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Abstract This work deals with the structure of the isometry group of pseudo-Riemannian
2-step nilmanifolds. We study the action by isometries of several groups and we construct
examples showing substantial differences with the Riemannian situation; for instance, the
action of the nilradical of the isometry group does not need to be transitive. For a nilpotent
Lie group endowed with a left-invariant pseudo-Riemannian metric, we study conditions for
which the subgroup of isometries fixing the identity element equals the subgroup of isometric
automorphisms. This set equality holds for pseudo-H -type Lie groups.
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1 Introduction

A pseudo-Riemannian nilmanifold is a pseudo-Riemannian manifold M which admits a
transitive action by isometries of a nilpotent Lie group. The interest on these manifolds has
been renovated in the last years motivated by their applications not only in mathematics
but also in physics (see for instance [8,10] and references therein). A typical question is
the possibility of the extension to the pseudo-Riemannian case of several properties already
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known in the Riemannian situation, a topic which could be quite complicated. Flat pseudo-
Riemannian nilmanifolds were investigated in [7]; for non-flat nilmanifolds there are many
open problems today.

Let M denote a Riemannian manifold with isometry group Iso(M). Wolf proved in [21]
that if a connected nilpotent Lie group N ⊆ Iso(M)acts transitively on M then N is unique,
it is the nilradical of the isometry group, and the transitive action of N is also simple.
Thus, M can be identified with the nilpotent Lie group N equipped with a left-invariant
metric. Furthermore, the subgroup H of isometries fixing the identity element coincides with
the group H autN of isometric automorphisms of N and therefore the isometry group is the
semidirect product Iso(M) = N � H (*) (see [11,20]).

Later Kaplan [13] studied other isometric actions on a family of 2-step nilmanifolds,
namely on H -type Lie groups. It was shown that the group of isometric automorphisms
coincides with the group of isometries of N fixing its identity element and the distribution

T N = vN ⊕ zN . (1)

These subbundles are obtained by left-translation of the splitting at the Lie algebra level

n = v ⊕ z, (2)

where n is the Lie algebra of N , z denotes its center and v the orthogonal complementary
subspace of z.

Our goal is to investigate some Lie groups acting by isometries on a fixed pseudo-
Riemannian 2-step nilpotent Lie group: the group of isometries preserving the splitting (1),
the group of isometric automorphisms and the full isometry group. We get several results
concerning this topic, improving the results in [3] and we have examples showing difficulties.
As noticed recently by Wolf et al. [1], the question of the structure of the nilradical of the
isometry group for a pseudo-Riemannian nilmanifold is subtle.

We exhibit a 2-step nilpotent Lie group N equipped with a left-invariant Lorentzian metric
such that:

– the group of isometric automorphisms is smaller than the subgroup of isometries fixing
the identity element;

– the Lie group N is not normal into Iso(N ), hence the algebraic structure (*) does not
hold;

– the action of the nilradical of Iso(N ) is not transitive on N.

These facts reveal remarkable differences with the Riemannian situation. For Riemannian
2-step nilmanifolds, it is known that every isometry is ”compatible” with the splitting (2).
Geometrically the subspace v corresponds to negative eigenvalues of the Ricci operator,
while the subspace z is described by the non-negative eigenvalues. We shall see that a similar
characterization cannot be achieved for a metric with signature.

Let N denote a 2-step nilpotent Lie group equipped with a pseudo-Riemannian left-
invariant metric. If the center is non-degenerate one gets a decomposition of the Lie algebra
n as in (2). Under these hypothesis,

(a) the group of isometric automorphisms coincides with the group of isometries fixing
the identity element and preserving the splitting (1);
(b) we get conditions to assert the equality H = H autN so as to obtain the structure (*)
for the full isometry group.

In particular, the family of pseudo-H -type Lie groups satisfies the conditions in (b). However,
this does not characterize this family.
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In the case of degenerate center the situation is more singular. We mainly work with bi-
invariant metrics on 2-step nilpotent Lie groups, showing that (a) above does not hold: there
are isometric automorphisms not preserving any kind of splitting (1). Even more, we present
an example where there is no relationship between those groups.

2 Basic facts and notations

Let (G, 〈 , 〉) denote a Lie group equipped with a left-invariant pseudo-Riemannian metric.
In this section, we recall some definitions and properties of groups acting by isometries.

Let Iso(G) denote the (full) isometry group of (G, 〈 , 〉). This is a Lie group whenever it
is equipped with the compact-open topology. Since left-translations are isometries, it is easy
to verify that every f ∈ Iso(G) can be written as a product

f = Lg ◦ ϕ (3)

where Lg denotes the translation by the element g ∈ G and ϕ is an isometry fixing the
identity element. The subgroup of left-translations by elements of G is closed in Iso(G) and
it is isomorphic to G. The subgroup of isometries fixing the identity element denoted by H
is also a closed subgroup of Iso(G) and due to (3) one has

Iso(G) = G · H.

Let Aut(G) denote the group of automorphisms of G and set Isoaut(G) =
G · H autG , where H autG denotes the group of isometric automorphisms of G, that is H autG =
Aut(G) ∩ Iso(G). Since for every automorphism φ ∈ Aut(G) it holds φ ◦ Lx = Lφ(x) ◦ φ,
it follows that the subgroup of left-translations is a normal subgroup of the group Isoaut(G),
thus one gets

Isoaut(G) = G � H autG .

A pseudo-Riemannian manifold is called locally symmetric if ∇ R ≡ 0, where ∇ denotes the
covariant derivative with respect to the Levi-Civita connection and R denotes the curvature
tensor. The Ambrose–Hicks–Cartan theorem (see for example [17, Thm. 17, Ch. 8]) states that
given a complete locally symmetric pseudo-Riemannian manifold M , a linear isomorphism
A : Tp M → Tp M is the differential of some isometry of M that fixes the point p ∈ M if
and only if it preserves the symmetric bilinear form that the metric induces into the tangent
space and if for every u, v, w ∈ Tp M the following equation holds:

R(Au, Av)Aw = AR(u, v)w. (4)

Let g denote the Lie algebra of G which is identified with the Lie algebra of left-invariant
vector fields on G. Then for G connected the following statements are equivalent (see [17,
Ch. 11]):

1. 〈 , 〉 is right-invariant, hence bi-invariant;
2. 〈 , 〉 is Ad(G)-invariant;
3. the inversion map g → g−1 is an isometry of G;
4. 〈[u, v], w〉 + 〈v, [u, w]〉 = 0 for all u, v, w ∈ g;
5. ∇uw = 1

2 [u, w] for all u, w ∈ g, where ∇ denotes the Levi-Civita connection;
6. the geodesics of G starting at the identity element e are the one-parameter subgroups

of G.
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By condition 3, the pair (G, 〈 , 〉) is a pseudo-Riemannian symmetric space, that is, geo-
desic symmetries are isometries. Usual computations show that the curvature tensor is

R(u, w) = −1

4
ad([u, w]) for u, w ∈ g. (5)

The following lemma is proved by applying the Ambrose–Hicks–Cartan theorem to the
Lie group G equipped with a bi-invariant metric and whose curvature formula was given in
(5) (see [15]).

Lemma 1 Let G be a simply connected Lie group with a bi-invariant pseudo-Riemannian
metric. Then a linear isomorphism A : g → g is the differential of some isometry in H if and
only if for all u, v, w ∈ g, the linear map A satisfies the following two conditions:

1. 〈Au, Aw〉 = 〈u, w〉;
2. A[[u, v], w] = [[Au, Av], Aw].

Note: A symmetric bilinear form on a Lie algebra g satisfying the condition 4 above is
said to be ad-invariant. If it is non-degenerate we just call it a metric.

3 A homogeneous Lorentzian manifold of dimension 4

In this section, we study geometrical features of a Lorentzian manifold of dimension 4 and
we show that it admits a transitive and simple action by isometries of both a solvable and a
nilpotent Lie group.

Set M the pseudo-Riemannian manifold R
4 with the following Lorentzian metric

g = dt (dz + 1

2
ydx − 1

2
xdy)+ dx2 + dy2, (6)

where (t, x, y, z) are usual coordinates for R
4. Denote v = (x, y) and for each (t1, v1, z1) ∈

R
4 consider the following differentiable functions of M :

L N
(t1,v1,z1)

(t2, v2, z2) =
(

t1 + t2, v1 + v2, z1 + z2 + 1

2
vt

1 Jv2

)
(7)

LG
(t1,v1,z1)

(t2, v2, z2) =
(

t1 + t2, v1 + R(t1)v2, z1 + z2 + 1

2
vt

1 J R(t1)v2

)
(8)

where J and R(t) are the linear maps on R
2 given by

J =
(

0 1
−1 0

)
, R(t) =

(
cos t − sin t
sin t cos t

)
t ∈ R. (9)

Both maps L N
(t1,v1,z1)

and LG
(t1,v1,z1)

are isometries of (M, g): in fact, on the basis

{∂t , ∂x , ∂y, ∂z} of T R
4, one has the following differentials:

L N
(t1,x1,y1,z1)∗ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

2 y1
1
2 x1 1

⎞
⎟⎟⎠

LG
(t1,x1,y1,z1)∗ =

⎛
⎜⎜⎝

1 0 0 0
0 cos t1 − sin t1 0
0 sin t1 cos t1 0
0 μ ν 1

⎞
⎟⎟⎠ with

μ = 1
2 (x1 sin t1 − y1 cos t1),

ν = 1
2 (x1 cos t1 + y1 sin t1).
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Thus, the maps above give isometric left-actions of a solvable Lie group G and a nilpotent
Lie group N on (M, g).

Both the Lie group G and N are modeled on R
4 with its canonical differentiable structure

and with the multiplication map where left-translations are induced by the maps LG on G
and L N on N .

It is not hard to see that the actions of both groups G and N on M are simple and transitive
so that the homogeneous Lorentzian manifold M can be represented as (G, gG) and (N , gN ),
where gG and gN are both given by the same formula (6). Canonical computations show that
the metric gN is left-invariant on N and the metric gG is bi-invariant on G, that is, left and
right-translations by elements of G are isometries for gG (see the previous section).

Remark 1 The exponential map from g to G is not surjective as one verifies with the formula
given in Section 4.2 [6], a fact previously proved in [19]. Thus, G is a solvable Lie group
which belongs to the class of examples named in Example 3.4 [1] for which there exists a
pair of points that cannot be joined by an unbroken geodesic.

The Lie group G known as the oscillator group [19] underlies the Nappi–Witten space
[16]. Since the Lorentzian metric gG is bi-invariant on G, the homogeneous manifold M is
symmetric.

3.1 The solvmanifold model

Making use of the model (G, gG) one obtains the isometry group of (M, g). Actually as an
application of Lemma 1, the group H of isometries of G and hence M fixing the element
e = (0, 0, 0) (the identity element of G) have a differential at e with matrix of the form⎛

⎝ ε 0 0
Jv A 0

− 1
2 ||v||2 −(Jv)t A ε

⎞
⎠ with ε = ±1, A ∈ O(2), v ∈ R

2

where O(2) denotes the orthogonal group of R
2. Thus,

H 
 ({1,−1} × O(2)) � R
2

(see [6] for more details). Notice that H has four connected components and the connected
component of the identity coincides with the group of inner automorphisms of G

H0 = {χg : G −→ G, χg(x) = gxg−1 : g ∈ G} 
 SO(2) � R
2.

Explicitly for (t, v, z) ∈ R
4 and g = (t0, v0, z0)

χg(t, v, z) = (t, v0 + R(t0)v − R(t)v0, (10)

z + 1

2
vt

0 J R(t0)v − 1

2
vt

0 J R(t)v0 − 1

2
(R(t0)v)

t J R(t)v0).

The following diffeomorphisms

ψ1(t, v, z) = (−t, Sv,−z), where S(x, y) = (−x, y)

ψ2(t, v, z) = (−t, R(−t)v,−z), (11)

ψ3(t, v, z) = ψ1 ◦ ψ2(t, v, z) = (t, S R(−t)v, z),

constitute isometries of M fixing the element e and they belong to different connected com-
ponents of H . The other three connected components of H are

H0 · ψ1, H0 · ψ2 and H0 · ψ3.
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Besides, the group H autG of isometric automorphisms of G is not connected since it corre-
sponds to the connected components H0 and H0 · ψ1, where ψ1 is as in (11). Notice that
χ(−π,0,0) ◦ ψ2 is the group inversion of G.

Remark 2 Sinceψ2◦LG
(t1,v1,z1)

◦ψ−1
2 is not a left-translation, the subgroup of left-translations

G is not normal in Iso(M).

Note that G is normal into Iso0(M), the connected component of the identity of Iso(M),
hence

Iso0(M) = G � H0.

The Lie algebra of Iso(M) denoted by iso corresponds to the vector space spanned by
{ f0, f1, f2, e0, e1, e2, e3} obeying the non-trivial Lie bracket relations:

[ f0, f1] = f2

[ f0, e2] = −e1

[e0, e1] = e2

[ f0, f2] = − f1

[ f1, e2] = e3

[e0, e2] = −e1

[ f0, e1] = e2

[ f2, e1] = −e3

[e1, e2] = e3.

3.2 The nilmanifold model

We study the structure of the isometry group of the nilmanifold M with respect to the nilpotent
Lie group N .

The nilpotent Lie group N corresponds to the Lie group R × H3, where H3 denotes the
Heisenberg Lie group of dimension 3. Notice that for any element (t1, v1, z1) ∈ R

4 it holds

LG
(t1,v1,z1)

= L N
(t1,v1,z1)

◦ χ(t1,0,0) = χ(t1,0,0) ◦ L N
(t1,R(−t1)v1,z1)

, (12)

so that the Lie algebra n viewed into iso is spanned by the vectors f0 − e0, e1, e2, e3

obeying the non-zero Lie bracket relation

[e1, e2] = e3.

Since χ(t1,0,0) ∈ H autN ⊆ H we have

Iso(M) = N · H with H 
 ({1,−1} × O(2)) � R
2,

but N is not a normal subgroup of Iso0(M).
For the left-invariant metric given in (6) a skew-symmetric derivation D of (n, 〈 , 〉)must

preserve both subspaces z and v and following canonical computations one gets the non-trivial
equalities

De1 = ηe2 De2 = −ηe1, η ∈ R.

So the connected component of the identity in the subgroup of isometric automorphisms of
N is given by

H autN
0 = {χ(s,0,0) : s ∈ R}.

Recall from (10) that χ(s,0,0)(t, v, z) = (t, R(s)v, z) with R(s) as in (9). Furthermore,
Isoaut(N ) is not connected. In fact, the map ψ1 defined in (11) is also an isometric automor-
phism of N .

We already proved that

Isoaut(N ) � Iso(M).

Compare this with [3].
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The nilradical of iso is the ideal of dimension 5 spanned by { f1, f2, e1, e2, e3} which does
not contain the subalgebra n. In fact, n is not contained in the commutator [iso, iso]. In terms
of the isometry functions, the maximal connected normal nilpotent subgroup of Iso0(M)
corresponds to

Ñ =
{

LG
(0,w,z) ◦ χ(0,v,0) : v,w,∈ R

2, z ∈ R

}

and usual computations show that the orbit of a point (t0, v0, z0) is given by

O(t0, v0, z0) = {(t, v, z) ∈ M : t = t0}.
This proves that the action of Ñ is not transitive on the nilmanifold M .
We summarize the results for (M, g).

– N acts transitively on M but it is not a normal subgroup of Iso0(M).
– The maximal connected normal nilpotent Lie subgroup of Iso(M), namely the nilradical,

does not contain N and its action on M is not transitive.
– Isoaut(N ) � Iso(M), where Isoaut(N ) = N � H autN , Iso(M) = N · H .
– H autN is not connected.

Compare this with Section 4.2 in [21] and results in [3].

4 Isometric actions for non-degenerate center

This section concerns the study of isometric actions. Let (N , 〈 , 〉) denote a simply connected
2-step nilpotent Lie group equipped with a left-invariant pseudo-Riemannian metric and let
〈 , 〉 denote the metric on its corresponding Lie algebra n.

Let z be the center of n and assume the restriction of 〈 , 〉 to z is non-degenerate. Hence
there exists an orthogonal decomposition of n

n = v ⊕ z (13)

so that v is also non-degenerate. This induces on the Lie group N left-invariant orthogonal
distributions vN and zN such that T N = vN ⊕ zN .

Denote by Isospl(N ) the group of isometries of N that preserves the splitting T N =
vN ⊕ zN [3,13]. Notice that left-translations by elements of the group N preserve this
splitting. Thus,

Isospl(N ) = N · H spl

where H spl is the subgroup of isometries which preserve the splitting and fix the identity
element of N . When the metric is positive definite, one has [9,13]:

Iso(N ) = Isoaut(N ) = Isospl(N ). (14)

The purpose here was to analyze the group equalities above in the pseudo-Riemannian case
and occasionally to state new relationships between these three groups.

Since the pseudo-Riemannian metric on N is invariant by left-translations, we study the
geometry of N as effect from (n, 〈 , 〉).

Given u ∈ n, denote by ad∗
u the adjoint transformation of adu with respect to 〈 , 〉. One

verifies that when u ∈ v and w ∈ z it holds ad∗
u w ∈ v, while ad∗

u w = 0 if u ∈ z or u, w ∈ v.
Furthermore, each w ∈ z defines a linear transformation j (w) : v −→ v by

j (w)u = ad∗
u w for all u ∈ v,
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so that
〈
j (w)u, u′〉 = 〈

w, [u, u′]〉 for all u, u′ ∈ v. (15)

Thus, for w ∈ z, the map j (w) belongs to so(v), the Lie algebra of skew-symmetric maps
of v with respect to 〈 , 〉 and one gets that j : z → so(v) is a linear homomorphism. As
in the Riemannian case, the maps j (w) capture important geometric information of the
pseudo-Riemannian space (N , 〈 , 〉).

The covariant derivative ∇ relative to the Levi-Civita connection of (N , 〈 , 〉) evaluated
on left-invariant vector fields is

2 ∇uw = [u, w] − ad∗
u w − ad∗

w u, u, w ∈ n,

which together with the formula for j : z −→ so(v) in (15) gives
⎧⎨
⎩

∇uw = 1
2 [u, w] if u, w ∈ v,

∇uw = ∇wu = − 1
2 j (w)u if u ∈ v, w ∈ z,

∇uu′ = 0 if u, u′ ∈ z.

(16)

Since for simply connected nilpotent Lie groups the exponential map exp : n −→ N is
a diffeomorphism, it is possible to define smooth maps b : N −→ v and a : N −→ z such
that for a given n ∈ N one writes

n = exp(b(n)+ a(n)). (17)

Let {b1, . . . , bm} be a basis of v and {a1, . . . , ap} be a basis of z, then there are defined maps
{βi , α j : N −→ R : i = 1, . . . ,m, j = 1, . . . , p} for which

b(n) =
m∑

i=1

βi (n)bi , a(n) =
p∑

j=1

α j (n)a j .

Thus, ϕ = (β1, . . . , βm, α1, . . . , αp) is a global coordinate system for N where at n ∈ N it
holds

∂

∂βi |n
= Ln∗ |e(bi + 1

2

m∑
k=1

[bi , βk(n)bk]),

∂

∂α j |n
= Ln∗ |e(a j ). (18)

To verify these equalities see formulas for the exponential map in [9].
Let γ : I −→ N be a curve on N and write b and a for the vector valued maps γ (t) =

exp(b(t)+ a(t)). Making use of the equalities in (18) one gets

d

dt
γ (t) =

m∑
i=1

·
βi

∂

∂βi |γ (t)
+

p∑
i= j

·
α j

∂

∂α j |γ (t)

= Lγ (t)∗ |e
⎛
⎝ m∑

i=1

·
βi bi +

p∑
j=1

(
m∑

k=1

1

2
c j

ik

·
βiβk+ ·

α j

)
a j

⎞
⎠

= Lγ (t)∗ |e
( ·

b + ·
a + 1

2
[ ·
b, b]

)
,
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where c j
ik denote the structure constants for the Lie algebra. Notice that Lγ (t)∗ |e(

·
b) and

Lγ (t)∗ |e(
·
a + 1

2 [ ·
b, b]) are the components of dγ /dt in the bundles vN and zN , respectively.

So the covariant derivative of
·
γ along γ is given by

∇dγ /dt dγ /dt = Lγ (t)∗ |e
(

∇·
b+ ·

a+ 1
2 [ ·

b,b]
·
b +

(
·
a +1

2
[ ·
b, b]

))
.

Denote by σ = ·
b + ·

a + 1
2 [ ·

b, b] the curve in n. Then

∇σ(t)
·
b = ∇σ(t)

(
m∑

i=1

·
βi bi

)
=

m∑
i=1

··
βi bi +

m∑
i=1

·
βi ∇σ(t)bi

which after (16) equals

∇σ(t)
·
b=··

b +
m∑

i=1

·
βi

(
1

2
[ ·
b, bi ] − 1

2
j

(
·
a +1

2
[ ·
b, b]

)
bi

)
= ··

b −1

2
j

(
·
a +1

2
[ ·
b, b]

) ·
b .

(19)

Similar computations give

∇σ(t)
(

·
a +1

2
[ ·
b, b]

)
= ··

a +1

2
[··b, b] − 1

2
j

(
·
a +1

2
[ ·
b, b]

) ·
b .

Therefore, a curve γ : I → N is a geodesic if and only if the curve σ : I → n satisfies
∇σ(t)σ (t) = 0, that is, the following system of equations is satisfied

{ ··
b − j (

·
a0)

·
b = 0

·
a + 1

2 [ ·
b, b] = ·

a0

where
·
a0 denotes

·
a (0). (20)

Let f be an automorphism of N . Its differential at the identity e satisfies
f∗(z) ⊆ z and if moreover f is an isometry its differential also preserves the orthogonal
complement z⊥ = v: f∗(v) ⊆ v. In view of f ◦ Ln = L f (n) ◦ f for every n ∈ N , f
preserves the invariant distributions zN and vN whenever it is an isometric automorphism.
Therefore,

Isoaut(N ) ⊆ Isospl(N ). (21)

Proposition 1 Let N be a simply-connected 2-step nilpotent Lie group with a left-invariant
pseudo-Riemannian metric such that its center is non-degenerate. Then

Isospl(N ) = Isoaut(N ).

Proof In view of (21) we should prove that every isometry f ∈ H spl is an automorphism of
N . The proof follows from the next equality for f , we shall prove:

f∗( j (u)w) = j ( f∗u) f∗w for all w ∈ v, u ∈ z.

Let γ = exp(b(t) + a(t)) denote the geodesic throughout e such that
·
γ (0) = w + u, that

is
·
b (0) = w and

·
a (0) = u. Since f∗ is an isometry preserving the splitting, the geodesic

γ̃ = f ◦ γ can be written as γ̃ (t) = exp( f∗b(t)+ f∗a(t)). Equations (19) and (20) at t = 0
for both geodesics γ and γ̃ give
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j ( f∗u) f∗w =
(

j ( f∗
·
a0) f∗

·
b

)
t=0

= 2

(
∇

f∗(
·
b+( ·

a+ 1
2 [ ·

b,b])) f∗
·
b

)
t=0

= 2 f∗
(

∇·
b+( ·

a+ 1
2 [ ·

b,b])
·
b

)
t=0

= f∗( j (u)w),

as intended to prove.
Now consider w1, w2 ∈ v. For any u ∈ z it holds

〈 f∗[w1, w2], u〉 = 〈[w1, w2], f −1∗ u
〉 = 〈

w2 , j ( f −1∗ u)w1
〉 =

= 〈
w2 , j ( f −1∗ u)( f −1∗ ( f∗w1))

〉 = 〈
w2 , f −1∗ ( j (u) f∗w1)

〉 =
= 〈 f∗w2 , j (u) f∗w1〉 = 〈[ f∗w1, f∗w2] , u〉 ,

which together with the fact that z is non-degenerate implies that f∗ is a Lie algebra auto-
morphism. Consequently f ∈ H autN . ��

The proof above extends to the pseudo-Riemannian setting the one performed by Kaplan
in [13]. Below we investigate geometrical properties of pseudo-Riemannian 2-step nilpotent
Lie groups to get conditions to assert that the group of isometries of N preserving the splitting
coincides with the full isometry group of N .

The Ricci tensor of (N , 〈 , 〉) can be seen at the Lie algebra level as the bilinear form on
n defined throughout the curvature tensor R by

Ric(u, w) = trace(ξ −→ R(ξ, u)w) for u, w ∈ n.

Since Ric is a symmetric form on n, there exists a linear operator Rc : n −→ n such that

〈Rc u, w〉 = Ric(u, w)

which is called the Ricci operator. The scalar curvature s of N is the trace of the Ricci
operator Rc.

In the pseudo-Riemannian case, the formulas for the Ricci operator are slightly different
from those in the Riemannian case (see [9]). Recall that a basis
{w1, . . . , wn} of n is said to be orthonormal if

〈
wi , w j

〉 = ±δi j . The proof of the next
proposition follows from usual computations and it can be seen in [18].

Proposition 2 Let (N , 〈 , 〉) denote a 2-step nilpotent Lie group equipped with a left-
invariant pseudo-Riemannian metric such that the center is non-degenerate.

1. The Ricci operator leaves v and z invariant.
2. If {a1, . . . , ap} is an orthonormal basis of z then

Rc |v = 1

2

p∑
i=1

εk j (ak)
2 with εk = 〈ak, ak〉 . (22)

3. Ric(u, u′) = − 1
4 trace( j (u) j (u′)), for all u, u′ ∈ z.

We proceed with the study of the eigenvalues of the Ricci operator Rc. Recall that if U is
a real vector space its complexification is the vector space

UC = U ⊗R C
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and such that dimR U = dimC UC. A real linear transformation T of U defines a C-linear
operator on UC as T (u ⊗ z) = T (u)⊗ z for all u ∈ U . In addition, if U = U1 ⊕ U2, then
UC = UC

1 ⊕UC

2 and Ui is invariant under T if and only if UC

i is invariant under the complex
transformation T .

Denote by λ1, λ2, . . . , λs the different eigenvalues of the (complex) Ricci operator Rc.
Since the metric is left-invariant, the eigenvalues of Rc are constant on N . The subspace of
nC associated to the eigenvalue λi is

Vλi = ker(Rc −λi I )ri , (23)

where ri is the degree of λi in the minimal polynomial of Rc. The Jordan decomposition
theorem states that

nC = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλs . (24)

Translating on the left the spaces above, at a generic point n ∈ N one obtains

Tn NC = Ln ∗|eVλ1 ⊕ Ln ∗|eVλ2 ⊕ · · · ⊕ Ln ∗|eVλs . (25)

The subspace Ln ∗|eVλi of Tn NC is the one that corresponds to the eigenvalue λi of the Ricci
tensor at n,Rcn ; that is,

Ln ∗|eVλi = ker(Rcn −λi I )ri .

Given an isometry f of N , it holds

f∗|n Rcn = Rc f (n) f∗|n for all n ∈ N , (26)

and this formula is also valid for the corresponding complexified linear transformations. The
last two equations yield

u ∈ Ln ∗|eVλi ⇔ (Rcn −λi I )ri u = 0

⇔ f∗|n((Rcn −λi I )ri u) = 0

⇔ (Rc f (n) −λi I )ri ( f∗|nu) = 0

⇔ f∗|n(u) ∈ L f (n) ∗|eVλi . (27)

Therefore, the direct sum of vector spaces in (25) is preserved by isometries.

Lemma 2 Let (N , 〈 , 〉)be a 2-step nilpotent Lie group such that 〈 , 〉 is a pseudo-Riemannian
left-invariant metric for which the center is non-degenerate. Assume

vC = Vλ1 ⊕ · · · ⊕ Vλ j ,

zC = Vλ j+1 ⊕ · · · ⊕ Vλs , (28)

for the different eigenvalues λ1, λ2, . . . , λs of the Ricci operator Rc with Vλi the eigenspace
corresponding to λi . Then every isometry of N preserves the splitting T N = vN ⊕ zN,
that is,

Iso(N ) = Isospl(N ).

Proof The hypothesis in (28) implies that for any n ∈ N ,

vNC

n = Ln ∗|eVλ1 ⊕ · · · ⊕ Ln ∗|eVλ j ,

zNC

n = Ln ∗|eVλ j+1 ⊕ · · · ⊕ Ln ∗|eVλs .
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Let f be an isometry of N , then f∗|n Ln ∗|eVλi = L f (n) ∗|eVλi as a consequence of the
conditions in (27). Therefore,

f∗|n(vNC

n ) = vNC

f (n) and f∗|n(zNC

n ) = zNC

f (n)

from which we conclude f∗|n(vNn) = vN f (n), f∗|n(zNn) = zN f (n) and so f ∈
Isospl(N ). ��

A large family of nilpotent Lie algebras satisfying the hypothesis of the lemma above is
the family of pseudo-H -type Lie algebras. 1

A nilpotent Lie algebra n (or its corresponding simply connected Lie group) equipped
with a metric 〈 , 〉 for which the center is non-degenerate is said to be of pseudo-H -type
whenever it satisfies

j (u)2 = −〈u, u〉 I for all u ∈ z. (29)

Lie algebras with positive definite metric (29) are already known as H -type Lie algebras,
introduced by Kaplan in [13]. H -type Lie groups are 2-step nilpotent and they are natural
generalizations of the Iwasawa N -groups associated to semisimple Lie groups of real rank
one.

Notice that pseudo-H -type Lie algebras are not necessarily non-singular since vectors of
zero norm could satisfy (29). For any nilpotent Lie group of pseudo-H -type the three groups
in (14) coincide.

Theorem 1 Let (N , 〈 , 〉) denote a pseudo-H-type Lie group. Then

1. Isoaut(N ) = Isospl(N ) = Iso(N ).
2. the scalar curvature of (N , 〈 , 〉) is negative.

Proof The first equality in 1 holds after Proposition 1. We use the previous lemma to prove
the second one. Indeed, we show that for pseudo-H -type Lie algebras, the Ricci operator is
diagonalizable and negative (resp. positive) definite on v (resp. on z).

Let {ak}p
k=1 be an orthonormal basis of z. The fact of N being pseudo-H -type implies

j (ak)
2 = −〈ak, ak〉 Im = −εk Im with εk = ±1 for k = 1, . . . , p and m = dim v. Then,

according to (22) the Ricci operator satisfies

Rc |v = 1

2

p∑
k=1

εk j (ak)
2 = −1

2

p∑
k=1

ε2
k Im = − p

2
Im (30)

so Rc is negative definite on v.
On the other hand for u ∈ z

Ric(u, u) = −1

4
trace( j (u)2) = 1

4
trace(〈u, u〉 Im) = 〈u, u〉

4
m.

Hence 〈Rc u, u〉 = Ric(u, u) = 〈m
4 u, u

〉
for all u ∈ z. Polarizing this identity one gets〈

Rc u, u′〉 = 〈m
4 u, u′〉 for any u, u′ ∈ z and therefore Rc = m

4 Ip on z. In particular, Rc is
positive definite on z.

Clearly, the eigenvalues of Rc are λ1 = −p/2 and λ2 = m/4 and the subspace Vλi in (23)
is the eigenspace corresponding to λi , for each i = 1, 2. Moreover v = Vλ1 and z = Vλ2 , so
requirements (28) are satisfied and the first assertion of the theorem follows.

From the proof above, the trace of the Ricci operator is s = −pm/4, where p = dim z

and m = dim v, hence negative and 2 follows. ��
1 We find this name for the first time in [2], see also [12].

123



Ann Glob Anal Geom

A natural question at this point is the validity of the converse of the previous result. The
next example gives a negative answer, that is pseudo-H -type Lie groups are not the only ones
for which Isoaut(N ) = Iso(N ).

Recall that solvable Lie groups endowed with a Riemannian left-invariant metric have
non-positive scalar curvature (see Theorem 6 [14]). As shown in next example, this assertion
does not hold in the indefinite case.

Example 1 Let H3 be the Heisenberg Lie group and denote with h3 its Lie algebra which
is spanned by vectors e1, e2, e3, satisfying the non-zero Lie bracket relation [e1, e2] = e3.
Consider the left-invariant metric on H3 induced by the metric on h3 given by

−〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1;
in particular the center of h3 is non-degenerate. After the computation of j (e3) it holds
j (e3)

2 = I , implying that h3 is not a pseudo-H -type Lie algebra.
By Proposition 2, the Ricci operator satisfies Rc |v = 1

2 I and Rc(e3) = − 1
2 e3. So Rc

is diagonalizable and the scalar curvature of (H3, 〈 , 〉) is s = 1/2. Also v = V1/2 and
z = V−1/2, thus Lemma 2 leads us to

Iso(H3) = Isoaut(H3).

In [6], it is shown that this non-flat pseudo-Riemannian nilpotent Lie group satisfies
Isoaut(H3) = H3 �O(1, 1).

Remark 3 The Lorentzian nilpotent Lie group (N , gN ) in the previous section shows that in
the pseudo-Riemannian case the isometries do not need to preserve the splitting vN ⊕ zN ,
even when the center is non-degenerate (compare with [3]). Using Proposition 2, one gets
that the Ricci tensor of this manifold is non-zero but nilpotent. Then the Lie algebra n of N
is the subspace defined in (23) corresponding to the zero eigenvalue, that is V0 = n. Since
V0 has non-trivial intersections with v and z, a decomposition as in (28) is not possible.

The fact that the Ricci operator is nilpotent implies that the scalar curvature of the Lie
groups (G, gG) and (N , gN ) are zero but they are not Ricci flat. Note that G is 3-step solvable
(see Theorem 7 in [14]).

Once one knows that for (N , 〈 , 〉) it holds H autN = H , the isometry group can be
computed as follows. Recall that since N is simply connected, we do not distinguish between
the group of automorphisms of N and of n. The isotropy group H is given by

H = {(φ, T ) ∈ O(z, 〈 , 〉z)× O(v, 〈 , 〉v) : T j (w)T −1 = j (φw), w ∈ z}, (31)

where O(V, 〈 , 〉) denotes the group of isometric linear maps of (V, 〈 , 〉). The Lie algebra
of H is given by

h = {(A, B) ∈ so(z, 〈 , 〉z)× so(v, 〈 , 〉v) : [B, j (w)] = j (Aw), w ∈ z}, (32)

where so(V, 〈 , 〉) denotes the set of skew-symmetric linear maps of (V, 〈 , 〉). In fact, let
ψ denote an orthogonal automorphism of (n, 〈 , 〉). Thus, ψ(z) ⊆ z and since v = z⊥ then
ψ(v) ⊆ v. Set φ := ψ|z and T := ψ|v , thus (φ, T ) ∈ O(z, 〈 , 〉z)× O(v, 〈 , 〉v) such that

〈
φ−1[u, v], x

〉 = 〈[T u, T v], j (x)〉 if and only if

〈 j (φx)u, v〉 = 〈 j (x)T u, T v〉
which implies (31). By deriving (31) one gets (32). The following proposition is the correct
version of that in [18].
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Proposition 3 Let N denote a simply connected 2-step nilpotent Lie group endowed with a
left-invariant pseudo-Riemannian metric, with respect to which the center is non-degenerate
and such that H = H autN . Then the group of isometries is

Iso(N ) = N � H autN ,

where N acts as the group of left-translations by elements of N and the isotropy subgroup
H is given by (31) with Lie algebra as in (32).

5 Isometric actions for degenerate center

Let N denote a simply connected nilpotent Lie group with Lie algebra n and set a direct sum
of vector spaces

n = v ⊕ z.

Note that v does not necessarily coincide with z⊥. By translations on the left, set T N =
vN ⊕ zN , a decomposition of left-invariant distributions. Define Isospl(N ) as the group of
isometries preserving this splitting.

Assume (N , 〈 , 〉) is endowed with a bi-invariant metric (in this case z⊥ ⊆ z). Here we
show that the three groups, Iso(N ), Isoaut(N ) and Isospl(N ), could be very different and
moreover there could be no relationship between Isoaut(N ) and Isospl(N ).

Lemma 3 Let (N , 〈 , 〉) be a 2-step nilpotent Lie group equipped with a bi-invariant met-
ric, let n denote its Lie algebra. Then for any direct sum decomposition n = z ⊕ v, the
automorphism Ad(n) does not preserve v, whenever n is a non-central element.

Proof Since the Lie group is 2-step nilpotent, for any n ∈ N there exists w ∈ n such that
n = exp (w) and Ad(n) = I + 1

2 adw . Consider a direct sum as vector spaces of the form
n = v ⊕ z. Suppose n is non-central then n = exp(w) with w /∈ z and let u ∈ n be such that
[w, u] �= 0. Write u = b + a with a ∈ z and b ∈ v − {0}. Then Ad(n)(b) = b + 1

2 [w, b] =
b + 1

2 [w, u] having non-zero component on z. ��
Remark 4 Let N denote a pseudo-Riemannian nilpotent Lie group admitting a latticeΓ such
that Γ \N is compact. Let Isospl

0 (Γ \N ) denote the connected component of the subgroup of
isometries preserving a fixed splitting of T (Γ \N ). Cordero and Parker [4] conclude that
Isospl

0 (Γ \N ) 
 T m is an m-dimensional torus. Its proof should make use of the fact that
there are no non-trivial inner automorphisms in this group (Lemma 3).

The fact that N is endowed with a bi-invariant metric implies that the conjugation map χn

given by χn(g) = ngn−1 is an isometry for all n ∈ N . The lemma above says that none of
these automorphisms preserve any possible splitting T N = v N ⊕ z N with the exception of
the trivial ones, thus I sospl(N ) �= Isoaut(N ) and Isospl(N ) �= Iso(N ) since N is non-abelian.

As already mentioned for bi-invariant metrics, the map: g → g−1 is an isometry which is
not an automorphism, unless the group is abelian. Thus Isoaut(N ) �= Iso(N ). As stated above,
the group Isoaut(N ) is not contained into the group Isospl(N ). The next example shows that
Isospl(N ) could not be contained in Isoaut(N ).

Example 2 Consider R
6 with the canonical differentiable structure and let g denote the

following pseudo-Riemannian metric on R
6:

g = dx1dx6 + dx3dx4 − dx2dx5. (33)
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This manifold admits an isometric transitive and simple action of the 2-step nilpotent
Lie group N which is modeled on R

6 with multiplication operation such that for p =
(x1, x2, x3, x4, x5, x6) and q = (y1, y2, y3, y4, y5, y6), it holds

p · q =
(

x1 + y1, x2 + y2, x3 + y3, x4 + y4 + 1

2
(x1 y2 − x2 y1),

x5 + y5 + 1

2
(x1 y3 − x3 y1), x6 + y6 + 1

2
(x2 y3 − x3 y2)

)
. (34)

The corresponding metric on N induced by (33) is invariant under left- and right-translations,
hence g is a bi-invariant (pseudo-Riemannian) metric on N . Its Lie algebra n admits a basis
{ei }6

i=1 obeying the non-zero Lie bracket relations

[e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6.

The Lie algebra n is the free 2-step nilpotent Lie algebra on three generators and N is its
corresponding simply connected Lie group. At the Lie algebra level, the bi-invariant metric
(33) induces the ad-invariant metric verifying [5]

〈e1, e6〉 = 〈e3, e4〉 = − 〈e2, e5〉 = 1.

The center z of n is spanned by e4, e5, e6 and it is totally isotropic (z⊥ = z ). Moreover,

n = v ⊕ z (35)

where v = span{e1, e2, e3} is also a totally isotropic subspace. The splitting of T N by
left-invariant distributions associated to (35) at each point p of N is given by

vNp = span{X1|p, X2|p, X3|p} and zNp = span{X4|p, X5|p, X6|p}
where Xi is the left-invariant vector field of N such that Xi |0 = ei . Canonical computations
show that

〈
∂i , ∂ j

〉 = 〈
Xi , X j

〉
for all i, j , where ∂i = ∂

∂xi
.

For each τ ∈ R consider the diffeomorphism Fτ , defined as

Fτ (x1, x2, x3, x4, x5, x6) = (cosh τ x1 + sinh τ x3, x2, sinh τ x1 + cosh τ x3,

cosh τ x4 − sinh τ x6, x5,− sinh τ x4 + cosh τ x6)

which is an isometry of N . Indeed, its differential at p, in the ordered basis {∂1, ∂3, ∂4, ∂6,

∂2, ∂5} of Tp N , is

d Fτp =
⎛
⎝ A 0 0

0 A−1 0
0 0 I2×2

⎞
⎠ , where A =

(
cosh τ sinh τ
sinh τ cosh τ

)
∈ O(1, 1).

The map Fτ preserves the metric in (33) for all τ ∈ R. Moreover, it preserves the splitting
T N = vN ⊕ zN . In fact d Fτp (zNp) = zNFτ (p) and

d Fτp X1|p = cosh τ X1|Fτ (p) + sinh τ X3|Fτ (p) ∈ vNFτ (p),

d Fτp X2|p = X2|Fτ (p) ∈ vNFτ (p),

d Fτp X3|p = sinh τ X1|Fτ (p) + cosh τ X3|Fτ (p) ∈ vNFτ (p).

Therefore d Fτp (vNp) = vNFτ (p) and Fτ ∈ Isospl(N )
Finally, notice that d Fτ0 is not a Lie algebra isomorphism if τ �= 0, therefore Fτ /∈

Isoaut(N ) for τ �= 0. Furthermore, Iso(N ) = N · O(3, 3) by Lemma 1.
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We have already proved that on the Lie group N of the previous example, there are
isometries preserving a fixed splitting which are not automorphisms.

Proposition 4 Let (N , 〈 , 〉) denote a 2-step nilpotent Lie group endowed with a bi-invariant
metric. Then the center is degenerate [5] and

– Isospl(N ) �= Isoaut(N );
– Isospl(N ) � Iso(N ) and Isoaut(N ) � Iso(N ).
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