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ABSTRACT 
Particle filters are general methods for the solution of state estimation 
problems, which can be applied to nonlinear models with non-Gaussian 
uncertainties. In this paper, an algorithm of the particle filter is used for the 
simultaneous estimation of model parameters and state variables in a 
bioheat transfer problem associated with the radio frequency (RF) 
hyperthermia treatment of cancer. Results obtained with simulated 
measurements indicate an excellent agreement between the estimated 
and the exact quantities, even for cases with large uncertainties in the 
measurements, as well as in the evolution and measurement models. 
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1. Introduction 

Particle filter methods are used to solve inverse state estimation problems with sequential Bayesian 
inference. The application of such methods relies on the available measured data, as well as on stoch-
astic mathematical models for the evolution of the dynamic state variables and for the measurements 
[1, 2]. Different particle filter methods have been developed in order to represent the posterior density 
of such variables in terms of random samples (particles) and associated weights. It is not intended to 
make a literature review of the available algorithms here, but to mention some that served as the basis 
for the algorithm used in this work. The sequential importance sampling (SIS) algorithm introduced 
in a study by Hammersley and Hanscomb [3] was lately modified to include a resampling step 
(sampling importance resampling – SIR algorithm) [4, 5]. The resampling step avoids the degener-
ation of particles, characterized by only few particles with large weights, and large computational 
work to advance particles with negligible weights. On the other hand, the SIR algorithm may suffer 
from sample impoverishment that is characterized by many identical particles and the auxiliary par-
ticle filter (APF) was developed to avoid such deleterious effect [6]. In the APF, resampling is applied 
over the particles at the previous time instant, by using the measurements at the current time instant. 
For the simultaneous estimation of model parameters and state variables with the aforementioned 
algorithms, evolution models for the parameters need to be specified; although a general random 
walk model can be applied, it might fast degenerate the particles. As a result, algorithms for the 
simultaneous estimation of parameters and state variables have been developed, like that of Liu 
and West [7], which is used in this work. In Liu and West’s algorithm, the parameters are represented 
as a mixture of Gaussian kernels [7, 8]. 

The particle filter methods have been recently applied to different biomedical applications, includ-
ing the hyperthermia treatment of cancer [9–16]. Hyperthermia is a cancer treatment where the 
tumor temperatures are raised to values typically between 40°C and 45°C, with heating imposed 
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by electromagnetic waves [17–51]. This treatment aims either at directly killing the cancer cells or 
making them more susceptible to the effects of radiotherapy [28] or chemotherapy [29]. Depending 
on several factors, including the type of the heat source, geometry, and tumor location, healthy tissues 
can be overly heated and thermally damaged as well. With the recent advancement of nanotechnology, 
nanoparticles have been loaded inside the tumor, in order to locally increase the absorption of the elec-
tromagnetic waves in the radiofrequency [15, 30–40] and near-infrared [16, 41–46] ranges. As a result, 
the tumor is imposed larger temperature increases than the surrounding healthy tissues [47–51]. 

In the present work, the analysis performed by the authors in reference [15] is extended to a three- 
dimensional case, as well as to an inverse problem of simultaneous estimation of state variables and 
model parameters. The inverse problem is solved with simulated measurements for an idealized case 
in the hyperthermia treatment of cancer, imposed by electromagnetic waves in the radiofrequency 
range and by considering the tumor loaded with iron oxide nanoparticles (Fe3O4). 

2. Parameter and state estimation problem 

In the state estimation problem, consider a model for the evolution of the vector x in the following 
form [52]: 

xk ¼ fk xk� 1; h; vk� 1ð Þ ð1Þ

Nomenclature 

cp specific heat 
D number of measurements 
E electric field strength 
f frequency 
f, h general functions for the evolution and  

observation models, respectively 
H intensity of the magnetic field 
hf heat transfer coefficient 
k thermal conductivity 
Lx, Ly, Lz domain dimensions in the x, y, and  

z directions, respectively 
n measurement noise vector 
n number of nanoparticles 
N number of particles for the particle filter 
m Gaussian kernel center 
M total number of elements 
Q volumetric heat source 
r mean radius of nanoparticles 
R radius of the tumor 
s interface between the tumor and the  

surrounding tissue 
T temperature 
Tb blood temperature 
Tf temperature of the surrounding medium 
t time 
U voltage 
w weights of the particles 
x state vector 
x,y,z Cartesian coordinates 
v state noise vector 
V Monte Carlo covariance matrix of the posterior 

distribution 
V volume 
z vector of measurements 

Greeks 
δ discount factor for Liu & West's algorithm 
ε permittivity 
π(a|b) conditional probability of a when b is given 
ρ density 
Ω surface of the domain 
Ω′1, Ω′2 boundary patches with electrodes set to  

voltages U and ground, respectively 
ωb blood perfusion rate 
φ electric potential 
θ parameter vector 
Θ volumetric concentration of  

nanoparticles 
σ electric conductivity 
χ susceptibility of the magnetic nanoparticles 
μ0 dielectric permeability constant 
ν constant standard deviation 
ξ Gaussian random vector with zero mean and 

constant standard deviation 

Superscripts 
i particle index 
meas measurements 

Subscripts 
1 health tissue 
2 tumor 
3 nanoparticles 
b blood 
e electrical 
est estimated 
exa exact 
k index to time step 
m metabolism   
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where the subscript k ¼ 1, 2, …, denotes a time instant tk in a dynamic problem. The vector x 2 Rnx is 
called the state vector and contains the variables to be dynamically estimated. This vector advances in 
accordance with the state evolution model given by Equation (1), where fk is a general function of the 
state variables x, of the vector of parameters θ and of the state noise vector v 2 Rnv [52, 53]. 

The measurements zk ∈ RDare available at tk, k ¼ 1, 2, …, and are related to the state variables xk 
through the observation model hk given by 

zk ¼ hk xk; h;nkð Þ ð2Þ

where n ∈ RD is the measurement noise. 
For the evolution-observation models given by Equations (1) and (2), the noise vectors are also 

assumed to be mutually independent and independent of the initial state x0[2]. Other hypotheses that 
apply to the evolution-observation models given by Equations (1) and (2) can be found in references 
[1–8, 52–54]. 

The filtering form of the state estimation problem is considered in this paper. By assuming that π 
(x0 | z0,θ) ¼ π(x0) is available at time t0, π(xk | z1:k, θ) is obtained with Bayesian filters in two sequential 
steps. The state evolution model is used to advance the vector of state variables from time tk-1 to time 
tk in the prediction step, thus obtaining a prior distribution π(xk) for the state variables at time tk. The 
information provided by the measurements is then adjoined to this prior distribution in the update 
step through Bayes’ theorem, by using the likelihood function π(zk | xk, θ) [1–8, 52–54]. 

The particle filter method is used in this paper due to the nonlinear character of the present state 
estimation problem. The particle filter method is a Monte Carlo technique, where the required 
posterior density function is represented by a set of random samples (particles) with associated 
weights; the statistics of the posterior distribution is computed based on these samples and weights 
[1–8, 52–54]. Let xi

k denote the particle i, with associated weight wi
k; i ¼ 0; . . . ;N, at time tk, where 

N is the number of particles. Also, let the set of all state variables up to tk be denoted by x0:k ¼ {xj, 
j ¼ 0, 1, …, k}. The weights are normalized so that 

PN
i¼1 wi

k ¼ 1. Then, the posterior marginal 
distribution, can be approximated by [2, 53]: 

pðxk j zk; hÞ �
XN

i¼1
wi

kdðxk � xi
kÞ ð3Þ

with weights computed from [53]: 

wi
k / wi

k� 1pðzk j xi
k; hÞ ð4Þ

Equations (3) and (4) can be applied recursively for the estimation of π(xk | zk, θ) at each time step, 
for θ deterministically known, such as in the SIR and ASIR algorithms. If these parameters are to be 
estimated simultaneously with the state variables, one possibility is to apply the SIR or ASIR filters by 
mimicking the parameters as state variables with an evolution model, for example, in the form of a 
random walk process. On the other hand, the simulation of parameters as state variables might fast 
degenerate the particles [7, 13]. The algorithm by Liu and West [7], which is based on the ASIR 
version of the particle filter, can be used for the estimation of the posterior probability distribution 
π(xk, θ | z1:k). Therefore, the particles need to be extended to fxi

k; h
i
k : i ¼ 0; . . . ;Ng. The subscript 

k for the parameters θ and associated quantities is used to indicate that they refer to the posterior 
distribution at time tk; it does not mean that such quantities are time dependent. The particle filter 
algorithm by Liu and West is based on the hypothesis that the vector of nondynamic parameters θ is 
represented by [8] 

pðh z1:k� 1Þj �
XN

i¼1
wi

k� 1 Nðh jmi
k� 1; h

2Vk� 1Þ ð5Þ

where N(θ | a, B) is a multivariate Gaussian density with mean a and covariance matrix B, while h is a 
smoothing factor and Vk� 1 is the Monte Carlo posterior covariance matrix at time tk-1. Equation (5) 
shows that the above density is a mixture of Gaussian distributions Nðh jmi

k� 1; h
2Vk� 1Þ weighted by 
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the sample weights wi
k� 1. The Gaussian kernel centers mi

k� 1 are specified by using the shrinkage 
rule[8]: 

mi
k� 1 ¼ a hi

k� 1 þ ð1 � aÞhk� 1 ð6Þ

where hk� 1 is the mean of θ at time tk-1. The shrinkage factor a is computed by 

a ¼
3d � 1

2d
ð7Þ

where 0.95 < δ < 0.99 is a discount factor. The smoothing factor, h, also depends on the shrinkage 
factor, as follows 

h2 ¼ 1 � a2 ð8Þ

The algorithm by Liu and West used in this work is summarized in Table 1. 
By assuming that the measurement errors are additive, uncorrelated, Gaussian random variables 

with zero means and known constant standard deviation, ν, and independent of the state variables, 
the likelihood function for each particle xi

k is then expressed as [2, 52, 53]: 

pðzmeas
k jxi

k; hÞ ¼ ð2pÞ
� D=2

n� D exp �
1
2

zmeas
k � zkðxi

k; hÞ
� �T zmeas

k � zkðxi
k; hÞ

� �

n2

( )

ð9Þ

where zkðxi
k; hÞ is obtained from the observation model given by equation (2) and D is the number of 

measurements. 

3. Radiofrequency hyperthermia using iron oxide nanoparticles 

Radiofrequency hyperthermia therapy is a cancer treatment for partial or total elimination of a solid 
tumor through the heating imposed by induction of electromagnetic waves in the range from 0.1 MHz 

Table 1. Liu and West's algorithm [7]. 

Step 1 
Select a value for δ 2 [0.95;0.99], then compute a with equation (7) and h2 with equation (8). 

For i ¼ 1, …, N  
Compute mi

k� 1 with Equation (6) and calculate mi
k ¼ E½xk jxi

k� 1;mi
k� 1�. Use the likelihood density to calculate the corresponding 

weights wi
k ¼ pðzk jm

i
k ;mi

k� 1Þw
i
k� 1. 

Step 2 
Calculate the total weight t ¼

P
i wi

k ; 
Normalize the particle weights, that is, for i ¼ 1, …, N let wi

k ¼ t� 1wi
k . 

Step 3 
Resample the particles as follows: 

Construct the cumulative sum of weights (CSW) by computing ci ¼ ci� 1 þ wi
k for i ¼ 1, …, N with c0 ¼ 0. 

Let i ¼ 1 and draw a starting point u1 from the uniform distribution U[0,N� 1] 
For j ¼ 1, …, N  
Move along the CSW by making uj ¼ u1 þN� 1(j � 1)  
While uj > ui make i ¼ i þ 1  
Assign parent ij ¼ i. 

Step 4 
For j ¼ 1, …, N  

Draw samples hj
k from Nðhj

k jm
ij
k� 1; h2Vk� 1Þ, by using the parent ij. 

Step 5 
For j ¼ 1, …, N  

Draw particles xj
k from the prior density pðxk j x

ij
k� 1; h

j
kÞ, by using the parent ij.  

Calculate the correspondent weights wj
k ¼

pðzk j x
j
k ;h

j
kÞ

pðzk j m
ij
k ;m

ij
kÞ

. 
Step 6 
Calculate the total weight t ¼

P
i wi

k ; 
Normalize the particle weights, that is, for i ¼ 1, …, N let wi

k ¼ t� 1wi
k .   
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to 100 MHz [18–24]. The temperature levels reached by the tumor cells might be sufficient for their 
destruction or to make them more susceptible to the effects of radiation or chemotherapy drugs 
[28, 29, 55, 56]. Currently, the combination of radiofrequency hyperthermia with tissues loaded with 
nanoparticles has been of great interest. In this kind of therapy, nanoparticles introduced into the 
tumor locally increase the absorption of the imposed electromagnetic waves, so that its temperature 
increases at a rate higher than that in the healthy surrounding tissues that do not contain nanopar-
ticles. Therefore, thermal damage is imposed to the tumor without significantly affecting the healthy 
tissues [15, 30–40]. 

In the study of radiofrequency hyperthermia, the mathematical formulation of the physical 
problem involves Maxwell’s equations with frequency-dependent properties and a bioheat transfer 
model [57]. The solution of the mathematical formulation requires the knowledge of several thermo-
physical properties and other input parameters, which are not widely known and exhibit variability 
from individual to individual, or even for the same individual under different physiological 
conditions. Therefore, the numerical simulation of the problem related to hyperthermia needs to 
be performed under the effects of large uncertainty. On the other hand, recent technological advance-
ments permit the temperature measurement of the tissues of the body, such as through the magnetic 
resonance technique [58]. If such measurements are available, the numerical simulation of the radio-
frequency problem containing uncertainties can be performed as a state estimation problem [5]. In 
the approach considered here, the radiofrequency hyperthermia problem is treated as an inverse 
problem of parameter and state estimation, with minimally invasive measurements. The focus of this 
work is the accurate prediction of the temperature field in tumor and healthy tissues, where iron 
oxide nanoparticles (Fe3O4) are loaded in the tumor region in order to enhance this cancer treatment 
and reduce damages to the healthy cells. 

3.1. Mathematical formulation 

The physical problem considered in this work involves a three-dimensional domain, consisting of a 
parallelepiped (healthy biological tissue) Ω1, with a spherical inclusion (tumor) Ω2, as shown by 
Figure 1. Heating is imposed by RF waves through the electrodes X01 and X02. Heat generated by 
RF waves inside the domain is propagated by conduction and blood perfusion. The electric potential 
within the domain can be obtained by solving the following Laplace’s equation [59]: 

r � eðx; y; zÞruðx; y; zÞ½ � ¼ 0 x; y; z 2 X1 [ X2 ð10Þ

where φ is the potential, (x,y,z) are the Cartesian coordinates, and ε is the permittivity, which varies 
spatially depending on the tissue and tumor regions. The interface between the tumor and normal 

Figure 1. Geometry.  
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tissues is assumed to have ideal electric contact. The boundary conditions for the electrical problem 
are given by 

uðx; y; zÞ ¼ U at X01 ð11Þ
uðx; y; zÞ ¼ 0 at X02 ð12Þ

ruðx; y; zÞ � n ¼ 0 elsewhere over the boundary ð13Þ

where U denotes the imposed electric potential with respect to ground. 
After computing the electric potential, one can calculate the electric field strength, E, and the 

intensity of the magnetic field, H, respectively, by 

Eðx; y; zÞ ¼ � ruðx; y; zÞ ð14Þ

Hðx; y; zÞj j ¼
1

1þ NðvÞ
Eðx; y; zÞj j

m0pfR
ð15Þ

where N(χ) ¼ 1/3 is the demagnetizing factor of the composite tissue [31, 36], χ is the susceptibility of 
the magnetic nanoparticles that can be described as the complex number χ ¼ χ′ þ iχ″ [60, 61], μ0 is the 
dielectric constant permeability of free space (μ0 ¼ 4π x 10� 7T m A� 1), f is the electromagnetic 
frequency, and R is the radius of magnetic induction loop. 

The heat source in the healthy tissue Ω1, which does not contain nanoparticles, is given by 

Qe1 x; y; zð Þ ¼
r1 Eðx; y; zÞj j

2

2
ð16Þ

where σ1 is the electric conductivity of the tissue. 
Nanoparticles are supposed to be ideally located only within the tumor. The heat source in the 

tumor, due to induction of magnetic nanoparticles by electromagnetic effects as well as by electrical 
current, can be calculated by [36] 

Qe2 x; y; zð Þ ¼ ð1 � HÞ
r2 Eðx; y; zÞj j

2

2
þH

9
16

v00

m0pfR2 Eðx; y; zÞj j
2

� �

ð17Þ

where Θ ¼ 4nπr3/3V is the volumetric concentration of nanoparticles, r is the mean radius of the sup-
posedly spherical nanoparticles, n is the number of nanoparticles, V is the volume of the tumor, and 
σ2 is the electrical conductivity of the tumor tissue embedded with nanoparticles, which can be 
approximated by a mixture of the two materials, that is, 1=r2 ¼ ð1 � HÞ=r02 þH=r3 where r02 and 
σ3 are the electrical conductivity of tumor and nanoparticles, respectively [30]. The permittivity of 
the tumor tissue embedded with nanoparticles is approximated by the permittivity of the tumor, 
because the concentration of nanoparticles is too small and differences in this parameter for biological 
tissues and nanoparticles are not large [31]. 

The mathematical formulation for bioheat transfer in this work is described by Pennes’s equation 
[57], that is 

q x; y; zð Þcp x; y; zð Þ
qT x; y; z; tð Þ

qt
¼ r � k x; y; zð ÞrT x; y; z; tð Þ½ � þ Q x; y; z; tð Þ ð18Þ

where ρ is the density, cp is the specific heat, T is the temperature, k is the thermal conductivity, and 
Q is the heat source per unit volume given by 

Q x; y; z; tð Þ ¼ qbcp;bxb x; y; zð Þ Tb � T x; y; z; tð Þ½ � þ Qm x; y; zð Þ þ Qe x; y; zð Þ ð19Þ

where ωb is the blood perfusion rate, ρb is the blood density, cp, b is the specific heat of blood, Tb is 
the blood temperature, Qm is the metabolic heat source, and Qe is the electrical heat source 
generated by radiofrequency external excitation given by equation (16) or (17). The tumor and 
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normal tissues are assumed to be in ideal thermal contact. The thermal boundary conditions are 
given by 

k1
qT
qx ¼ 0 at x ¼ � Lx

2 and x ¼ þ Lx
2 ; �

Ly
2 < y < þ Ly

2 ;

� Lz
2 < z < þ Lz

2

k1
qT
qz ¼ 0

at z ¼ � Lz
2 and z ¼ þ Lz

2 ; �
Lx
2 < x < þ Lx

2 ;

�
Ly
2 < y < þ Ly

2
� k1

qT
qy þ hf T ¼ hf Tf at y ¼ � Ly

2 ; �
Lx
2 < x < þ Lx

2 ; �
Lz
2 < z < þ Lz

2

k1
qT
qy þ hf T ¼ hf Tf at y ¼ þ Ly

2 ; � Lx
2 < x < þ Lx

2 ; �
Lz
2 < z < þ Lz

2

ð20Þ

where hf is the heat transfer coefficient; Tf is the temperature of the surrounding medium; Lx, Ly, 
and Lz are the domain lengths in the x, y, and z directions, respectively. The region is supposed to 
be initially at the steady-state temperature of the problem, when the electric heat source imposed 
by the radiofrequency external excitation is null. 

The solution of the forward problem was obtained with finite elements by using COMSOL Multi-
physics® 5.0. The particle filter used for the solution of the inverse problem, which is coupled to the 
forward problem solution, was coded in Matlab® on an Intel(R) Xeon E56445@2.40 GHz dual 
processor with 32 GB of RAM memory. 

4. Results and discussions 

A 3D parallelepiped with dimensions Lx ¼ 80 mm, Ly ¼ 40 mm, and Lz ¼ 40 mm was considered for 
the analysis, with the tumor assumed as a sphere of radius 10 mm, located at the center of the par-
allelepiped. Both electrodes were considered as a square of 20 mm of side, so that Ω′1 ¼ {� 10 mm �
x � 10 mm, y ¼ 20 mm, 10 mm � z � 10 mm} and Ω′2 ¼ {� 10 mm � x � 10 mm, y ¼ � 20 mm, � 10 
mm < z < 10 mm} where the x, y, and z axes are supposed to be located at the tumor center (see 
Figure 1). 

The healthy tissue is assumed as muscle. Thermophysical properties of healthy, blood, and 
tumor tissues are presented by Table 2. The initial condition for the bioheat transfer problem is 
the solution of the steady-state problem given by equations (18) to (20) with electrical heat source 
null, that is, Qe ¼ 0. For the convective boundary conditions, we assume Tf ¼ 20°C, hf ¼ 45 W/m2K 
and the blood temperature as Tb ¼ 37°C [30]. The initial temperature field is presented by Figure 2. 

Table 2. Properties of tissues. 
Parameter Healthy Tissue Tumor Blood  

Thermal Conductivity (W/mK) 0.5 0.75 – 
Specific Heat (J/kgK) 4200 4200 4200 
Density (kg/m3) 1000 1000 1000 
Perfusion Coefficient (s� 1) 0.0005 0.002 – 
Metabolic Heat Source (W/m3) 4200 42000 –   

Figure 2. Initial temperature.  
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For the iron oxide nanoparticles (Fe3O4), the following parameters have been considered: 
thermal conductivity k3 ¼ 40 W/mK, specific heat cp3 ¼ 4000 J/kgK, density ρ3 ¼ 5180 kg/m3[31]; 
the properties for the tumor embedded with nanoparticles were given in terms of the rule of 
mixtures [36]. 

Heating was supposed to be imposed with a frequency f ¼ 1 MHz. The electrical properties in the 
biological healthy tissue were σ1 ¼ 0.50268 S/m and ε1 ¼ 1836.4 [62], while for the tumor tissue we 
have r02 ¼ 1:2r1 and e02 ¼ e2 ¼ 1:2e1 [30]. The electrical properties of the iron oxide nanoparticles 
were taken as σ3 ¼ 25000 S/m and χ″ ¼ 18 [31]. For all cases examined below, the number of nano-
particles was n ¼ 1014 with radius r ¼ 10� 8 m, and the voltage at the electrode at the top boundary was 
U ¼ 15 V, applied during 900 s. Figure 3a and b presents the exact temperature fields at t ¼ 900 s over 
the surface z ¼ 0, without and with nanoparticles loaded into the tumor, respectively. The analysis of 
these figures shows that the use of nanoparticles in the tumor locally increases the temperature in the 
region. While the maximum temperature without nanoparticles was 39.9°C, which is a low value 
for the hyperthermia treatment, the maximum temperature with nanoparticles was 44.25°C inside 
the tumor region, while the other regions were not thermally affected and still maintained low 
temperatures levels. 

For the solution of the parameter and state estimation problem, temperature measurements of one 
single sensor were assumed available, located at the position {x ¼ 0 mm, y ¼ 0 mm, z ¼ 0 mm}. The 
measurements were generated from the solution of the direct (forward) problem with the parameters 
specified earlier. To avoid an inverse crime, the measurements were generated with 37856 elements in 
the region, while the inverse problem was solved with 16966 elements. Uncorrelated Gaussian errors 
with zero mean and standard deviation of 1°C were then added to the solution of the direct problem 
and the simulated measurements were supposed available every 20 s, during 900 s. Gaussian uncorre-
lated noise with zero mean and a standard deviation of 1°C was also added to the solution of the 
bioheat transfer problem, which served as the evolution model for the temperatures inside the domain 
and was solved with each sample of the Gaussian distribution of the electrical heat source. The 
evolution model for the electric field was taken as 

Ei
kðx; y; zÞ ¼ Ei

k� 1ðx; y; zÞ þ ni
kðx; y; zÞ ð21Þ

where ni
kðx; y; zÞ is a Gaussian random vector with zero mean and standard deviation of 10% of the 

deterministic solution of the problem given by equations (10)–(13). The subscript k in equation (21) 
does not represent a time evolution of E(x,y,z), but the fact that it is treated as state variable for the 
application of the particle filter, which aims at the estimation of the electric heat source and of the 
transient temperature field, at the position (x,y,z) that corresponds to each finite element used for 
the numerical solution of the coupled electric and bioheat transfer problem. The particles 
Ei

0ðx; y; zÞ at each position (x,y,z) were initially sampled from Gaussian distributions with means 
obtained from the deterministic solution of the electric problem and with standard deviations of 
10% of these means. 

Figure 3. Exact temperature field at section z ¼ 0 and t ¼ 900 s: (a) without nanoparticles (b) with nanoparticles.  
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The prior probability densities for the model parameters θ were assumed as Gaussian, with zero 
mean and standard deviation of 10% of the mean value of each parameter. The vector of model 
parameters is given by 

h ¼ ½k1; k2; cp;b; cp;1; cp;2; qb; q1; q2;xb;1;xb;2;Qm;1;Qm;2; hf ;r1;r2; n; r; v00;R� ð22Þ

The effects of the number of particles on the estimation of parameters and state variables were 
examined by using 50, 100, and 250 particles. The accuracy of the estimation of state variables was 
addressed in terms of the means and standard deviations of the root mean square error, obtained with 
10 repetitions of Liu and West’s algorithm. The root mean square (RMS) error is given by 

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

m¼1
Test;m � Texa;m

� �2

M

v
u
u
u
t

ð23Þ

where Test represents the estimated values, Texa represents the exact values, and M is the total number 
of elements and time steps. 

Table 3 shows the means and standard deviations of the RMS errors for temperature. It is observed 
that the means and standard deviations of the RMS error decrease when the number of particles is 
increased, as expected. Figure 4 shows the estimated temperature field at the plane z ¼ 0 mm and 
t ¼ 900 s; the estimated maximum temperature in the region obtained with 50 particles was 
43.81°C [Figure 4(a)], while it was 44.54°C with 100 particles [Figure 4(b)] and 44.27°C with 250 par-
ticles [Figure 4(c)]. The agreement between the maximum temperature estimated with 250 particles 
and the exact value of 44.25°C is excellent. A comparison of Figures 3b and 4 shows that all the esti-
mated temperature fields are in quite good agreement with the exact one, but the estimations are 

Figure 4. Estimated temperature field at section z ¼ 0: (a) 50 particles, (b) 100 particles, (c) 250 particles.  

Table 3. RMS errors. 
Number of Particles Mean (°C) Standard Deviation (°C) CPU time (h)  

50  0.959  0.387  17.2 
100  0.834  0.276  38.4 
250  0.743  0.202  98.5   
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smoother when the number of particles is increased, which is also evidenced by the reduction in the 
means and standard deviations of the RMS errors (see Table 3). 

Figures 5 and 6 respectively present the estimated transient temperatures at the sensor position 
(0,0,0) mm and at the position (10,0,0) mm where no measurements are available, obtained with dif-
ferent number of particles. The 99% credible intervals are also presented in these figures. Figure 5 clearly 
shows that the estimated temperatures are more accurate than the available measurements. The 

Figure 6. Estimated transient temperature at position (10,0,0) mm: (a) 50 particles, (b) 100 particles, (c) 250 particles.  

Figure 5. Estimated transient temperature at the sensor position (0,0,0): (a) 50 particles, (b) 100 particles, (c) 250 particles.  

Table 4. Estimated mean values for the parameters. 

Parameter Exact Value 

Estimated Mean Value 

50 particles 100 particles 250 particles  

k1[W/mK] 0.5 0.43 0.46 0.47 
k2[W/mK] 0.75 0.67 0.72 0.78 
ρ1[kg/m3] 1000 1107.3 902 1021.5 
ρ2[kg/m3] 1000 950.6 1056.2 1028.3 
ρb[kg/m3] 1000 958.85 1056 978.14 
cp,1 [J/kgK] 4200 4227.3 4083 4179.5 
cp,2[J/kgK] 4200 4142.9 4191.5 4197.1 
cp,b[J/kgK] 4200 4659.9 4591.2 4328.3 
ωb,1[s� 1] 0.0005 0.00049 0.00047 0.00048 
ωb,2[s� 1] 0.002 0.0019 0.0022 0.0021 
Qm,1[W/m3] 4200 4557.6 4346 4189.7 
Qm,2[W/m3] 42000 44589.9 43962 42847.3 
σ1[S/m] 0.50268 0.51076 0.54089 0.50806 
σ2[S/m] 0.60322 0.62761 0.59137 0.60499 
χ00 18 15.88 17.01 18.48 
N 1 � 1014 1.05600 � 1014 1.06883 � 1014 0.99271 � 1014 

r[m] 1 � 10� 8 0.90034� 10� 8 0.98641 � 10� 8 1.13359 � 10� 8 

R[mm] 10 9.8 10.4 10.2 
hf [W/kgm2] 45 41.8 42.19 44.9   
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agreement between estimated and exact temperatures is excellent also for the position where no 
measurements are available, as depicted from Figure 6. Both Figures 5 and 6 show that accurate means 
were estimated even with a small number of particles, such as 50. On the other hand, these figures show 
that the 99% credible intervals became smoother when the number of particles was increased. 

Table 4 presents the mean values estimated for the parameters. Note that the estimated means are 
in excellent agreement with the exact ones, even with only 50 particles. Figure 7 shows the evolution 
in time of selected parameters and their 99% credible intervals. Despite the larger uncertainties in the 
measurements and in the evolution/observation models, the uncertainties related to the estimated 
parameters tend to decrease as time evolves and more information becomes available for the solution 
of the inverse problem. Indeed, the results presented earlier show that both parameters and state 
variables could be accurately recovered with Liu and West’s algorithm of the particle filter. 

5. Conclusions 

The particle filter for combined parameter and state estimation was applied in this paper for a prob-
lem involving the radiofrequency hyperthermia treatment of cancer. The tumor was assumed as a 

Figure 7. Estimated parameters – exact (thick black lines), estimated (thin black lines), and 99% credible intervals (dashed lines): 
(a) 50 particles, (b) 100 particles, (c) 250 particles.  
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sphere loaded with iron oxide nanoparticles (F3O4) and surrounded by a healthy tissue. Uncertainties 
in the evolution model, temperature measurements, and model parameters were considered for the 
solution. The results obtained reveal that the algorithm of Liu and West is capable of providing accu-
rate estimations for parameters and state variables, even for large uncertainties and a small number of 
particles. The estimated state variables and parameters were smoother and exhibited smaller variabil-
ities as the number of particles was increased. Therefore, the approach implemented in this work has 
potential application in the planning and control of the hyperthermia treatment of cancer. 
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