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cLIFL, Université Lille 1 & CNRS.

Abstract

This article presents a symbolic static analysis for computing parametric up-
per bounds of the number of simultaneously live objects of sequential Java-like
programs. Inferring the peak amount of irreclaimable objects is the cornerstone
for analyzing potential heap-memory consumption of stand-alone applications
or libraries. The analysis builds method-level summaries quantifying the peak
number of live objects and the number of escaping objects. Summaries are built
by resorting to summaries of their callees. The usability, scalability and pre-
cision of the technique is validated by successfully predicting the object heap
usage of a medium-size, real-life application which is significantly larger than
other previously reported case-studies.

1. Introduction

There is an increasing interest in understanding and analyzing the use of
resources in software and hardware systems [16, 11, 3, 25, 22]. Indeed, assessing
application behavior in terms of resource usage is of uttermost importance for
engineering a wide variety of software-intensive systems ranging from embedded
to cloud computing.

Heap-memory consumption is a particularly challenging case of resource-
usage analysis due to its non-cumulative nature. Inferring memory consumption
for Java-like programs requires not only computing bounds for allocations but
also considering potential deallocations made by automatic reclaiming.

Although there have been significant results on this research topic (see §7),
scalability remains an open challenge towards handling real-life object-oriented
applications. Only a few small real-life programs were reported as analyzed in
the literature by approaches targeting Java-like languages. Those approaches
were based on recurrence equation solving, implemented in Costa [3, 6], or
on symbolic calculation over iteration spaces, implemented in JConsume [11,
21]. Costa translates programs into sets of recurrence equations. It is fully
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automatic but, in general, programs need to be adapted or simplified in order
to be analyzed. On the other hand, JConsume does not require the code to
be modified but it imposes program invariants to be provided. In many cases,
such information could be obtained automatically, but it sometimes demands
manual annotations. They both suffer from scalability problems as they cannot
even deal with medium-size applications. JConsume has been reported to
be able to cope with a few small real-life programs in [21]. However, those
examples possibly represent the largest programs which could be successfully
handled by that approach with reasonable amount of human effort. In order
to overcome the scalability issue, using compositional approaches is a promising
direction. By compositional analysis we mean techniques where information
of a module (in this case, memory consumption) is computed by using the
information (specifications, annotations or summaries) of the modules it uses
(calls). We believe compositional techniques should not only be developed to
achieve algorithmic scalability. Indeed, humans should be able to annotate
pieces of code with summaries to deal with accidental or inherent limitations
of particular analyses (e.g., treating unavailable or unanalyzable pieces of code,
handling imprecision, etc.).

This paper is focused on computing summaries that include parametric ex-
pressions that over-approximate the maximum number of simultaneously live
objects ever created by a method, where by live we mean irreclaimable by any
reachability-based garbage collector. Computing the number of live objects
is a key underlying step in all client analysis techniques aiming at comput-
ing dynamic-memory requirements and it seems to be a reasonable proxy to
understand how consumption depends on parameters and to assess alterna-
tives. More precisely, this paper presents a summary-based quantitative, static
and flow-insensitive analysis aimed at inferring non-linear upper bounds on the
number of irreclaimable objects that may be stored in the heap at any point
in the execution of Java-like programs, including dynamic binding and implicit
memory management. The analysis is based on the construction of modular live
objects summaries for every method under analysis. More concretely, it over-
approximates both a) the maximum amount of fresh objects which are simulta-
neously alive during the execution of the method, and b) the number of created
objects that may remain alive after the method finishes its execution. Sum-
maries are built up using method-local information (e.g., its own allocations),
precomputed summaries of callees, and object lifetime information. Since the
behavior of a method varies according to the values of the arguments it is called
with, summaries are parametric in order to provide bounds depending on the
arguments.

The technique is illustrated on a real-life Java program. It is applied in
a highly automated way yielding non-obvious and very precise results. To our
knowledge, this case study is about 10 times larger in terms of number of lines of
code, methods, classes and allocations, than the largest one previously reported
in [21], as well as programs handled by other tools (see §7). The application
features non-trivial programming idioms such as lazy initialization, dynamic
binding and reflection. We obtained very tight bounds almost automatically,
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with a very limited but key user intervention. We also analyze if there exists
a potential loss of precision with respect to non-compositional techniques by
evaluating them using a common benchmark.

1.1. Paper structure

In §2 we informally introduce our analysis through a set of simple but il-
lustrative examples of growing complexity. In §3 we define the notion of live
objects summaries In §4 we propose an algorithm to compute them, using ex-
ternal analyses. In §5 we describe some details of our implementation which
computes summaries as piecewise integral polynomials and which instantiates
the helper analyses. In §6 we present our empirical evaluation. Finally, in §7
and §8 we discuss related and future work, respectively.

2. Informal presentation through motivating examples

This section gives a step-by-step informal presentation of our summary-based
technique for building method-level, live-objects summaries, through several
motivating examples of increasing complexity.

2.1. Counting allocations

0 void triangle(A[][] a, int n) {
1 for(int i = 1; i <= n; i ++)
2 line(a, i);
3 }

4 void line(A[][] a, int m) {
5 for(int j = 1; j <= m; j ++)
6 a[m−1][j−1] = new A();
7 }

Program 1: A simple program with one method allocating objects in a loop and one client

Consider Program 1. Calling the method triangle will put newly-allocated
objects in the 2-dimensional array a following a triangular shape: it generates i
new objects stored in the i-th line.

This is divided into two methods. Method line fills in a line of a: at line 6,
one object is allocated and stored in a cell of a. Method triangle invokes line
at line 2 to fill in each row. Let us assume here that this runs without any
exception being thrown.

A tool like Costa [3, 6] transforms the program into a set of recurrence equa-
tions, and returns as result a count of n2 allocations. Our previous work [11],

based on sizing iteration spaces, is able to obtain the exact bound of n(n+1)
2

allocations, which is smaller than n2. To do so, it first infers the whole-program
loop-invariant {1 ≤ j ≤ i ≤ n}, and then counts the number of integer points in
this invariant as a function of triangle argument n. Although this technique
works fine for this example, it does not scale.

Therefore, we propose to analyze each method at a time in a compositional
fashion. We can start by analyzing method line. This method performs at
line 6 an allocation within a loop that will be executed m times. Our method

3



is flow insensitive (i.e., we do not care about the ordering of allocations and
method calls) but uses invariants to represent iteration spaces corresponding to
loops. Such invariants can either be provided by hand by the programmer or
inferred using Daikon [19] as explained in [10, 11]. In contrast to our previous
approach, here we resort to method-local invariants, instead of whole-program
ones. In our example, we use an invariant characterizing the iteration space for
the allocation at line 6:

Inv6 = 1 ≤ j ≤ m

The number of integer solutions to this invariant (in terms of m) is m.
Thus, a summary of the maximum number of objects which are alive during
the execution of line, denoted MaxLiveline, can be expressed as a function of
m as follows:

MaxLiveline =
∑
Inv6

1 =
∑

1≤j≤m

1 = m

Let SC be a symbolic calculator providing an operation SC.Summate which
computes the sum of an expression over an iteration space, described by an
invariant. The previous equation becomes:

MaxLiveline = SC.Summate(1, Inv6,m) = m

Remark. More generally: let x̄ be variables, p̄ be parameters, and Inv(x̄, p̄) be
an invariant; an iteration space IS(Inv, p̄) is the set of all possible values for
x̄ so that the invariant Inv is verified for some value of the parameters p̄. In
general, SC.Summate is a symbolic operation returning the sum of a parametric
expression e(x̄, p̄) over IS(Inv, p̄) as a closed-form in terms of parameters p̄:

SC.Summate(e, Inv, p̄) =
∑

IS(Inv,p̄)

e

Hereinafter, we will use SC.Summate. �

In order to be able to compose the results, we need to distinguish whether the
objects allocated in the method live longer than the method itself (i.e. they
escape its scope). All objects allocated at line 6 are assigned to the parameter
a and, thus, they may live longer than line.

So, a summary of the amount of objects escaping line, in terms of its
parameter m, is:

Escline = MaxLiveline = m

2.2. Analyzing method invocations

Consider now the method triangle in Program 1 invoking line(a, i) at
line 2 within a loop in which i varies at each iteration. Therefore, its memory
profile depends on the behavior of line, for which we already have a summary.
Instantiating the summary of line with the arguments of the call (m = i) we
get that i objects will be allocated at iteration i.
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The invariant characterizing the iteration space for the invocation is:

Inv2 = 1 ≤ i ≤ n

Objects escaping line will live in triangle’s scope and remain alive from
one iteration to the other. Thus, to summarize the amount of living objects one
needs to accumulate the number of escaping objects. More formally:

MaxLivetriangle = SC.Summate(Escline[m/i], Inv2, n)

= SC.Summate(i, 1 ≤ i ≤ n, n) =
n(n+ 1)

2

where e[x/y] stands for replacing all occurrences of x in e by y.
All objects escaping method line, also escape from triangle because they

are referenced by parameter a. So, the quantitative dynamic-memory profile of
triangle can be expressed by the following summary:

Esctriangle = MaxLivetriangle =
n(n+ 1)

2

Remark. To infer the summary of a method we need to obtain the summaries of
the method its calls. In general, we will apply a bottom-up traversal of the call
graph to ensure that a summary for a callee is always available (see Section 5.5
for more details on recursion). �

2.3. Distinguishing between escaping and non-escaping objects

In this work, we study object lifetime with method granularity. That is,
we assume dead objects are collected upon method exit.1 Therefore, object
lifetime can be characterized by which objects escape from, i.e., live longer than,
a method.

Consider the code in Program 2 defining a map operation over lists using a
class Op containing a method apply. In this example this method is used to
multiply an integer value by a random number.

Let us first look at apply, since it is invoked by map. This method performs
3 allocations. An object created at line 16 escapes the scope of the method
since it is returned. Objects allocated at lines 12 and 14 can be safely reclaimed
when apply finishes its execution. Besides, apply only invokes methods that
do not perform allocations. Thus, the behavior of apply can be summarized as
follows:

MaxLiveapply = 3

Escapply = 1

1Clearly, this is an over-approximation. Nevertheless, the granularity of the analysis could
be made finer at the expense of computational cost.
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0 public List map(List list, Op op) {
1 List res = new LinkedList();
2 Iterator it = list.iterator();
3 for (;;it.hasNext()) {
4 Object li = it.next();
5 Object o=op.apply(li);
6 res.add(o);
7 }
8 return res;
9 }

10 public class Op {
11 public Object apply(Object o) {
12 Date d = new Date();
13 Random r;
14 r = new Random(d.getTime());
15 int v = ((Integer) o).intValue();
16 return new Integer(v∗r.nextInt());
17 }
18 }

Program 2: A method implementing a generic map operation

2.4. Invoking several methods

Let us now consider the statements in map that allocate memory: the new

in line 1, and 3 method invocations, namely in lines 2, 5 and 6, with the last
two inside a loop. To compute a summary for method map we will use inter-
mediate results to make the formulas easier to read. These intermediate results
are attached to lines of the source corresponding to statements that allocate
memory.

Lines 1 and 2 are the simplest cases. We can associate the following simple
summary to any new:

MaxLive1 = MaxLivenew = 1

Esc1 = Escnew = 1

Similarly for the iterator:

MaxLive2 = MaxLiveiterator = 1

Esc2 = Esciterator = 1

The call to the method apply at line 5 is inside a loop. Therefore, we resort to
an invariant to characterize the iteration space corresponding to that statement:

Inv5 = 1 ≤ i ≤ list size

where list size is a formal variable representing the length of the list (i.e.,
list.size). Objects escaping from apply will live in map’s scope. Clearly, such
number contributes to MaxLive of map. Thus, the amount of escaping objects
from apply at each iteration must be accumulated as it contributes to the total
amount of live objects in the scope of map. Besides, objects not escaping from
apply are also alive during (part of) the execution of map. Therefore, they
should also be counted in MaxLive of map. However, since the number of those
objects may be different at each iteration, it would be sufficient to count only
the maximum such number over all iterations to obtain an over-approximation.
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That is,

MaxLive5 =
⊔
Inv5

(MaxLiveapply − Escapply) + SC.Summate(Escapply, Inv5, list size)

=
⊔

1≤i≤list size

(3− 1) + SC.Summate(1, 1 ≤ i ≤ list size, list size)

= 2 + list size

Notice that we subtract the number of escaping objects from the overall num-
ber of live objects of apply since this amount is indeed accounted for in the
SC.Summate.

Let the symbolic calculator SC provide an operation SC.UpBound which
computes the max of an expression over a domain. In this case, we could write:

MaxLive5 = SC.UpBound(MaxLiveapply − Escapply, Inv5, list size)

+ SC.Summate(Escapply, Inv5, list size)

Remark. More precisely, given an expression e(x̄, p̄) and an invariant Inv(x̄, p̄),
SC.UpBound computes a symbolic expression in terms of p̄ that maximizes e
for all values of x̄ such that Inv(x̄, p̄) holds. Formally,

SC.UpBound(e, Inv, p̄) =
⊔

IS(Inv,p̄)

e

Hereinafter, we will use SC.UpBound. �

Let us look now at Esc5. All objects escaping from apply are added to the
returned list. Consequently, they also escape from map. Therefore:

Esc5 = SC.Summate(Escapply, Inv5, list size)

= SC.Summate(1, 1 ≤ i ≤ list size, list size) = list size

To compute the intermediate result for line 6, we make use of the summary of
method called at this line, that is add. Its summary is:

MaxLiveadd = 1

Escadd = 1

Since the call is in the loop, we proceed as for apply. The invariant at line 6 is:

Inv6 = 1 ≤ i ≤ list size

MaxLive and Esc at at line 6 is computed as follows:

MaxLive6 = SC.UpBound
(
MaxLiveadd − Escadd, Inv6, list size

)
+ SC.Summate(Escadd, Inv6, list size)

= 0 + list size = list size

Esc6 = SC.Summate(Escadd, Inv6, list size) = list size
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Finally, to obtain the summary of map we compose the previous results as fol-
lows. MaxLive for map is the sum of the corresponding Esc for all lines plus the
the maximum MaxLive of all lines but discounting the corresponding Esc:

MaxLivemap =
⊔

l∈{1,2,5,6}

(
MaxLivel − Escl

)
+

∑
l∈{1,2,5,6}

Escl

= t {1− 1, 1− 1, list size + 2− list size, list size− list size}
+ (1 + 1 + list size + list size)

= 2 + (2 + 2× list size) = 2× list size + 4

Esc of map should count all objects that (may) escape from map.2 From all
objects accounted for in Escl, for l ∈ {1, 2, 5, 6}, only the iterator allocated at
line 2 is captured by map. All other objects escape. Thus, we get:

Escmap = Esc1 + Esc5 + Esc6

= 1 + list size + list size

= 2× list size + 1

2.5. Analyzing virtual method calls

Here we show how we handle dynamic binding. Consider the code in Pro-
gram 3. It shows a subclass of Op that overrides apply. This version returns
a two-element array containing a new random Integer but also a copy of the
original one.

0 public class Op2 extends Op {
1 public Object apply(Object object) {
2 Date d = new Date();
3 Random r = new Random(d.getTime());
4 int v = ((Integer) object).intValue();
5 return new Integer[]{new Integer(value), new Integer(v ∗ r.nextInt())};
6 }
7 }

Program 3: Extending the class Op.

Op2.apply always allocates the same number of objects: it returns a new
array of size 2 containing 2 newly created objects. Our analysis considers an
array of n cells just as if they were n objects (and not simply one). This
is because the actual memory required for the array will depend on n. Notice
that, although the actual memory consumption for an array may depend of other
(static and run-time) parameters of the VM, it is in general highly correlated
with its size3.

2The “may” refers to the need to compute an over-approximation to ensure correctness.
3In some JVMs for embedded systems, such as KVM [32] and JITS [17], the memory

allocated for arrays is directly proportional to their number of cells.
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Op2.apply also allocates 2 other objects (lines 2 and 3) which do not escape
the method. Thus, its summary is:

MaxLiveOp2.apply = 6

EscOp2.apply = 4

Now, to analyze map, we need to consider that the call to apply at line 5 could
be one of Op.apply or Op2.apply. In order to get a safe over-approximation of
the memory requirements at this line, we must take into account the maximum
of both MaxLive and Esc for each candidate. Since the call is inside a loop, the
maximum could be achieved by a different method at each iteration. Thus, we
end up computing:

MaxLive5 = SC.UpBound(
⊔

u∈{Op.apply,Op2.apply}

(MaxLiveu − Escu), Inv5, list size)

+ SC.Summate(
⊔

u∈{Op.apply,Op2.apply}

Escu, Inv5, list size)

= SC.UpBound(t{2, 2}, Inv5, list size)

+ SC.Summate(t{1, 4}, Inv5, list size)

= 2 + 4× list size

We proceed in the same way for the escaping objects. In this case, all objects
escaping from both Op.apply and Op2.apply also escape from map. Thus, we
obtain:

Esc5 = SC.Summate(
⊔

u∈{Op.apply,Op2.apply}

Escu, Inv5, list size)

= SC.Summate(t{1, 4}, Inv5, list size)

= 4× list size

Therefore, the new summary for map is:

MaxLivemap = 5× list size + 4

Escmap = 5× list size + 1

Remark. Works like [2, 11] consider the set of candidates of a virtual call as
if they were all be called. Clearly, this leads to an over-approximation. Here,
we propose a more precise approach, which consists in taking into account the
most consuming part of each candidate as the consumption of the virtual call.

2.6. Introducing new parameters

In Program 4 we present an example illustrating the ability to introduce
summary parameters.
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0 List copy(List list) {
1 List res = new LinkedList();
2 Iterator it = list.iterator();
3 for (;; it.hasNext())
4 res.add(it.next());
5 return res;
6 }
7

8 List safeMap(List list,Op op) {
9 List cp = copy(list);

10 return map(cp, op);
11 }

12 List test(List<List> ls, Op op){
13 List res = new LinkedList();
14 Iterator it = ls.iterator();
15 for(;; it.hasNext()){
16 List l = it.next();
17 l = safeMap(l, op);
18 res.add(l);
19 }
20 return res;
21 }

Program 4: An example with a more complex iteration pattern.

Method safeMap invokes copy and map. Method copy just makes a copy of
the input by traversing it using an iterator. Following the approach detailed so
far, we obtain the summary of copy:

MaxLive9 = MaxLivecopy = list size + 2

Esc9 = Esccopy = list size + 1

The summary of map has already been computed above. Notice that the call to
map is done with cp. Thus, we need to instantiate list size with cp size. Besides,
we make use of the invariant4 cp size = list size to obtain the intermediate result
at line 9:

MaxLive10 = SC.UpBound(MaxLivemap[list size/cp size]− Escmap[list size/cp size],

list size = cp size, list size)

= list size + 2

Esc10 = SC.Summate(Escmap[list size/cp size], list size = cp size, list size)

= list size + 1

Applying the technique explained previously for composing the intermediate
results obtained for all lines, the summary of SafeMap becomes:

MaxLivesafeMap = 6× list size + 5

EscsafeMap = 5× list size + 1

The method test receives a list of lists and returns a new list generated by
applying safeMap to each element of the input. Proceeding as in §2.4, we would
like to obtain:

4The formalization of this mechanism will be explained later
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MaxLive17 = SC.UpBound
(
MaxLivesafeMap[for ls[i]]

− EscsafeMap[for ls[i]], Inv17, list size
)

+ SC.Summate
(
EscsafeMap[for ls[i]], Inv17, list size

)
= max

1≤i≤ls size
(ls[i] size + 4) +

∑
1≤i≤ls size

(5× ls[i] size + 1)

Esc17 = SC.Summate
(
EscsafeMap[for ls[i]], Inv17, list size

)
=

∑
1≤i≤ls size

(5× ls[i] size + 1)

where
Inv17 = 1 ≤ i ≤ list size

With such a formulation, the number of parameters in MaxLive17 and Esc17

is unbounded, since they depend on ls size and on all the ls[i] size. This makes
the expressions tricky to handle symbolically. But in cases where ls[i] size can
be represented with a fixed number of parameters (e.g., when the ls is a matrix,
with all the ls[i] size equal, or when ls[i] size is an expression of i, etc.) the
expressions may be simplified.

To deal with such cases we allow the programmer to introduce new param-
eters. In this case, one could introduce a parameter maxSize bounding the size
of lists in ls. Using maxSize, we can get the following summary:

MaxLive17 = SC.UpBound
(
maxSize + 4, Inv17, {list size, maxSize}

)
+ SC.Summate

(
5×maxSize + 1, Inv17, {list size, maxSize}

)
= maxSize + 4 + ls size× (5×maxSize + 1)

Esc17 = SC.Summate
(
5×maxSize + 1, Inv17, {list size, maxSize}

)
= ls size× (5×maxSize + 1)

This yields the following summary for test:

MaxLivetest = 1 + 1 + MaxLive17 + ls size

= ls size× (5×maxSize + 2) + maxSize + 6

Esctest = 1 + Esc17 + ls size

= ls size× (5×maxSize + 2) + 1

Of course, this is an over-approximation but the obtained bound depends
on parameters more amenable to a symbolic analysis.

2.7. Refining Esc

As we pointed out in the previous examples, Esc by itself is not quite suffi-
cient in a modular setting. Indeed, when we compute Esc for a method m, we
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need to distinguish, in the Esc of the methods it calls, the part of the objects
that will further escape from m. To this end, we need to refine Esc.

Moreover, in all previous examples, the only way objects escape out of a
method is because they are returned at the end. In general, objects may escape
in many different ways: through modifications of arguments, through global
variables, etc. So we refine Esc regarding escape channels.

Let us consider some simple methods to illustrate how we proceed.

0 public B two(A a) {
1 a.f = new B();
2 return new B();
3 }
4

5 public B keepOne() {
6 return two(new A());
7 }

8 public B aliasIt(A a) {
9 a.f = new B();

10 return a.f;
11 }

Program 5: Need for refined Esc

First consider two and keepOne in Program 5. We can easily see that the two
objects allocated in two escape its scope, one via the return value, the other via
its parameter a. When this method is called by keepOne, the returned object
escapes, the other is captured. In order to get the precise result that only one
object escapes from keepOne, we need to refine the Esctwo by parametrizing Esc
with the way the objects escape:

Esctwo({ret}) = 1

Esctwo({a.f}) = 1

Thus, they can be plugged in the analysis of keepOne so that we can obtain:

EsckeepOne({ret}) = 1

instead of 2.
Moreover, if we simply define Esc for each channel through which an ob-

ject can escape, we also lose some precision. Consider for instance aliasIt in
Program 5. As for two, we have:

EscaliasIt({ret}) = 1

EscaliasIt({a.f}) = 1

but it is the same object that escapes through both channels, so we will precise:

EscaliasIt({ret, a.f}) = 1

In this example, we have used ret and a.f to describe the sub-parts of the
heap that escape. The analysis we present here can be deployed with different
families of descriptors for these sub-heaps. This is explained in more detail in §3.

12



Up until now, we have only used Esc without any sub-heap specification, to
mean a bound to the number of objects that might escape through any of the
escape channels. So, for instance, Esctest of Section 2.6 stands for Esctest({ret})
since objects can only escape from test via its returned value, which means
that the full set of its sub-heap descriptors is {ret}.

In the following sections we formalize the concept of live objects summaries
and present an analysis following the ideas presented here.

3. Live objects summaries

In this section we formally define the notions informally presented in Sec-
tion 2, and their expected properties.

The main goal of our work is to provide bounds for the number of objects
that could be simultaneously alive during any execution of a given program. To
do that, our technique computes live objects summaries that enable modular
treatment of a program. That is, live objects summaries contain enough infor-
mation to compute the summary of a method solely in terms of the summaries
of all the methods it calls.

For our purpose, we analyze the code assuming that it runs with all the mem-
ory required since we want to obtain a bound for the general case: running some
program with a bounded memory could only use less memory, in case it aborts
when it reaches the limit. We therefore assume that no OutOfMemoryException

is raised during the runs.

3.1. Invocation Runs

Let Prog be a sequential Java-like program containing a set of methods.
A method m has a name m.name, a signature m.signature including formal
parameters f̄p, and a body m.body.

The soundness properties of the technique will be explained in terms of an
abstraction of (Java) program runs5. We assume in this work that no exception
is thrown during the considered runs. Furthermore our analysis deals with
code that cannot be statically analyzed (native methods, reflection, etc.) using
externally-provided summaries.

We assume an infinite set Ref of references (or object identifiers) and a set
BasicTypes of values of basic types (int, boolean, etc.). We note Val the set of
all values, namely Ref∪BasicTypes. We model objects as indexed tuples of the
form (identifier : Ref, f1 : Val, . . . , fn : Val), where the fi are the object fields,
and we write Obj for the set of all objects. Finally, we also assume an infinite
set Var of program variables. As usual, all these sets are mutually disjoint.

A heap h is a finite mapping from Ref to Obj. A heap h is well-formed when,
for all r in dom(h), h(r).identifier = r. Note that a well-formed heap must then
be injective: this property corresponds to the fact that two distinct objects must
always be at different heap locations.

5Actually it applies to runs of any heap-based programming language.
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An environment e is a finite mapping from Var to Val. An environment e is
compatible with a heap h if range(e) ∩ Ref ⊆ dom(h).

A state is a pair σ = (e, h) where e is compatible with h and h is well-formed.
σ.e refers to the environment part of the state σ and σ.h refers to its heap part.
For simplicity sometimes we will use σ(v) instead of h(e(v)) for references and
of e(v) for basic types.

Consider some method m ∈M of signature

T0 m(T1 fp1, ..., Tn fpn)

An invocation run rm = σ0, σ1, . . . of a method m is a sequence of states
following the semantics of the Java Virtual Machine starting at the invocation of
m with an assignment of formal parameters given by σ0.e(fp1), . . . , σ0.e(fpn)
(σ0(f̄p) for short), and σ0.h is the initial heap for that invocation. Note that
this sequence includes in particular the states the execution goes through while
executing the invocations made from m.

If the run r is finite |r| denotes its size. If it is infinite, |r| stands for ∞.
If the invocation of the method finishes, the run finishes exactly after re-

turning from that invocation to m. This state (i.e., σ|rm|−1), denoted as σret,
refers to the moment when local variables are no longer available and the re-
maining variables accessible from m are only initial parameters assignments
and the return value. More formally, dom(σret.e) = dom(σ0.e)∪ ret and for all
v ∈ dom(σ0.e), σ0.e(v) = σret.e(v). We will also assume that the heap domain
in the run are adjusted to the reachable part of the heap. That is, only the
set of references reachable from σi.e (through the heap) are considered in σi.h

6.
References on the heap are unique and never reused even if the referenced object
is collected (they are unique across invocation runs). In this setting, dom(h) is
actually the set of references to live objects of the heap.

Rm is the set of all the invocation runs to m. Hereinafter we will use ri or
σi for denoting the ith element of a run r.

Given an invocation run r, a key concept to state the soundness of the
method is the notion of an object being live and fresh at a given state. Given
0 ≤ t1 ≤ t2 ≤ |r| − 1 , freshr(t1, t2) is defined as dom(σt2 .h)− dom(σt1 .h), that
is objects reachable at t2 that were not present at t1.

Definition 3.1. The live and fresh heap of a run r, denoted hr, is σret.h
restricted to the domain freshr(0, |r| − 1) (i.e., σret.h � freshr(0, |r| − 1)).

A method m in a program location l can feature an invocation that could
be resolved to method m′ several times in the run (i.e., a loop). That means
that in an invocation run r there can be found subsequences r′ that are actually
invocation runs of m′, that is r′ ∈ Rm′ , produced by invocations to m′ at l. The
set of such subsequences for r is denoted Rrl,m′ .

6The restriction to project only the reachable part of the heap is a consequence of the
interest in measuring the number of potentially usable objects (live objects).
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3.2. Object Lifetime information

Summaries will also predicate on how many objects created by a method
invocation end up escaping to the callers. More concretely, summaries assume
the existence of previously computed or defined object lifetime information. The
specification of escaping objects is actually partitioned into sub-heaps which
represent sets of objects with similar lifetimes. This is done once again to make
the composition of summary information more precise. As it will be seen later,
expressions will bound the number of escaping objects at sub-heaps granularity
to enable a more precise modular computation of the number of objects escaping
the caller. Sub-heaps are identified using descriptors. We will use sh to range
over descriptors and SH over sets of descriptors.

For instance, in §2.7 we identified the escaping objects returned by the
method with the descriptor ret. The descriptors domain depend on the un-
derlying analysis used to compute them: if a points-to-based escape analysis is
used (e.g., [36, 7]), a sub-heap descriptor could be a node (or a set of nodes) in
a points-to graph or a path expression referring to nodes reachable from it; if
an interference-based analysis is used (e.g., [35]), descriptors could be method
parameters representing sets of possibly connected objects. Several particular
descriptors are explained in detail later in §5. As an example, Figure 3 (see
p. 24) shows different descriptors for apply and map of Program 2.

Lifetime information system (LIS) abstractly models how objects escape
methods. A LIS includes the sub-heap descriptors, a semantic mapping from
descriptors to object ids and the escape function that links sub-heap descriptors
of a caller to sub-heap descriptors of callees.

Definition 3.2. A Lifetime Information System (LIS) for a program Prog
consists of three elements:

• For each method m, a set SHm (noted as LIS.SHm) of all its sub-heap
descriptors.

• A set of semantic functions [.]mr for each method m of Prog and invocation
run r ∈ Rm.

Each function takes a set of descriptors SH ⊆ SHm, and it yields a set of
object ids included in dom(hr) meant to be represented by the descriptors
of SH . That function must satisfy the following properties: [SHm]mr =
dom(hr); [(SH1 ∪ SH2)]mr ⊆ [SH1]mr ∪ [SH2]mr

• Function LISm.escl,m′ that binds sub-heap descriptors of caller m to callee
sub-heap descriptors (callee m′ invoked at l). Basically, LISm.escl,m′ :
P(SHm) 7→ P(SHm′) receives a set of sub-heap descriptors SH ⊆ SHm
and yields a set of sub-heap descriptors SH ′ ⊆ SHm′ where m′ ∈ M(l).
These sub-heaps contain objects escaping from m′ that may end up es-
caping also from m through the sub-heaps corresponding to SH . The
property that the function must satisfy is that LISm.escl,m′(SH) ⊇ {sh′ ∈
SHm′ |∃r ∈ Rm, r′ ∈ Rrl,m′ , [sh

′]m
′

r′ ∩ [SH ]mr 6= ∅}. This property enforces
that the result LISm.escl,m′(SH) must be a safe approximation (in terms
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of sub-heap descriptors) to the actual objects escaping both the callee m′

and the caller m. Given a set of sub-heap descriptors representing objects
escaping a caller m, the function must return a superset of sub-heap de-
scriptors of the callee that represents all objects created in invocations to
the callee m′ at l that end up escaping m by the given sub-heaps.

These properties will later ensure soundness of the modular summary com-
putation.

3.3. Definition of summaries

The main component of the live objects summary of a method m is MaxLive,
an expression that bounds the maximum number of objects that could be po-
tentially allocated (fresh) and be simultaneously live (reachable) during any
execution of m. The live objects summaries add a few necessary ingredients to
properly define and compute MaxLive. Let us then define the various compo-
nents of the live objects summaries.

First, the bound needs to be parametrized: for instance, in Program 2 (Sec-
tion 2.3), we could not define a finite MaxLive for map that would not depend
on the size of its argument list. So we use parametric expressions for MaxLive.

Notation. We write E for the set of parametric expressions, i.e. possibly with
variables.

Definition 3.3 (Parameters p̄). The parameters of a live objects summary is
a sequence of variables.

We write p̄m for the sequence p1, . . . , pn of parameters for a summary of the
method m, and simply p̄ when m follows from context.

These parameters are actually model variables. In this section, we keep the
notion of expressions completely generic, which is why the notion of parame-
ters does not constrain their type. In our implementation, detailed in §5, the
expressions are actually piecewise polynomials on Z.

The summary of a method will also provide a set of equalities to bind those
model variables to expressions given in terms of method formal parameters
(actually, for the sake of presentation, we are assuming all preexisting values
used by the method are computable from those parameters).

Definition 3.4 (Binding equalities B). For a method m, the binding equali-
ties Bm of its live objects summary is a conjunction of equalities binding the
parameters p̄m of the live objects summary to the formal parameters f̄p of m.

Informally speaking, MaxLivem is an expression of E such that, for any run r
in Rm, MaxLivem is an upper bound to the number of fresh objects simulta-
neously live at any time during rm. The variables of that expression must be
in p̄m and are interpreted into concrete values according to B.

In the simplest case p̄m and B can be automatically derived from method
parameters f̄p (e.g., when method parameters are scalars), but in general more
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involvement is required, like in the examples presented in §2. In [10] we discussed
some techniques for inferring model variables using the method body.

To enable a modular computation of MaxLivem, summaries also need to
provide Esc, an over-approximation of the escaping objects allocated by the
method, i.e. the part of MaxLive that can escape from the method and is there-
fore reachable from the caller. Indeed, if summaries contained only MaxLive,
the bound on the number of live objects of the caller would be too rough if
computed as the sum of MaxLive of the callees. For instance, consider a method
that just calls two other methods, m1 and m2. With only MaxLive, the only over-
approximation we could end up with would be the sum of the MaxLive of the
called methods. But some of the objects allocated during the run of m1 might
be collected and the corresponding space reused for allocating objects created
by m2 or vice versa.

Definition 3.5 (Esc). Consider some method m. Esc : P(SHm) 7→ E maps
a set of sub-heap descriptors SH to an expression. As it will be stated later,
that expression is meant to over-approximate the maximum number of objects
allocated during any execution of m escaping via at least one of the sub-heaps
in SH . The variables of those expressions must be in p̄m.

Definition 3.6 (Live objects summaries). A live objects summary of a methodm
is a tuple:

Sm = 〈p̄m,Bm,MaxLivem,Escm〉

3.4. Validity of live objects summaries
Now we define a key notion for our approach. Informally, a summary for a

method m is valid if MaxLive is an over-approximation of the maximum number
of fresh and live objects for all invocations of m and Esc over-approximates the
number of fresh objects escaping m. To precisely define the notion of escaping
using sub-heap descriptors we need to refine the notion of fresh for sub-heap
descriptors.

Definition 3.7. Given an invocation run r of a method m, freshr � SH is a
restriction of freshr to a determined set of sub-heap descriptors.

freshr � SH = freshr(0, |r| − 1) ∩ [SH ]mr , with SH ⊆ SHm
Definition 3.8 (Validity of a summary). 〈p̄,B,MaxLive,Esc〉 is a valid live
objects summary for m if and only if the following formulas are always true:

∀r ∈ Rm, ∀t, 0 ≤ t < |r|,∀p̄ ·
(
B[f̄p/r0(f̄p)] =⇒ MaxLive ≥ max

t′≤t
{|freshr(t′, t)|}

)
∀SH ⊆ SHm, ∀r ∈ Rm,∀p̄ ·

(
B[f̄p/r0(f̄p)] =⇒ Esc(SH) ≥

∣∣freshr � SH ∣∣)
Notice that MaxLive and Esc are expressed in terms of the summary param-

eters p̄, B is a predicate binding method parameters f̄p with summary parame-
ters p̄. Then, the predicate B[f̄p/r0(f̄p)] represents the substitution of method
parameters with actual values from a concrete run r of a method m. Thus, in
the previous formulas, MaxLive and Esc can be regarded as instantiated with the
actual method arguments (r0(f̄p)) from each concrete run r of the method m.
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4. Computing Live Objects Summaries

The technique for building summaries is essentially based on a technique
that quantifies the number of visits to statements (e.g., allocations, method
calls) when the iteration space is given as an invariant predicate that involves
the formal parameter of the method under analysis [10].

Having these ideas in mind, the presentation of the inference mechanism
will be based on a simplified intermediate representation of the program under
analysis in which each method m is translated into a set of tuples, each made
of a program location l in the body of m, the method invocation µ(v̄) that
appears in m at l, and an adequate invariant I. The invariant in some sense
over-approximates the set of all invocations at l that may be executed given the
values of formal parameters of m.

Formally, a method is uniquely identified by its complete signature, denoted
m. A method has a name, denoted m.name or µ. The set of method names
is denoted M. In order to have a compact presentation, we assume there is
a distinguished method named new ∈ M. Methods different from new have a
body, denoted m.body, defined by the following grammar:

s ::= 〈`, invoke µ(v̄), I〉
S ::= ∅ | s | S1;S2

where µ ∈ M, v̄ are the method invocation arguments, ` is a label and I is a
predicate. We assume that labels are unique. Notice that the new statement is
represented by invoke new.

Fig. 1 shows an example of how Program 1 can be encoded in the analysis
representation. A Java-like program under analysis can be encoded in this
simplified representation as follows: methods are kept with the same signature,
the method body is codified as a set of invocations including the original program
location and an invariant predicate binding the invocation arguments with the
caller formal parameters and also describing the statement’s iteration space [10].
Invariants are used to infer the number of traversals through that line as well
as the values of the local variables used as arguments at each pass. Essentially,
given a fixed value to the formal parameters of the caller, the number of integer
solutions (i.e., the number of times the invariant is true) should be an upper
bound of the number of times the statement is executed.

As mentioned, object allocations are also codified as invocations to a spe-
cial method new. Array allocations could be considered as allocations of one
object each or could take into consideration the size of the array. Since one
of the applications of our analysis is to compare the resource usage of different
implementations, counting the number of slots gives a better view of memory
consumption. Therefore, array allocations are viewed as loops of new statements
which are encoded using proper invariants that define an iteration space whose
size is exactly the size of the array (more details in [10]).

Fig. 2 presents the equations defining MaxLive and Esc. The equations take
a method m, the parameters p̄m, the binding predicate B (binding p̄m with
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0 void triangle(A[][] a, int n) {
1 for(int i = 1; i <= n; i ++)
2 line(a, i);
3 }
4 void line(A[][] a, int m) {
5 for(int j = 1; j <= m; j ++) {
6 a[m−1][j−1] = new A();
7 }
8 }

void triangle(A[][] a, int n)

〈2, invoke line(a, i), {1 ≤ i ≤ n}〉;

void line(A[][] a, int m)

〈6, invoke new, {1 ≤ j ≤ m}〉;

Figure 1: Translation of a Java method into the analysis representation

¯fpm) for the summary to be built and a set of already computed summaries
S and they compute MaxLivem and Escm. They use a Lifetime Information
System (LIS), with the properties specified in §3.2, to determine whether and
how objects escape from a method. They also rely on a symbolic calculator (SC)
to sum and maximize parametric expressions as described in §2 (see also §5.2
for implementation details).

We define the equations inductively on the structure of the intermediate
representation. MaxLive defines the notion illustrated in §2.4. That is, MaxLive
computes, among all invocations, the maximum number of fresh but non escap-
ing objects (UB) and the sum of the escaping objects (SUM).

UB for the case of one statement (i.e., an invocation possibly within a loop),
is an expression representing a bound of the maximum number of live and
fresh objects (defined in DIFF) among all possible invocations to µ′. These
invocations are described in the iteration space given by CTXT (recall that loops
are abstracted away using the invariants). This maximization is computed using
the operation SC.UpBound. UB joins the result for different statements using the
least upper bound operator. Similarly, SUM computes the sum of the escaping
objects (defined in FESC) over the whole iteration space, using SC.Summate.
Several statements are just summed up (escaping objects are accumulative).

SC.UpBound and SC.Summate perform respectively maximization and sum
of a parametric expression over an iteration space described by a predicate de-
fined in terms of m parameters. The predicate required for these two operations
is defined in CTXT by connecting the given invocation’s iteration space I with
the callee’s invocation arguments v̄. It also binds the callee’s formal parameters

¯fpm′ with the summary parameters p̄m′ using the predicate Bm′ .
Our analysis supports virtual calls relying on a call graph CG to resolve

virtual method invocations. When it is not possible to determine statically a
unique callee, the call is resolved to a set of potential candidate methods. Then,
the analysis considers the summaries of all callee candidates and compute the
maximum of all the possible results. Notice that each callee candidate might
have its own set of sub-heap descriptors. For example, consider an invocation
a.m(p) with two callee candidates A.m(P p) and B.m(P p). In one candidate,
an object may escape by the return value while in the other it may escape by
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MaxLive[m : S] = UB[m : S] + SUM[m : S]

UB[m : ∅] = 0

UB[m : s] = SC.UpBound(DIFF[m : s],CTXT[m : s], p̄m)

UB[m : S1; S2] = UB[m : S1] t UB[m : S2]

SUM[m : ∅] = 0

SUM[m : s] = SC.Summate(FESC[m : s],CTXT[m : s], p̄m)

SUM[m : S1; S2] = SUM[m : S1] + SUM[m : S2]

CTXT[m : 〈`, invoke µ′(v̄), I〉] = Bm ∧ I ∧
∧

m′∈CG.call(`,µ′)

Bm′ [ ¯fpm′/v̄]

DIFF[m : 〈`, invoke µ′(v̄), I〉] =
⊔

m′∈CG.call(`,µ′)

S[m′].MaxLive− S[m′].Esc(LIS.SHm′ )

FESC[m : 〈`, invoke µ′(v̄), I〉] =
⊔

m′∈CG.call(`,µ′)

S[m′].Esc(LIS.SHm′ )

Esc[m : ∅] = λSH . 0

Esc[m : s] = λSH . SC.Summate(IESC[m : s](SH),CTXT[m : s], p̄m)

Esc[m : S1; S2] = Esc[m : S1] + Esc[m : S2]

IESC[m : 〈`, invoke µ′(v̄), I〉] = λSH .
⊔

m′∈CG.call(`,µ′)

S[m′].Esc(LIS.esc(`,m′)(SH))

S[new].MaxLive = 1, S[new].Esc = λSH . SH 6= ∅? 1 : 0

Bnew = {}, p̄new = []

Figure 2: Equations for inferring Live Object summaries

the parameter p. So, LIS.esc must depend both on the line and on the actual
method invoked.

DIFF, FESC and IESC resolve dynamic method invocations. Given a virtual
call they compute aggregated information about all potential callees, producing
one result representing an over approximation of all of them. Note they take
the information from summaries of callees.

DIFF is the difference MaxLivel−Escl but considering that there can be more
than one callee and, thus, taking the maximum among them. Note that, since
LIS.SHm′ is the set of all sub-heap descriptors for m′, Esc[m′](LIS.SHm′) rep-
resents all objects escaping m′. FESC computes the maximum possible amount
of escaping objects for all the candidate callees.

As we have mentioned in §2.7, there are various ways for an object to escape:
it could be returned or pointed to in a field of one of the parameters, or both via
aliasing, etc. Depending on the way an object escapes, it might or might not
be captured in the calling method. Equations use operation LIS.esc that, given
an invocation, binds caller sub-heap descriptors to callee sub-heap descriptors.
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That is, it indicates which objects escaping the caller come from the callee
invoked at that program point.

The computation for Esc is similar to the one for SUM but does not sum
all objects escaping the callee. Instead, it only accumulates the objects escap-
ing the callee by the given sub-heap descriptors. IESC quantifies this number.
Given a set of caller sub-heap descriptors, it retrieves the summaries of all poten-
tial callees, finds out the corresponding callee sub-heap descriptors, and finally
computes the maximum over these callees.

As the base case, there is a summary for new statements: MaxLivenew = 1
and Escnew = 1. The intuition is that new statements yield the same memory
consumption as a method that would allocate an object and that would let this
object escape to the caller scope. However, we consider the special case for
Esc(∅) which represents a query for objects that are captured in the method
doing the new. This condition allows us to precisely capture the case when an
object does not escape the caller method (i.e., when LIS.esc(`,new)(SH) = ∅).

Example. Let’s apply the equations to the method line introduced in Fig. 1. It
has only one statement: s = 〈6, invoke new, {1 ≤ j ≤ m}〉. We use p̄line = m
and Bline = {m = m}.

DIFF[line : 〈6, invoke new, {1 ≤ j ≤ m}〉] =

=
⊔

m′∈{new}

S[m′].MaxLive− S[m′].Esc(LIS.SHm′)

= S[new].MaxLive− S[new].Esc(LIS.SHnew) = 1− 1 = 0

FESC[line : 〈6, invoke new, {1 ≤ j ≤ m}〉] = S[new].Esc(LIS.SHnew) = 1

CTXT[line : 〈6, invoke new, {1 ≤ j ≤ m}〉]
= Bline ∧ {1 ≤ j ≤ m} ∧Bnew[] = {m = m ∧ 1 ≤ j ≤ m}

MaxLive[line : {s}] = UB[line : {s}] + SUM[line : {s}]
= UB[line : s] + SUM[line : s]

=
(
SC.UpBound(DIFF[line : s],CTXT[line : s], p̄line)

)
+ SC.Summate(FESC[line : s],CTXT[line : s], p̄line)

= SC.UpBound(0, {m = m ∧ 1 ≤ j ≤ m},m)

+ SC.Summate(1, {m = m ∧ 1 ≤ j ≤ m},m)

= 0 + m = m

IESC[line : 〈6, invoke new, {1 ≤ j ≤ m}〉] =

= λSH .
⊔

m′∈{new}

S[m′].Esc(LIS.esc(6,m′)(SH))

= λSH . S[new].Esc(LIS.esc(6,new)(SH))
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Esc[line : {s}] = Esc[line : s] =

= λSH . SC.Summate(IESC[line : s](SH),CTXT[line : s], p̄line)

If the sub-heap descriptor SH includes the content of the array a, this formula
becomes:

SC.Summate(1, {m = m ∧ 1 ≤ j ≤ m},m) = m

Otherwise, it will simply be 0.

4.1. Correctness

Our technique builds methods summaries in a compositional fashion, relying
on the existence of summaries for their callees. Thus, the obtained summaries
will be valid if the provided summaries for the callees are also valid.

Let Invoked(S) be the set of methods invoked in S :

Invoked(∅) = ∅
Invoked(〈`, invoke µ′(v̄), I〉) = CG.call(`, µ′)

Invoked(S1;S2) = Invoked(S1) ∪ Invoked(S2)

Proposition 1. For every method m, if for all m′ ∈ Invoked(m.body), Esc[m′]
is valid, then Esc[m] is valid.

Proposition 2. For every method m, if for all m′ ∈ Invoked(m.body), Esc[m′]
and S[m′].MaxLive are valid, then MaxLive[m] is valid.

Proof. See §Appendix A. The validity of the summary follows by induction
on the structure of the equations and the hypothesis about the validity of the
summaries. It relies on the properties of the LIS and SC. One important aspect
of the proof is an observation about the fact, that given adequate invariants,
the operations of the SC perform over-approximation of maximums and sums
over invocation runs.

Observation 1. Given a method m and 〈`, invoke µ′(v̄), I〉 ∈ m.body and
m′ ∈ Invoked(〈`, invoke µ′(v̄), I〉), such that I is a valid iteration space, then
for every invocation run r ∈ Rm and for all p̄m, we have:

Bm[ ¯fpm/r0( ¯fpm)] =⇒ SC.UpBound(E, I, p̄m) ≥ max
r′∈Rr

l,m′∧Bm′ [ ¯fpm′/r′0( ¯fpm′ )]
E

Bm[ ¯fpm/r0( ¯fpm)] =⇒ SC.Summate(E, I, p̄m) ≥
∑

r′∈Rr
l,m′∧Bm′ [ ¯fpm′/r′0( ¯fpm′ )]

E

where vars(E) ∈ ¯pm′ .
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5. Implementation notes

The concrete algorithm closely follows the equations presented in §4. Here
we present instantiations of our compositional algorithm to compute valid sum-
maries. We present the implementations of two possible instances of the lifetime
oracle LIS. Then, we discuss some technical aspects of the symbolic calculator
SC. We also discuss some methods used to infer the invariants used to describe
iteration spaces. Finally, we discuss some technical limitations of the technique
and the underlying tools and some possible solutions to overcome them.

5.1. Object lifetime analysis (LIS)

The first implementation is based on an interference analysis [35] and the
second is a more precise one based on an adaptation of Salcianu-Rinard points-to
and escape analysis [36, 7].

Recall that esc maps sets of caller sub-heap descriptors to sets of callee sub-
heap descriptors: to a set of caller sub-heap descriptors SHm, it associates the
set of callee sub-heap descriptors the content of which might escape by a sub-
heap of SHm. As in §3, we treat the new and newarray instructions just as
simple methods that return the newly-allocated objects.

5.1.1. Escape analysis based on object interference

In a nutshell, the analysis presented in [35] performs an interference anal-
ysis which computes for each method a collection of equivalence classes, each
class representing a set of potentially connected objects. The relation ∼ is the
smallest equivalence relation over program variables such that one variable in-
terferes with another when they appear in the same assignment (i.e. v ∼ u
if v = u, v = u.f or v.f = u). The analysis is performed on a Static Single
Assignment (SSA) representation of the program [18]. Thus, every variable is
set only once, at its definition site. So the ∼ relation is extended to labels: l ∼ v
when v = new C(...) at label l. Note that, due to SSA, we could directly use
the variable v to refer to the allocation, but we include the label just to make
allocations more explicit. The effect of a method call is similar to an assignment
between the arguments in the caller and the parameters in the callee. This has
also the effect of forcing the equivalence between the variable the callee returns
and the variable of the caller to which it is assigned.

Any element of an equivalence class can be used as sub-heap descriptor for
that class. We use method parameters and the return value as they are visible
outside the method boundary.

Let us consider a method m which calls at line l the method m′. Given the
relation ∼ we define:

LIS.escl,m′(SHm) = {sh′ | sh′ ∈ SHm′ ,∃sh ∈ SHm, sh
′ ∼ sh}

Notice that if an object allocated in the calleem′ escapes, it will be equivalent
to either some parameter or the return value of m′, so that it will be in SHm′ .
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Op.apply
{ret ∼ 16}
{d ∼ 12}
{v ∼ 14}

ret

d 12

v 14

16

map
{ret ∼ 1 ∼ 2 ∼ 6 ∼ 16}

ret

it

1

2

6 516

Figure 3: Comparing the two implementations of LIS (left: interference-based; right: points-
to-based).

5.1.2. Escape analysis based on points-to graph

The second technique is based on [36, 39, 7], slightly modified to make it
context sensitive. It builds a points-to graph (PTG) for each method, providing
an over-approximation of the heap visible at its exit point. A PTG is a graph
(N,E) where each node nl represents the set of objects created at location l
and each edge e represents accesses to objects (i.e. v = u.f or v.f = u). For
method calls the analysis transfers the nodes escaping the callee to the caller.
Those nodes are re-labeled to denote the calling context that brings them to
the caller. Following the notation in [39], we write µm′,l,m for the map from the
callee PTG to the caller PTG (when m calls at some method m′ at line l) and

n′
µm′,l,m−→ n to indicate that the node n′ (of the callee PTG) is mapped to the

node n (of the caller PTG) by µ. Obviously, this means in particular that the
node n′ escapes from the callee.

Nodes are partitioned into inside nodes, representing objects created by the
method under analysis m or its callees, or outside nodes, representing pre-
existent objects. We use inside nodes as sub-heap descriptors which offer a very
fine granularity to summaries having a sub-heap descriptor for each allocation
site. Only inside nodes are required since we are interested in quantifying just
the objects created by m (or its callees).

Within this setting, and writing µm′,l,m for the map of the call to m′ at line l
in m, we can simply define LIS.escl,m as such:

LIS.escl,m(SHm) = {n′ | n′ ∈ SHm′ ,∃n ∈ SHm, n
′ µm′,l,m−→ n}

5.1.3. Comparison of the two escape analyses

To illustrate the difference of these two analyses, Figure 3 compares their
outcome for methods map and Op.apply in Program 2 from §2. On the left
side is the result of the interference-based analysis and on the right side of the
points-to-graph-based analysis (colored are escaping the method). For Op.apply
both analyses provide a similar result. In contrast, for map the interference
analysis includes the iterator (from line 2) in the same equivalence class as the
list, making it escape while the other recognizes it as captured. In addition,
the PTG produces 3 different escaping sub-heap descriptors enabling a client
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method to analyze every object in isolation. Notice also how the PTG keeps
tracks of calling contexts. The node 516 represents the allocation originated at
line 16 of apply transferred to method map after the call to apply at line 5.

5.1.4. Implementing Esc

The function Esc receives a set of sub-heap descriptors and yields the number
of fresh objects escaping through these sub-heaps. When implementing Esc we
decided to define it only for singleton sets of sub-heap descriptors. Neverthe-
less, the equations still ask for non-trivial sub-heap sets when querying for Esc
of callee summaries. This is useful for hand-specified live objects summaries: it
thus allows the programmer to provide a finer Esc for some sub-heap descriptor.
When the result specifically required is not readily available, it is always possi-
ble to compute a safe over-approximation by decomposing the set of sub-heap
descriptors into singleton sets:

Escm(SH) ≤
∑

sh∈SH

Escm({sh})

The over-approximation comes from the fact that the method m could generate
aliasing and thus let escape one object via various sub-heaps, as it was illustrated
in §2.7.

5.2. Symbolic calculator (SC)

We implemented the set of operations required by the algorithm, namely
SC.UpBound, SC.Summate, +SC and tSC with the aid of the symbolic calculator
iscc [38]. This tool manipulates affine integer sets and relations, providing
functionality to count the number of elements of those sets as well as performing
maximization and sum of polynomials within affine domains.

An affine integer set or domain is a subset of Zd defined as a set of inte-
ger vectors constrained by affine inequalities on the indices, on the parameters,
and on integer-valued existentially-quantified variables. They can be used to
describe iteration spaces. The interest for using iteration spaces is the fact
that the number of integer solutions of an iteration space for a program point
(e.g, a loop invariant) describes the number of possible valuations of the vari-
ables at that location. If the variables appearing in the space are inductive7,
then this number of valuations over-approximates the number of visits to the
statement [10].

For instance, consider Program 1 and the call at line 2. An iteration space or
domain describing the possible variable valuations at this point can be described
in iscc syntax as:

IS := [n] -> { [i] : 0 < i <= n }

7By inductive variable we mean a variable that affects the numbers of times a statement
is visited
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In a nutshell, the square brackets are used in this syntax to introduce variables.
The variable n, introduced outside the braces by [n], is a parameter of the
iteration space. The variable i, introduced inside the braces, is bound in the
definition; thus the syntax recalls the standard notation for sets: {i | 0 ≤ i ≤ n}.

5.2.1. SC.Summate

The operation SC.Summate(e, Inv, p̄) is expressed in iscc syntax with the
command sum:

sum ([p̄] -> {[v̄] -> e : Inv});

where all the variables appearing in e and Inv that are not among the param-
eters p̄ must be bound in v̄.

As an example, the number of objects allocated in Program 1, line 6 in §2
can be expressed as:

sum( [m] -> { [j] -> 1 : 1 <= j <= m } );

This syntax is slightly more complex than the one presented in the previous
section. It allows us to associate a polynomial to each point of the domain
{j | 1 ≤ j ≤ m} (parametric in m), and to sum those polynomials. In this case,
the polynomial is just the constant 1, meaning we are performing the simple
sum

∑
1≤j≤m 1 thus yielding the result m whenever m ≥ 1 (and 0 otherwise):

[m] -> { m : m >= 1 }

5.2.2. SC.UpBound

The operation SC.UpBound(e, Inv, p̄) is expressed in iscc using the com-
mand ub as follows:

ub ([p̄] -> {[v̄] -> e : Inv});

Note that, when e is not linear (when it is any polynomial, for instance) this
operation needs to solve symbolically a non-linear maximization problem. The
calculator is able to solve this problem using a Bernstein based technique, as
explained in [15].

In the example in Program 4 when test calls safeMap, we can use iscc to
compute:

ub ([ls_size, maxSize] ->

{ [i, list_size] -> list_size + 4

: 1 <= i <= ls_size and list_size = maxSize });

which returns:

[ls_size, maxSize] -> { max((4 + maxSize)) : ls_size >= 1 }
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5.2.3. +SC and tSC
The last operations required to manipulate parametric expressions are +SC

and tSC. Naturally +SC sums two expressions. Given two parametric expres-
sions with the same parameters, tSC yields a new one which is the smallest
expression (possibly defined by cases) greater than the two.

iscc provides the operators + for +SC and . which tries to solve tSC (see
limitations in §5.2.4).

5.2.4. Limitations

iscc requires iteration spaces and domains to be sets of linear constraints
and operates with polynomials over these domains. This implies that programs
invariants (generated or manually provided) must be linear while the inferred
expressions will be polynomials8.

Another limitation is that in certain circumstances iscc is not able to com-
pute the least upper bound. This complicates the computation of the escaping
part of the summary in virtual calls inside loops, which involves summing least
upper bounds between the escaping objects of the callee candidates (see §2.5),
because iscc does not support the application of sum over unsolved least upper
bounds.

To overcome this (incidental) problem, our implementation either over-ap-
proximates a tSC b somehow (several strategies are available) or delays the
resolution of tSC until more context is available. The former impacts precision,
the latter impacts performance because it maintains a set of unsolved operations.

Notice that in case of methods with constant allocation (e.g., new statements)
we can compute the number of objects by simply counting the number of visits
to the method invocation. To handle these particular cases, we can then rely
on techniques that are specifically suited to them, such as techniques that use
program invariants to deduce the visits ([10] or [3]) or techniques based on code
templates ([22]).

5.3. Computing invariants

In order to reduce the annotation burden we rely on external tools in order to
obtain loop invariants. As explained in the previous section, the loop invariants
we look for are linear, in order for the symbolic calculator to be able to handle
them.

We have been using mainly Daikon [19] which is a tool that is able to obtain
different kinds of likely invariants. Of course, we had to limit Daikon to the
discovery of linear invariants as we mentioned. Linear invariants also have the
advantage to be easier to check automatically using tools like Esc/Java [34] or
other tools relying on SMT solvers.

We instrument the application in order to guide Daikon in the generation
of invariants. An important role of the tool is the identification of the variables

8Some cases of exponential consumption might still be expressed by performing tricks such
as variable substitution.
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and path expressions that have to appear in the invariant (length of arrays
and strings, size of collections, instance and static fields, etc, see [20]) and the
set of inductive variables. The tool also tries to obtain invariants for common
iterations patterns such as iterators.

5.4. Dealing with interfaces

Our algorithm can automatically deal with virtual calls, by computing the
supremum of all summaries coming from each potential callee. Using a similar
approach we can infer summaries for interface methods. Basically, for each
method of the interface we analyze its implementations in all the classes that
implement the interface and compute the supremum of those summaries. If
the developer implements a new class for the interface we can just perform the
supremum between the interface and the new class.

The tool, in addition to the inference mechanism, allows the specification
of summaries for concrete methods, native and abstract/interface methods. In
case of coexisting summaries for concrete methods and their interfaces, the user
can choose to use either the interface summary or the more concrete one.

5.5. Dealing with recursive programs

The implementation works straightforwardly when summaries are computed
bottom-up. That assumes a non-cyclic structure of summary dependencies.
Thus our current implementation does not support directly memory-allocating
recursive methods (or those making use of reflection). For those cases, a con-
sumption summary has to be provided by the user (either by hand or with the
help of another tool) for a strongly connected component.

Nevertheless, the approach can, potentially, deal with recursions since the
symbolic application of equations naturally yields recurrence relations between
summaries of recursive methods. Those are well-defined and have solutions pro-
vided the summary parameters decrease in a well-founded order. Major issues
to automatically compute such summaries are of practical nature and, in several
cases, recursive method summaries can be actually inferred and modularly used
when the actual consumption can be described using piecewise polynomials.

One technical problem is that recurrence relations built from the equations
feature operations like Summate and t which are not straightforwardly treated
by recurrence equation solvers. While t can be replaced many times by max op-
erator, Summate, which is instrumental for the precise computation in presence
of iteration spaces, cannot be processed by recurrence solvers like Mathemat-
ica [40]. Fortunately, the issue arises only when recursive calls are performed
inside loops. Notice that other approaches like Costa do not cope with this
issue because they translate loops into recursions (but probably at a cost in
terms of precision as shown in Program 1 in §2).

Note also that the computation of Esc can be done by solving recurrence re-
lations that do not involve MaxLive. In turn, MaxLive equations can be rewritten
by inlining the closed expressions that solve Esc. This typically eases the work
to be done by recurrence solvers.
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The following example illustrates those ideas. Of course, more work should
be done to implement a general treatment of recursion including mutually re-
cursive methods for which the corresponding recurrence relations seem to be
challenging for solvers.

0 void m(int i) {
1 if (i <= 0) return;
2 o = new Object();
3 this.addToList(o);
4 this.m(i−1);
5 }

Program 6: A simple recursive method

Consider the method m in Program 6. For simplicity, we present the formu-
lation using the formulas like the ones presented in §2, but the same idea applies
using the equations presented in §4. Let us assume the following summary for
addToList:

MaxLiveaddToList = 2

EscaddToList = 1

To compute the summary for m we can leverage the fact that this program has
no loops. That means that the symbolic operations for operating over iteration
spaces, namely Summate and Maximize, can be trivially simplified.

Esc2(i) = Summate(Escnew, {}) = 1

Esc3(i) = Summate(EscaddToList, {}) = 1

Esc4(i) = Summate(Escm(i− 1), {i′ = i− 1, i > 0}) = Escm(i− 1)

Escm(i) =
∑

l∈{2,3,4}

Escl(i) = 1 + 1 + Escm(i− 1) = 2 + Escm(i− 1)

Using the base case, i.e. Escm(0) = 0, this recurrence equation could be
solved as Escm(i) = 2i. Now, we can compute MaxLivem using Escm. In the
following formulas we directly remove Maximize and Summate for the sake of
succinctness. Let us assume i ≥ 1. We can replace Escm(i) by 2i.
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MaxLive2(i) = (MaxLivenew − Escnew) + Escnew = MaxLivenew = 1

MaxLive3(i) = (MaxLiveaddToList − EscaddToList) + EscaddToList

= MaxLiveaddToList = 2

MaxLive4(i) = (MaxLivem(i− 1)− Escm(i− 1)) + Escm(i− 1) = MaxLivem(i− 1)

MaxLivem(i) =
⊔

l∈{2,3,4}

(MaxLivel(i)− Escl(i)) +
∑

l∈{2,3,4}

Escl(i)

= t{1− 1, 2− 1,MaxLivem(i− 1)− Escm(i− 1)}
+ 1 + 1 + Escm(i− 1)

= t{0, 1,MaxLivem(i− 1)− 2(i− 1)}+ 1 + 1 + 2(i− 1)

= t{1,MaxLivem(i− 1)− 2(i− 1)}+ 2i

Note that MaxLivem(1) = t{1, 0} + 2 = 3 meaning that MaxLivem(i) > 1 for all
i ≥ 1. Thus, we can remove the t leading to a simpler recurrence equation.

MaxLivem(i) = MaxLivem(i− 1)− 2(i− 1) + 2i = MaxLivem(i− 1) + 2

This recurrence equation could be solved as MaxLivem(i) = 2i+ 1.

6. Empirical evaluation

We are interested in answering the following research questions:

1. How does our compositional technique perform with respect to non-com-
positional techniques in terms of precision?

2. Is our technique capable of dealing with medium-size applications, with a
moderate level of human intervention and yet produce tight bounds?

To answer these questions we developed a prototype tool implementing
the technique presented in §4 and the two escape analyses presented in §5.1.1
and §5.1.2 (denoted resp. Madeja and Rinard).

The tool computes an over-approximation of the number of live objects of
a given program. Unfortunately, there are objects that our current implemen-
tation cannot detect because they are objects created internally by the VM or
by non-analyzable methods for which we had not provided a summary. Thus,
in order to perform a fair analysis of the precision of the obtained bounds, we
implemented a runtime monitor, using the Java Path Finder VM9 [24], that
measures the actual number of live objects in a run. Essentially, the monitor
performs a continuous garbage collection reclaiming objects as soon as they be-
come unreachable. The monitor is able to distinguish objects that were visible
to our analysis tool from those that were not. To do so, the program is previ-
ously instrumented in order to tag as analyzable each object that can be seen
by the compositional analysis.

9We also implemented our own version using JVMTI obtaining similar results.
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benchmark
MaxLive ∆Esc

Rinard Madeja Non-comp.

running.copy(l) l.size+ 2 l.size+ 2 l.size+ 2 −1
safeMap(L) 5 + 6L 6 + 6L 5 + 7L −(2 + L)
test(M,L) 6 +M + (2 + 5M)L (5 + 6M)L+ 4 6 + M + (2 +

6M)L
−(M + 3)

em3d.create(n,d) 8 + (4 + 6d)n 8 + (4 + 6d)n 8 + (4 + 6d)n −(6 + 2n)
compute 2 2 2 −2
main(d,n,i) 6dn+ 4n+ 15 6dn+ 2i+ 4n+ 12 6dn+ 4n+ 14 0

mst.addEdges(v) 2v2 2v2 2v2 0
compute(v) v v v 0

main(v) 9
4 v

2 + 4v + 6 9
4v

2 + 4v + 6 - -

biSort.inOrder 1 1 1 0
main(s) 6 + s 6 + s 4 + s 0

Table 1: Simple benchmark (L = list size, M = maxSize, S = ls size).

6.1. Existing benchmarks

To answer the first question we compared our tool with our previous non-
compositional one ([11]). For that we considered the non-recursive Jolden
benchmarks [13]. We used these simple programs to measure the precision of
the technique and to study the trade-offs between performance and precision
using the escape analyses. Table 1 summarizes the analysis of our running ex-
ample and three benchmarks from Jolden. It shows the inferred MaxLive using
the compositional analyses with Madeja and Rinard oracles, and the MaxLive
obtained with the non-compositional algorithm of [11]. We also exhibit the dif-
ference between the total Esc of the two escape analysis algorithms in order to
show how they affect the overall precision. For these small examples the analysis
took around 20 seconds using Rinard (∼ 25% less using Madeja).

In general, the bounds for mst, em3d and bisort are similar to [11]. The
most significant difference is originated in method compute from em3d. In this
case the obtained value of MaxLive is identical but the Rinard is able to collect
more elements, producing no escaping consumption, and thus, obtaining a more
accurate result than Madeja. It is very interesting to notice that although the
difference on the number of escaping objects seems negligible, namely 2 objects
more, the effect on the MaxLive of main is extremely relevant because compute

is invoked inside a loop. Although bisort contains recursive fragments, we
could analyze it by providing a summary for inOrder which features a recursive
pattern not supported by the tool. In this case also we obtained a very similar
bound. In the case of test, both instances of the compositional analysis work
better than the non-compositional one, by giving tighter MaxLive for safeMap.
The impact on MaxLive of test needs some explanation. Using Rinard, MaxLive
of test is always smaller than with [11]. With Madeja, the compositional anal-
ysis turns out to be better than the non-compositional one when the maximum
length of the sub-lists is larger than the length of the list, more precisely when
M > 3L − 2. This result is explained by the fact that the non-compositional
analysis of [11] sums up the consumption of all potential callees of a virtual call,
while the compositional one computes the maximum.
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With this benchmark we mainly wanted to see if the compositional approach
affected the overall precision of the bounds, comparing it to a baseline non-
compositional analysis. Since the obtained bounds are quite similar to [11] we
did not find necessary to show a comparison between the bounds and the actual
allocation using the run-time monitor. We will do that in the next section for
our largest case study.

6.2. JLayer

To validate the scalability of our approach we analyzed a medium-size ap-
plication which uses polymorphism and reflection. JLayer10 is an open source
library that decodes/plays/converts MPEG 1/2/2.5 Layer 1/2/3 in real time
for the Java platform. It is a medium-size application which involves about 45
classes, 398 methods, 25k lines of code, and 3k new statements. The composi-
tionality of our technique is central for such an application: the call stack for
the examples analyzed in [11, 21] never has more than 8 calls, while JLayer
requires approximately 35.

The main component is an MPEG Audio decoder (Decoder) which supports
three different layers. The Player uses the Decoder services to reproduce audio
files. Player includes the method decodeFrame in charge of reading frames,
using a SampleBuffer, and of reproducing it by writing it to an AudioDevice.
The method play basically performs a loop that decodes and reproduces ev-
ery frame. To decode a frame it creates specific instances of FrameDecoder

depending on the type of the frame being analyzed.
This benchmark is interesting since it brings in several challenges that are

representative of Java programs and, therefore, must be handled by any analysis
tool. We started by running our analysis in a fully automated way. Not sur-
prisingly, we obtained some overly conservative approximations. To get more
accurate bounds we had to resort to slight but focused user intervention by
improving method-local information. We show in the next sections some inter-
esting cases we had to deal with.

6.2.1. Modeling lazy initialization

0 public boolean play(int frames) {
1 ...
2 for(i=0;i < frames && ret;i++){
3 ret = decodeFrame();
4 ...
5 }
6 }

7 protected boolean decodeFrame() {
8 ...
9 if (!this.decoder.initialized)

10 this.decoder.initialize(h);
11 ...
12 Header h=bitstream.readFrame();
13 }

Program 7: Fragments of decodeFrame and play of Player

10http://www.javazoom.net/javalayer/javalayer.html
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Consider the code snippet in Program 7. Method decodeFrame is responsi-
ble for decoding frames. The first call to decodeFrame initializes the decoder

(line 10). This generates an escaping sub-heap because the lifetime of the cre-
ated object exceeds that of decodeFrame. Our tool infers the size of these
sub-heaps as:

Escinitialize({this}) = (m = 3)?4016 : 5136

Escinitialize({static}) = 544

where m represents the frame mode and where we use for its compactness the
Java expression notation b?x : y to stand for x when b is true and y when it is
false. Since decodeFrame is called at each iteration of the play loop (line 3) the
escaping objects gets accumulated, yielding:

Escplay({this.decoder}) = ((m = 3)?4016 : 5136)× frames

Clearly, this upper bound is too conservative. To improve it, we need to know
whether decoder is initialized. This can be done by explaining to the tool that
this.decoder.initialized should be a summary parameter of decodeFrame
and make sure the invariant at line 10 specifies that

this.decoder.initialized = false

We write initialized for this.decoder.initialized. Once it is included as a
summary parameter, our technique manages to take advantage of this domain
constraint and returns the following bound:

Escdecoder({this}) = (not initialized)?[(m = 3)?4016 : 5136]:0

This new summary parameter must be appropriately bound at line 3 of play

to reflect the current initialization state. That can be achieved by correlating
initialized with the index loop variable (i.e. initialized ⇐⇒ (i 6= 0)). Then, the
computed accumulated escaping part of the summary is:

Escplay({this.decoder}) = (m = 3)?4016 : 5136.

This lazy initialization pattern is quite common in Java programs. For instance,
the Singleton pattern is usually implemented following a lazy initialization ap-
proach where the singleton instance is initialized the first time it is required.

6.2.2. Dealing with unanalyzable methods

Program 8 shows part of createAudioDeviceImpl. It uses reflection to
create an instance of JavaSoundAudioDevice. Since there is just one avail-
able implementation of that class, we know which instance should be created,
but the analysis is unable to figure this out automatically, considering this
method as not analyzable. To overcome this limitation we provide summaries
for such methods. The amount of memory required to create a new instance
of JavaSoundAudioDevice is that of its constructor which is indeed analyzable.
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0 protected JavaSoundAudioDevice createAudioDeviceImpl() {
1 ClassLoader loader = getClass().getClassLoader();
2 try { return (JavaSoundAudioDevice)instantiate(loader,
3 DEVICE CLASS NAME);
4 } catch (Exception ex) ...

Program 8: createAudioDevice implementation.

Class Method MaxLive

LIDecoder decodeFrame 34 + ns
LIIDecoder decodeFrame 34 + 10ns+ [7ns, 7i, 7ns, 0]m
LIIIDecoder decodeFrame 0

Table 2: Summaries for the possible instances of FrameDecoder

This yields a total of 4096 escaping through this. Therefore we can provide
the following summary:

EsccreateAudioDeviceImpl({ret}) = Escinitialize({this})
= 4096

6.2.3. Handling virtual calls

As mentioned our analysis is able to automatically deal with polymorphic
calls. JLayer features several of such calls. For instance, Decoder relies on an
instance of FrameDecoder to decode every frame. The actual implementation
of this interface is unknown at compile-time because it depends on the frame
being read. The code provides three implementations: LIDecoder, LIIDecoder
and LIIIDecoder.

As explained in §4, to solve this virtual call, the algorithm computes the
maximum number of live objects among the three implementations, as shown
in Table 2. The notation [e1, e2, . . . ]m means the mth element of the ar-
ray [e1, e2, . . . ] (here m stands for the frame mode). The consumption for
FrameDecoder.decodeFrame is that of LIIDecorder as it is always greater than
the other two.

Class Method MaxLive

Decoder retrieveDecoder l = {1, 2}?3; l = 3?45662
Decoder initialize m = 3?4016 : 5136
Decoder decodeFrame 34 + 10ns+ [7ns, 7i, 7ns, 0]m
Player <init> 2335 + hS
Player decodeFrame 52 + 10ns+ [7ns, 7i, 7ns, 0]m + Flen +Km

init

Player play 50840 + FMFL + 17MS
jpl play 57273 + FMFL + 17MS + hS
with Fx ≡ x > 2048?2x+ 1024 : 0
Km

init ≡ ! initialized?50788− [0, 0, 0, 1120]m : 0

Table 3: Summaries of most relevant methods of JLayer
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analysis time (sec.)
Init Refined

Madeja 331 352

Rinard 457 499

file % w. case error % avg error
Init Refined Init Refined

mp2 437 0.16 376.7 0.13

mp3 0.92 0.02 0.92 0.02

Table 4: Inference time and relative errors

6.2.4. Summarizing results

Table 3 shows the consumption of the most interesting methods using the
methodology explained previously.

jpl.play is the main method, which creates an instance of Player and calls
its play method. The consumption depends on the header size of the input file
(hS), the maximum number of sub-bands appearing in the file (MS) and the
maximum frame length (FMFL).

One of the most interesting methods is Play.decodeframe. Its consumption
depends on several parameters such as the frame mode (m), frame type or
layer (l), the frame length (len, later bounded by MFL), the number of sub-
bands (ns later bounded by MS), the stereo intensity (i) and whether the class
was initialized (initialized). In this method, we can see the effect of modeling
initialization using a parameter: Km

init is 0 when initialized is true. Similarly, we
can observe that the expressions reveal that the player requires more memory
when the frame length is above 2048.

6.2.5. Introducing assumptions on inputs

While we compared the summaries against real executions of several audio
files we found the bounds to be not very accurate (see Table 4, relative errors on
columns entitled “Init”). Looking at the program, it turns out that it assumes
that an input file may contain all possible layers, which is indeed unlikely since
typical mp1/mp2/mp3 files only contain frames of the same type. To cope
with multiple layers the program initializes a decoder for each frame type. This
makes the analysis to compute a memory bound to accommodate for the three of
them. In addition, the analysis considers the most memory-consuming candidate
in the virtual call to Decoder.decodeFrame. Since for a given file all frames
might be of a less consuming type, this results in an over-approximation. This is
particularly notorious when input files are mp2, because the computed bounds
consider also space for mp3s (Table 4).
We can make the analysis result more precise by assuming frame types do not
change for a given input. For this, we set the frame layer l as a summary
parameter of the whole application. That is, promoting l up to main method.
By doing this, the result of the analysis of the virtual call no longer returns the
maximum between candidates, but rather a conditional expression depending
on l. Of course, we need to be sure that l is actually fixed during the execution
of play (e.g., including an assertion in the code).

Table 5 shows the refined summaries. The new bounds are very tight as
shown in Table 4 columns “Refined” resulting in negligible error. Regarding the
capabilities of escape analyses, in this case we found no gain in using the Rinard
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Class/Method MaxLive

Decoder l = 1?34 + ns
decodeFrame l = 2?34 + 10ns+ [7ns, 7i, 7ns, 0]m

l = 3?0
Player l = 1?52 + ns+ Flen +Km

init
decodeFrame l = 2?52 + 10ns+ [7ns, 7i, 7ns, 0]m + Flen +Km

init
l = 3?20 + Flen +Km

init

Player l = 1?5176 +MS − [0, 0, 0, 1120]m + FMFL

play l = 2?5176 + 17MS − [0, 0, 0, 7MS + 1120]m + FMFL

l = 3?50840− [0, 0, 0, 1120]m + FMFL

jpl l = 1?11609 +MS − [0, 0, 0, 1120]m + FMFL + hS
play l = 2?11609+17MS−[0, 0, 0, 7MS+1120]m+FMFL+hS

l = 3?57235− [0, 0, 0, 1120]m + FMFL + hS

Table 5: Refined summaries modeling the frame type as parameter

which is a more precise but more expensive (about 50% slower) analysis than
Madeja.

7. Related Work

Quantitative program analysis is currently the subject of intensive research
and has seen a noticeable progress in techniques that infer resource usage
bounds [14, 11, 21, 2, 3, 37, 25].

In [11, 21] we presented a technique to infer parametric upper bounds of
dynamic memory consumption in Java-like programs. Unlike the technique
presented here, that analysis was not summary-based. In fact, in order to
compute consumption we needed to model the global state of every reachable
allocation. This involved the use of program invariants including the variables
of the allocating method and the variables of the methods in the whole call
stack. This monolithic approach jeopardizes usability and scalability, making
it very hard for developers to understand the rationale behind the obtained
consumption. In addition, that analysis was overly conservative when dealing
with polymorphic calls.

Albert et al. [6] propose another technique to compute parametric bounds
on the heap memory needs of a program in the context of garbage-collected
languages, relying on the Costa analyzer [1]. Following the framework of that
analyzer, they first transform the program into a set of rules, to extract from
them, in a second step, a set of cost relations. These are possibly-recursive
equations, yielding a bound on the memory consumption of the methods they
correspond to. In [4], they developed a technique to compute closed-form ex-
pressions, in terms of method parameters, providing safe upper bounds to those
recursive equations, in some cases producing expressions beyond polynomials.
However, this technique might not be able to produce parametric forms for ev-
ery kind of recurrence first inferred, even if some of them represent polynomial
consumption. At the moment, rather than a fine handling of recursion, our
approach is focused on getting a precise account for loops. We illustrated this
aspect in Program 1 page 3, where our technique computes that new A() will

be performed at most n(n+1)
2 times, while Costa returns that it might be run
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n2 times. We plan to extend our work in order to handle recursive code. In that
sense the use of recurrence equations as used in Costa is a sensible approach,
but in our case we still aspire at maintaining the level of precision we have for
loops.

Even though they explored in [5] how to recompute only what is needed in
cases of incremental changes to the source code in the general Costa framework,
their technique is not quite modular. The expression they compute for every
method m contains precise information about the objects created in the methods
they invoke (and transitively the objects created by their callees). In a few
words, they do not compute aggregated information about escaping objects11.
They propagate information from callee to callers in order to decide later when
those objects can be collected. In contrast, we introduced the idea of the Esc
part in summaries that can produce aggregated information about the callees
consumption, even hiding details about their allocations.

Even if both analyses rely on some form of points-to analysis to infer the
lifetime of objects, our analysis and [6] differ in the fact that they take into
account various possible policies for when the garbage collection is triggered,
while, at the moment, we only consider collections at the end of methods: since
our analysis is flow-insensitive, we cannot perform collection inside a method.
We started working on turning our analysis into a flow-sensitive one, in partic-
ular in order to allow for collections at other interesting points of the program.
But [6] also relies heavily on call unfoldings in order to be able to collect inside
a method some objects that were allocated before it was called. We did not use
that approach: even if the results can get closer to the actual needs of the pro-
gram, we argue that breaking the modularity of the analysis renders its results
harder to understand and use by the programmer.

Hofmann et al. use a type-based amortized analysis to bound heap memory
requirements. The main idea of their technique is to associate a potential to
each refined type so that the requirements of evaluating a function or method
can be covered by the potentials associated with the arguments of the call.

They applied this idea on a core object-oriented calculus with explicit “free”
instructions in [27, 28, 29]. In their framework, every allocation uses memory
cells taken from a free list, so that the initial length of that list provides a
bound to the overall memory requirements. To maintain this free list using a
type system, they associate types to objects and methods. The object types
are the usual classes refined with views; and to each refined type is associated a
potential that indicates the number of memory cells already reserved for use by
methods manipulating an object of that type. The method types are (possibly
infinite) sets of tuples indicating the refined types of the arguments and of the
corresponding result along with two numbers: the initial size the free list should
have when the method is started and the number of memory cells that will be

11There is no formal description of summaries for heap memory requirements in the associ-
ated publications, but the tool Costa provides an option to save and load assertions that can
be interpreted as summaries.
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returned to the free list at the end. While their first articles required manual
type annotations, the latest, [29], defines an automatic type inference for linear
bounds.

They had first introduced their technique of amortized types to bound re-
source use in [26] for functional languages and they had shown in [8] how to
translate the Camelot functional language to JVM bytecode using a free list.
In those works, the bounds are linear; in more recent works [25], they iden-
tify a specific form of polynomials well-suited to bounding the consumption of
resources in their language. But, just as in their object-oriented works, their
system is designed with a manual memory management, where the memory
allocated to some value can be recovered when that value is filtered with a de-
structive variant of pattern matching. It seems that it would be rather tricky
to combine this approach with a garbage collector.

The technique in [14] infers heap and stack bounds for low-level imperative
programs relying on sized types. The technique naturally handle recursion but
it infers linear expressions, does not handle polymorphism and requires explicit
deallocation.

For functional languages, [37] proposes a non-compositional technique that,
given a function, constructs a bound function that symbolically mimics the
memory allocations of the former.

Our technique requires invariants that bound iterations. Various works,
such as [23, 9, 33, 12], developed in the recent years techniques to automatically
infer some program invariants. For instance [9] details a technique to infer a
polynomial bound to the number of iterations of a fairly generic form of for-
loops. These works look very promising for the goal of automatically inferring
the majority of the invariants required to analyze even very large programs.

8. Conclusions and Future Work

We present a summary-based analysis to over-approximate the maximum
number of objects created by a method that may be reachable (alive) during
any of its runs. The analysis resorts to object lifetime information precomputed
by an external points-to analysis. The compositionality is achieved by means
of summaries that condense both the peak of objects created by a method that
may be simultaneously reachable during its execution and the amount of created
objects that may escape lifetime of methods.

Our prototype implementation is capable of inferring parametric polynomial
bounds. We were able to analyze a medium-size real-life Java application with
moderate human intervention, obtaining very tight bounds. We believe this is
the first report of an analysis of such a large case study and serves as a proof
of concept of the ideas exposed in the paper.

We plan to handle programs of larger sizes (e.g., those included in DaCapo
benchmarks) —which are currently out of scope of existing techniques. Major
challenge to achieve this goal is both the discovery of summary parameters and
the manual annotation of invariants on creation and call sites. As a promising
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note, vast majority of the invariants in Jlayer (95% +) are simple and they
might be potentially discovered mechanically by powerful invariant detection
tools such as [23]. The same can be said about the parameters of summaries
and the associated binding. We are currently working on detecting recurrent
patterns to automate discovery of summary parameters and required invariants.

We also working in automating the detection of common patterns described
in §6 such as lazy initialization. In this direction, we would like to include new
kinds of summary information such as escaping but non-accumulative sub-heaps
which appear to be necessary to model with precision some of those patterns.

We are working on the design of a specification language for consumption
summaries including tool support for checking the correctness of the annota-
tions. We think this will facilitate user intervention and interoperability between
different analyses. We are currently working on a more fine grained algorithm
taking flow sensitiveness into account and enabling object reclaiming at the
statement level.

Computing the peak of live objects is a key building block to assess memory
consumption and it can serve as proxy of memory consumption behavior when
comparing implementations of interfaces (such as what we explained for JLayer
in 6) or, more generally, to compare different algorithms.

Moreover, [10] shows how, using information of sizes for class types, the peak
of live objects can be turned into an estimation of actual memory consumption
for a particular setting. This can further allow to compute region sizes for RTSJ
(see [11]).

A more general memory consumption analysis will also require to solve chal-
lenges posed by particularities of Java virtual machines like their garbage col-
lectors, the fragmentation of memory and the representation of arrays. For the
arrays, one possible solution could be to use special summaries for their alloca-
tion instruction: those summaries could then depend not only on their size but
also on other VM parameters (e.g, block and page sizes, etc.).
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Appendix A. Proof of Correctness

Here we show that the equations presented in §4 can be used to build valid
summaries given valid summaries for the callees.
Let Invoked(S) be the set of methods invoked in S :

Invoked(∅) = ∅
Invoked(〈`, invoke µ′(v̄), I〉) = CG.call(`, µ′)

Invoked(S1;S2) = Invoked(S1) ∪ Invoked(S2)

Recall that Rm is the set of invocation traces of the method m and that, for
some trace r ∈ Rm, Rrl,m′ is the set of invocation traces of m′ in r at location l
(note in particular that it is included in Rm′).

Observation 1. Given a method m and 〈`, invoke µ′(v̄), I〉 ∈ m.body and
m′ ∈ Invoked(〈`, invoke µ′(v̄), I〉), such that I is a valid iteration space, then
for every invocation run r ∈ Rm and for all p̄m, we have:

Bm[ ¯fpm/r0( ¯fpm)] =⇒ SC.UpBound(E, I, p̄m) ≥ max
r′∈Rr

l,m′∧Bm′ [ ¯fpm′/r′0( ¯fpm′ )]
E

Bm[ ¯fpm/r0( ¯fpm)] =⇒ SC.Summate(E, I, p̄m) ≥
∑

r′∈Rr
l,m′∧Bm′ [ ¯fpm′/r′0( ¯fpm′ )]

E

where vars(E) ∈ ¯pm′ .
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Proof. It can be proved by induction on the set of invocation traces, using the
definition of SC.Summate and SC.UpBound.

Observation 2. For every m such that m.body = 〈`, invoke µ′(v̄), I〉, m′ ∈
Invoked(〈`, invoke µ′(v̄), I〉), SH ′ = LIS.esc(`,m′)(SH), then

∀r ∈ Rm,
∑

r′∈Rr
l,m′

∣∣freshr′ � SH ′∣∣ ≥ ∣∣freshr � SH ∣∣.
Proof. freshr′ � SH is just a filter of objects using a sub-heap descriptor. By
property of LISm.esc (SH ′ = LISm.escl,m′(SH) ⊇ {sh′ ∈ SHm′ |∃r ∈ Rm, r′ ∈
Rrl,m′ , [sh

′]m
′

r′ ∩ [SH ]mr 6= ∅}) we know that LISm.esc yields a superset of callee
sub-heaps that corresponds to sub-heap descriptors existing in the caller. Since
the body of method m is just a single invocation (possibly within a loop), every
object escaping an invocation of m′ will survive to m and potentially be part of
its set of fresh objects and live objects.

Proposition 1. For every methodm, if for allm′ ∈ Invoked(m.body), S[m′].Esc
is valid, then Esc[m] is valid.

Proof. We prove that Esc[m : m.body] is valid by induction on the structure of
m.body.

We first need to define a more general way to compute live and fresh parts
of the heap. Given a set of invocations S such that S ⊆ m.body. Let freshr(S)
be:

freshr(S) =
⋃

r′∈Rr
l,m′ ,m

′∈Invoked(〈`,invoke µ′(v̄),I〉),〈`,invoke µ′(v̄),I〉∈S

freshr′(0, |r′|−1)

freshr(S) is the amount of live fresh objects obtained by all invocations included
in S. We use the normal restriction to sub-heaps, freshr(S) � SH .

The inductive hypothesis we will prove is:

∀S ⊆ m.body,∀SH ⊆ SHm, ∀r ∈ Rm,
B[f̄p/r0(f̄p)] =⇒ Esc[m : S](SH) ≥

∣∣freshr(S) � SH
∣∣

1. It trivially holds for m.body = ∅.
2. Case m.body = s = 〈`, invoke µ′(v̄), I〉. For this case, since the body

only contains one statement, for all SH, freshr(S) � SH = freshr � SH .
We have Invoked(m) = CG.call(`, µ′).

(a) Invoked(m) = {m′}.

Esc[m : s](SH) = SC.Summate(Esc[m′](SH ′), I ∧B(m), p̄m)
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Let r ∈ Rm be an invocation trace for m. By hypothesis, we have
that

∀SH ′ ⊆ SHm′ , ∀r′ ∈ Rm′ ,

B[f̄p
′
/r′0(f̄p

′
)] =⇒ S[m′].Esc(SH ′) ≥

∣∣freshr′ � SH ′∣∣
Thus, by applying SC.Summate to S[m′].Esc(SH ′), the observations 1
and 2 (considering that the only statement in m is the invocation
to m′):

∀SH ⊆ SHm, ∀r ∈ Rm,
B[f̄p/r0(f̄p)] =⇒

Esc[m : s](SH) ≥
∑

r′∈Rr
l,m′∧Bm′ [ ¯fpm′/r′0( ¯fpm′ )]

S[m′].Esc(SH ′)

≥
∑

r′∈Rr
l,m′

∣∣freshr′ � SH ′∣∣ ≥ ∣∣freshr � SH ∣∣.
(b) |Invoked(m)| > 1.

Let r ∈ Rm be an invocation trace for m.
By hypothesis, we have that

∀SH ′ ⊆ SHm′ , ∀r′ ∈ Rm′ ,m′ ∈ Invoked(m)

B[f̄p
′
/r′0(f̄p

′
)] =⇒ S[m′].Esc(SH ′) ≥

∣∣freshr′ � SH ′∣∣
Let Rt,rl,m′ =

⋃
m′∈Invoked(m)R

r
l,m′ and Btl,m′ =

∧
m′∈Invoked(m) B(m′).

By properties of least upper bound:

∀SH ′ ⊆ SHm′ , ∀r′ ∈ Rt,rl,m′ ,

Btl,m′ [f̄p
′
/r′0(f̄p

′
)]

=⇒
⊔

m′∈Invoked(m)

S[m′].Esc(SH ′) ≥ max
r′∈Rt,r

l,m′

∣∣freshr′ � SH ′∣∣
Thus, by applying SC.Summate to

⊔
m′∈Invoked(m) S[m′].Esc(SH), the

observations 1 and 2 (considering that the only statement in m is the
invocation to m′):

∀SH ⊆ SHm, ∀r ∈ Rm,
B[f̄p/r0(f̄p)] =⇒

Esc[m : s](SH) ≥
∑

r′∈Rr
l,m′∧Bm′ [ ¯fpm′/r′0( ¯fpm′ )]

( ⊔
m′∈CG.call(`,µ′)

S[m′].Esc(SH ′)
)

≥
∑

r′∈Rr
l,m′

max
r′′∈Rt,r

l,m′

∣∣freshr′′ � SH ′∣∣
≥

∑
r′∈Rr

l,m′

∣∣freshr′ � SH ′∣∣ ≥ ∣∣freshr � SH ∣∣.
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3. Case m : S1;S2. By the inductive hypothesis, we know

Esc[m : Si](SH) ≥
∣∣freshr(Si) � SH ∣∣

Combining these facts, we obtain:

Esc[m : S](SH) = Esc[m : S1](SH) + Esc[m : S2](SH)

≥
∣∣freshr(S1) � SH

∣∣+
∣∣freshr(S2) � SH

∣∣
≥
∣∣freshr(S1) � SH ∪ freshr(S2) � SH

∣∣
≥
∣∣freshr(S) � SH

∣∣
Hence, Esc[m] is valid. �

Proposition 2. For every method m, if for all m′ ∈ Invoked(m.body), Esc[m′]
and S[m′].MaxLive are valid, then MaxLive[m] is valid.

Proof. We prove MaxLive[m : m.body] is valid by induction on the structure of
m.body.

Given S ⊆ m.body, the function freshr(S, t1, t2) is a restriction of freshr(t1, t2)
to objects created only during the execution of the statements in S. That is,
the set of fresh and live objects at r2, with respect to r1 but considering only
the allocations made in S.

The inductive hypothesis, we will prove is:

∀S ⊆ m.body,∀r ∈ Rm,∀t, 0 ≤ t < |r|,
B[f̄p/r0(f̄p)] =⇒ MaxLive[m : S] ≥ max

t′≤t
{|freshr(S, t′, t)|}

1. It trivially holds for m.body = ∅.
2. Case m.body = s = 〈`, invoke µ′(v̄), I〉. For this case, since the body

only contains one statement, freshr(S, t1, t2) = freshr(t1, t2).
(a) Invoked(m) = {m′}. By definition, we have that

UB[m : s] = SC.UpBound(MaxLive[m′]− Esc[m′](SHm′),

I ∧Bm, p̄m)

SUM[m : s] = SC.Summate(Esc[m′](SHm′), I ∧Bm, p̄m)

MaxLive[m : s] = UB[m : s] + SUM[m : s]

Let r ∈ Rm be an invocation trace for m. By hypothesis, we have
that

∀r′ ∈ Rm′ ,∀t, 0 ≤ t < |r′|,
B[ ¯fp’/r′0(f̄p

′
)] =⇒ S[m′].MaxLive ≥ max

t′≤t
{|freshr(t′, t)|}

and

∀SH ′ ⊆ SHm′ , ∀r′ ∈ Rm′ ,

B[ ¯fp’/r′0(f̄p
′
)] =⇒ S[m′].Esc(SH ′) ≥

∣∣freshr′ � SH ′∣∣
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Then, by applying SC.UpBound to S[m′].MaxLive and by observa-
tion 1 we have:

∀r ∈ Rm, r′ ∈ Rrl,m′∀t, 0 ≤ t < |r′|,
B[f̄p/r0(f̄p

′
)] =⇒ UB[m : s] ≥ max

t′≤t
{|freshr′(t′, t)| −

∣∣freshr′ � SHm′
∣∣}

= max
t′≤t
{|freshr′(t′, t)|} −

∣∣freshr′ � SHm′
∣∣

≥ max
t′≤t
{|freshr′(t′, t)|} −

∑
r′∈Rr

l,m′

∣∣freshr′ � SHm′
∣∣

On the other hand (by applying SC.Summate to S[m′].Esc(SHm),
and observation 2):

∀r ∈ Rm,

B[f̄p/r0(f̄p)] =⇒ SUM[m : s] ≥
∑

r′∈Rr
l,m′

∣∣freshr′ � SHm′
∣∣

Then, taking UB[m : s] + SUM[m : s], simplifying
∑
r′∈Rr

l,m′

∣∣freshr′ �
SHm′

∣∣ we have:

∀r ∈ Rm, r′ ∈ Rrl,m′∀t, 0 ≤ t < |r′|,
B[f̄p/r0(f̄p

′
)] =⇒ MaxLive[m : s] ≥ max

t′≤t
{|freshr′(t′, t)|}

Then, since the unique statement in m is the invocation to m′ and
that MaxLive is an upper bound for every invocation to m′ we can
conclude:

∀r ∈ Rm,∀t, 0 ≤ t < |r′|,
B[f̄p/r0(f̄p

′
)] =⇒ MaxLive[m : s] ≥ max

t′≤t
{|freshr(t′, t)|}

(b) |Invoked(m)| > 1. This case is more involved but follows similarly
as above. Essentially there is an additional max operator (for the
summaries of callee candidates which has to be valid) inside the max-
imization of the difference in UB.

3. Case m : S1;S2.

MaxLive[m : S1;S2] = UB[m : S1] t UB[m : S2]

+ SUM[m : S1] + SUM[m : S2]

= (UB[m : S1] + SUM[m : S1] + SUM[m : S2])

t (UB[m : S2] + SUM[m : S1] + SUM[m : S2])

= (MaxLive[m : S1] + SUM[m : S2])

t (MaxLive[m : S2] + SUM[m : S1])
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By inductive hypotesis:

∀r ∈ Rm,∀t, 0 ≤ t < |r|,
B[f̄p/r0(f̄p)] =⇒ MaxLive[m : Si] ≥ max

t′≤t
{|freshr(Si, t′, t)|}

Using a similar reasoning to the one we used for Esc, we get that:

∀r ∈ Rm,B[f̄p/r0(f̄p)] =⇒ SUM[m : Si] ≥ |freshr(Si)|

Then (omitting quantifiers for simplicity):

MaxLive[m : S1;S2] = (MaxLive[m : S1] + SUM[m : S2])

t ([MaxLive[m : S2] + SUM[m : S1])

≥ (max
t′≤t
{|freshr(S1, t

′, t)|}+ |freshr(S2)|)

t (max
t′≤t
{|freshr(S2, t

′, t)|}+ |freshr(S1)|)

≥ (max
t′≤t
{|freshr(S1, t

′, t)|}+ max
t′≤t
{|freshr(S2, t

′, t)|})

t (max
t′≤t
{|freshr(S2, t

′, t)|}+ max
t′≤t
{|freshr(S1, t

′, t)|})

= (max
t′≤t
{|freshr(S1, t

′, t)|}+ max
t′≤t
{|freshr(S2, t

′, t)|})

≥ max
t′≤t
{|freshr(S1 ∪ S2, t

′, t)|}

Hence, MaxLive[m] is valid. �
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