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ABSTRACT ARTICLE HISTORY
Particle filters are general methods for the solution of state estimation Received 27 January 2016
problems, which can be applied to nonlinear models with non-Gaussian Accepted 20 April 2016
uncertainties. In this paper, an algorithm of the particle filter is used for the

simultaneous estimation of model parameters and state variables in a

bioheat transfer problem associated with the radio frequency (RF)

hyperthermia treatment of cancer. Results obtained with simulated

measurements indicate an excellent agreement between the estimated

and the exact quantities, even for cases with large uncertainties in the

measurements, as well as in the evolution and measurement models.

1. Introduction

Particle filter methods are used to solve inverse state estimation problems with sequential Bayesian
inference. The application of such methods relies on the available measured data, as well as on stoch-
astic mathematical models for the evolution of the dynamic state variables and for the measurements
[1, 2]. Different particle filter methods have been developed in order to represent the posterior density
of such variables in terms of random samples (particles) and associated weights. It is not intended to
make a literature review of the available algorithms here, but to mention some that served as the basis
for the algorithm used in this work. The sequential importance sampling (SIS) algorithm introduced
in a study by Hammersley and Hanscomb [3] was lately modified to include a resampling step
(sampling importance resampling — SIR algorithm) [4, 5]. The resampling step avoids the degener-
ation of particles, characterized by only few particles with large weights, and large computational
work to advance particles with negligible weights. On the other hand, the SIR algorithm may suffer
from sample impoverishment that is characterized by many identical particles and the auxiliary par-
ticle filter (APF) was developed to avoid such deleterious effect [6]. In the APF, resampling is applied
over the particles at the previous time instant, by using the measurements at the current time instant.
For the simultaneous estimation of model parameters and state variables with the aforementioned
algorithms, evolution models for the parameters need to be specified; although a general random
walk model can be applied, it might fast degenerate the particles. As a result, algorithms for the
simultaneous estimation of parameters and state variables have been developed, like that of Liu
and West [7], which is used in this work. In Liu and West’s algorithm, the parameters are represented
as a mixture of Gaussian kernels [7, 8].

The particle filter methods have been recently applied to different biomedical applications, includ-
ing the hyperthermia treatment of cancer [9-16]. Hyperthermia is a cancer treatment where the
tumor temperatures are raised to values typically between 40°C and 45°C, with heating imposed
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Nomenclature

I specific heat Greeks
D number of measurements d discount factor for Liu & West's algorithm
E electric field strength € permittivity
f frequency n(alb) conditional probability of a when b is given
f,h general functions for the evolution and p density

observation models, respectively Q surface of the domain
H intensity of the magnetic field Q'y, O,  boundary patches with electrodes set to
hy heat transfer coefficient voltages U and ground, respectively
k thermal conductivity wp blood perfusion rate
Ly Ly, L, domain dimensions in the x, y, and [ electric potential

z directions, respectively 0 parameter vector
n measurement noise vector (C] volumetric concentration of
n number of nanoparticles nanoparticles
N number of particles for the particle filter <] electric conductivity
m Gaussian kernel center X susceptibility of the magnetic nanoparticles
M total number of elements o dielectric permeability constant
Q volumetric heat source v constant standard deviation
r mean radius of nanoparticles 4 Gaussian random vector with zero mean and
R radius of the tumor constant standard deviation
s interface between the tumor and the

surrounding tissue Superscripts
T temperature i particle index
Ty blood temperature meas measurements
Ty temperature of the surrounding medium
t time Subscripts
U voltage 1 health tissue
w weights of the particles 2 tumor
X state vector 3 nanoparticles
)z Cartesian coordinates b blood
v state noise vector e electrical
\% Monte Carlo covariance matrix of the posterior  est estimated

distribution exa exact

volume k index to time step
z vector of measurements m metabolism

by electromagnetic waves [17-51]. This treatment aims either at directly killing the cancer cells or
making them more susceptible to the effects of radiotherapy [28] or chemotherapy [29]. Depending
on several factors, including the type of the heat source, geometry, and tumor location, healthy tissues
can be overly heated and thermally damaged as well. With the recent advancement of nanotechnology,
nanoparticles have been loaded inside the tumor, in order to locally increase the absorption of the elec-
tromagnetic waves in the radiofrequency [15, 30-40] and near-infrared [16, 41-46] ranges. As a result,
the tumor is imposed larger temperature increases than the surrounding healthy tissues [47-51].

In the present work, the analysis performed by the authors in reference [15] is extended to a three-
dimensional case, as well as to an inverse problem of simultaneous estimation of state variables and
model parameters. The inverse problem is solved with simulated measurements for an idealized case
in the hyperthermia treatment of cancer, imposed by electromagnetic waves in the radiofrequency
range and by considering the tumor loaded with iron oxide nanoparticles (Fe;0O,).

2. Parameter and state estimation problem

In the state estimation problem, consider a model for the evolution of the vector x in the following
form [52]:

X = fie(Xe—1,0, vi1) (1)
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where the subscript k=1, 2, ..., denotes a time instant #; in a dynamic problem. The vector x € R™ is
called the state vector and contains the variables to be dynamically estimated. This vector advances in
accordance with the state evolution model given by Equation (1), where f; is a general function of the
state variables x, of the vector of parameters 6 and of the state noise vector v € R™ [52, 53].

The measurements z; € RPare available at #;, k=1, 2, ..., and are related to the state variables x;
through the observation model h; given by
z; = hy(x¢, 0, 1) (2)

where ne R” is the measurement noise.

For the evolution-observation models given by Equations (1) and (2), the noise vectors are also
assumed to be mutually independent and independent of the initial state xy[2]. Other hypotheses that
apply to the evolution-observation models given by Equations (1) and (2) can be found in references
[1-8, 52-54].

The filtering form of the state estimation problem is considered in this paper. By assuming that n
(%0 | 20,0) = 1(x) is available at time #, n(xx | 24, 0) is obtained with Bayesian filters in two sequential
steps. The state evolution model is used to advance the vector of state variables from time #;_; to time
tx in the prediction step, thus obtaining a prior distribution n(xy) for the state variables at time #;. The
information provided by the measurements is then adjoined to this prior distribution in the update
step through Bayes’ theorem, by using the likelihood function m(z; | x, 0) [1-8, 52-54].

The particle filter method is used in this paper due to the nonlinear character of the present state
estimation problem. The particle filter method is a Monte Carlo technique, where the required
posterior density function is represented by a set of random samples (particles) with associated
weights; the statistics of the posterior distribution is computed based on these samples and weights
[1-8, 52-54]. Let x; denote the particle i, with associated weight wi,i =0,..., N, at time t;, where
N is the number of particles. Also, let the set of all state variables up to #; be denoted by xo.x = {x;,

j=0, 1, ..., k}. The weights are normalized so that Zf; w}c = 1. Then, the posterior marginal
distribution, can be approximated by [2, 53]:
N i
(xk | 2k, 0) =~ Zi:l wid(xx — x3,) (3)

with weights computed from [53]:
w o iy (2 | %, ) (4)

Equations (3) and (4) can be applied recursively for the estimation of n(xy | zx, ) at each time step,
for @ deterministically known, such as in the SIR and ASIR algorithms. If these parameters are to be
estimated simultaneously with the state variables, one possibility is to apply the SIR or ASIR filters by
mimicking the parameters as state variables with an evolution model, for example, in the form of a
random walk process. On the other hand, the simulation of parameters as state variables might fast
degenerate the particles [7, 13]. The algorithm by Liu and West [7], which is based on the ASIR
version of the particle filter, can be used for the estimation of the posterior probability distribution
T(Xk» 0]2y4). Therefore, the particles need to be extended to {x, 0, :i=0,...,N}. The subscript
k for the parameters 0 and associated quantities is used to indicate that they refer to the posterior
distribution at time t;; it does not mean that such quantities are time dependent. The particle filter
algorithm by Liu and West is based on the hypothesis that the vector of nondynamic parameters 0 is
represented by [8]

N
9|Zlk 1 Zwk 1 9|mk 17]’1 Vi 1) (5)

where N(0 | a, B) is a multivariate Gaussian density with mean a and covariance matrix B, while & is a
smoothing factor and Vj_, is the Monte Carlo posterior covariance matrix at time #;_;. Equation (5)
shows that the above density is a mixture of Gaussian distributions N(8 | m}_, h*Vj_;) weighted by
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Table 1. Liu and West's algorithm [7].

Step 1
Select a value for & €[0.95;0.99], then compute a with equation (7) and h? with equation (8).
Fori=1, ..., N

Compute mL] with Equation (6) and calculate uj( = E[xk|xj'(71 , m;'H]. Use the likelihood density to calculate the corresponding
weights wj = m(z |, m_;)Wj_;.

Step 2
Calculate the total weight t = )", wj;
Normalize the particle weights, that is, for i=1, ..., N let w, = t"'wi.
Step 3
Resample the particles as follows:
Construct the cumulative sum of weights (CSW) by computing ¢; = ¢;—1 + w;'( fori=1, ..., N with ¢,=0.
Let i=1 and draw a starting point u; from the uniform distribution UION
Forj=1,..., N

Move along the CSW by making u; = u, +NTG—1)
While u; > u; make i=i+1
Assign parent jj=i.

Step 4
Forj=1,..,N o
Draw samples ) from N(6)jm]_,,h*V,_;), by using the parent jj.
Step 5
Forj=1,..., N
Draw particles X, from the prior density m(x|x;_, 7%)’ by using the parent ij.
Calculate the correspondent weights wj = M 'xlg.‘%).
Step 6 (o | )
Calculate the total weight t = Y, wi;
Normalize the particle weights, that is, for i=1, ..., N let w, = t"'wi.

the sample weights wi_,. The Gaussian kernel centers mj , are specified by using the shrinkage
rule[8]:

m_, = a0, + (1), (6)
where 0;_; is the mean of © at time #_;. The shrinkage factor a is computed by
36 -1
= 7
a=—= (7)

where 0.95 < § < 0.99 is a discount factor. The smoothing factor, 4, also depends on the shrinkage
factor, as follows

W=1-a (8)

The algorithm by Liu and West used in this work is summarized in Table 1.

By assuming that the measurement errors are additive, uncorrelated, Gaussian random variables
with zero means and known constant standard deviation, v, and independent of the state variables,
the likelihood function for each particle x| is then expressed as [2, 52, 53]:

gt 0) e ae o))
2 V2

n(z)"|x,0) = (21) v P exp

where zi(x}, 0) is obtained from the observation model given by equation (2) and D is the number of
measurements.

3. Radiofrequency hyperthermia using iron oxide nanoparticles

Radiofrequency hyperthermia therapy is a cancer treatment for partial or total elimination of a solid
tumor through the heating imposed by induction of electromagnetic waves in the range from 0.1 MHz
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to 100 MHz [18-24]. The temperature levels reached by the tumor cells might be sufficient for their
destruction or to make them more susceptible to the effects of radiation or chemotherapy drugs
[28, 29, 55, 56]. Currently, the combination of radiofrequency hyperthermia with tissues loaded with
nanoparticles has been of great interest. In this kind of therapy, nanoparticles introduced into the
tumor locally increase the absorption of the imposed electromagnetic waves, so that its temperature
increases at a rate higher than that in the healthy surrounding tissues that do not contain nanopar-
ticles. Therefore, thermal damage is imposed to the tumor without significantly affecting the healthy
tissues [15, 30-40].

In the study of radiofrequency hyperthermia, the mathematical formulation of the physical
problem involves Maxwell’s equations with frequency-dependent properties and a bioheat transfer
model [57]. The solution of the mathematical formulation requires the knowledge of several thermo-
physical properties and other input parameters, which are not widely known and exhibit variability
from individual to individual, or even for the same individual under different physiological
conditions. Therefore, the numerical simulation of the problem related to hyperthermia needs to
be performed under the effects of large uncertainty. On the other hand, recent technological advance-
ments permit the temperature measurement of the tissues of the body, such as through the magnetic
resonance technique [58]. If such measurements are available, the numerical simulation of the radio-
frequency problem containing uncertainties can be performed as a state estimation problem [5]. In
the approach considered here, the radiofrequency hyperthermia problem is treated as an inverse
problem of parameter and state estimation, with minimally invasive measurements. The focus of this
work is the accurate prediction of the temperature field in tumor and healthy tissues, where iron
oxide nanoparticles (Fe;O,) are loaded in the tumor region in order to enhance this cancer treatment
and reduce damages to the healthy cells.

3.1. Mathematical formulation

The physical problem considered in this work involves a three-dimensional domain, consisting of a
parallelepiped (healthy biological tissue) €;, with a spherical inclusion (tumor) Q,, as shown by
Figure 1. Heating is imposed by RF waves through the electrodes Q) and €. Heat generated by
RF waves inside the domain is propagated by conduction and blood perfusion. The electric potential
within the domain can be obtained by solving the following Laplace’s equation [59]:

V- le(x,y,2)Vo(x,y,2)] =0 x,y,z€ QU (10)

where ¢ is the potential, (x,y,2) are the Cartesian coordinates, and ¢ is the permittivity, which varies
spatially depending on the tissue and tumor regions. The interface between the tumor and normal

Electrode (€2°1)
r“-\ﬁ
Ly
+ ft
R = AP
y 1
sensor
z‘j\'x Lx L7

Tissue (Q1)
Tumor (£22)

Figure 1.  Geometry.
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tissues is assumed to have ideal electric contact. The boundary conditions for the electrical problem
are given by

o(x,y,z) = U at Q) (11)
o(x,y,2z) =0 at Q) (12)
Vo(x,y,2z) -n =0 elsewhere over the boundary (13)

where U denotes the imposed electric potential with respect to ground.
After computing the electric potential, one can calculate the electric field strength, E, and the
intensity of the magnetic field, H, respectively, by

E(x7y, Z) = —V(p(x,y,z) (14)

1 [E(xy,2)|
H(x.0.9)] = Ty (15)
where N(x) = 1/3 is the demagnetizing factor of the composite tissue [31, 36], X is the susceptibility of
the magnetic nanoparticles that can be described as the complex number x =¥’ + ix" [60, 61], yo is the
dielectric constant permeability of free space (to=4mx10"'T m A™'), f is the electromagnetic
frequency, and R is the radius of magnetic induction loop.
The heat source in the healthy tissue Q,;, which does not contain nanoparticles, is given by

c1|E(x,y, 2z 2
Qel (xvyaz) = M (16)
where 0, is the electric conductivity of the tissue.
Nanoparticles are supposed to be ideally located only within the tumor. The heat source in the
tumor, due to induction of magnetic nanoparticles by electromagnetic effects as well as by electrical
current, can be calculated by [36]

"

GZ‘E(xay’ Z)|2 i X
2 16 pmfR?

where ® = 4nnr’/3V is the volumetric concentration of nanoparticles, r is the mean radius of the sup-
posedly spherical nanoparticles, 7 is the number of nanoparticles, V is the volume of the tumor, and
0, is the electrical conductivity of the tumor tissue embedded with nanoparticles, which can be
approximated by a mixture of the two materials, that is, 1/6, = (1 — @)/d}, + ® /g5 where ¢, and
03 are the electrical conductivity of tumor and nanoparticles, respectively [30]. The permittivity of
the tumor tissue embedded with nanoparticles is approximated by the permittivity of the tumor,
because the concentration of nanoparticles is too small and differences in this parameter for biological
tissues and nanoparticles are not large [31].

The mathematical formulation for bioheat transfer in this work is described by Pennes’s equation
[57], that is

Q(x,y,2) = (1-0) [E(x,7,2)" (17)

oT
p(x,y,2)cp(x,y,2) % =V - [k(x,y,2)VT(x,y,2,t)] + Q(x,y,z,t) (18)

where p is the density, c, is the specific heat, T is the temperature, k is the thermal conductivity, and
Q is the heat source per unit volume given by
Q(xaya z, t) = pbcp,bmb('xv Y, Z) [Tb - T(X,)’y z, t)] + Qm (xa Y, Z) + QE(X7 Y, Z) (19)

where wy, is the blood perfusion rate, p is the blood density, c,, ; is the specific heat of blood, T is
the blood temperature, Q,, is the metabolic heat source, and Q, is the electrical heat source
generated by radiofrequency external excitation given by equation (16) or (17). The tumor and
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normal tissues are assumed to be in ideal thermal contact. The thermal boundary conditions are
given by

L _ L L L
k2 =0 ath——Tande—+7,—7y<y<+7y,
* —F3<z<+%
L L _L L
atz=—-F andz=+%,-F <x<+F
oT _ 2 207 2 20
kigz =0 (20)

~F<y<+3
AT =T aty=—%,-S<x<+b -Lazatk
ki 88+ BT = Ty aty=+42 ~bax<tb Lozl
where hf is the heat transfer coefficient; Tyis the temperature of the surrounding medium; L,, L,
and L, are the domain lengths in the x, y, and z directions, respectively. The region is supposed to
be initially at the steady-state temperature of the problem, when the electric heat source imposed
by the radiofrequency external excitation is null.

The solution of the forward problem was obtained with finite elements by using COMSOL Multi-
physics® 5.0. The particle filter used for the solution of the inverse problem, which is coupled to the
forward problem solution, was coded in Matlab® on an Intel(R) Xeon E56445@2.40 GHz dual
processor with 32 GB of RAM memory.

4. Results and discussions

A 3D parallelepiped with dimensions L, =80 mm, L,=40 mm, and L, =40 mm was considered for
the analysis, with the tumor assumed as a sphere of radius 10 mm, located at the center of the par-
allelepiped. Both electrodes were considered as a square of 20 mm of side, so that O’} ={—10mm <
x<10mm, y=20mm, 10mm <z<10mm} and Q' ={-10mm <x<10mm, y=-20mm, —10
mm < z < 10 mm} where the x, y, and z axes are supposed to be located at the tumor center (see
Figure 1).

The healthy tissue is assumed as muscle. Thermophysical properties of healthy, blood, and
tumor tissues are presented by Table 2. The initial condition for the bioheat transfer problem is
the solution of the steady-state problem given by equations (18) to (20) with electrical heat source
null, that is, Q. = 0. For the convective boundary conditions, we assume Ty=20°C, hy=45 W/m’K
and the blood temperature as T, = 37°C [30]. The initial temperature field is presented by Figure 2.

Table 2. Properties of tissues.

Parameter Healthy Tissue Tumor Blood
Thermal Conductivity (W/mK) 0.5 0.75 -
Specific Heat (J/kgK) 4200 4200 4200
Density (kg/m3) 1000 1000 1000
Perfusion Coefficient (s™") 0.0005 0.002 -
Metabolic Heat Source (W/m?) 4200 42000 -

y(mm)

x(mm)

Figure 2. Initial temperature.
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| 44

y(mm)

-40 -20 0 20 40
x(mm) x(mm)
(a) (b)

Figure 3. Exact temperature field at section z=0 and t=900s: (a) without nanoparticles (b) with nanoparticles.

For the iron oxide nanoparticles (Fe;O,), the following parameters have been considered:
thermal conductivity k; =40 W/mK, specific heat c,;=4000]/kgK, density p;=>5180kg/m>[31];
the properties for the tumor embedded with nanoparticles were given in terms of the rule of
mixtures [36].

Heating was supposed to be imposed with a frequency f=1MHz. The electrical properties in the
biological healthy tissue were o, =0.50268 S/m and &, = 1836.4 [62], while for the tumor tissue we
have ¢, = 1.20; and €, = &, = 1.2¢; [30]. The electrical properties of the iron oxide nanoparticles
were taken as 03 =25000 S/m and x" =18 [31]. For all cases examined below, the number of nano-
particles was 7 = 10'* with radius r = 10~ m, and the voltage at the electrode at the top boundary was
U=15V, applied during 900s. Figure 3a and b presents the exact temperature fields at t =900 s over
the surface z=0, without and with nanoparticles loaded into the tumor, respectively. The analysis of
these figures shows that the use of nanoparticles in the tumor locally increases the temperature in the
region. While the maximum temperature without nanoparticles was 39.9°C, which is a low value
for the hyperthermia treatment, the maximum temperature with nanoparticles was 44.25°C inside
the tumor region, while the other regions were not thermally affected and still maintained low
temperatures levels.

For the solution of the parameter and state estimation problem, temperature measurements of one
single sensor were assumed available, located at the position {x=0mm, y=0mm, z=0mm}. The
measurements were generated from the solution of the direct (forward) problem with the parameters
specified earlier. To avoid an inverse crime, the measurements were generated with 37856 elements in
the region, while the inverse problem was solved with 16966 elements. Uncorrelated Gaussian errors
with zero mean and standard deviation of 1°C were then added to the solution of the direct problem
and the simulated measurements were supposed available every 20 s, during 900 s. Gaussian uncorre-
lated noise with zero mean and a standard deviation of 1°C was also added to the solution of the
bioheat transfer problem, which served as the evolution model for the temperatures inside the domain
and was solved with each sample of the Gaussian distribution of the electrical heat source. The
evolution model for the electric field was taken as

Ei(x,y,2) = Ei_(x.5.2) + &(x..2) (21)

where éi(x, ¥,2) is a Gaussian random vector with zero mean and standard deviation of 10% of the
deterministic solution of the problem given by equations (10)-(13). The subscript k in equation (21)
does not represent a time evolution of E(x,y,z), but the fact that it is treated as state variable for the
application of the particle filter, which aims at the estimation of the electric heat source and of the
transient temperature field, at the position (x,y,z) that corresponds to each finite element used for
the numerical solution of the coupled electric and bioheat transfer problem. The particles
E(x,y,2) at each position (x,y,z) were initially sampled from Gaussian distributions with means
obtained from the deterministic solution of the electric problem and with standard deviations of
10% of these means.
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Table 3. RMS errors.

Number of Particles Mean (°C) Standard Deviation (°C) CPU time (h)
50 0.959 0.387 17.2
100 0.834 0.276 38.4
250 0.743 0.202 98.5

The prior probability densities for the model parameters @ were assumed as Gaussian, with zero
mean and standard deviation of 10% of the mean value of each parameter. The vector of model
parameters is given by

n
0 = [kla k2; Cp,b, Cp,lv Cp,27 pb7 pla p27 (Db,la O)b,Z; Qm,la Qm,Zv hfv O1,02,1,1,% 7R] (22)

The effects of the number of particles on the estimation of parameters and state variables were
examined by using 50, 100, and 250 particles. The accuracy of the estimation of state variables was
addressed in terms of the means and standard deviations of the root mean square error, obtained with
10 repetitions of Liu and West’s algorithm. The root mean square (RMS) error is given by

M 2
Zl (Test,m - Texa.,m)
RMS = \| ™=

M

(23)

where T, represents the estimated values, T,,, represents the exact values, and M is the total number
of elements and time steps.

Table 3 shows the means and standard deviations of the RMS errors for temperature. It is observed
that the means and standard deviations of the RMS error decrease when the number of particles is
increased, as expected. Figure 4 shows the estimated temperature field at the plane z=0mm and
t=900s; the estimated maximum temperature in the region obtained with 50 particles was
43.81°C [Figure 4(a)], while it was 44.54°C with 100 particles [Figure 4(b)] and 44.27°C with 250 par-
ticles [Figure 4(c)]. The agreement between the maximum temperature estimated with 250 particles
and the exact value of 44.25°C is excellent. A comparison of Figures 3b and 4 shows that all the esti-
mated temperature fields are in quite good agreement with the exact one, but the estimations are

144

40

y(mm)
y(mm)

36
32
28

w(mm)

x(mm)

(c)

Figure 4. Estimated temperature field at section z=0: (a) 50 particles, (b) 100 particles, (c) 250 particles.
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50 50
h A . e A 5
© 45 AN Past PR )
g g MY e
&40 ¥ —Exact °~40 —Exact é-
§ i + Measurements E ; * Measurements || Wi « Measurements
35 —Estimated 35 ——Estimated 35" —Estimated
---99% Bounds ---99% Bounds -=-99% Bounds
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Time, s Time, s Time, s
(@) ) (c)

Figure 5. Estimated transient temperature at the sensor position (0,0,0): (a) 50 particles, (b) 100 particles, (c) 250 particles.
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Figure 6. Estimated transient temperature at position (10,0,0) mm: (a) 50 particles, (b) 100 particles, (c) 250 particles.

smoother when the number of particles is increased, which is also evidenced by the reduction in the
means and standard deviations of the RMS errors (see Table 3).

Figures 5 and 6 respectively present the estimated transient temperatures at the sensor position
(0,0,0) mm and at the position (10,0,0) mm where no measurements are available, obtained with dif-
ferent number of particles. The 99% credible intervals are also presented in these figures. Figure 5 clearly
shows that the estimated temperatures are more accurate than the available measurements. The

Table 4. Estimated mean values for the parameters.

Estimated Mean Value

Parameter Exact Value 50 particles 100 particles 250 particles
k;[W/mK] 0.5 0.43 0.46 0.47

ko [W/mK] 0.75 0.67 0.72 0.78
p;[kg/m?] 1000 1107.3 902 1021.5
p,lkg/m] 1000 950.6 1056.2 1028.3
Polkg/m] 1000 958.85 1056 978.14

o [V/kgK] 4200 42273 4083 41795
€p2l0/kgK] 4200 41429 41915 4197.1
CoplI/kgK] 4200 4659.9 4591.2 43283
Wpals™'] 0.0005 0.00049 0.00047 0.00048
Wpals 0.002 0.0019 0.0022 0.0021
QuW/m?] 4200 4557.6 4346 4189.7
Q2 [W/m?] 42000 44589.9 43962 428473
04[S/m] 0.50268 0.51076 0.54089 0.50806
0,[5/m] 0.60322 0.62761 0.59137 0.60499

X' 18 15.88 17.01 18.48

N 1% 10™ 1.05600 x 10" 1.06883 x 10" 0.99271 x 10™
rm] 1%x10°8 0.90034x 1078 0.98641 x 1072 1.13359 x 1078
Rlmm] 10 9.8 104 10.2

hs [W/kgm?] 45 418 42.19 449
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Figure 7. Estimated parameters — exact (thick black lines), estimated (thin black lines), and 99% credible intervals (dashed lines):
(a) 50 particles, (b) 100 particles, (c) 250 particles.

agreement between estimated and exact temperatures is excellent also for the position where no
measurements are available, as depicted from Figure 6. Both Figures 5 and 6 show that accurate means
were estimated even with a small number of particles, such as 50. On the other hand, these figures show
that the 99% credible intervals became smoother when the number of particles was increased.

Table 4 presents the mean values estimated for the parameters. Note that the estimated means are
in excellent agreement with the exact ones, even with only 50 particles. Figure 7 shows the evolution
in time of selected parameters and their 99% credible intervals. Despite the larger uncertainties in the
measurements and in the evolution/observation models, the uncertainties related to the estimated
parameters tend to decrease as time evolves and more information becomes available for the solution
of the inverse problem. Indeed, the results presented earlier show that both parameters and state
variables could be accurately recovered with Liu and West’s algorithm of the particle filter.

5. Conclusions

The particle filter for combined parameter and state estimation was applied in this paper for a prob-
lem involving the radiofrequency hyperthermia treatment of cancer. The tumor was assumed as a



592 L. A. B. VARON ET AL.

sphere loaded with iron oxide nanoparticles (F;0O,) and surrounded by a healthy tissue. Uncertainties
in the evolution model, temperature measurements, and model parameters were considered for the
solution. The results obtained reveal that the algorithm of Liu and West is capable of providing accu-
rate estimations for parameters and state variables, even for large uncertainties and a small number of
particles. The estimated state variables and parameters were smoother and exhibited smaller variabil-
ities as the number of particles was increased. Therefore, the approach implemented in this work has
potential application in the planning and control of the hyperthermia treatment of cancer.
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