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The widespread contamination and persistence of the herbicide atrazine residues in the environment
resulted in the exposure of non-target organisms.

The present study was undertaken to investigate the effect of atrazine in the response of oxidative
stress biomarkers in the freshwater shrimp Palaemonetes argentinus and the protective effect of vitamin-
E against atrazine-induced toxicity. Therefore, two batches of P. argentinus were fed for 21 days with a
commercial food enriched in proteins (D1) or with D2, composed of D1 enriched with vitamin-E (6.8 and
16.0 mg% of vitamin-E, respectively). Subsequently, half of the individuals of each group were exposed to
atrazine (0.4 mg L~ ") for 24 h and the others remained as controls.

Atrazine promoted oxidative stress response in P. argentinus fed with D1 as indicated by enhanced
H,0, content and induction of superoxide dismutase, glutathione-S-transferases and glutathione
reductase. This antioxidant activity would prevent the increment of thiobarbituric acid reactive
substances in the shrimp tissues. P. argentinus fed with D2 reversed the response of the biomarkers
measured. However, the activation of antioxidants response had an energetic cost, which was revealed

by a decrease in lipids storage in shrimps.
These results show the modulatory effect of vit-E on oxidative stress and its potential use as an
effective antioxidant to be applied in chemoprotection strategies during aquaculture.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Atrazine  (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-
diamine, ATZ) belongs to the triazine herbicide family which is
predominantly applied to the areas cultivating graminaceous crops
(e.g. corn, sorghum, and sugar cane) for controlling broadleaf

Abbreviations: ATZ, atrazine; CAT, catalases; CDNB, 1-chloro-2,4-dinitrobenzene;
D1, diet 1; D1+ATZ, control shrimps fed with diet 1 and exposed to atrazine; D1C,
control shrimps fed with diet 1; D2, diet 2; D2+ ATZ, control shrimps fed with diet
2 and exposed to atrazine; D2C, control shrimps fed with diet 2; GPx, glutathione-
dependent peroxidises; GR, glutathione reductase; GSH, reduced glutathione; GST,
glutathione-S-transferases; GSTm, glutathione-S-transferases measured in micro-
somal fraction; GSTs, glutathione-S-transferases measured in cytosolic fraction;
ROS, reactive oxygen species; SOD, superoxide dismutases; SPE-SPME-GC-MS,
solid phase extraction-solid phase microextraction-gas chromatography coupled
to Mass Spectrometry; TBA, thiobarbaturic acid; TBARs, thiobarbituric acid reactive
substances; TCA, trichloroacetic acid; Vit-E, vitamin E
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weeds. It is one of the most effective and inexpensive herbicides
in the world and, as a consequence, is more frequently used than
any other herbicide. ATZ is soluble in water, but its slow degrada-
tion generates leachates and contamination of surface and ground-
water. The concentration of ATZ varies from 0.2 to 1000 ug L~ ! in
freshwaters directly adjacent to treated fields. The highest
reported concentrations are associated with the first rainfall after
application (Graymore et al., 2001). As ATZ administration covers
most areas of developing countries in recent years, it has become
one of the most serious environmental problems (Knauert et al.,
2010; Lu et al.,, 2013).

Once in the aquatic environment, ATZ may cause stress within
aquatic communities. With some degree of controversy among the
scientific community, different studies have demonstrated the
toxic effects of ATZ in aquatic animals (Solomon et al., 2008;
Paulino et al., 2012). The role of ATZ as endocrine disruptor has
been proved in teleost fish, amphibians and reptiles (Hayes et al.,
2011). With this function ATZ alters male reproductive tissues
when animals are exposed during development, among other
effects (Hayes et al., 2011).
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Moreover, ATZ is classified as highly toxic to slightly toxic to
aquatic invertebrates. There is a wide range of EC50/LC50 values
for freshwater invertebrates with values ranging from 720 to
> 33,000 pg L~ ! (USEPA, 2007).

Oxidative stress has become an important subject in aquatic
toxicology (Livingstone, 2001, 2003), and ATZ may be directly
involved in this process.

Reactive oxygen species (ROS) are an undesirable part of
aerobic life. Their steady-state concentration is a balance between
production and elimination providing certain steady-state ROS
level (Lushchak, 2011). The exposure of organisms to some
xenobiotics, especially toxic chemical pollutants, may produce an
imbalance between endogenous and exogenous ROS and subse-
quently, a decrease of antioxidant defenses or even oxidative
damage (Valavanidis et al., 2006). Biological systems have devel-
oped during their evolution adequate enzymatic and non-
enzymatic antioxidant mechanisms to protect their cellular com-
ponents from oxidative damage. The first line of defense consists
of antioxidant molecules, such as reduced glutathione (GSH),
ascorbic acid (vitamin C), carotenoids (including [-carotene),
retinol (vitamin A) and «-tocopherol (vitamin E - vit-E)
(Martinez-Alvarez et al., 2005; Lushchak, 2011). They usually
function as free radical scavengers. Another defensive mechanism
comprises antioxidant enzymes including glutathione-dependent
peroxidases (GPx), glutathione-S-transferases (GST), superoxide
dismutases (SOD), catalases (CAT), DT-diaphorase and associated
ones providing needed cofactors as glutathione reductase (GR) and
glucose-6-phosphate dehydrogenase. Some of these antioxidants,
like tocopherol and carotenoids, are obtained by aquatic animals
with food, while most are produced metabolically (Lushchak,
2011).

There is an increasing evidence that vit-E has vital antioxidant
functions in tissues of aquatic animals (Conklin, 1997). Vit-E
enhances the oxidative stability of organisms owing to its ability
to protect polyunsaturated fatty acids from peroxidation and to
scavenge free radicals (Evstigneeva et al., 1998). Since aquatic
animals have high levels of unsaturated fatty acids to maintain cell
membrane fluidity, especially at low temperatures, it is assumed
that vit-E should play an important role (Blazer, 1992). Moreover,
non-antioxidant and non-pro-oxidant molecular mechanisms of
tocopherols have been also described. a-Tocopherol specific inhi-
bitory effects have been seen on protein kinase C, on the growth of
certain cells and in regulation of expression of certain genes (CD36
and collagenase) (Lushchak and Semchuk, 2012 and authors
referenced therein).

In the common carp (Cyprinus carpio L.), ATZ was linked to the
induction of oxidative stress by interfering with different end-
points (diminution of GPx and SOD activities) as well as increase in
the malonaldehyde content (MDA) associated to ROS production in
liver and gill tissues (Xing et al., 2012).

Decapods are a component of the aquatic community due to
their density and their role in the energy transfer (Spivak, 1997;
Collins et al., 2006). Paleomonetes argentinus is a species of
ecologic interest because of its wide distribution in different
countries of South America (Morrone and Lopreto, 1995). Some
publications have reported the sensitivity of P. argentinus to
pollution in laboratory tests (Collins and Cappello, 2006; Galanti
et al., 2013), and proposed that this species might be used as a
bioindicator crustacean to provide information on environmental
quality (Montagna and Collins, 2007). The potential employ of P.
argentinus for biomonitoring purposes, together with its use as live
bait for fishing, a recreational activity with high economic impact
in some regions of Argentina, define the species as potentially
interesting also for aquaculture.

Therefore, this study aimed to assess the effect of ATZ in
the response of oxidative stress biomarkers in P. argentinus

considering also the influence on ATZ toxicity of a well-known
antioxidant such as vit-E. Additionally, the metabolic energy
consumed by the shrimps during the ATZ exposure was quantified
by changes in contents of fat, carbohydrates, and proteins between
exposed and control organisms.

2. Materials and methods
2.1. Acclimation period

Adult freshwater shrimps, P. argentinus, were collected from a low polluted site
(La Calera, Suquia river, Cérdoba, Argentina, Monferran et al.,, 2011) and immedi-
ately transported to the laboratory after collection. Organisms were acclimated in
glass aquaria filled with artificial freshwater (ultra-pure water containing
0.100 gL~ sea salt, 0.200 gL' CaCl,, and 0.103 g L~' NaHCOs, pH=7.6), main-
tained at constant laboratory temperature (25 + 1 °C) and under a 12 h:12 h light:
dark photoperiod for 30 days. All along this period, the organisms were fed daily ad
libitum with commercial food for fish (Vita Fish, Argentina). During acclimation
period and further treatments, two shrimps within a 1 L of exposure media were
considered (Giri and Collins, 2003).

2.2. Dietary plans and diet pre-atrazine exposure

After acclimation period, 120 shrimps were randomly divided in two groups
and differentially fed with diet 1 (D1) or diet 2 (D2) twice a day (0.1 g/aquarium/
day) along 21 days. The time of feeding was selected in order to allow the shrimps
to complete one molting cycle (Diaz et al., 2001). Temperature and photoperiod
were maintained like in the acclimation period.

The first diet (D1) was formulated with commercial fish food (VitaFish,
Argentina) enriched with proteins through the addition of lyophilized shrimp,
adjusting the protein content to 54 percent according to Diaz et al. (2001). The
second diet (D2) was formulated with D1 but now added with 11.4 percent of
peanut oil. The chemical composition of both diets was determined according to
standard methods (AOAC, 1995). Total proteins were estimated from nitrogen
content by the Kjeldahl method; fat content was determined by ether extraction
using Soxhlet apparatus; moisture was measured by the Karl Fischer method; ashes
were determined by incineration of the sample (525-550 °C) while available
carbohydrates were calculated by difference (FAO/WHO, 2003). Vit-E content was
also measured as described in Section 2.4. All assays were performed in duplicate.

2.3. Atrazine exposure

After 21 days of feeding shrimps with D1 (diet without vit-E addition) or D2
(vit-E enriched diet), the intermoult organisms were split into four groups: D1C;
D1+ATZ; D2C and D2+ATZ. D1+ATZ and D2+ATZ groups were exposed to
0.4 mg L~ of ATZ (98 percent purity, Sigma Aldrich, Germany) during 24 h. D1C
and D2C correspond to animals differentially fed with D1 or D2 but maintained in
artificial freshwater without the addition of ATZ. Each group was composed of
fifteen shrimps. Each exposure was carried out twice, meaning 30 specimens by
condition.

The sublethal concentrations (50 percent 48-h LC1) were chosen according to
lethal 48-h toxicity test previously conducted (LC1: 0.8+1.5mgL~'; LC50:
89+23mglL~!, data not shown) and environmental concentrations reported.
An adult grass shrimp 96-h atrazine LC50 of 9mgL~' has been previously
published by Ward and Ballantine (1985). The 50 percent LC1 criterion for sublethal
toxicity test has been previously reported in fish studies (Bacchetta et al., 2011).

The measurement of ATZ in the exposition medium was performed by solid phase
extraction-solid phase microextraction-gas chromatography coupled to Mass Spectro-
metry (SPE-SPME-GC-MS) according to Bonansea et al. (2013). The ATZ concentration
was determined at the beginning (D1+ATZ=0.38 +0.03 mgL~'; D2+ATZ=0.35 +
006 mgL~") and at the end of the exposure (D1+ATZ=0.37 +0.01 mgL~'; D2+
ATZ=0.37 +0.02 mg L™ !). Atrazine concentrations in D1C and D2C were below the
detection limits of the method (1.1 ng L~ ). At the end of the exposure, organisms were
cryoanesthetized, washed three times with ultra-pure water, measured (rostrum-
uropod length), weighted, snap-frozen in liquid nitrogen and maintained at —80 °C
for further samples determination.

2.4. Vitamin E

Vit-E, in its natural state, has eight different isomers, four tocopherols and four
tocotrienols (Almeida et al., 2011). Thus, tocopherols and tocotrienols extraction
was performed in samples of peanut oil, formulated diets and shrimps as described
by Fraser et al. (2000) with minor modifications. In brief, after the addition of
1.5 mL MeOH, samples (1.5 mL of peanut oil, 0.25 g of formulated diet or one
shrimp) were vortexed for 1 min. Then, 1 mL of chloroform was added and
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sonicated for 5 min prior to the addition of 2.5 mL Tris—-HCIl (50 mM, pH 7.5 contain-
ing 1 mM NaCl). The extracts were mixed and centrifugated for 5 min at 1000g. The
supernatant was separated and the methanol phase (remaining pellet) re-extracted
with chloroform (2 mL). Chloroform extracts were combined and adjusted to a final
volume of 4 mL. Two milliliters were dried under nitrogen gas and re-suspended in
0.2 mL of 99.5:0.5 hexane:isopropanol. The tocopherol and tocotrienols content
was determined using a Hewlett-Packard series 1100 HPLC system equipped with a
fluorescence detector (Agilent Technologies series 1200) and a normal-phase
column Metasil Si (250 mm x 4.6 mm, 5 pim, Varian; Metachem, USA) for the
separation, maintained at room temperature using an isocratic solvent system
(mobile phase) consisting of 99.5:0.5 hexane:isopropanol with a flow rate of
1mLmin~". Fluorescence detection was recorded at excitation wavelength
276 nm and emission wavelength 316 nm. Identification and quantification of
compounds was performed by comparison with the retention times and peak
areas of standard substances. The content of tocopherols and tocotrienols in P.
argentinus was measured individually in six organisms at each experimental
condition. All measurements were performed in triplicate.

2.5. Oxidative stress biomarkers

2.5.1. Peroxides

The peroxides content was measured within 24 h after exposure by spectro-
photometry according to Jana and Choudhuri (1981). Samples were homogenized
with 50 mM sodium phosphate buffer (pH=6.5) and centrifuged at 10,000g, 2 min
at 4 °C. Afterwards, 75 pL supernatant was mixed with 225 uL 0.1 percent titanium
sulfate dissolved in a H,SO4 solution (20 percent v/v), measuring the absorbance
due to pertitanic acid (H,TiO4) formation at 415 nm in microplates. The amount of
H,0, in shrimp tissues was determined using a calibration plot, constructed from
solutions containing known amount of H,0,, and its concentration is expressed as
mg H,0,/g of fresh tissue. The peroxides content in P. argentinus was measured
individually in six organisms at each experimental condition. All measurements
were performed in triplicate.

2.5.2. Antioxidant enzymes

Enzyme extracts were prepared from six organisms at each experimental
condition according to Wiegand et al. (2000) with few modifications. Thus, one
shrimp was homogenized using a glass homogenizer in 0.1 M potassium phosphate
buffer, pH 6.5, at 4 °C. Then samples were centrifuged at 4 °C for 10 min at 13,000g.
Supernatants were removed and centrifuged at 4 °C for 1h at 105,000g. Super-
natants were conserved to cytosolic enzyme activity determination. Obtained pellet
was resuspended in 20 mM potassium phosphate buffer, pH 7, and was used to
microsomal enzyme activity determination. Enzyme extracts were frozen and
maintained at —80 °C until the use.

The protein content in each fraction was determined according to Bradford
(1976). GST activity, in cytosolic (GSTs) and microsomal (GSTm) fractions, was
measured using as substrate 1-chloro-2,4-dinitrobenzene (CDNB) in the presence
of glutathione (GSH) as described by Habig et al. (1974). GR activity, in cytosolic
fraction, was measured as described by Carlberg and Mannervik (1985). GST and GR
activities were expressed in nanokatals per milligram of protein (nkat mg prot~1).

SOD activity was determined in cytosolic fraction using a commercial kit
(Ransod, Randox, United Kingdom) which employs xanthine and xanthine oxidase
to produce superoxide radicals which react with chloride of 2-(4-iodophenyl)-3-(4-
nitrophenol)-5-phenyltetrazolium (INT), to form a red colored formazan measured
at 505 nm (Suttle, 1986). Then, the SOD activity was measured by the degree of
inhibition of this reaction. One unit of SOD is that which caused a 50 percent
inhibition of the rate of reduction of INT under the conditions of the assay and was
expressed per milligram of protein (SOD unit mg prot~1).

Each enzymatic assay was carried out by triplicate.

2.5.3. Lipid peroxidation

The thiobarbaturic acid (TBA) method described by Heath and Parker (1968)
was used to evaluate the peroxidation of lipids in P. argentinus. Briefly, one shrimp
was homogenized with 2.5 mL of ultra-pure water. Thereafter, 2.5 mL of TBA/
trichloroacetic acid (TCA) solution (0.5 percent TBA and 20 percent TCA) were
added to homogenate and incubated for 30 min at 95 °C. The reaction was stopped
with an ice bath and samples were centrifuged at 1000g for 10 min. Absorbance of
each supernatant was measured at 532 nm and corrected for nonspecific turbidity
by subtracting the absorbance at 600 nm. The reaction was performed in triplicate.
The rate of lipid peroxidation was expressed as nanomoles of thiobarbituric acid
reactive substance (TBARs) formed per milligrams of fresh tissue (n=6).

2.6. Energy reserves analyses

2.6.1. Lipids and carbohydrates

The measurements of lipid and carbohydrates were performed in the same
sample according to Van Handel (1965). Samples were homogenized in a solution
of methanol:water saturated with Na,SO4 (6:4). Homogenates were extracted twice
using chloroform:methanol (1:1). Chloroformed supernatant was used to lipid

determination. Pellets were extracted with a solution KOH (30 percent) and ethanol
to carbohydrates determination. Total lipids were determined by the sulfopho-
sphovanillin reaction, a colorimetric determination at 540 nm (Frings and Dunn,
1970), while glycogen concentration was determined spectrophotometrically at
620 nm by the anthrone method (Scott and Melvin, 1953). Total lipids and glycogen
contents in P. argentinus were measured individually in six organisms at each
experimental condition. All measurements were performed in triplicate.

2.6.2. Proteins

The protein content was determined in an extract obtained by homogenization
of an individual in 0.1 M potassium phosphate buffer, pH 6.5 and measured
according to Bradford (1976). The remaining extract was immediately processed
for enzyme extraction as indicated in Section 2.5.2. Calibration curve was obtained
using bovine serum albumin as a standard. Protein content in P. argentinus was
measured individually in six organisms at each experimental condition. All
measurements were performed in triplicate.

2.7. Statistics

All values are expressed as mean + standard deviation. Normal distribution for
data was analyzed by Shapiro Willks test, while Levene test was used to test the
homogeneity of variance. ANOVA test was used to compare different treatments to
analyze normal variables, followed by Tukey test. When the data showed abnormal
distribution, they were subjected to a non-parametric statistical analysis (Kruskal-
Wallis) followed by Dunn test. The InfoStat/P software (Di Rienzo et al.,, 2011) was
employed in all the cases. Significance was accepted for p < 0.05.

3. Results and discussions
3.1. Experimental diets

According to Diaz et al. (2001) 54 percent of protein content in
the diet of P. argentinus promotes an overall healthy condition of
this species. For that reason, to the present study, the protein
content of shrimp diet was adjusted to this amount (D1).

Afterwards, in order to test the protective effect of vit-E, peanut
oil was added to the formulated food as source of this vitamin
(D2). The resulting centesimal composition of formulated diets
was for D1: 8 percent lipids, 54 percent protein, 16 percent
carbohydrates, 15 percent ash and 7 percent moisture; and for
D2: 17 percent lipids, 54 percent protein, 11 percent carbohy-
drates, 12 percent ash, and 6 percent moisture. The calculated
metabolizable energy for D1 and D2 was 14.72 and 16.06 kj g~ ',
respectively (Lee et al., 2013). The tocopherols and tocotrienols
contents in peanut oil and formulated diets are shown in Table 1.
Vit-E concentration in the D2 was more than two times higher
than in the D1 (16.0 and 6.8 mg%, respectively) with a-tocopherol
and y-tocopherol being the main differences between D1 and D2
vit-E composition. P-Tocotrienol and 7y-tocotrienol were below
detection limits in all samples. Lee and Shiau (2004) reported that
the 8.5-8.9 mg vit-E percent diet is required for maximal growth
and non-specific immune responses of juvenile grass shrimp
Penaeus monodon. Barim (2009) reported that 10 mg% supplemen-
tal vit-E during gonadal development reduced the degree of tissue
malondialdehyde (MDA) in Turkish crayfish Astacus leptodactylus.

Table 1

Tocopherols and tocotrienols content in peanut oil and formulated diets (D1 and
D2). Mean +S.D., n=3. Different letters indicate mean significant differences
between samples (p < 0.05).

Vitamin-E Peanut oil (mg%) Diet 1 (mg%) Diet 2 (mg%)
a-Tocopherol 16.1 +0.2¢ 6.2 +0.3°% 13.7+0.7°
a-Tocotrienol 02+01° 0.09 + 0.01° 0.07 +0.03*
p-Tocopherol 0.36 + 0.02° 0.07 +0.01° 0.1+0.1?
y-Tocopherol 13.5+0.7° 0.22 +0.01° 2.0+2.0°
5-Tocopherol 0.42 +0.02° 0.2 +0.2%P 0.10 + 0.06*
8-Tocotrienol 0.05 + 0.03° 0.01+0.01° 0.01 +0.01°
Total 30.6 +0.8¢ 6.7 +0.6° 164 +1.2°
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In this study, the protein-enriched diet (D1) would provide
between 68 percent and 80 percent of the daily requirement,
while vit-E enriched diet (D2) exceeds this requirement by 75-85
percent. In this way two significantly different situations were able
to be compared.

Success of aquaculture depends on healthy cultured stock.
Artificial feed cannot meet all the elements required for the
growth of aquatic organisms. Thus, supplemented artificial feed
is an alternative to maintain a disease free healthy stock. Fish oil
has been frequently used as a source of lipids in aquaculture
feedstuff. However, the increasing cost of this oil, which limits its
use, has promoted the investigation of some alternatives for many
years (Tacon and Metian, 2008). According to our study, peanut oil
seems an interesting alterative due to high vit-E content compar-
able to other plant oils already studied (Lee et al., 2013).

3.2. Effect of atrazine on P. argentinus fed with D1 and D2

3.2.1. P. argentinus survival, growth performance, and vitamin E
content

The mortality registered before and after ATZ exposure varied
between 2 and 3 percent, regardless the treatment. Consequently,
mortality observed was assumed not to be related to the diet or
pesticide exposure.

No significant differences were observed in length or weight of
the shrimps among post-acclimation period, before and after
exposure to ATZ for each diet or between diets at those times
(Table 2). Therefore, even though diets have different metaboliz-
able energies, it does not seem to affect the weight or size of the
organisms over the time the diets were supplied. However, when
tocopherols and tocotrienols were measured in P. argentinus the
levels of vit-E in the tissues of organisms fed with the enriched
diet (D2) were 1.8-fold higher than in the ones fed with D1
(Table 3). This difference could be attributed to a-tocopherol,
which was the only isomer that also showed significant difference
between tissues of P. argentinus fed with D1 and D2 and is in
accordance with similar studies conducted in red hybrid tilapia
Oreochromis sp. (Lee et al., 2013). These results indicate that the
organisms fed with the enriched diet incorporated greater amount
of this vitamin than that fed with D1, placing this group in a
potential differential antioxidant status to deal with toxicant
challenge.

3.2.2. Biomarkers of oxidative stress in P. argentinus

Pesticides may provoke oxidative stress leading to the genera-
tion of free radicals and cause lipid peroxidation as molecular
mechanisms involved in pesticide-induced toxicity (Wang et al.,
2013). Recent studies indicated that the toxic manifestations
induced by ATZ might be associated with the enhanced production
of ROS, which might provide an explanation for the multiple types

Table 2

Length and weight of P. argentinus after acclimation period, after been fed with D1
or D2 (pre-exposure to ATZ), and after exposure to ATZ. Mean + S.D. No significant
differences were observed between diets or among treatments (p < 0.05).

Treatment Length (cm) Weight (g)

D1 D2 D1 D2
Post-acclimation 28+04 27+03 0.14 + 0.05 0.13 +0.05
Pre-exposure 25402 25402 0.12 + 0.04 0.12 +0.03
Post-exposure 27+04 26+03 0.12 +£0.05 0.10 +0.03

Table 3

Tocopherols and tocotrienols content in P. argentinus fed with D1 and D2 in mg per
100 g of fresh tissue. Mean + S.D., n=6. Different letters indicate mean significant
differences between samples (p < 0.05).

Vitamin E P. argentinus fed with P. argentinus fed with
D1 (mg%) D2 (mg%)
a-Tocopherol 19+72 38 +7°
a-Tocotrienol 0.86 +0.01° 1.0+0.2°
B-Tocopherol 0.25+0.01°% 0.8+0.7°
y-Tocopherol 3+3? 52+0.2°
5-Tocopherol 1+22 03 +0.3°
8-Tocotrienol 0.21 +0.01* 03 +0.2°
Total 25+ 7% 45+ 5P
400+
< [ ] b1
= 350 c .
@ —— [ o2 (+vit-E)
80 300
S, b
250+
T b
%D 200+
= a
— 150
Q
T 100 A
<
g 50
a
0 T T T - 1
D1C D1+ATZ D2C D2+ATZ
0.10
— 0.091 L[] b1
i .
= 0.08 B D2 (+vit-E)
% 0.074
£ o064 2 a
g 0.05 4 a
£ 0.04- a
& 0.03-
< 0.02
= 0.014
0.00 T T T - 1
D1C D1+ATZ D2C D2+ATZ

Fig. 1. (A) Peroxides and (B) TBARs content in Palaemonetes argentinus. D1C:
control shrimps fed with diet 1; D2C: control shrimps fed with diet 2; D1+ATZ:
control shrimps fed with diet 1 and exposed to atrazine; D2 +ATZ: control shrimps
fed with diet 2 and exposed to atrazine. Means not sharing the same letter (a, b, or
c) are significantly different at p < 0.05.

of toxic responses (Wang et al., 2011). However, the information
about ATZ negative effects in invertebrates is less known.

On the other hand, numerous reports are available in the
literature showing protective effect of antioxidants against the
pesticide-induced toxicity (Singhn et al., 2011 and authors refer-
enced therein).

In the present investigation we studied whether ATZ promotes
oxidative stress in P. argentinus and if vit-E has the potential to
attenuate this ATZ-induced oxidative stress by different endpoints.

Fig. 1A shows no significant difference in peroxide content in
control organisms of P. argentinus fed with D1 and D2. Never-
theless, when they were exposed to ATZ, the amount of peroxides
generated by the organisms fed with D1 was 1.7-fold increased,
indicating that the herbicide promotes the generation of ROS. On
the other hand, this effect was not observed in organisms fed with
the vit-E enriched diet. Vit-E is a potent peroxy radical scavenger
that prevents the propagation of free radicals in membranes and
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Fig. 2. (A) Superoxide dismutase, (B) glutathione reductase, (C) cytosolic glutathione-S-transferase, and (D) microsomal glutathione-S-transferase activities measured in
Palaemonetes argentinus. D1C: control shrimps fed with diet 1; D2C: control shrimps fed with diet 2; D1+ ATZ: control shrimps fed with diet 1 and exposed to atrazine;
D2 +ATZ: control shrimps fed with diet 2 and exposed to atrazine. Means not sharing the same letter (a, b, or ¢) are significantly different at p < 0.05.

lipoproteins. This prevention could result in lesser peroxide tissue
content, since they are intermediates of lipid peroxidation (Liu et
al., 2007).

A similar tendency was observed for most of the antioxidant
enzymatic activities monitored (Fig. 2). The activities of SOD, GSTs
and GR showed 2.5, 3.9 and 2.1-fold increase, respectively, in
P. argentinus fed with the first diet plan after the exposure to ATZ
(D1+ATZ). In contrast, the organisms fed with the second dietary
plan and exposed to ATZ (D2C and D2+ ATZ, respectively) did not
show significant changes in SOD and GSTs activities. This result
may indicate that the action of these defence enzymes was not
required by the organisms against the herbicide, being enough the
action of vit-E as main antioxidant.

SOD activity decreases oxidative stress by dismutation of O, ~
and provides the first line of defense against oxygen derived free
radicals (McCord and Fridovich, 1969). The increase in SOD activity
after ATZ administration appears to be an adaptive response to
increased generation of ROS. It has been reported in the literature
that exposure of animals to xenobiotics increases SOD activity in
various tissues (Datta et al., 1992; John et al., 2001). The increase in
the activity of SOD in our study reflects compensatory mechanism
to increased oxidative stress. Vit-E, as an antioxidant, reduces the
oxidative stress and hence normalizes SOD activity to some extent.
Similar results have been observed in livers of male Wistar rats fed
with enriched vit-E diets and exposed to ATZ (Singhn et al., 2011).

GSTs are a multi-gene family of enzymes involved in the
detoxification of electrophilic compounds during phase Il metabo-
lism by conjugation with GSH. However, the a-class GSTs also can
reduce peroxides of free fatty acids and phospholipids, as well as
cholesterol hydroperoxides efficiently (Lushchak, 2012). The meth-
odology used in the present study to determine GST activity
includes the antioxidant action carried out by GST a-class. Thus,
changes in GST activity could mean both biotransformation and
antioxidant function. According to Elia et al. (2002) the detoxifica-
tion reactions of ATZ in plants and mammals can be divided into a

phase I reaction, with a cytochrome P450-mediated N-dealkylation,
and a phase II reaction with GST catalyzed conjugation with GSH.
However, in the present study, a significant activity increase was
only observed for GSTs measured at D1+ ATZ. This activity was
attenuated to control values for D2+ATZ organisms. Thus, it is
highly probable that the changes observed in GSTs activity could be
more related to the antioxidant function of these enzymes than to
biotransformation. The basal GSTs activity could be enough to
metabolize the compound. In contrast, no significant changes were
detected in GSTm activity in any of the tested conditions. Because
vitamin E is lipophilic, it partitions preferentially into fat deposits,
oil storage organs and in cell membranes. Of all the subcellular
membrane fractions, the greatest concentrations of o-tocopherol
were found in the Golgi membranes and lysosomes where it is
believed that vitamin E functions as an antioxidant. The principle
role of a-tocopherol is to scavenge the lipid peroxyl radical before it
is able to attack the target lipid substrate producing -
tocopheroxyloxyl radicals (Wang and Quinn, 2000 and other
authors referenced therein). This local antioxidant action could
make unnecessarily an increased GSTm activity.

GR activity followed a similar trend that the other antioxidant
enzymes, but showing a significant decrease in its activity after the
exposure to ATZ in the batch of shrimps fed with D2 (Fig. 2B). It is
worth mentioning here that GR catalyzes the reduction of oxidized
glutathione (GSSG) to reduced GSH using electrons from NADPH
(Reed, 1986). Thus, the activity of this enzyme is directly associated
with the ratio GSH/GSSG. The higher availability of vit-E as non-
enzymatic antioxidant could mean a lesser oxidation of GSH and
consequently, a lower need of GR activity. On the other hand, the
quenching and scavenging of ROS and lipid peroxy radicals by
tocopherols can result in the formation of various tocopherol oxidation
compounds. These in turn, can be recycled by a multi-step pathway,
where ascorbate and GSH are involved. The nature of the reductive
step still remains unclear (Dixon et al., 2011), but shows that the full
understanding of the redox status of glutathione in the cell is complex.
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It is also possible that other components of peanut oil could
contribute with the observed response and that should be the
point of further studies.

Finally, there were no significant differences observed on TBARs
when measured in P. argentinus control and exposed to ATZ, fed
either with D1 or D2 (Fig. 1B). As TBARs are a by-product of lipid
peroxidation, the results indicate that there was no significant
progress with this reaction in the studied organisms (with or
without enriched vit-E food), possibly due to the right functioning
of the antioxidant system.

Similar responses to ATZ exposure have been observed in the
liver of zebrafish with SOD, CAT and GPx up-regulation as well as
depletion in GSH (Jin et al., 2010). The authors also reported an
increase in TBARs content after ATZ exposure; however, this damage
was observed after 14 days of being in contact with the herbicide.

According to Kanazawa (1985) vit-E may play a significant role
in shrimp nutrition as an antioxidant. Moreover, some information
is available on antioxidant role of vit-E in marine prawns (He et al.,
1992; He and Lawrence, 1993). Previous studies conducted with
decapoda Chasmagnathus granulates exposed to the cyanotoxin
Microcystin-LR showed the antioxidant characteristic of vit-E
(Pinho et al., 2005). After the cyanotoxin exposure, CAT activity
was reduced in posterior gills of crabs supplemented with vit-E.
A lower increment in GST activity was observed in organisms pre-
treated with vit-E and then exposed to microcystin with respect to
those exposed to the toxin but not pre-treated with the vitamin.

Moreover, in Litopenaeus vannamei, a significantly increased
SOD, CAT, GPX and Na-+/K+-ATPase activities were observed in
shrimp fed diets supplemented with vit-E compared to shrimp fed
the unsupplemented control diet. The results demonstrated that
vit-E might have a potentially useful role as an effective antiox-
idant by regulating osmotic balance and resistance to salinity
changes in shrimp (Liu et al., 2007).

The results obtained in the present study would indicate that a
higher content of vit-E in the organism prevents the generation of
peroxides with following oxidative damages which denotes its
antioxidant role.

3.2.3. Energy reserves in P. argentinus

The activities of antioxidant and biotransformation enzymes
observed in this study result in benefits for the shrimps, mainly
due to the prevention to oxidative damage. However, the activation
of this defence metabolism implies the use of additional energy to
support this system. Therefore, the next step of the research is
focused on the components of the organism, which would be the
most suitable source for this additional energy required for defence.

The lipids content of P. argentinus was 1.4-fold higher when the
shrimps were fed with D2 instead of D1. Considering the different
lipid contents of both diets, it can be said that this result is expected.
However, by exposing the organisms to ATZ a decrease (not
significant for D1 but significant for D2) in the lipid content was
observed (Fig. 3A). The glycogen content of P. argentinus when fed
with D2 was 1.9-fold higher than those fed with D1. Even though the
carbohydrate content was higher in the D1, this difference was not
reflected in the energy storage of the organisms, indicating that the
D2 induces a better nutritional condition in the organism regardless
of its individual components. Subsequently, when the organisms
were exposed to ATZ, there was a non-statistically significant loss of
glycogen content in P. argentinus fed with both diets, though more
marked for organisms fed with D2 (Fig. 3B).

The protein content of the shrimps fed with diets D1 and D2
was adjusted to 54 percent considering that this percentage
promotes an overall healthy condition of this species (Diaz et al.,
2001). Therefore both batches ingested the same quantity and
quality of proteins and this is reflected in a similar protein content
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Fig. 3. (A) Lipids, (B) glycogen and (C) protein content in Palaemonetes argentinus.
D1C: control shrimps fed with diet 1; D2C: control shrimps fed with diet 2;
D1+ATZ: control shrimps fed with diet 1 and exposed to atrazine; D2+ ATZ:
control shrimps fed with diet 2 and exposed to atrazine. Means not sharing the
same letter (a or b) are significantly different at p < 0.05.

of P. argentinus (Fig. 3C). After being exposed to ATZ no significant
differences were observed in any of the two lots.

In shrimps no absolute dietary requirement for carbohydrate
has been established (Tacon, 1987). To a large extent this has been
due to the ability of shrimp to synthesize carbohydrates from non-
carbohydrate substrates by gluconeogenesis and to the capability
to satisfy their dietary energy requirements through protein and
lipid catabolism alone if so required (Tacon, 1987). Thus, the higher
lipid content of D2 could be the cause of higher glycogen content
in shrimps fed with this dietary plan.

In the present study, the results allow suggesting that an extra
consumption of reserved energy, stored as lipids, could be caused
by the entrance of the toxic into the organisms, probably asso-
ciated with the activation of biotransformation and antioxidants
processes as it has been previously described in other species
(Smolders et al., 2003; Cazenave et al., 2006).

4. Conclusions

Our findings demonstrate ATZ promotes oxidative stress in
P. argentinus after an acute exposure as indicated by enhanced
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H,0, content and induction of some antioxidant enzymes like
SOD, GSTs and GR. This antioxidant activity seems to be enough to
prevent TBARs increment in the shrimp tissues. Nevertheless, the
activation of biotransformation and antioxidants response has an
energetic cost, which was compensated to the expense of the
lipids storage in shrimps.

Supplementation of vit-E in diet could enhance the resistance
of shrimp to acute exposure to ATZ as indicated by the reversion in
the response of the biomarkers of oxidative stress measured.

Moreover, the results indicate that vit-E might have a poten-
tially useful role as an effective antioxidant to be applied in
chemoprotection strategies during aquaculture.
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