explored, drawing on work in control theory,
robotics, and biology [2] and applicable for robotic applica-
tions throughout land, sea, air, and space. Notable work in this
area includes the use of leader-follower techniques, in which
follower robots control their position relative to a designated
leader [3], [4]. A variant of this is leader-follower chains, in
which follower robots control their position relative to one or

more local leaders, which, in turn, are following other local
leaders in a network that ultimately is led by a designated
leader [5]. Several approaches employ artificial fields as a
construct to establish formation keeping forces for individual
robots within a formation. For example, potential fields may
be used to implement repulsive forces among neighboring
robots and between robots and objects in the field in order to
symmetrically surround an object to be transported [6]. Poten-
tial fields and behavioral motion primitives have also been
used to compute reactive robot drive commands that balance
the need to arrive at the final destination, to maintain relative
locations within the formation, and to avoid obstacles [7], [8].
As another example, the virtual bodies and artificial poten-
tials (VBAPs) approach uses potential fields to maintain the
relative distances both between neighboring robots as well as
between robots and reference points, or ““virtual leaders,” that
define the “virtual body” of the formation [9], [10].

Many of these formation control techniques have been
applied to marine surface and land rover vehicles. A bio-
logically inspired behavioral-based method has been used
to control multiple underwater vehicles [11]. A distributed
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elastic behavior for a deformable chain-like formation of
small autonomous underwater vehicles has also been reported
in the literature [12]. Formation control of multiple vehicles
that form a floating runway at sea has been also proposed [13],
and the virtual structure approach has been used to control
a fleet of vessels [14]. The leader-follower method was also
applied to control groups of autonomous surface vessels [15]
and wheeled robots [16].

A. CLUSTER SPACE APPROACH

The motivation of the proposed cluster space approach is
to promote the simple specification and monitoring of the
motion of a mobile multirobot system, exploring a specific
approach for formation control applications. This strategy
conceptualizes the n-robot system as a single entity, a cluster,
and desired motions are specified as a function of cluster
attributes, such as position, orientation, and geometry. These
attributes guide the selection of a set of independent system
state variables suitable for specification, control, and moni-
toring. These state variables form the system’s cluster space.
Cluster space state variables may be related to robot-specific
state variables, actuator state variables, etc. through a formal
set of kinematic transforms. These transforms allow cluster
commands to be converted to robot-specific commands, and
for sensed robot-specific state data to be converted to cluster
space state data. As a result, a supervisory operator or real-
time pilot can specify and monitor system motion from the
cluster perspective. Our hypothesis is that such interaction
enhances usability by offering a level of control abstraction
above the robot- and actuator-specific implementation details.

In contrast to swarm-like formation control meth-
ods [17], [18], where the benefits are obtained by abstracting
to a low dimensional representation, our approach maintains
the same dimensionality in the cluster level. This allows for a
fully controllable system—where the position of each member
can be specified and controlled— as well as for formation state
monitoring, where instantaneous values of cluster parameters
can be obtained from robot state measurements. The simpli-
fication is given by the selection of cluster space parameters
in such a way that a subset of them is relevant to the task and
another subset has secondary importance (e.g. can be kept
constant throughout the task). This restricts the scalability of
the method to formations of ones to tens of robots. We believe
that a wide variety of multirobot applications still fit within
this category, and alternative methods can be adopted when
larger formations are required. Complex applications that take
advantage of the full degree of freedom control capability
provided by the cluster space framework, such as marine
dynamic asset guarding [19] or object manipulation [20] were
demonstrated and others continue to be explored.

Previous work presented a generalized framework for
developing the cluster space approach for a system of
n robots, each with m degrees of freedom (DOF) [21].
This framework has been successfully demonstrated imple-
menting kinematic controllers—where the dynamics of the
system are considered negligible—for both holonomic and
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non-holonomic systems, with augmentations for potential
field-based obstacle avoidance [22], and utilizing different
robot platforms ranging from planar rovers [23] to marine
autonomous surface vessels [24] and aerial blimps [25].
Centralized and distributed implementations of cluster space
control were also proposed [26].

B. ROBOT MANIPULATOR CONTROL ANALOGY

A significant comparison can be made between the cluster
space method and the Cartesian (or operational) space control
approach that has been developed for serial chain manip-
ulators [27], [28] and has also been applied to humanoid
robots [29]. In both, kinematic transforms allow motion com-
mands to be specified in an alternate space that can improve
the quality of operator interaction and motion characteristics.
Just as it would be painstaking for an operator to directly
specify the joint trajectories required to move the endpoint
of a 6-DOF articulated manipulator in a straight line, it would
be overwhelming to have a mobile cluster pilot independently
drive several robots to implement a cluster-level directive with
any level of complexity. This similarity leads to many cases in
which manipulator-oriented analyses and control approaches
can be applied to the cluster space control of mobile robot
clusters. For example, the Jacobian transpose transform can
be used to relate the dynamic forces in each of these spaces,
as is confirmed in Section IV.

In contrast, there are several differences between the cluster
space method and Cartesian control of serial chain manipu-
lators. These differences often lead to significant departures
in the implementation of analyses and control approaches,
and on occasion they yield new opportunities and/or chal-
lenges. One obvious example is that mobile robot clusters
are not physically connected as are manipulators; therefore,
we consider them to be virtual articulating mechanisms that
lack interconnecting structural forces or torques. As another
example, serial manipulator control methods employ strict
kinematic conventions to prescribe the location of link
frames, define geometric link parameters, and specify joint
space position variables. Our cluster space method provides
significant flexibility in this regard, allowing a range of
options in assigning the cluster frame, in numbering the
robots, and in defining cluster shape parameters. Indeed,
it is this flexibility that allows the approach to be adapted
for a wide range of purposes such as tailoring the shape
description based on operator preference, adapting the level
of control (de)centralization [26], and dynamically switch-
ing representations to avoid computational singularities [30].
Unfortunately, this flexibility leads to a far more challenging
effort to perform tasks such as deriving the cluster Jacobian
transforms, particularly since some cluster shape descriptions
may yield parallel robot chains.

C. CONTRIBUTIONS

In this paper, after introducing the cluster space approach in
Section II, we propose in Section III a model for cluster space
formation dynamics and define its parameters as functions of
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the dynamics of the robots forming the group. The cluster
dynamic equations, which were briefly presented in [31], are
here for the first time fully derived from the robots’ dynam-
ics using Lagrangian mechanics. We prove that generalized
forces in cluster space are related to generalized forces in
robot space through the cluster Jacobian transpose matrix.
Then we propose a Jacobian transpose type of controller,
similar to that used for Cartesian control of serial chain
manipulators, that can be used to control the robot formation
from the cluster perspective. The resulting cluster-level con-
trol actions are transformed into robot-level forces applicable
to the members of the formation. In Section IV a nonlinear
model-based partition controller is presented and its stability
is addressed in the Lyapunov sense.

In order to demonstrate the functionality of the proposed
methodology, in Section V we apply it to different robotic
platforms. First, simulation results show the advantages of
the controller. Then, experimental results utilizing three
marine autonomous surface vessels and four wheeled land
rovers illustrate the applicability of the method to real-world
systems.

Previous work by the authors on this line of research
focused on kinematic modeling and control of robot for-
mations for which the dynamics could be neglected. Such
method was valid for a limited universe of robots in a
limited universe of environments. The novel approach pre-
sented here introduces the capability of modeling, from the
formation perspective, the dynamics of the robots in the
group as well as the effects of environment perturbations,
expanding the theory to a more comprehensive space of
applications.

Il. CLUSTER SPACE FRAMEWORK OVERVIEW

The cluster space approach to controlling formations of mul-
tiple robots was first introduced in [21]. The first step in the
development of the cluster space control architecture is the
selection of an appropriate set of cluster space state variables.
To do this, we introduce a cluster reference frame and select
a set of state variables that capture key pose and geometry
elements of the cluster.

Consider the general case of a system of n mobile robots
where each robot has m DOF, with m < 6, and an attached
body frame, as depicted in Figure 1.

Typical robot-oriented representations of pose use mn vari-
ables to represent the position and orientation of each of the
robot body frames, {1}, {2}, ..., {n}, with respect to a global
frame {G}. In contrast, consideration of the cluster space
representation starts with the definition of a cluster frame {C},
and its pose. The pose of each robot is then expressed relative
to the cluster frame. We note that the positioning of the {C}
frame with respect to the n robots is often critical in achieving
a cluster space framework that benefits the operator/pilot. In
practice, {C} is often positioned and oriented in a geomet-
rically meaningful way, such as at the cluster’s centroid and
oriented toward a particular vehicle or alternatively, coinci-
dent with one of the vehicle’s body frame. An additional set
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FIGURE 1. Cluster and robot frame descriptions with respect to a global
frame.

{6}

of variables defining the shape of the formation complete the
representation.

A. SELECTION OF CLUSTER SPACE VARIABLES

We select as our state variables a set of position variables (and
their derivatives) that capture the cluster’s pose and geometry.
For the general case of m-DOF robots, where the pose vari-
ables of {C} with respect to {G} are (x., y¢, Z¢, ¢, Be, Ve) and
where the pose variables for robot i with respect to {C} are
(xi, vi, zis i, Biy vi) fori=1,2, ..., n:

c1 = filxe, Yes Ze» @y Bes Ves X1, Y15 21

a1, Bis Vis oy Xns Yns Zns Ons By Vo)
c2 = folxe, Yes Zes ey Bes Ves X1, Y15 21

ar, Bl Y1s -+ s Xn, Yns Zns %y Bus V)

Cmn = Jmnn(Xes Ye, Zes ey Bes Ve, X1, V1, 21,
at, Bis Yis - > Xns Yus Zns Qns Brs Ya)- (D

The appropriate selection of cluster state variables may be
a function of the application, the system’s design, and subjec-
tive criteria such as operator preference. In practice, however,
we have found great value in selecting state variables based on
the metaphor of a virtual kinematic mechanism that can move
through space while being arbitrarily scaled and articulated.
This leads to the use of several general categories of cluster
pose variables (and their derivatives) that specify cluster posi-
tion, cluster orientation, relative robot-to-cluster orientation,
and cluster shape. A general methodology for selecting the
number of variables corresponding to each category given the
number of robots and their DOF, as well as typical selections
for given systems, are described in [21].

B. CLUSTER KINEMATIC RELATIONSHIPS

We wish to specify multirobot system motion and compute
required control actions in the cluster space using cluster
state variables selected as described in the previous section.
Given that these control actions will be implemented by each
individual robot (and ultimately by the actuators within each
robot), we develop formal kinematic relationships relating the
cluster space variables and robot space variables.
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1) POSITION KINEMATICS

We can define mn x 1 robot and cluster pose vectors, r and c,
respectively. These state vectors are related through a set of
forward and inverse position kinematic relationships:

g1(r1, 2, oo, Tn)
82(71, r21 ceey rmn)
c=KIN(r) = ) 2)
&mn(r1, 72, ...\ Fn)
hi(er, €25 - -5 Conn)
ha(ct, €2y v vy Conn)
r = INVKIN (c) = ) . 3)
Rn(Ct, €2, ..., Cmn)

2) VELOCITY KINEMATICS

We may also consider the formal relationship between the
robot and cluster space velocities, 7 and ¢. From (2), we may
compute the differentials of the cluster space state variables,
¢i, and develop an mn x mn Jacobian matrix, J(r), that maps
robot velocities to cluster velocities in the form of a time-
varying linear function:

&=Jr)r. 4)

In a similar manner, we may develop the mn x mn inverse
Jacobian matrix, J ’l(c), which maps cluster velocities to
robot velocities. Computing the robot space state variable
differentials from (3) yields:

F=J"c)e. (5)

C. EXAMPLE KINEMATIC DEFINITIONS

As an example of alternate kinematic definitions for mobile
robot clusters, consider the different ways of representing
a three-robot planar cluster as shown in Figure 2. In each
of these cases, the conventional robot space pose would be
represented by r = (x1,y1, 61, x2, y2, 62, X3, y3, 63) where
each (x;, y;, 6;) represents the linear and angular location for
robot i. The cluster space pose description is represented by
¢ = (x¢, Yes Ocy S1, 52, 53, D1, 2, ¢3) Where (xc, Ye, 0¢) speci-
fies the cluster frame position and orientation, the s; variables
specify the cluster shape, and the ¢; variables represent the
relative orientation of each robot with respect to the cluster
frame. However, since each of the three clusters have been
defined differently, they will have different cluster frame
position values, and their shape parameters will be completely
distinct.

These varying representations lead to a range of kine-
matic dependencies that drive critical characteristics of the
formation control architecture. For example -as shown in
Figure 2- with the leader-follower representation, the sparse
nature of the resulting Jacobian transforms clearly indicate
the decentralized nature of the resulting controller; in con-
trast, for the third example with the cluster frame at the
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FIGURE 2. Three-robot planar cluster representation options. These three
representations show variation in assigning the location of the cluster
frame, numbering the robots, and defining the shape of the cluster:

(a) A leader-follower chain approach in which the cluster frame is placed
on the lead robot and the location of the subsequent robot is provided by
distance and angle shape variables; (b) The cluster frame is located
between robots 1 and 2, oriented towards robot 2, while robot 3's
location is described with a distance-angle description with respect to
this frame; (c) A highly integrated geometric description in which the
cluster frame is placed at the cluster centroid and oriented towards robot
1 and the triangle’s shape is provided as a side-angle-side description.

centroid of the triangle, the Jacobian transforms are nearly
fully populated with nonzero terms, indicating the tight inter-
dependence of robot positions with respect to achieving a
specific cluster space pose. As a side note, it is interesting
to observe that the leader-follower configuration, which is
perhaps the most used formation control approach, becomes
a simple implementation that is subsumed within the range of
options provided by the cluster space control methodology.
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IIl. CLUSTER SPACE DYNAMICS

In previous work, a kinematic model of the robots was consid-
ered under the assumption that many commercially available
robotic platforms provide closed-loop velocity control. Based
on this model, inverse Jacobian cluster space controllers were
implemented for groups of mobile rovers [23]. In some cases,
however, the kinematic model approximation may not hold
true and a dynamic approach to modeling and control may
be required. Examples of such situations are land rovers
with non-negligible dynamics, aerial robots or marine robotic
vehicles.

For the development of the cluster space equations of
motion, it is assumed that the robots composing the system are
holonomic and that the formation shape stays away from sin-
gularities. Cluster space singular configurations occur when
the geometry of the cluster becomes degenerate and the
Jacobian matrix becomes singular, as described in [32].

Next, we derive the relationship between cluster space
generalized forces, composed of forces and torques in cluster
space, and robot space generalized forces, composed of robot
space forces and torques. This derivation is based on the
work developed for operational space control of serial chain
manipulators presented in [27] and [33]; we note that our
presentation explicitly provides a number of critical steps
in this derivation that were not provided in [27] nor, to our
knowledge, in any subsequent publications. Ultimately, we
verify that, even with the kinematic variations allowed by the
cluster space methodology, the Jacobian transpose transforms
virtual cluster space forces to physical robot space forces.

The dynamics of the system in cluster space can be
represented by the Lagrangian L(c, ¢):

L(c,¢)=T(c,¢)—Ul(o). 6)

The kinetic energy of the system can be represented as a
quadratic form of the cluster space velocities

T(c,¢) = %éTA(c) ¢, (7)

where A(c) is the mn x mn symmetric matrix of the quadratic
form, i.e., the kinetic energy matrix, and U(c) = U(KIN(r))
represents the potential energy due to gravity. For rovers on
a plane, the gravity force is canceled out by the force normal
to the surface and the gravitational potential energy term can
be neglected. For other systems, including aerial unmanned
vehicles (AUVSs), underwater autonomous vehicles (UAVs) or
planar rovers operating on an inclined plane, the gravity term
must be included. Let p(c) be the vector of gravity forces in
cluster space

p(c) = VU(c). 3

Using Lagrangian mechanics, the equations of motion in
cluster space are given by

d (0L oL
d(oy 02, o
dt \ oc dc
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The equations of motion in cluster space can then be derived
from (9) and written in the form

Ac) ¢+ u(c, &) +plc)=F (10)

where w(c, ¢) is the vector of cluster space friction, centripetal
and Coriolis forces and F' is the generalized force vector in
cluster space.

The equations of motion (10) describe the relationships
between positions, velocities, and accelerations of the forma-
tion location, orientation, and shape variables and the forces
defined in cluster space acting on the formation. The dynamic
parameters in these equations are related to the parameters of
the robot dynamic models. The dynamics in robot space can
by described by

A(r)F+b(r,i)+g(r)=T 1rn

where b(r, 1), g(r) and T" represent, respectively, velocity
dependent forces, gravity and generalized forces in robot
space. A(r) is the mn x mn robot space kinetic energy matrix.
The relationship between the kinetic energy matrices A(r)
and A(c) corresponding, respectively, to the robot space
and cluster space dynamic models can be established [33]
by exploiting the identity between the expressions of the
quadratic forms of the system kinetic energy with respect to
the generalized robot and cluster space velocities,

A) =TT Ar) T 1), (12)

The relationship between b(r, i) and u(c, ¢) can be estab-
lished by the expansion of the expression of u(c, ¢) that
results from (9),

(e, &) = A(e) ¢ — VT(c, ¢). (13)

Using (12) and (4), we can get expressions for the terms of
u(c, ¢)in (13):

A)e =TT, AT (e + T T AT~ (r, i)

+I LA e (14)
= I TMHANF + T AT, P)é
+J 7T (r, HA()F (15)

replacing A(r) with its equivalent expression in (12), we get

A)e = I LA + AT )T N, i)e
+17 T, DA (16)

using the identity J (r)J ~'(r, 7) = —J (r, 7)J ~'(r), we obtain

A)e = I T(MHA)F — AT (r, )P
+7 7T (r, HAGH)F. (17)

Regarding the second term of (13), taking the gradi-
ent of the kinetic energy with respect to the cluster space
coordinates, we have

VT(c,¢) = %V[éT Ae)e] (18)
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using (12), we get

VT(c,é) = =V[iT A(r)i]

VYD ayriiy ] (19)
i

Separating the expression in two terms and given that
8¢ = J(r)ér, we can express the gradient in the first term
as partial derivatives with respect to the robot coordinates

N =N =

. . dag(r)
D Zj TiTj %'/rlr
1
VT(c,¢) = 5J—T(r) :

. . day(r)

D D Fif z;lrjm:

+D D> @iV (20)
i

which can be rewritten as
FTA (r) 7
. I _r
VT(c,¢) = EJ (r)
iTA,,, (r)
+ ) Vi Y a(r)i (21)
i J
where A,,(r) indicates the partial derivatives of the matrix

A(r) with respect to the i-th robot space variable. We can then
define the resulting column vector as /(r, i), obtaining

1
l,-(r,f):zifTA,,(r)i, i=1,2,...,mn. (22)

Therefore, we get

VT(c.é) =T T (). #)+ Y Vi Y ag(r)i;

! J

=IO P+ Y Vivair)i

=J T I(r, )+ Vi AP (23)
The expression Vi can be written as
82r1 o Bzrm,,
dcy ot dcyot
vi=| 1o (24)
32}’1 32rmn
dCmn ot dCmn ot

and assuming the second partial derivatives exist and are
continuous, then by the Clairaut’s theorem and using the
inverse Jacobian matrix introduced in (5), we have

dcy dcy
) a
Vi= —
at
ary - OTmn
dCmn 0Cmn
=JT(r, P. (25)
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Therefore, we can express (23) as
VT(c,&) =J LI, i)+ T T (r, HAG)F, (26)

and finally from (17) and (26), we can express the terms of
(13) as:

A)e = I AW — AT (r, i+ T T (r, DAG)F
VT(c,o)=J T, i)+ I T (r, HAGF, (27)

where the i-th component of the vector [ is

1
L(r i) =5 Ay P i=1.2, mn (28)
The subscript r; indicates the partial derivative with respect
to the i-th robot space variable. Noting from the definition of
b(r, 1) that

b(r, ) = A(r) i — I(r, F), (29)
then (13) can be written
w(e, &) =J7 T b(r, i) — Ar)J(r, ) F. (30)

Furthermore, in the particular case where the velocity depen-
dent robot space forces b(r, i) have the form b(r, i) = B(r)r
as in the case of viscous friction, then

we, &) =Y é— A)J(r, i e e, 31
where
Y()=JT(r)B(r)J(r) (32)

is the cluster space friction coefficients matrix and the second
term in (31) corresponds to the cluster space Coriolis and
centripetal forces.

The relationship between the expressions of gravity forces
can be obtained using the identity between the functions
expressing the gravity potential energy in the two spaces and
the relationships between the partial derivatives with respect
to the variables in these spaces. Using the definition of the
Jacobian matrix (5) yields

pe) =JT(r)g(r). (33)

Finally, we can establish the relationship between general-
ized forces in cluster space and robot space, F and I". Using
(12), (30), and (33), the cluster space equations of motion (10)
can be rewritten as

JTO[AG) # 4+ b(r, i)+ g(r)] = F. (34)
Substituting (11) yields
r=J'rF (35)

which represents the fundamental relationship between clus-
ter space forces and robots space forces. This relationship is
the basis for the dynamic control of the robot formation from
the cluster space perspective.
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IV. CONTROL ARCHITECTURE

The control of the formation is performed by generating a
cluster space generalized force vector F' that is then trans-
formed to a robot space force vector I using (35). In order
to obtain such a control vector, we use a nonlinear dynamic
decoupling approach [28]. In this approach, we partition the
controller into a model-based portion and a servo portion. The
model-based portion uses the dynamic model of the cluster to
cancel out nonlinearities and decouple the cluster parameters.
The resulting control law then has the form

F = A(©) Fi + u(c, ¢) + plc) (36)

where A(c), u(c, ¢) and p(c) are the cluster space dynamic
model parameters. F,, is the command force vector acting
on an equivalent cluster space unit mass decoupled system,
which we define as

Fi = Caes + Kp e + Ky éc, (37

where e, = cges — ¢ and ¢, = Cges — C are, respectively,
the cluster space position and velocity errors, and K, and
K, are positive definite matrices. Figure 3 shows the control
architecture of the nonlinear partition controller.

n-Robot Cluster

Cois —»| Robot 1 . f
? Cluster F V|
.. | Space n .
r: . -
—| Linear »| Robot 2 T2, I >§) - =
C“b“ Controller .

i LT

A A

FIGURE 3. Cluster space control architecture for a mobile n-robot system.
Desired control forces are computed in cluster space and a partition
control architecture decouples the system. The Jacobian transpose matrix
converts the resulting cluster space forces to robot space forces that are
then applied to the system. Robot sensor information is converted to
cluster space through the Jacobian and kinematic relationships. Solid
lines indicate signals and dotted lines indicate parameter passing.

The stability of the formation utilizing the controller
described by (36) and (37) can be addressed from a Lya-
punov perspective. Considering the positive definite can-
didate Lyapunov function V. = 1éle. + Lel Kye,,
and taking the derivative with respect to time, we obtain
vV = écT (EC + K, ec). Using the control law (36) and the
cluster dynamics (10), and replacing in the expression of V,
we obtain V = —é! K, ¢, which shows that V < 0 and

the system is Lyapunov stable. (]

V. EXPERIMENTS

To illustrate the functionality of the proposed formation con-
trol approach applied to systems with non-negligible dynam-
ics, we generated computer simulations of a formation of
three holonomic robots and conducted experimental tests with
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two different robotic testbeds: a group of three autonomous
surface vessels (ASV) and a formation of four land rovers.

In order to exemplify the application of the method, let
us take the planar three-robot system case. The cluster space
variables must be defined and the kinematic transforms must
be generated.

A. CLUSTER SPACE STATE VARIABLE DEFINITION

Figure 4 depicts the relevant reference frames for the planar
three-robot problem. We have chosen to locate the cluster
frame {C} at the cluster’s centroid, oriented with Y, pointing
toward robot 1. Based on this, the nine robot space state
variables (three robots with three DOF per robot) are mapped
into nine cluster space variables for a nine DOF cluster.

FIGURE 4. Reference frame definition for a three-robot system placing
the cluster center at the triangle centroid

Given the parameters defined by Figure 4, the robot space
pose vector is defined as:

r = (x1,y1,01, %2, 2,62, %3, 3, 63)", (38)
where (x;, y,-,@i)T defines the position and orientation of
robot i. The cluster space pose vector definition is given by:

C:(xc,}’c,gc, ¢17¢25¢37p’q’/3)T7 (39)

where (x¢, Ve, 0.)7 is the cluster position and orientation, ¢;
is the yaw orientation of robot i relative to the cluster, p and g
are the distances from robot 1 to robots 2 and 3, respectively,
and B is the skew angle with vertex on robot 1.

Given this selection of cluster space state variables, we
can express the forward and inverse position kinematics of
the three-robot system. These expressions are included in
Appendix A. By differentiating the forward and inverse posi-
tion kinematic equations, the forward and inverse velocity
kinematics can easily be derived, obtaining the Jacobian and
inverse Jacobian matrices.

It should be noted that this particular selection of cluster
space variables is not unique, and different sets of variables
may be chosen following the same framework when more
convenient for a given task.

B. COMPUTER SIMULATIONS
A MATLAB/Simulink = model of the control architecture
was generated to validate the approach. The model allows for
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defining different dynamics for each robot that in turn pro-
duce complex dynamics in the cluster space. Such dynamics
are intended to be canceled out by the model-based cluster
controller.

The robots are modeled following (11), where for robot i:

a 0 O
A(r)=10 a 0 |, 40)
0 0 Izz
byifxi
bi(r,7) = | bifyi |, gi(r)=0, (41)
byib;

where a; is the mass and Izz; is the moment of inertia of
the rotational DOF (yaw), b; and b,; are the linear and
rotational friction coefficients and 7y, 7y, é,- are the linear
and angular velocities. The matrix A; has size m x m and
form the block diagonal robot space kinetic energy matrix
A(r) =diag(A(r), Aa(r), ..., Au(r)).

TABLE 1. Robot dynamics for simulation Cases 1 and 2.

Robot 1 | Robot 2 | Robot 3
a; (mass, kg) 10 5 1
b¢; (Friction coeff., kg/s) 1 5 10

Three different simulation test cases are presented in this
article. In all of them, the same cluster space trajectory (posi-
tion, orientation, and shape trajectories) is the input to the
system and different robot dynamics or different controllers
are used. In the first test case, the parameters of the robot
dynamic models are defined! as shown in Table 1, and a linear
(PID) controller with no model-based dynamic compensation
generates the cluster space forces that are then translated to
robot space forces to be applied to the robots.

In the second test case, the robot dynamic model param-
eters and initial conditions are the same as in the first test
case (Table 1), but now the model-based partition controller
is implemented.

TABLE 2. Robot dynamics for simulation Case 3.

Robot 1 Robot 2 | Robot 3
a; (mass, kg) 1000 10 0.01
by; (Friction coeff., kg/s) 0.1 1000 100

For test case 3, the same model-based partition controller is
used, but now the dynamic model parameters of the robots are
those shown in Table 2. Different initial conditions are used
in order to distinguish the output from that of test case 2.

Figure 5 shows the output of the simulation of test
cases 1, 2, and 3. The test case 1 output shows how control
actions applied to certain cluster variables also affect other

I The inertia Izz and rotational friction coefficient b, are held constant at a
unit value for all the simulation runs given that the robots are holonomic and
no trajectories for the ¢; cluster variables are implemented.

VOLUME 2, 2014

Cluster Space Variables — Time History - Test Cases 1, 2 and 3

& 20
o
EIRU
x° 0
0 20 40 60 80 100 120
G2
2
g
>-u 0
0 20 40 60 80 100 120
04
@
S 02
E
02
0 20 40 60 80 100 120
100 ﬁﬁ
A3
&
g 80
E
= 60
40
0 20 40 60 80 100 120
__100
3 f
s
$ a0
£
= 60
% . . . .
20 40 60 80 100 120
12
z 1
£os
=06
04
0 20 40 60 80 100 120

time (seconds)

Test 1 - Linear Gompensation — Dynamics of Table |

Test 2 - Model-based Compensation - Dynamics of Table |
Test 3 - Model-based Gompensation - Dynamics of Table I
Desired Trajectory

FIGURE 5. Simulation results for test cases 1, 2, and 3. Tests 1 and 2 with
the system dynamics of Table 1 and test 3 with system dynamics of

Table 2. Test 1 implements a PID controller with no model-based dynamic
compensation. Test 2 and 3 implement a nonlinear model-based partition
controller.

variables in the system, indicating coupling among them. For
the test case 2, the controller cancels out the nonlinearities
resulting from the cluster dynamics and the outputs behave as
smooth critically damped second order decoupled systems.

Although the robot dynamics of test case 3 are considerably
different from those of test case 2, the response of the system
after the initial transient—due to different initial conditions—is
almost identical, showing the effectiveness of the controller
in canceling out the different formation dynamics resulting
from the different characteristics of the particular robots in
the formation.

C. FORMATION OF THREE SURFACE VESSEL

MARINE ROBOTS

To validate the approach with experimental results, a testbed
of three autonomous surface vessel (ASV) marine robots is
used. Each robot is an off-the-shelf kayak retrofitted with
two thrusters producing a differential drive behavior and
an electronics box that includes motor controllers, GPS, a
compass, and a wireless communication system. A remote
central computer receives sensor information from the ASVs,
executes the cluster controller algorithms, and sends the
appropriate compensation signals. A detailed description of
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this testbed can be found in [24]. Figure 6 shows two of the
three ASVs used for the experiments. To accommodate for
the non-holonomic constraints, a robot-level heading control
inner-loop is implemented on each robot to achieve required
bearings.

FIGURE 6. Autonomous surface vehicles with propulsion systems and
custom sensor and communication suites.

1) ASV DYNAMIC MODEL
The model-based partition controller makes use of a dynamic
model of the cluster to compute the appropriate compensa-
tion. The cluster dynamic equation is obtained through the
model parameters of the ASVs. Using (11), the parameters
for the i-th ASV are [34]:

150kg 0 0
Ai(r) = 0  150kg 0 , (42)
0 0  4lkgm?

10048,

bi(r, i) = | 400%7, |, g =o0. (43)

25kem’ 4

srad

Using (12), (30), and the Jacobian matrices given by the
cluster definition, the cluster dynamic parameters can be
computed in execution time to produce dynamic compensa-
tion in the controller.

2) ASV EXPERIMENTAL RESULTS

One of the experimental tests performed is presented. The
formation of ASVs moves north (y axis) keeping a triangular
shape. Then one of the sides of the triangle (p) and the skew
angle (B) decrease until the formation reaches a straight line
configuration, later the original triangular pose is attained. An
overhead view of the resulting motions is shown in Figure 7,
and desired and measured values for the cluster parameters
over time are shown in Figure 8.

D. FORMATION OF FOUR WHEELED LAND ROVERS

To apply the control framework to a testbed of four wheeled
land rovers, a different cluster definition is used. In this
case, the system has 12 DOF resulting in a cluster defini-
tion with 3 cluster parameters describing the cluster frame
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FIGURE 7. Autonomous surface vehicles experimental results. Overhead
view. The circles represent the robots and the star represents the desired
position of the cluster centroid. The x and y axes represent meters.
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FIGURE 8. Autonomous surface vehicles experimental results. Time
history of the cluster space parameters.

position and orientation, 5 cluster parameters describing the
formation shape and 4 parameters for robot orientations with
respect to the cluster. Figure 9 shows the selection of cluster
space variables. A detailed description of the cluster def-
inition and the kinematic transforms are reported in [20].
The rovers used for the experiments are Pioneer AT robots
retrofitted with GPS, compass, and wireless communication
systems. A remote central computer receives sensor infor-
mation, executes the cluster controller algorithms, and sends
the appropriate compensation signals. To accommodate for
the non-holonomic constraints, a robot-level heading control
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FIGURE 9. Reference frame and cluster space variables definition for a
four-robot planar system.

inner-loop is implemented on each robot to achieve required
bearings.

1) LAND ROVER DYNAMIC MODEL

The cluster dynamic equation is obtained through the model
parameters of the land rovers. Using (11), the parameters for
the i-th robot are:

20kg 0 0
Ay=] 0 20kg 0O , (44)
0 0  50kgm?

10,

bir, i) = | 40%i |, @ =o0. (45)
k 2 .
losiilnde

Again, using (12), (30), and the Jacobian matrices given by
the cluster definition, the cluster dynamic parameters can be
computed in execution time to be used by the controller.

2) LAND ROVER EXPERIMENTAL RESULTS

An experimental test is presented where the formation of
rovers moves first in the southwest direction maintaining a
square shape. Then the formation moves in the northwest
direction and lastly the size of the square is augmented
(parameters g and s increase). An overhead view of the result-
ing motions is shown in Figure 10.

In the results of both testbeds, the cluster parameters fol-
low their desired values over time. Table 3 shows the mean
squared errors for each cluster space parameter. Position
sensing errors as well as errors in the estimation of the
robot dynamic model parameters introduce additional track-
ing errors compared to those seen in the simulations. Over-
all, the experiments illustrate the functionality on different
platforms of the nonlinear partition controlled model-based
approach to cluster control of formations of mobile robots
with non-negligible dynamics.

VI. MODEL PARAMETER SENSITIVITY
The model-based partition controller makes use of the dynam-
ics of the robots composing the formation in order to generate
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FIGURE 10. Land rovers experimental results. Overhead view. The circles
represent the robots and the x and y axes represent meters.

TABLE 3. Experimental results - mean square errors of the different
cluster space variables for Tests 1 and 2.

Three-ASV Test Four-Rover Test
Cluster Var. MSE Cluster Var. MSE
e (m?) 1.67434 | x. (m?) | 1.81538
ye (m?) | 3.69479 | y. (m?) | 2.81963
0. (rad?) | 0.00313 | 0. (rad?) | 0.01212
p (m?) 1217775 | 6 (m2) | 0.22938
q (m?) 9.47157 p (m2) | 0.21060
B (rad?) | 0.01039 q (m?) 0.55369

s (m?) 1.22900
B (rad?) | 0.02267

commanded actions. This approach assumes that the dynamic
models of the robots are known. Although the parameters
of such models can be, for the most part, provided by the
manufacturer or measured for each individual robot, it is
interesting to analyze the response of the system to errors in
the estimation of these parameters.

A set of simulations were generated where errors in the
values of the dynamic model parameters were introduced.
These errors are defined as percentage variations of the
true parameter value. Figure 11 depicts the response of the
system with errors ranging from 0% to 140% of the true
model values in 20% steps. As it can be seen, a 20% vari-
ation results in a minimal deviation from the perfect model
case. Depending on the requirements of the task, overshoots
resulting from errors of 20% to 40% may be acceptable.
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Cluster Space Variables Over Time
For Different Robot Dynamic Model Errors
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FIGURE 11. Desired trajectories and system outputs of the cluster space
variables for inaccurate models of the robots in the formation.

When the errors reach 140% the formation starts showing
signs of instability.

VII. CONCLUSION

The cluster space control approach for mobile robots was
briefly reviewed and equations of motion for the cluster space
variables were derived. The parameters of the cluster space
dynamics were then defined as a function of the dynamic
parameters of the robots in the formation. It was shown that
generalized forces in cluster space can be related to forces in
robot space through the Jacobian transpose matrix.

A nonlinear cluster level partition controller was proposed.
The model-based portion of such a controller cancels out the
cluster space nonlinear dynamics and allows for the cluster
variables to be decoupled. The servo portion of the controller
then effectively sees a set of decoupled unit mass plants.
Stability of the closed-loop control architecture was proven
indicating that system is Lyapunov stable.

The approach was validated with computer simulations.
First comparing a simple linear controller with a model-based
nonlinear controller, where an improvement in performance
can be readily seen in terms of errors and cluster variable
coupling. Then, another comparison is made utilizing the
same controller with two different sets of robots, each with
substantially different dynamics. The respective responses are
almost identical, illustrating the robustness of the controller to
variations in the dynamics of the plant.
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The proposed implementation was then applied to two
experimental testbeds, one composed of three ASVs and the
other with four land rovers. Results with both platforms were
presented in order to demonstrate the functionality of the
system. The experiments showed the ability of the formation
to navigate following cluster position and shape trajectories.

Sensitivity to model parameter variations was analyzed by
introducing errors in the robot dynamic parameters of the
model-based controller.

Ongoing work includes the addition of obstacle avoidance
methods and addressing in detail the impact of errors in the
estimations of the dynamic parameters of the robots.

The study of alternative cluster definitions is being con-
ducted under the assumption that they may be more conve-
nient for specifying and monitoring requirements for different
missions, they can be used to avoid singularities, and can be
selected to reduce computational requirements.

Future applications using the cluster space approach
include marine environment survey via vehicle differential
measurements and dynamic beamforming using cluster con-
trolled smart antennae arrays [35].

APPENDIX

A. THREE-ROBOT CLUSTER DEFINITION

Given the selection of cluster space state variables presented
in Section V, the forward position kinematic relationships for
the three-robot system are:

X, = W (46)
yc=y1+y32+)’3 47)
0. = atan2 (2x; — xa — x3,2y1 — y2 — ¥3) (48)
1 =061 — 6 49)
¢ = b6h — 0 (50)
¢3 = 03 — 0, (51)
p =1 =0+ o1 —wP (52)
g = /(1 — 137 + 51 — 922 (53)

B = atan2((x3 — xp)sin(a) + (y3 — y1)cos(a),
(x3 — x1)cos(@) — (y3 — y1)sin(a)), (54)

where

o = atan2(y) — y2, %2 — x1), (55)

and atan2(y, x) is the 4-quadrant arctangent [28]. The inverse
position kinematics are therefore defined by:

Xp = Xc+ %«/ESiH (©c) (56)
Y1 =Ye+ %«/E cos (6) (57)
01 = ¢1 + 06 (58)
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X2 = X+ %\/Esin 6.) + pcos(y) (59)
Y2 = Yot %«/E cos (6c) + psin(y) (60)
62 = ¢2+6c (61)
X3 =xc+ %x/ESin (6c) +gcos(B+y) (62)
y3=ye+ %\/E cos () +qsin(B+y)  (63)
03 = ¢3 + 6, (64)
where
k=p’+ 4" +2pgceos(p), (65)
and
y = atan2(gsin(B), p + g cos(p))
+atan2( cos (6.), —sin (6,) ) (66)
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