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The aim of this work is to study the electron transport in graphene with impurities by introducing
a generalization of linear response theory for linear dispersion relations and spinor wave functions.
Current response and density response functions are derived and computed in the Boltzmann limit
showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from
the generalization of both functions, an exact relation can be obtained that relates both. Combining this
result with the relation given by the continuity equation it is possible to obtain general functional
behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using
the definition of relaxation function. A lower cutoff must be introduced to regularize infrared
divergences which allow us to obtain a full renormalization group equation for the Fermi velocity,
which is solved up to order O(#?).
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1. Introduction

Graphene is a two-dimensional hexagonal lattice of carbon
atoms and it is one of the most important topics in solid state
physics due to the vast application in nano-electronics, opto-
electronics, superconductivity and Josephson junctions [1-5]. The
band structure shows that the conduction and the valence band
touch at the Dirac point and the dispersion relation is approxi-
mately linear and isotropic [6]. This linear dispersion near the
symmetry points have striking similarities with those of massless
relativistic Dirac fermions [4]. This leads to a number of fascinating
phenomena such as the half-quantized Hall effect [7,8] and
minimum quantum conductivity in the limit of vanishing concen-
tration of charge carriers [1]. Although this is an outstanding
experimental result, there is no consensus about the theoretical
value computed through different theoretical methods (see [9]),
neither the physical reason for such minimum value (see [10]),
where the minimum is due to the impurity resonance and is not
related to the Dirac point.

In particular, one of the theoretical methods used to compute
response functions within the linear response theory is the Kubo
formalism [11]. Deviations of charge and current densities from
their equilibrium values are described by density and current
response functions through the Kubo formulas using the same
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two-particle Green function. Although, generally, it is unable to
obtain exact relations between these response functions, several
approximations can be obtained taking into account the dimen-
sionality and dispersion relation of the system (see [12]). But these
approximate relations are based on the continuity equation and
Ward identities and are not clear if these assumptions are valid for
linear dispersion relations and spinor wave functions.

In turn, impurities in graphene can be considered in various types
of forms: substitutional, where the site energy is different from those
of carbon atoms, which generates resonances [13] and as adsorbates,
that can be placed on various points in graphene: six-fold hollow site
of a honeycomb lattice, two-fold bridge site of the two neighboring
carbons or top site of a carbon atom [14]. Theoretical as well as
experimental studies have indicated that substitutional doping of
carbon materials can be used to tailor their physical and/or chemical
properties [15-17]. In particular, nitrogen or boron dopants can be
added to pristine graphene [18-21].

The detection and absorption of low levels of hydrogen
becomes very important for sensor gas and hydrogen energy.
Different methods of hydrogen detection are not entirely selective
or it have a high cost of manufacture due to their complexity. Pd-
doped reduced graphene have a clear response to hydrogen and
are very selective [22,23]. On the other side, the decoration of
carbon support by transition metals can also be independently
used to enhance the hydrogen storage of the specimens. Transition
metals eliminate the hydrogen dissociation barrier altogether [24].

In this sense, the density and current response function of
doped-graphene with low concentration of substitutional impurities
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is of major importance for the consequences in the sensor effect
[25,26]. In particular, the simplest graphene-based sensor detects
the conductivity change upon adsorption of analyte molecules. The
change of conductivity could be attributed to the changes of charge
carrier concentration in the graphene induced by adsorbed gas
molecules. It has been proposed that such device may be capable
of detecting individual molecule [27]. These reactions release
captured electrons in the interaction zone between the gas and
the sensor, and increase their concentration in the conductivity
zone. But the conductivity of electrons is based on the diffusion
phenomena of charge carriers through the sample. Electrons moving
in randomly distributed scatterers have a diffusive character, which
is described at long distances by a diffusion equation. It has been
shown that it is possible to suppress diffusion (see [28]), giving rise
to localization phenomena, which will affect the sensor character-
istics of the material. In turn, a dynamical generalization of the
diffusion constant from the electron-hole correlation function
cannot be linked to the frequency-dependent conductivity (see
Egs. (3.18) and (3.19) of [12]). In this sense, the aim of this work is
two-fold: to introduce a generalization of the linear response theory
for linear dispersion relation and spinor wave functions, to apply it
to graphene, and the subsequent computation of minimal conduc-
tivity and dynamical diffusion, to analyze the general behavior of the
system under local perturbations and the implications for
sensor gas.

This work will be organized as follows: In Section 2, the
impurity averaged Green function will be computed. In Sections
3 and 4, a generalization of the conductivity tensor and response
function will be computed using the current definition for relati-
vistic Dirac fermions. In Section 5, different limit behavior of the
current and density response functions are computed. The Boltz-
mann limit is introduced showing the minimal conductivity value.
In Section 6, the dynamical diffusion will be computed through the
relaxation function, showing how to obtain the full renormaliza-
tion group equation for the Fermi velocity. Finally, the conclusion
are presented. Appendices A and B are introduced for self-
contained lecture.

2. Impurity averaged Green function

The Hamiltonian of clean graphene in the K point in the
Brillouin zone and in the long wavelength approximation reads
(see [4])

0 Px+ipy
H= .
VF (px _lpy 0 (])

where vp ~ 10° m/s is the Fermi velocity. The eigenfunctions of
this Hamiltonian read

1 1 )
W) = 72(,131'(/71( )&k.r )
where
ky
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X

In turn, the eigenvalues read
E/l(k) = /’Lfolk 4

where k = |K| and where A=1 are positive energy states (conduc-
tion band) and A= —1 are negative energy states (valence band).
With the eigenfunctions of Eq. (2) we can compute the retarded
and advanced Green functions for conduction electrons (A=1) in

momentum space’

1 1 el?q
R(A) —
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where the minus sign corresponds to the retarded Green function
and the plus sign to the advanced Green function. The contribution
to the second order in the perturbation expansion in the impurity
potential reads (see [29, Eq. (3.31), p. 136])

21,/
(GR(K, K, E))'=J = 8, ,e GG (K, E)? / %me(k—k’)ﬁmg(k’j)
(6)

where n; is the impurity concentration and |V,-mp(k—k/)|21 is a
diagonal matrix

‘Vimp (k - k,) |2 0
. —_K)H2 =
Vimp (K kn1—< 0 Vi (kK2 @)

and the angle brackets represent the configurational averaging
that can be computed as

N
A= /‘H]dl‘i/\(l‘l,l‘z,---,l‘N)P(l‘Ll‘z,---,l‘N) (8

where P(ry,T3, ...,ry) = P(r1)P(r3)...P(ry) and P(r;) is the probabil-
ity density for having the impurity located around point r;.? In
Eq. (6), the Fourier transform of GX(r,r’,E) has been taken first.
Replacing the last equation and Eq. (5) in Eq. (6) the diagonal part
of the averaged Green function reads

d*K |Vipp(k—K)?
(2m)?* E—vshk —is
[ dK
) @n?
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If we consider for simplicity that the impurity potential is a Dirac
delta potential, then®
Vimp(K) = / d*re~ TV, (r) = / d’re= ™V 5(r) = Vo (10)
Using the last result, the integral of Eq. (9) reads
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where we have used that 5(x) = (1/m)lims_,¢s/(x*>4+s?) and n(E) is
the density of states at the Fermi energy.® At this point it is
important to notice that in clean graphene, the density of states
n(E) at the Fermi energy is n(Er) =0 (see [30], Eq. (33)). Never-
theless, when impurities are introduced, the density of states at
the Fermi energy is not zero (see [30], Fig. 3), which implies that
the disorder introduces an imaginary term to the self-energy.

! We assume that the valence-band states do not contribute to low tempera-
ture conductivity.

2 In this case we are assuming that the positions of the impurities are
distributed independently.

3 In this case, the disorder introduced by the delta Dirac impurity potential is
an on-site diagonal disorder.

4 In the last equation the real part is strictly not zero, but is a constant that
does not depend on the momentum. In this sense, this value is arbitrary and has no
observable consequences. From this we can assume that it is zero or redefine the
reference for measuring energy.
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The non-diagonal term reads
K v kerik,
Qr)?E—venk' —is K
/' d’K ViJ K (E—vehk)—ks
@m)* K\ (E—vpnk')* +52

(12)
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Introducing polar coordinates in the wave vector K, ki, = k" cos 1
and k; =K sin 4, is not difficult to show that the last integral is zero
due to the cosine and sine functions, which are integrated between
0 and 2. Then, the averaged Green function at the second order in
the perturbation expansion in the impurity potential reads

in O
(G316 K, E)) =7 = 81, [G (I, E)P (g m) (13)

where 7 = zn;V3n(E). By introducing the one-particle irreducible
propagator, which corresponds to all the diagrams which cannot be
cut in two by cutting an internal line, the impurity averaged
propagator can be written as a geometric series in terms of the
self-energy (see [29, p. 141])
+ o0

G=Go+GoZGo+ =Gy ¥ (ZGp)" =Go(I —ZGp) ! (14)

n=20
where X =34 3%, ... contains the contributions at different
orders in the perturbation expansion of the impurity concentration.
With the computation done in Eq. (13) we finally obtain

1 1 e
:E—vth$is—i7]<e"‘/’q 1 ) 1)

This last result is the impurity averaged Green function which takes
into account the first contribution of the self-energy by comparing
the last equation with Eq. (5). This is known as the full Born
approximation, which includes electronic scattering from a single
impurity. The diagonal part contains the shifted pole due to the
imaginary part of the self-energy. The non-diagonal part contains
the same contribution multiplied by a phase factor. The last result
will be used in the following sections.

G*M(q) = Go(I-ZGp) !

3. Current response function

In this section, a generalization of the conductivity tensor for
Dirac fermion systems, that is, linear dispersion relation and
spinors wave functions, will be introduced. To do it we will follow
the development introduced in [29] and take into account the
differences introduced by Dirac systems. The Hamiltonian of Bloch
electrons in the long wavelength approximation in a electric field
and random impurities reads
H=v6 - (p—eA)+Vipy(r) (16)
where A(r) is the vector potential that is related to the electric field as

aA
E= 17
ot 7)

and where V,,(r) is the impurity field. We can compute the current
density to linear order in the external electric field (see Eq. (7.84) of
[29])

. A . -

jx, = Tr(/)o(t)J)—E/ dETr(po(tr)lip(r, 0), H()]+O(E?) (18)
ti

where the charge current density operator can be written as

Jp = VeIn)o(r| (19)

which is the usual definition of current in the relativistic Dirac system,
where v plays the role of velocity of light and

HA(f) =evso - A (20)

Taking into account the direction of the current in index notation and
to linear order in the electric field we obtain

+o0
Ja@, ) = (,(r, t)>0+% / dr’ Qup(T, E: 7, )AL, t) 21

where Q4 is the current response function. Taking into account that
in linear response, each frequency contributes additively, it is only
necessary to study what happens at one driving frequency

A(r,t) = A(r, w)e @t (22)

Then, the Fourier transform of the current reads

Jolf, ) = Goth, 00+ 3 [ drQuper oy w) 23)
where
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P +hw+ Al YA l()12) (25)

where |4) are eigenstates of unperturbed Hamiltonian and p; is the
mean occupation number for a energy level €;. At this point, if we use
the usual definition of current in non-relativistic quantum mechanics

= (P ) (26)
then
. , ihe . *
MBI = =5 s OV yy -y, @ Vs ] @7)

In the same line of thought, we can use the definition of relativistic
Dirac current, then

VEAIDG(|A) = vy (D)6 (1) (28)
and in the same way
A mID = vey!, ()oy (1) (29)

Introducing Egs. (28) and (29) into Eq. (25) and writing in index
notation which allows us to move the functions y and the Pauli
matrices we have

dE [ dE' p(E)—p(E)
27| 2 E—E +hw+is

:eZV%/%E; dE_p(E)—p(E) Aj(r, I‘E)(Ta()'ﬂAk(l‘,l‘,E)

27E—E +hao+is |
where we have used the relation between the spectral weight
A(r,r',E) and the wave functions (see Appendix A, Egs. (118) and
(119)). Finally, applying the relation between the spectral weight and
the Green function we obtain
S dE [dE' p(E)—p(E)

Kap(r.¥, 0) = —e VF/z;: 27E —E+ haw+is

><[G (r',r,E)— (r T, E)]a"aﬁ Jk(r r.E)—
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(30)

Gp(r,r' E)]

(€30
which is the desired generalization of the current response function
for Dirac fermion systems. In this case, the Pauli matrices play the role

of momentum in Eq. (7.96) of [29]. In the momentum space, the
current-current response function reads

Pk [ d°K
K,5(q,q, ) = e*v? / - / /
(4.9, @) F (2”)2 (277,')

xTr((G*(k+q, K +q.E)
—~GMk+q.K +q,E)o®[G*(K —q,k—q ,E)
~GK —q.k—q,ENo?) (32)

dE _pE)-pE)
2nE —E+hw+is
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Introducing the impurity averaging of two Green functions (see [29,
Eq. (8.3)])
(GC*Dk+q,K +q,E)G"P I —q,k—q,E))

= 8qq(GC*V(k+q,K +q,E)C*®K —q,k—q,E)) (33)

computing one of the energy integrations and exploiting the analytical
properties of the averaged Green function we obtain (see [29, p. 283])

Kop(q. @) = Ko (q. )+ K (. )+ KS(q, o) (34

where

K¥(q.w) = e*vioiol, / g E+hw) — —pENDE+hw,E.q)  (35)

and
K3(q, @) = —e*vioy Id/2 p(E+ nw) P (E+ha, E, q) (36)
K2 (q, ) = ev2olol) / S P EYPRR(E+hoo,E @) 37)

where the electron (hole)-electron (hole) correlation function @ﬁ}’k
reads

Pk [ d*K

b ’
D (E+hw, E, q) = an? (2m2<cl,(k+q k' +q, E+hw)G (kK —q,k—q.E))

(38)
The final conductivity tensor can be written in terms of the current

response function K,4(q, @) (see [29, Eq. (8.51)]) using the Kramer-
Kronig relation

Ka/i’(q, Cl)) - Kaﬂ(qs 0)
iw
As we can see in Eq. (32), we have the multiplication of one matrix

Green function with the Pauli matrix in the a direction and the other
with the Pauli matrix in the f direction

(39

Gi(k+q.K +q.E+hw)of = MR‘A’(k +q.K +q, E+ ho) (40)

G (K ~a.k—q.E)o}; = MV (K —q.k—q.E) @

The two possible Pauli matrices are 6* and ¢ and in particular if we
choose the direction of the Pauli matrix in such a way that ¢¢ is
6% =0 cos ex+0c¥ sin e, and  of =¥ cos Gey+ 0¥ sin ey,
where ¢ and 0 are angles in the real space, then

0 e i 0 e
(’a:<ef¢ 0 ) ”ﬁ:<el‘9 o) 42

At this point, we have to use the perturbation expansion of the
product of two matrix Green functions in the impurity concentration
which has been computed in last section.

4. Density response function

In a similar way, we can generalize the density response
function y(r,r’, w) for linear dispersion and spinor wave functions,
which is defined as (see Eq. (7.23) of [29])

- Zplidll')(l‘lﬂ XA X1 2) 43)

r.r,w)=
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Using Eq. (119) and computing the Fourier transform we obtain for
the density response function

d’k [ d°K / dE' p(E)-p(E)

Qn? ) 2r)? 27 E' —E+hw+is
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xq.q, )=

Introducing the impurity averaging of two Green functions

( P’k [ dPK dE' p(E)—p(E)
+q @ @) Q2r?. 27 E —E+ho+is
xTr(A(l(-H], K +q, E)A(k —q.k—q,E)) (45)

and computing one of the energy integrations by exploiting the
analytical properties of the averaged Green function we obtain

2@, @) =" (@q, 0)+ (@, 0)+1*(q, ») (46)
where

A " dE
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With this result, the generalization of the density response
function for linear dispersion relation and spinor wave function
is obtained.

5. Current and density response relations

With the generalization of the current and density response
functions for linear dispersion relations and spinors, we can
proceed to obtain a relation between those functions. Introducing
a Kronecker delta product 6,0y in y(q,®) and using Eq. (39) we
can write

106 45(q, @)+ Vi (q, ©) = &0, @) — K p5(0, 0) (50)
where

&q.0) =TrAT) = AJ T j(q. @) 1)
where

A;I/jl =e’Vi(off 0f1+5ij5k1) (52)
and

Tya(@ @)= (gjr])(z (gzzz]; / gi%

x([Gli(k+q.K +@,E)— Gi(k+q,K +q, E)]
x[Gj(K —q,k—q,E)— G} (K —q.k—q,E)) (53)

Relation Eq. (50) is analogous to the relation introduced in [12],
Eq. (38), but in the former case, the relation obtained is not a
definition as it occurs in [12]. The main difference is that in
graphene and in general for spinor systems with linear dispersion
relation, the space derivate is replaced by the Pauli matrix, then
the Fourier transform does not introduce any momentum p. The
non-appearance of the momentum in the current response func-
tion implies a different functional behavior, but the same dia-
grammatic expansion. In the other side, whenever there is a
continuity equation, which expresses the charge conservation, it
is possible to obtain a direct relation between isotropic conduc-
tivity and density response function
ie’w

o(q,w) = —72( (q. ®) (54)
In the particular case of graphene, a continuity equation can be
obtained, which is identical to continuity equation for quantum
relativistic systems. Combining last equation and Eq. (50) we
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obtain for the conductivity tensor 44(q, ®) = 6(q, ®)

w[£(q, 0)—Kop(q,0)]
i®? +iveq?

Gaﬁ(qs ) (55)
The static limit of the homogeneous conductivity can be computed
as (see Eq. (40a) of [12])

1 1 on

o = lim limeo(q, ) = lim—&©0, w) ——lim lim K4(q, w) = e?D—

0—0q-0 @) a;wlwé( ) iwq—0 »—0 ap(@ @) ou
(56)
that relates the diffusion constant D with the static conductivity,
known as the Einstein relation. At zero temperature, on/oy = ng,
where np is the density of states at the Fermi energy. On the other

side, replacing Eq. (54) in Eq. (50) we obtain for the density
response function

¢°[£(q, @) —Kaa(q,0)]
e2w? +e2viq?

XQq,0)= (57

which is similar to Eq. (42) of [12], but in this case, this relation
is exact.

5.1. Current and density limits

To compute the two limits @ —0 and q—O0 for the response
functions it is only necessary to study the tensor I"jj(q, @) that can

be separated as
(@, ) = L@, @)+ (@, 0)+ T i@, @) (58)

In particular, the @ — 0 limit reads

lim Fyu@,0) = [ 52 pENPHEE.0) - PYLE E (59)
using that G* = [GR]* we have

D (E.E, @) — Dy (E.E,q) = — 2i3[D (E.E, q)] (60)

Finally, taking the q— 0 limit and using the Ward identity (see
[31]) we obtain

d’k . [agR(k E)}

hmhmryk,(q,@—/ (E) / Fadfuk)  (61)

2r
where
1
gr(K,E)= E—nvek—in—is (62)
and

1 e 1 e
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where A is the polar angle of the wave vector. Applying the chain
rule in the derivate

dE d’1
- [G P | e Byl (64)

‘111% (}}%F iki(q, @) = zoul 2n

Those integral matrix elements that contain e*¥ will not con-
tribute because the angular integration vanishes. Multiplying the
last result with e?viofoy and taking the T— 0 limit we obtain

—e*VEng(n)

(65)

hm llm(K,m(q, @)+ KR (q, w)) = —hm llmKaa(q, W)=

The longitudinal conductivity depends only on the electron-hole
correlation function as it is expected:

L . K* 0, w)
lim lim o(q, @) = lim=e = (66)

On the other side, taking the q—0 limit and using the Ward
identity we obtain

dE [ d’k
o / Gy PE N heo) g0 B o)

—P(E)gak, E)— gr(K, ENIfy(K(f (k) = 0 (67)

Because both contributions give the density of states at the Fermi
level when the tensor f};(K)f;(K) is contracted with Aukl The last
equation and the result of Eq. (65) imply that the tensor I jj(q, ®)
is not analytical in the q—0 and w—0 limit as it occurs in
conventional systems.

(llif(l) ija(q, w) =

5.2. Boltzmann limit and minimum conductivity

The Boltzmann limit can be introduced by making the follow-
ing approximation (see [29])
(G (k+9q,K +q,EG, " (K —q,k—q, E)

~ (G (k+q, K +9, )G (K —q,k—q,E))

=6 G (k+q, E)GL(k—q,E) (68)
where Gﬁ‘A)(k+q,E) is the impurity averaged Green function
computed in Section 2. Because in the @w — 0 limit, the conductivity

will depend on the electron-hole correlation function (b,,Jk, we will
compute I iii(q. @). Introducing a shift E—E —(hw/2) we have

o () (=)

2
/(g ')‘G (k a EJ‘;”) ;}<<1ch,th7“’> (69)

Because we have to compute the trace A;,ZF iiki(@, @, n), the only
tensor elements that are not zero read

2.2
.f(q,w)_e VEAD, 1212+A122 1221+A211 2112+A2121r2121
aa RA aa aa aa
1111F1111+A1122F1122+A2211F2211+A2222 2222) (70)
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where
2,2 2.2 - 2i
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In turn
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I =I5, =Y, =%, =gk q.E ) (73)
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(74)
where
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Forq=0
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writing

e* 2% = cos <2arctg (%) ) +i sin <2arctg (%))
X X

= klz(kﬁ —IC + 2ikyky) (77)

using that ky =k cos A and ky =k sin A and computing the angu-
lar integration, we obtain

E40,0) = AGET(0. @) = — 26V} /Z[p (E+7‘”) —p(E—Tw)}
d’k 1

X Q) hw haw
(E+7 —hvﬂc—in—is) (E—7 7flVFk7i7]+l.S)

(78)

The small parameter is can be disregard because the self-energy in
moves the poles of J,‘RA(O,a)) away from the real line. Using
a simplified version of the Ward identity, we can compute the
integral in k as follows:

1 /W kdk
2r hw . hw .
0 (E—i—T—vfhk—m) (E—7 —vffzk—m>

1 1/a k k
- 27rha)/ k| T ho
0 E+=0 —vyhk—in =" —vshk—in

2

(79

A special feature about graphene is the no disorder limit #7—0.
In this case, the density of states at the Fermi level is zero n(Er) =0
which implies that there are no charge carriers. Nevertheless, a
minimal conductivity value can be found as follows: last equation
can be separated in a real and imaginary part, but the principal
part will not contribute to the conductivity because it vanishes
since

k <E+h7w - vfhl<>

hw 2
<E+T — folk) +7]2

is an odd function of E + 2w /2 — vshk, the width 7 is small and k is
a slow varying function from O to 1/a, then

: 1/a

lime—— / dk n - kn
n—02mhw Jo hao 2 ho 2
<E+7 —vfhk> +n2 <E—7 —vfhk> +n?

i
_ 80
2vEn? (80)

Using the last result in Eq. (78) and taking into account that

sinh (ﬁﬂ))
e
cosh (T) +cosh (fE)

which behaves at low temperatures as p(E+hwm/2)—
p(E—hw/2)~1 between —aw/2 and Aw/2 and zero in the
remaining energy values, then

dE hw how /2
/ Z[p <E+7> - p<5—7>} b(E) = / LCLE 82)

where b(E) is any function. Eq. (78) finally reads
ie’hw
27h?

EN0, 0) = AGIT IR0, 0.1) = (83)

by applying Eq. (56)
_1 ie’hw B Lz
Tiw 27K 2mh

(o) (84)
Although there is no disorder (17— 0 limit) and in consequence no
density of states at the Fermi energy, it is unusual to obtain
a minimal conductivity. This result is in agreement with the result
found in [30, Eq. (2.53)], but in disagreement with other results
(see [9]).° As we point before, we are using the Born approxima-
tion to treat impurity effects in graphene, which is valid only in the
weak scattering regime. This impose conditions on the possible
value of the impurity potential Vp, in particular, it should be less
than the bandwidth because we are in the linear dispersion
regime. In turn, this approximation omits scatterings on pairs
and larger groups of impurities, then it is expected to remain valid
provided cluster effects are insignificant. On the other side, when
impurity concentration is gradually increased, individual impurity
states begin to overlap and the contribution from these states to
the self-energy is becoming more pronounced in the vicinity of the
impurity state energy and a spectrum rearrangement appears for a
critical concentration (see [10]). This impose several restrictions to
the possible values for the concentration of impurities and the
potential Vo value (see [32,33]), which in turn impose several
restrictions to the approximation used in this work, because it
cannot be applied in a close vicinity of the Dirac point in the
spectrum due to the increase in cluster scattering. Nevertheless, in
[34,35], a EF—0 limit is taken on the average Green function and
by using the loffe-Regel criterion (see [36]), one of the solutions of
this limit implies that the self-consistent method is not applicable
near the nodal point, which is equivalent to the conditions found
in [32], but another low energy asymptotics solution exists, which
impose more suitable conditions for the applicability of the Born
approximation (see Eq. (9) of [35]). This point deserves more
attention, because the low energy limit in the graphene Green
function and correlation functions raise up a non-analytical behavior
which produces different results (see [9]). Another important point is
to compute minimum conductivity by taking into account the
Velicky-Ward identity, which introduce a two-particle irreducible
vertex consistent with the coherent-potential approximation for the
self-energy (see [37-39]). In particular, a Cooper pole could be
computed in the two-particle irreducible vertex due to backscattering,
which will dominate the low-energy behavior of the conductivity and
this could give some insight for the minimum conductivity puzzle.

6. Dynamical diffusion

A dynamical generalization of the diffusion constant from the
electron-hole correlation function cannot be linked to the
frequency-dependent conductivity (see Eq. (3.18) and (3.19) of
[12]). For this, it is necessary to obtain a dynamical diffusion from
a different procedure. The relaxation of a non-equilibrium particle
density distribution can be studied through the diffusion equation

oon

R 2 =
DV on=0 (85)
where the Fourier transformed solution reads
on(t=0,
on(q, @) = 2"E=29) (86)
iw—Dq

The induced non-equilibrium density variation that arose as a
response to a weak inhomogeneous electric field, where this
perturbation is first slowly switched on during the time interval

5> The conductivity of Eq. (84) must be multiplied by the degeneracy given by
spin and valley K and K'. Then, the value would be 40y.
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(—o00,0) and then suddenly turned off at t=0, reads (see [40])

-0
on(q, t) = eV(qo(t) /7 dt'e" y(q.t—t') = eV(q)h(q. t) (87)

where V(q) is the Fourier transform of the scalar potential and
¢(q,t) is the relaxation function. The Fourier transform of last

K —q?

Eq. (94) can be written as

0*Iiy(q, 0)

"dE _ 0*J[DR(E,E, q)] 1 S(0)
e — [ Gp@ SRS s

00)+> =
0q2
‘q_o q q

I
=]

(96)

where we have to integrate by parts and use that dp/JoE = S(E) in the
T — 0 limit. Taking into account Eq. (38) in the Boltzmann limit, the
electron-electron correlation function @ﬁﬁ(E, E,q) can be written as

\/(k —2qk cos A+q2)(k*+2gk cos A-+q?)

Va r27 dqkk dA
P E E,q) = /O /0

@n? (g_ 2 _ _ 2
E—nvpy/ k> +2kq cos A+q in )| E—nvg k? —2kq cos A+q in

equation gives a relation between dn(q, w) and ¢(q, w), then

d_n
_ op
P@0)=— T (88)
where
on on(t=0,q)
z_ === 89
op eV(q) 9
From Eq. (88) we can obtain the dynamical diffusion
2
2 D(a)) s (90)
oq q=0

In turn, from Eq. (87) we obtain a relation between the relaxation
function ¢(w, q) and the response function y(w, q)

iwp(q, w) = x(q,®)—x(q,0) 9D

Using Eq. (57), we can obtain the dynamical diffusion in terms of
&(q, w) without taking the #— 0 limit

—D(w n= <c§(0 ) — llm llmK(m(q, a)))
iw azKaa(qa 0) 0? f(q, 0)
€2V2 ( aqz a_o - aqz q=0 (92)

The dynamical diffusion will contain two contributions at order
O(w). The first one contains the diffusion pole 1/w of the relaxation
function and will not depend on disorder. The second term will be
proportional to @ and the factor will be a # dependent function.
From the last section, we found that £0,w)=0 and that
limg ., olimy, . 0Kaa(q, @) = €?vZn, then

2vine . 0* L@, 0)|
a-

iw 0q> ©3)

on
2$D(a)) =-

where we have used Eqgs. (50)-(52). The # dependent factor will
depend on the electron-hole correlation function, but in this case,
we have taken into account the q dependence. Using Eq. (61), the
last term of the r.h.s. of Eq. (59) can be written as

~ [ RR
w - /CLE (E)M| (94)
0q2 q=0 - ﬂ-p 0‘12 v
Writing
25 PRR
ISP EE @) _dS 95)
0q a=0 dE
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where we have to put the q direction in the same direction as k,,
then q - k= gk cos A where A is the polar angle of k. In Appendix B
we have computed

P P(E,E, q)]
oq>

s

a=0

where the result reads

@[ PE.Eq)

~1/a
s =1/ dk[—hvpgg(k, E)+kn?viga(k,E)—

gR(k, E)
T Jo k

q=0

(98)

The last integral will give a divergent result in the limit k— 0, which
is an infrared divergence due to the massless behavior of electrons.
To isolate the divergence, we can expand the integral in powers of k
before introducing the integral limits

; n
P[P (E.E, q)] _ 10+ 6iarctg (E) 1 (Ez TP >
oq? 40 67(E—in)? 27(E—in)? n*vak?
1 2 (fZVFk)I
= 99)
1—21 j(E iny 2
where
3 2 .
- J-3°-10j-6
b2 (100)
Introducing a lower cutoff A, integral of Eq. (98) reads
| DR, E, q) o0 j
[ til > ] — ll‘l(a/'l)2+1+ b (hVF)IJrZ(l_A]) (101)
oq q=0 mE—in?  mE I E- iny
Taking the imaginary part of Eq. (101)
Saz [DPRR(E,E, q)] _ 2EnIn(aA)
2 - 2 2
oq a—o0 TE+1?)
I eV B2 )~ U20+2) g (i MY (L_4i
+”j ;bj(fva)’(E +17%) sin ((]+2)arctg(E>) ai_A
(102)
Integrating in E and taking the two limits of Eq. (96)
*iin(q,0) _ In(aA) 1 +°°b sin((1+))3) (Avey A’
o> |77 mp mEt 41 Wl
(103)

The last equation depends on the lower cutoff A, which is not
desired. A correct procedure can be applied by assuming that the
Fermi velocity vs will change with A.° A renormalization group
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equation can be obtained by assuming that the dynamical diffusion
does not depend on A. Then

Anpvedve . 00 *Liin(q, 0,1, A, ve(A)) dvg
iw dA OVF 0q? dA
q=0
0 (*Tiu(q.0.7.A.v(A)| B
+io—z e =0 (104)

q=0

Eq. (103) is suitable to compute different orders of # to the
renormalization group equation for vy At order #° we obtain

4vpnpdvy i@

i A T In(aA)=0 (105)

and the solution reads’

Ve = vz == 2 Ina) (106)
o 2xnng

because we are in the approximation @ — 0, the last equation reads
?

VE(A) = VF, —W
F

In(A) (107)

which is similar to the results found in [41,42] and shows a singular
behavior with the impurity factor # that is similar to the singular

behavior of the Fermi velocity with impurities found in [43].% Using
Eq. (106), the dynamical diffusion at order #° reads

iv i
D(w) =24 2

o I In(a) (108)

From the last equation, there is no real value for @ where
D(w) =0, which is expected because suppression of diffusion can
be achieved by taking into account maximally crossed diagrams in
the perturbation expansion. Nevertheless, we can plot D(w,#) as
a function of w for different values of 7 and D(w, ) as a function of
n for different values of w. Both figures show the diffusion pole at
@w=0 (see Figs. 1 and 2). Dynamical diffusion tends to v,%o/Zia) for
n—oo. In turn, dynamical diffusion shows a minimum which
corresponds to the following frequency:

e 27rv§017np
In(a)

which is proportional to the impurity potential V. This implies
that at low resonance frequencies, a decrease in the diffusion can
be expected. The full renormalization group equation can be
computed in the no-disorder limit 77 — 0, which gives the following
differential equation at order O(#):

dve A7ldA

(109)

heldL i e 110
Ve l Y (110)
a
where the solution reads
_g-iN"
i) = vy (1) a11)
J_q-i
In the cut off limit A — 0, the Fermi velocity change as
“/’i=a(a—hl)‘/f (112)

Fo

which decreases with increasing order of #. In turn, the Fermi
velocity at higher orders of # and in the no disorder limit do not

5 The Fermi velocity is one of the parameters of the Hamiltonian.

7 In Eq. (106) Ag =1 as a low limit of the cutoff has been used.

8 If we introduce a upper cutoff k., = 1/A, the result of Eq. (106) follows the
same behavior as other results.

D)

0.005 0.010 0.015 0.020

Fig. 1. Dynamical diffusion as a function of disorder for different values of  in
arbitrary units. From red to black solid lines, « increases. Dashed lines for
dynamical diffusion at order O(4?). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

D(w)

2 4 6 8 10

Fig. 2. Dynamical diffusion as a function of  for different values of 5 in arbitrary
units. From red to black solid lines, 5 increases. Dashed lines for dynamical diffusion
at order O(h?). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

depend on the frequency of the external perturbation. High
impurity concentrations in graphene can lead to a diffusion
suppression which would leave without effect the high perfor-
mance of the material sample as a gas sensor. Weak localization of
electrons in doped graphene implies to take into account higher
orders in the diagrammatic perturbation expansion of the current
response function. Some theoretical computations has been done
(see [44,45]). For conventional impurities, the correction becomes
positive and it leads to the fact that anti-localization is realized,
which would enhance the gas sensor performance. In contrast,
negative corrections for short-range impurities are expected from
symmetry consideration. This suggest that the high sensitivity of
graphene to detect individual dopants is highly dependent on the
quantum corrections to the conductivity. Finally, taking into
account the first quantum correction to the renormalization group
equation for vr we obtain

S5wh*Vv2 dA 1 dA
dvp = F - 113
T B LA wn.a) mA2LA, 0,5, q) )
where
_1f4np 50 (1
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Solution of Eq. (114) in an integral form reads

2N 2 2 A dA’ 10wn? [ vEA') dA’
vF( )= Y 2 ’ + 3713 /
)i APLA,w,n,a) 3777 )i LA, w,n,q)

at order O(7?) we need to compute the second term of r.h.s. of the
last equation

(115)

/ A A’ _ 3a?nw’n?
1 AL, w,n,a) 10n*w? +24a2npmn?

. (5R%@?(a2 — 1) —12a%npzn?) A®

5r2w2(a2A* — 1) — 12a2npn3

(116)

Introducing vZ(A) in Eq. (115) inside the integral of the r.h.s. in the
same equation and using Eq. (116), the dynamical diffusion reads
at order O(#?)

D(a))—ﬁ-fiw In(@) S V1
T w  2mnqng - 12zn3npa?

(117)

The correction introduced at order O(#%) can be seen in both figures
as dashed lines. In the case of dynamical diffusion in terms of
frequency, the correction is small and only is appreciable for low
values of 7. In this sense, quantum corrections to the diffusion do
not alter the behavior under local perturbations at linear order in @.

7. Conclusion

In this work a generalization of linear response theory with the
Kubo formula has been introduced for linear dispersion relations
and spinor wave functions. A minimal conductivity can be found in
the no disorder limit and the result is in discordance by a factor of
2 with other theoretical results, although there is no consensus of
the physical reason of such value. Using the generalization
introduced in the first sections, an exact relation between current
and density response functions can be obtained. Combining this
result with the relation obtained with the continuity equation, an
exact functional form of response functions is obtained, where, in
particular, a singular behavior appears at @ —0 and g—0 limit.
Finally, dynamical diffusion is computed through the relaxation
function at low order in . A regularization is introduced to avoid
infrared divergences, which introduce a renormalization group
equation for the Fermi velocity. Different contributions to this
equation can be analyzed at different orders in #. Different results
are obtained which are of importance for local perturbations of
graphene sample.
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Appendix A. Spectral weight

The Green function for Dirac fermion systems reads

&k vy )
(2m)? E—vnk(F)is

G A1, E)= (118)

we can define the spectral weight as
Aj(r,'.E) = i[Gi(xr,',E) - Gj(r,’, E)] (119)

If we integrate the spectral weight in the volume we obtain the
density of states

2
/ PrAy(r. 1, E) = 275, (‘21 l;ﬁ(E—vfhk): 27n(E); (120)
V3
where n(E) is the density of states.
Appendix B. Electron-electron correlation function
The electron-electron hole correlation function reads
1a 27 dik dA
A R S (121)
0 o (2n)
where ¢(k, q, E) = gg(Ik+q|, E)gr((k—ql, E)a(k, q)
1
gR(lkiQLE):W (122)
and
K —g?
akq=1++—-—"—— 123
e ®=14 1 qik—q) (123

We can take the g derivate inside the integral in k. Taking into
account that

ogr(k+q|,E avedkLal ok +
gr(lk £+ q| ): _ aq v | *qlg§(|k4_rq|,E)
oq (E—nve K £ q|—in) oq
(124)
then
200D _ o q. 08k 0. (125)
where
olk+ ok —
Bik.q. B = — v g i g1 By v, g 1 g )
q oq
oak,q) 1
126
g al.q (126
The second derivate reads
ok, q.E) 5 0B(k, q, E)
o —okab [B (k.. B)+ =5 = } (127)
where
oB(k, q, E) ?k+q| ok+q\>
T:gR(|k+q|,E){—hwvwzvﬁ( o ) gR(\k+q\,E>}

Plk-q] ok—ql\’®
+gR<|k—q|,E){—th pre +h2v%( p )gRﬂk—q\,E)

1 [Pak q) 1 [oak,q))>
Tk, q){ o alk, q)( oq ) (128)
Finally using that
ok+q| q+kcosAi
= 129
oq ~ Ikiq (129
and that the second derivate reads
2 2
0 \k%q|: 1 _(qikcos3/1) (130)
oq k+q| k+q|
Putting q =0 in Eq. (127)
0(k,0,E) = 2gr(k,E)gr(K,E) (131)
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and using that da(k,q)/oqlq—-o=0

B?(k,0,E)=0 (132)

In turn,

oB(k,q,E) sin? 2 sin’ A

—oq " 2gr(k,E) | —nvg T +72v2 cos? Agp(k,E) e
(133)

where we have used that

2 in2
o*ak,q) _ _4sin“ 4 (134)
| K

Finally the second derivate of ¢o(k,q,E) at q =0 reads

0*0(k.q.E)
0q2

s 2 L2
A A
— 483, E) {gR(k, E) [—th—s";‘( 22 cos? Agg(k, E)] - S'ZZ ]

q=0

(135)

which is the desired result which will be used in Section 6.
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