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Estimation of the effect of interventions
that modify the received treatment

S. Haneuse® and A. Rotnitzky®*"

Motivated by a study of surgical operating time and post-operative outcomes for lung cancer, we consider the esti-
mation of causal effects of continuous point-exposure treatments. To investigate causality, the standard paradigm
postulates a series of treatment-specific counterfactual outcomes and establishes conditions under which we may
learn about them from observational study data. While many choices are possible, causal effects are typically
defined in terms of variation of the mean of counterfactual outcomes in hypothetical worlds in which specific
treatment strategies are ‘applied’ to all individuals. For example, one might compare two worlds: one where
each individual receives some specific dose and a second where each individual receives some other dose. For our
motivating study, defining causal effects in this way corresponds to (hypothetical) interventions that could not
conceivably be implemented in the real world. In this work, we consider an alternative, complimentary frame-
work that investigates variation in the mean of counterfactual outcomes under hypothetical treatment strategies
where each individual receives a treatment dose corresponding to that actually received but modified in some
pre-specified way. Quantification of this variation is defined in terms of contrasts for specific interventions as
well as in terms of the parameters of a new class of marginal structural mean models. Within this framework,
we propose three estimators: an outcome regression estimator, an inverse probability of treatment weighted
estimator and a doubly robust estimator. We illustrate the methods with an analysis of the motivating data.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Lung cancer is the most common cancer in the world, with early-stage non-small-cell lung cancer
(NSCLC) accounting for 80-90% of all cases. While surgical resection is the current treatment of choice
for NSCLC, patients and physicians must nevertheless weigh the risks and benefits of surgery as well
as manage expectations. Investigating surgery-specific factors is particularly important in that an under-
standing of their impact on patient outcomes may help in the development of strategies that improve
efficiency and, eventually, reduce healthcare costs. With this in mind, at a recent collaborative consul-
tation, we were posed with the following question: What is the impact of operating time (i.e., the time
spent in surgery) on the risk of post-operative outcomes among patients undergoing surgical resection
for NSCLC?

As posed, this consultation question seeks to characterize the causal effect of a continuous point-
exposure treatment on an outcome. For the evaluation of causal effects of point-exposure treatments,
the so-called counterfactual or potential outcomes model is often adopted [1]. This model conceptual-
izes a series of hypothetical worlds across which different treatment strategies are implemented. The
model also conceptualizes a set of counterfactual outcomes for each individual in the population, each
corresponding to the value taken by the outcome within each hypothetical world. Causal analysis then
proceeds by defining the treatment effect in terms of some target parameter that summarizes differences
between the distributions of the distinct counterfactuals and then establishing conditions under which the
parameter is estimable. Finally, estimators of the target parameter are developed whose consistency often
relies on the validity of the identifying conditions as well as some dimension-reducing assumptions.
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Based on this general paradigm, in recent years, there has been an explosion of methods for causal
inference. Whereas statistical developments for point-exposure causal effects have mostly focused in
settings where treatments take on one of a finite number of values, causal inference with continuous
treatments has also been considered [2, 3]. The direct application of this paradigm to our collaborative
setting, however, is problematic. In particular, while one could, in theory, consider a series of hypothet-
ical worlds where individuals receive some pre-specified length of surgery, perhaps according to their
baseline covariates, one could not reasonably implement an intervention that imposed such ‘treatments’
in the real world. As such, causal contrasts defined in the standard manner do not have any practical
utility. To see this more concretely, suppose that for some subpopulation, under current medical prac-
tice, operating times range between 50 and 120 min. The standard paradigm would consider different
hypothetical worlds, each being a world in which the operating times of all subjects in the subpopulation
are the same. Consider, for example, the world where each operation is 100 min. While one could (at
least in theory) investigate the distribution of the counterfactuals in this world, it is hard to conceive of
an intervention that simultaneously prolongs the surgery of those individuals whose operation actually
lasted 50 min and shortens the operation of those individuals whose operation actually lasted 120 min.
Consequently, understanding the distribution of counterfactuals in a world where all operations take
100 min does not provide information that can be translated into real-world practice.

An alternative paradigm, recently proposed by Diaz Munoz and van der Laan [4], considers hypothet-
ical worlds in which the treatment is randomly assigned according to mechanisms that possibly depend
on baseline covariates and the distribution of the treatment received in the factual world. For instance,
suppose that in a given subpopulation defined by the level of baseline covariates, surgery length was
distributed according to a uniform(50, 120) distribution. The Diaz Munoz and van der Laan [4] set-
ting would allow one to estimate the effect of random policies in which the surgery length received by
each subject in the subpopulation is drawn from a law that is some transformation of the uniform(50,
120) distribution, for instance, uniform(50+8§;, 120—§,) with §; and &, positive constants. This setting
remains unsatisfactory in our present application because the hypothetical world still contemplates the
possibility that subjects whose actual surgery length was, say, 50 min would have a surgery length close
to 120—6§, min.

In the context of our collaborative setting, a more plausible and, arguably, substantively relevant hypo-
thetical world is one in which the operating time that each subject actually experienced, say, A minutes,
is reduced by some amount that depends on A, say g(A4). We refer to ¢(-) as the modified treatment
policy (MTP). As an example, consider the hypothetical world in which everyone’s operating time was
reduced by 5 min; that is, g(A4) = A—5. Arguably, a treatment modification of this magnitude is conceiv-
able and could, for example, be achieved by improving the speed at which the stitching is carried out.
However, even this hypothetical world may not always be plausible. For example, certain surgeons may
have already reached their maximum stitching speed. This suggests that one consider an intervention
that yields a reduction of operative time that depends not only on A but also on pre-treatment covariates
L. A causal analysis could then be conducted by investigating the (estimated) contrast between the rate
of post-surgical complications under (i) current practice and (ii) in a hypothetical world in which every-
body’s operative times was reduced to, say, ¢(A, L). Alternatively, one could also study how the rates
of post-surgical complications vary with different choices of g(A4, L), for instance, how they vary with
different modest amounts of § where g(A4, L) = A — 4.

A modified treatment policy is different from a dynamic treatment regime (DTR) [5-8]. The latter is
a sequence of time-varying decision rules that specify which treatment, among a set of available ones,
should be offered next based on patient covariate and responses collected during prior therapy. When
treatment decisions can be made only once, a DTR is simply a rule that specifies the treatment assign-
ment as a function of baseline covariates. Thus, a modified treatment policy ¢(A4, L) is a generalization
of a point exposure DTR, in that the latter is a function g(L) of just the baseline covariates L whereas
the former is a function g(A, L) of treatment actually received and, possibly, of baseline covariates L.
This extension involves conceptual and technical nuances.

Conceptually, MTPs are appealing in settings like the one that motivated this work where the set of
feasible treatments for each subject depends on attributes that are not fully captured by baseline covari-
ates but which are reasonably captured by the treatment actually received. However, unlike DTRs, in
general, MTPs are rules that cannot be implemented in practice because they depend on the treatment
level A actually received. For instance, it is impossible to force a surgery to last 5 min less than its natu-
ral duration as this would require to first know what such natural duration would be. As a consequence,
causal effects of MTPs, unlike those of DTRs, are not even in principle experimentally testable. That is,
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it is impossible to run randomized controlled trials to compare different MTPs. Nevertheless, MTPs are
valuable insofar they can help generate hypothesis about mechanisms that explain their causal effects
and thus formulate promising interventions that can be tested in randomized experiments. For instance,
suppose that we find that for subjects undergoing thoracotomy, a reduction of 5 min in the duration of
surgery reduces the rate of a major post-surgical complication during hospital stay. This result would
suggest that it would be worthwhile running a randomized study that examines interventions that could
potentially reduce thoracotomy length by 5 min. Examples of interventions might include training pro-
grams to improve the speed/efficiency of surgical stitching skill, the introduction of a pre-operative
checklist to enhance efficiency during surgery or the use of some new piece of technology that increases
efficiency in some aspect of the surgery.

Technically, there are important subtleties about identification and estimation of causal effects of
MTPs. As we will argue in Section 2, identification requires a so-called positivity condition that for
every possible level that the modified treatment ¢ (A, L) can take, there exists in the target population
at least one subject that would naturally received that level, a demand that we will argue is not realistic
in our example and hence forces us to redefine the target population on which the effects of MTPs are
quantified. Furthermore, it requires the exchangeability across all possible treatment levels of just two
subpopulations, one receiving a treatment level and the second receiving the modified treatment level.
This assumption differs also in subtle ways from the exchangeability condition required for identifica-
tion of DTRs. Finally, contrasts that quantify the causal effects of MTPs, unlike those of DTRs, depend
on the treatment assignment probabilities. This distinction has implications for inference. As we will see
in Section 3, just as for DTRs, it is possible to construct inverse probability weighted (IPW) and doubly
robust estimators of causal contrasts for MTPs; however, unlike DTRs, standard error estimators that
ignore the uncertainty in the treatment probabilities are not guaranteed to be conservative.

To the best of our knowledge, MTPs were first introduced in [9] and further discussed in [10]. A
conceptual distinction between the applications that motivated these articles and our work is that they
considered settings in which one can conceive, at least in principle, interventions that instantaneously
change the naturally occurring level A of treatment to a new exposure level ¢ (A, L). For instance, Taub-
man et al. [10] considered a rule that stipulates that daily physical activity over a period, say 1 month,
should last as long as it would in the absence of intervention provided this natural duration is at least
30 min; otherwise, it should last 30 min. This rule is indeed an MTP as it is defined by the function
q(A, L) = AI(A = 30) +307(A < 30) that depends on the natural duration A of daily physical activity.
Yet, for this MTP, one can at least in principle conceive an intervention where any subject that exercises
less than 30 min on any given day is forced to exercise for 30 min on that day. In fact, these authors con-
sidered not just point exposure but also time-dependent dynamic interventions at time points 1, ..., ¢y
in which the treatment to be administered at time 7; is allowed to depend on the treatment that would
be received at time #; if the planned interventions were made through #; _; but no intervention was
made at 7;. Robins et al. [9] and Taubman et al. [10] derived an extension of the g-computation formula
that yields the survival distribution of a time-to-event endpoint in a hypothetical world in which one
such intervention is implemented, provided certain identifiability assumptions hold. They also described
survival estimators that rely on estimates of the conditional distributions that enter into the extended
g-formula. However, these authors did not discuss the positivity requirements for identifiability, perhaps
because for the applications that motivated their work, these are likely trivially satisfied.

As far as we know, the only other existing article in the literature that defines MTPs for point expo-
sures and discusses identifiability conditions is Shpitser and Pearl [11]. Unlike the work of Robins and
colleagues and our work, that article assumes graphical, rather than counterfactual, models. The article
discusses neither the subtle positivity requirements for identification nor inference.

This article contributes to the literature on MTPs in the following ways. First, supported by our moti-
vating example, it raises the important point not previously noticed that MTPs can be a useful analytic
concept even when they refer to policies that cannot be possibly implemented. Second, it explicitly for-
mulates conditions under which causal effects of MTPs can be identified from observational data. Third,
it discusses analytic strategies that can be followed when, as in our motivating example, these condi-
tions are unrealistic. Fourth, it shows that the g-formula that identifies the causal contrast of interest
agrees with the identifying formula of the contrast quantifying the effect of the random intervention
of Munoz and van der Laan [4]. Fifth, it provides three distinct estimation procedures: a so-called
outcome regression estimator whose consistency relies on the correct specification of a model for the
conditional mean of the outcome given baseline covariates and received treatment and which is the point-
exposure/continuous-outcome equivalent of the parametric g-formula estimators discussed in [9, 10]; an
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IPW estimator whose consistency relies on the correct specification of a model for the treatment assign-
ment probabilities, which differs from a similar estimator proposed by Munoz and van der Laan [4] in
that it is ensured to fall in the parameter space; and a doubly robust estimator whose consistency relies
on the correct specification of either the outcome mean model or the treatment model but not necessar-
ily both. Munoz and van der Laan [4] also described a doubly robust estimator, the so-called targeted
maximum likelihood (TML) estimator that, like the doubly robust estimator proposed here, takes an out-
come regression form. However, unlike the TML estimator, our estimator is non-recursive and can be
implemented using standard regression software. Sixth and lastly, it describes a novel marginal structural
mean model whose parameters quantify the effects of different modified treatment policies and discuss
doubly robust estimation of the model parameters.

The remainder of this article is as follows. In Section 2, we outline the proposed framework, intro-
duce the causal contrasts of interest and develop the conditions under which they are identified. Section 3
proposes three estimators for the contrasts defined within our proposed framework; extensions to the esti-
mation of components of a marginal structural model are outlined in Section 4. The methods are applied
to our motivating dataset in Section 5. Finally, Section 6 concludes the paper with a brief discussion.

2. Causal contrasts for continuous treatments

Consider an observational study with n subjects drawn at random from the target population. Suppose
we observe (L;, A;,Y;), independent and identically distributed across i = 1,...,n; Y; is a scalar out-
come, A; is a treatment variable with support on the set A and L; = (L;1,...,L; k) is a vector of
pre-treatment variables known or hypothesized to confound the effect of A; on Y;. In the context of our
consultation study, A; is the operating time, and 4 is the set of all durations that surgery can possibly
take in the target patient population, ¥; is an indicator of the occurrence of a post-surgery complication
and L; includes pre-surgical covariates known (or hypothesized) to be associated with both operating
time and risk of post-surgical complications (see Section 5).

As indicated in Section 1, when seeking to establish causation from observational data, the counter-
factual model is often adopted. This model assumes that for each a in a set A’ of candidate doses (often
A" = A) and each subject w of the target population €2, there exists a counterfactual outcome Y, (w)
defined as the value that the outcome for subject w would take on in the hypothetical world in which
one could intervene and set the level of treatment to a. Implicit in this notation is the so-called stable
unit treatment value assumption (SUTVA) [12], which postulates that (i) the treatment status of any unit
does not affect the counterfactual outcomes of the other units [13] and (ii) all means at arriving at a given
treatment a result in the same outcome Y, (w) [14]. SUTVA implies the following assumption:

CO. Consistency: If A(w) = a, then Y(w) = Y, (w), Vo € Q.

In the context of our collaboration, condition (i) is realistic. The validity of condition (ii) is less clear.
In particular, there may be many ways by which one can arrive at an operating time, each resulting in a
different post-operative outcome. Nevertheless, throughout this paper, we assume SUTVA and, in par-
ticular, that the consistency assumption CO holds; a discussion of the consequences of the violation of
condition (ii) in our application is postponed to Section 5.4.

Aside from potential violation of condition (ii), in our motivating application, the possibility of being
able to set the treatment level for every subject to any of the a € A’ is unrealistic. For instance, as indi-
cated in Section 1, for a subject @ whose surgery took 120 min, it is unrealistic to assume that one could
reduce his or her operative time to, say, a = 60 min. More realistic in our application is to postulate
a relaxed assumption that states that for each subject w, there exists a set A, of enforceable treatment
levels. Formally, this is tantamount to assuming that the random variables Y,, for a € A’, are defined on
distinct probability spaces, the domain of Y, being Q, = {w € Q : a € A,}. Clearly, the set .4, contains
the value A(w) of the treatment actually received by subject w. The remaining elements of .4, depend
on the specific application. For instance, if it is conceivable that one could have shortened subject @’s
operative time by 5 min, then A(w) —5 € A,,.

2.1. Defining causal contrasts

The lack of a unique domain for Y, () for all @ € A" questions the scientific relevance of characteriz-
ing causal effects by examining variation of E [¥,] as a function of a € A’. In particular, we view this
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approach as uninformative for treatment effects because E [Y,] is the mean of Y, over subpopulations
Q, that vary with a.

When, as in our application, A, changes with w, a reasonable alternative target of analysis is an exten-
sion of the so-called average treatment effect on the treated (ATT) causal contrast for binary treatments.
Specifically, for a binary treatment A, ATT is defined as E[Y;|4 = 1] — E[Yy|A = 1]. This contrast
quantifies the average change on the outcome that switching from treatment A = 1 to treatment A = 0
would have on those that were actually treated with A = 1. This contrast is particularly relevant when it
is conceivable to enforce A = 0 on those that actually received A = 1, but no action can be conceived
that would enforce treatment A = 1 on subjects that actually received A = 0. That is, when A, = {0, 1}
for subjects w with A(w) = 1 and A, = {0} for subjects with A(w) = 0.

For a continuous treatment, assume that the same treatment doses could be enforced on all subjects
that actually received the same treatment dose and had the same baseline covariates; that is, assume
that if (A(w), L(w)) = (A(®'), L(«)), then A, = A,. Then, the ATT contrast extends in the fol-
lowing natural way. For the group that actually received dose A = a and had baseline covariates
L = [, consider a scientifically relevant and enforceable dose ¢(a,!), that is, g(a,l) € A, for all
such that (A(w), L(w)) = (a,l). Then, E[Y,|A =a,L =1]—E [Yq(a,l)|A =a,L= l] quantifies the
effect of switching from the dose actually received, that is, a, to the enforceable dose ¢(a,/) among
those who received dose @ and had baseline covariates /. By noticing that E[Y,|A =a,L =[] =
E (Y|A = a, L =) and averaging over all possible combinations of received doses and covariate levels,
we arrive at the following contrast that quantifies the average effect in the studied population of a policy
that switches each received dose A to the modified dose g (A4, L):

E[Y] — /E[Yq(a,,) A=a,L=1]|dFs(a.l) (1)
For notational convenience, we denote the second term by E[Yp |, with Yo = Y, (4,1,

Note, strictly speaking, contrast (1) is not well defined because conditional distributions can be defined
arbitrarily on events (A = a, L = I) of zero probability; as such, the integral in (1) may not be unique.
To resolve this, we assume that for each (a,/) in the support of (A4, L), the law of Yy, |A =a’, L =1’
is (weakly) continuous in all the arguments of (a’,[”) that represent realizations of absolutely continu-
ous random variables. Next, we assume that the laws entering the integral in (1) are the unique weakly
continuous laws. Likewise in the rest of this article, we assume that the law(Y |4 = a, L = [) and the
law(A|L =) are (weakly) continuous in all the arguments of (a, /) that represent realizations of abso-
lutely continuous random variables, and throughout, we take the conditional laws as the unique ones
prescribed by continuity.

2.2. Identifiability conditions

Extensions of estimands such as E [Y Q] to time-dependent intervention plans were considered by Robins
et al. [9] and Taubman et al. [10]. Also, Shpitser and Pearl [11] considered the estimand E[Y o] when L
is empty and A is discrete. These three articles arrived at a formula that identifies E[Y ] as a function of
the observed data distribution under certain exchangeability conditions. The formula is identical to the
formula (2) that we derive later. However, these papers assumed that Y, (w) is well defined for all a € A
and all w € Q. What exactly must be assumed for E[Y] to be identified when this is not the case is
subtle and is discussed next.

In the Supporting information, we show that E[Y] is identified; that is, it can be computed as a func-
tion of the law of the factual variables (Y, A, L), if the following two conditions hold. In the sequel for
any random vector V, suppV denotes the support of the probability distribution of the vector V.

Cl1. Positivity: If (a,l) € supp(4, L), then (¢(a,!),l) € supp(A4, L).
C2. Conditional exchangeability of policy related subpopulations: For each (a,l) € supp(A4, L) and
a=qal),lawYylAd=a,L=1) = law(Yy|A=a',L =1).

Positivity states that if in the target population there is a positive probability of finding a subject, say
w, with covariates L = [ who in the absence of intervention would be administered dose a € A, then
there is also a positive probability of finding in the same population a subject, say w’, with the same
covariates L = [ and who would be administered dose ¢(a, /) in the absence of intervention. Note that
positivity alone does not imply that dose ¢(a, /) is necessarily feasible for subject w. For instance, the
subpopulation with covariates L = [ may be composed of subjects with surgery lengths from 50 to
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120 min. If w had a surgery that lasted 110 min, and g(a, !) = a — 50, then positivity holds fora = 110
and L = [, but the surgery length of ¢ (110, /) = 60 min is unfeasible for subject w. However, positivity
combined with the exchangeability condition C2 essentially implies that dose ¢(a, ) is feasible. This is
because condition C2 is essentially the assumption that those that received dose a could have received
dose g(a,!) and that the assignment to doses a and ¢(a,!) was randomized (by nature) according to
a, possibly, L-dependent mechanism. Note that condition C2 is weaker than the usual no-unmeasured
confounders assumption that postulates that in the subpopulation with L. = [/, any subject could have
received any dose a observed for that group and that assignment to any such doses was randomized.
Such assumption is too strong and unrealistic in our setting because it implies that all doses observed in
a given subpopulation are feasible for all members of the subpopulation.

In the Supporting information, we show that under assumptions CO, C1 and C2, E[Y] is identified
and equal to the extended g-computation formula of Robins et al. [9]:

EWdzz/m@wJLDdﬂlmJ) )

where m(a,l) = E[Y|A=a,L =1]. Note, in the right-hand side of (2), m(q(a,l),l) =
E[Y|A=q(a,l), L =1] is the mean of the factual outcome Y among those that received treatment
dose g(a,!) and had covariates /. We emphasize that the positivity condition C1 ensures that such a
group is not empty and, hence, that m(q(a,!), /) is well defined for all (a, /) € supp(4, L).

When ¢(a,l) = a — § for a given &, the right-hand side of (2) agrees with the identifying formula
derived by Diaz Munoz and van der Laan [4] under stronger positivity and exchangeability assumptions
for a causal contrast quantifying the effects of a stochastic intervention in which subjects in the sub-
population with covariates L. = [ are randomly assigned to a (discrete) treatment A with randomization
probability Pr(4A = a|L = 1) = fy1(a + §|/). Note that we interpret the causal parameter identi-
fied by formula (2) differently, namely as quantifying the effect of an intervention that deterministically
decreases by 4 the dose actually received by each subject in the subpopulation with covariates L = /.
As discussed earlier, in the context of our consultation, for given choices of §, the latter ‘deterministic’
intervention is conceivable whereas the former ‘stochastic’ intervention is not. For instance, suppose
that for the subpopulation with covariates L = [, the actual operative times are uniformly distributed
in the interval (50,120), and § = 5, then an intervention that reduces by 5 min each subject’s surgery
length is conceivable whereas an intervention that randomly assigns each subject in the subpopulation
to a surgery of a length between 45 and 115 min according to a uniform distribution is not.

2.3. Ensuring positivity

If the support of the conditional distribution of A given covariates L is (b(L),b*(L)) for some
—00 < b(L) < b*(L) < o0, as will be the case if A is operative time, policies ¢(a, /) will have to
be carefully defined so as to ensure that the positivity assumption holds. Suppose for example that we
are interested in determining the effect of a reduction of § minutes in operative time. To ensure that
positivity holds, we could define

_fa—-6 ita>b()+§
@D =3, " ifta<bl)+5 3)

Alternatively, we could redefine the target of inference tobe E[Y |4 > b(L) + §]-E [Y olA>b(L)+ 8],
that is, the difference in the means of ¥ and Y in the subpopulation that satisfies A > b(L) + 6.

Both causal contrasts are special cases of a general causal target contrast defined as follows. Let c(+)
and d(-) be investigators’ chosen functions with domain the support of L, satisfying —oo < ¢(l) <
d(l) < 400, and such that for every a in the interval (c¢(/), d(l)), both (a,[) and (¢(a,!),!) belong to
supp(4, L).

We redefine the target causal parameter of interest to be as follows:

A=p-po, @

where u = E[Y|IL(A)=1], np = E [YQ|IL (A) = 1] and, for notational convenience, /7 (A) = 1
if ¢(L) < A < d(L) and 0 otherwise. This contrast reduces to the earlier contrast (1) if for each
[, (c(l),d(l)) is chosen to be the support of the distribution of A given L = [. Otherwise, it refers to the
effect on a specific subset of the population where a treatment, possibly different, than the one actually
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received could be realistically implemented. For instance, in the context of our example, if ¢(a,[) is the
modified treatment policy (3) and (c(/), d(l)) is the entire support of A given L = [, then A quanti-
fies the reduction in risk of post-surgical complications in the entire patient population, of reducing the
operative time by § minutes only on a subset where such reduction is feasible, that is, on those for which
A > b(L) 4+ 4. On the other hand, if ¢ (/) is chosen to be () + 8, then A quantifies the reduction in risk
Jjust in the subpopulation satisfying A > b(L) + &, that is, in those for which a reduction of § minutes is
regarded as feasible.

3. Estimation
In this section, we consider estimation and inference for A. The first component of the contrast, that

is, [, can be consistently estimated by the sample mean of ¥ among those subjects who received a
treatment dose A; in the interval (c(L;), d(L;)):

3 1,40,
=5 5)
> I, (A)

i=1

Note that if for each /, (¢ (), d(l)) is chosen equal to the support of A given L = [/, then the actual values
of ¢(/) and d(I) need not be known in order to compute i as Iz, (A;) = 1 with probability 1.

Towards estimating the second component of A, that is, g, we first provide two key identifying
formulas. The first is a straightforward extension of formula (2), namely

_El(A)m(Q.L)]
E[/L(4)]
which, as shown in the Supporting information, holds under assumptions C0O, C1 and C2. The
second requires the validity of the following additional technical condition, which ensures that
one can partition Z(/) = (c(/),d(/)) so that on each partition interval, say Z;(/), the integral
ij a0 m(q(a,l),l) dF41(a|l) can be computed by the change of variables formula:

(©)

C3. Piecewise smooth invertible policy: Suppose that for each [, there exists a partition of the inter-
val Z(I) = (c¢(l),d(l)) into intervals Z; (), j = 1,..., J(l), such that on Z;(/), ¢ (-, /) is equal
to ¢;(-,/) and on the interior of Z;(/), q;(-,/) has differentiable inverse function # (-, /) with
derivative denoted by h'; (-, ).

Condition C3 does not require full differentiability of ¢(-,/) but rather it makes the less stringent
requirement of piecewise differentiability of ¢(-,/). This flexibility is important as many interest-
ing MTPs such as (3) or the modified treatment policy of Taubman et al. [10] g(a,l) = al(a =
30) 4+ 307 (a < 30) discussed in Section 1, are differentiable piecewise but not on their entire domain.

Under CO, C1, C2 and C3, j1g can be re-expressed as

E[A(A, L)Y]
"o T ERGLD "
where
J()
Ma.ly="Y_"1I;i(hj@.Dyw;a.Dh; (@.l).
j=1

Ij;(u) =1ifu € Z;(l) and O otherwise, and

i@l
(a.]) =
wilal) = =F

where f41(-|-) denotes the density of the (weakly continuous version of the) conditional distribution of
A given L. Proofs are provided in the Supporting information*.

‘Supporting information may be found in the online version of this article.
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We thus see that (o can be expressed as a weighted mean of the outcome Y, with weights A(A, L).
The weight A is computed in such a way so that the outcome of a subject @’ in the population who,
under the modified treatment policy, would have ¢ (A (@), L (®")) = a is equally represented by the
observed outcome Y (w) of every subject, say w, in the population whose treatment A(w) in the absence
of intervention is equal to @ and who has L (0’) = L(w).

For instance, as indicated earlier, condition C3 holds when ¢ (a, /) is as defined in (3). In such case if
Z() = (c(l),d(l)) denotes the support of A given L, and b(l) = c(l), then Z,(l) = (b(l),b(l) + 6],
()= (b()+6,d(])), q(a,l)isequal to gy (a,l) =a onZi(l) and g2(a,l) = a — § on Z(I). In this
example, hy(a,l) =a and hy(a,l) =a + 6, so

SaL(a +8|0)
SfaiL(all)

Here, a subject w with A(w) € (b(!),b(I)+6]N(b(I),d(l)—6) has I; ;(A(w)) =1 and I, ; (A(w)) =

1,s0 A (A(w), L(w)) = 1+ %. The constant 1 in A(A(w), L(w)) appears because the

subjects own observed outcome stands to represent his counterfactual outcome under the MTP since

according to (3), ¢ (A(®), L(w)) = A(w) for A(w) € (b(l),b(l) + §]. The ratio % in

A (A(w), L(w)) appears because the outcome of subject w and those of all other subjects that have the
same values of (A4, L) as subject w, by virtue of A(w) € (b(/),d(l) — §), account equally to represent
the counterfactual outcome Y¢ of subjects w’ who have ¢ (4 («’), L (0')) = A (') —§ = A(w) and
L (o) = L(w).

The expressions on the right-hand side of (6) and (7) suggest two estimators of j1g in the spirit of the
familiar outcome regression and IPW estimators of counterfactual means E(Y,) under a fixed treatment
a. Further, just as for estimation of E(Y,), it is also possible to construct doubly robust estimators of
to. The following subsections describe the three estimation approaches.

AMa,l)y =1y (a)+ I (a +8)

3.1. Outcome regression estimation

Suppose that the conditional mean E [V |4, L] is modeled as
E[Y|A, L] =m(a,l;7") (®)
where
m(a,l;t*)=®7! {r(al;t)} )

®~! is an inverse link function with range in the parameter space of o, r (-, ;) is a known function
and 7 is an unknown finite-dimensional vector. For example, if Y is binary, a common choice is the
logistic regression E [Y |4, L] = expit {ro + A A+ rLTL}, where T = (1), T4, 7.) is @ (K + 2) vector of
regression coefficients and expit{u} = exp(u)/ [1 + exp(u)]. Whatever the specification of m(A4, L; t),
let T denote a consistent estimator of 7* under model (8). For example, if T indexes the aforementioned
logistic regression model, then 7 is its maximum likelihood estimator (MLE); otherwise, T is a weighted
least squares estimator of 7.
Given T, the identity (6), suggests a so-called outcome regression estimator of 1o

n ~
. i1 1, (A))m(Q;. L;;7)
Rg.on = 2=t LA L (10)
Zi —1 11, (4)
where Q; = ¢q(A4;,L;). Note m(Q;, L;;7) is the fitted conditional mean for the i*# individual when
their treatment A; is replaced by Q; and their covariates are left as L;.
Given the estimator Lo, or, we construct the following outcome regression estimator of A:

Aor =i —ig.or- (11)

In the Supporting information, we show, under CO, C1 and C2, correct specification of model (8)
and standard regularity conditions for M estimators, Apg is consistent and asymptotically Normally
distributed. In particular,

ﬁ (ZOR — A*) — N(O, VOR)
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[ e R e
where A* is the true value of A,
Vor = E[IL(A)]7? Var [IL(A)(Y —m(Q. A;7*) = A*) + DorForS(")]

0
Dor = ar—TE[IL(A)m(Q,A;T)]

t=1*

’
*

0
For = Br—TE [S(7)]

=T

and S(7) is the estimating function used to compute 7, that is, T solves 0 = Y_'_, S; (7). For example, if
T is the MLE of t™* under the aforementioned logistic model for (8), then S; (t) = X; (Y; —m(4;, L;; 1)).
A consistent estimator of Vog can be obtained by replacing in its formula the population variance and
each of the population means by their sample counterparts and replacing each A* and t* with 30 r and
7. Alternatively, a bootstrap variance estimator can be used.

Note, because jLg,or is a plug-in estimator of j1 ¢, it follows that if T is the MLE of v under model (8),
then [ip,or is the semiparametric MLE of 1o and, hence, is semiparametric efficient under the model

that assumes CO, C1, C2 and the outcome regression model (8). However, this does not imply that EOR
is a semiparametric efficient estimator of A because the non-parametric estimator [z, given by expression
(5), is not an efficient estimator of x under model (8). Clearly, instead of 1, we could use the MLE of
under model (8), that is,

S I, (Ai)m(A;, Li;7)
Z?:l ILi (Ai) ,

as a plug-in estimator of . Our philosophy, however, is that the sole purpose of model (8) is to overcome
the curse of dimensionality associated with estimating E [Y |A = a, L = [] non-parametrically. As such,
our preference is to minimize the dependence of the estimation of A on some assumed functional form
for E(Y|A =a, L =1) so as to minimize misspecification bias and, therefore, retain I as the estimate
of i in expression (4).

ImL =

3.2. Inverse probability of treatment weighted estimation

Suppose that the distribution of treatment 4, conditional on covariates L, is parametrically modeled as
having density

faip(@l|l) = far(all:0%) (12)

where 6 is unknown finite-dimensional parameter vector 6, and for each 6, f4(a|l;0) is a known
density. For example, if A|L ~ Normal(LT &, 0'2), then 6 = (x,0).

Given some specification of f4z (al|l;0), let 9 denote the MLE of 6. Identity (7) suggests that given
5, we compute an IPW estimator of j1g:

> )L(Ai»Li;/Q\)Y,-
S A(Ai Lz 0)

Ho,ipw = (13)

where, for any 6,

J(0)
A(Ai Liz0) =) 1 {(Hji)}w;i(0)h; (A, Ly),
j=1

and for notational convenience, H;; = h;(A;, L;) and
H,;|Li: 0
w;4(8) = SaL(Hj | )'
SaL(Ai|L;i: 0)

The form of identity (7) suggests that /n(Lo,rpw — /,L*Q) converges in law to a mean-zero Normal dis-
tribution when model (12) is correctly specified. However, for this to hold, we make a slightly more
demanding positivity condition, which ensures that A(4;, L;) not only is well defined but also has
finite variance:
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P
C4. Strengthened restricted positivity: For some p < 0o,

far (hj(a. L)|L)
max su
Jelld (WY ger, Ly Jar(all)

= p with probability 1

If, for instance, g (A|L) is as defined in (3), the strengthened positivity assumption holds if 47 (-|/) <
nand b(L) is strictly greater than the lower bound of the support of A given L so that f47, (-|/) > « for
some k > 0.

Given the estimator [Lo,;pw, we construct the following IPW estimator of A:

Arpw =R —To.1pw- (14)

In the Supporting information, we show, under CO, C1, C3 and C4, correct specification of model (12)
and standard regularity conditions for M estimators, Ajpy is consistent and asymptotically Normally
distributed. In particular,

ﬁ(zlpw—A*) — N(O, VIPW)
where A* is the true value of A,
Vipw =E[IL(A)] 72 Var [IL(A)(Y —p*) — MA. L)Y — 1) + DipwFrpyw M(6%)]

d «
Dipw = E)Q—TE [A(A, L:0)(Y — up)]

0=0*

0
Fipw = E)Q—TE [M(0)]

El

0=0*

M(0) = dlog f (A|L:0) /00 and u* and p7, are the true values of 1 and /1g, respectively. A consistent
estimator of Vypw can be obtained by replacing in its formula the population variance and each of the
population means by their sample counterparts and replacing each p*, /,L*Q and 6* with [, [lo,rpw and

0. Alternatively, the bootstrap variance estimator can be used.

Note it is well known that IPW estimation of the counterfactual mean E(Y,) for a fixed treatment
a is unstable due to the occasional presence of a unit i with small estimated f4)7 (A4;|L;) relative to
the rest of the sample. Towards estimation of A, the IPW estimator (14) is intrinsically stabilized as

it involves weighting by A(4;, L;), a sum of quantities w ; (/9\), each being a ratio of two (estimated)
densities fA|L(-|L,-;/9\) evaluated at 1 (A;, L;) and A;, respectively. If ¢(A4;, L;) and A; are close (i.e.,
if the policy ¢ (a, /) prescribes small changes of the received treatment), then the weights A(A;, L;) will
not be large even if f4 7 (A;|L;; /9\) is large.

3.3. Doubly robust estimation

As they stand, neither [ig, or nor jLg, rpw are entirely satisfactory estimators of ;o because their con-
sistency depends on the validity of the dimension-reducing models (8) and (12). Towards providing some
protection against misspecification of these models, we construct a doubly robust estimator. When & is
a canonical link in a generalized linear model, the proposed doubly robust estimator can be easily imple-
mented using software for fitting generalized linear models. The estimator is computed as the result of
the following three steps:

Step 1: Compute the estimators 7 and 0 of the preceding subsections.
Step 2: For each unit i in the sample, compute ) solving

- ) ! e LoV =o
;l(Az’Lz,G)[Y, O~ {r (41, Lis D) + 2 (4 Liz0) || = 0

Note if @ is a canonical link in a generalized linear model, the estimator 3 can be obtained with
standard software by fitting a model with no intercept, a single covariate X;; = A (A,-, L;; /9\) and
an offset Xo; = r (A4;, Li; 7).
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Step 3: Compute the estimator of (1o as

Sy I (A7 {r (01 Li®) + 72 (0, i)}

io.pR = (15)

0 Yoy I (4)
Note that formula (15) for fip pr is the same as formula (10) for the outcome regres-
sion estimator of pg except that m(Q;,L;;7) = &~ Yr(Q;,L;;7)} is replaced by

ot {r (0i.Li:T) + YA (Q,-, L,-;/Q\)}. With 7 computed as in step 2, this replacement ensures that

ILo,pr solves a doubly robust estimating equation (Theorem 4 of the Supporting information). This
construction is analogous to that of double robust outcome regression estimators of parameters of con-
ventional marginal structural models for point exposures (see, for example, [15]). The subtle and novel

distinction is the form of the weights A (A,-, L;; /9\)
The estimator Lo, pr can be used to construct the following estimator of A:
Apr = A —1to,DR- (16)

In the Supporting information, we show, under CO, C1, C3 and C4, standard regularity conditions for M
estimators and correct specification of model (8) or (12), but not necessarily both, A pr is consistent and
asymptotically Normally distributed. In particular,

N (KDR - A*) —> N(0,Vpr)
where A* is the true value of A,
Vir = E[I2.(A)] 2 Var [U (A*,rT,yT,HT) — DoraFpkaS (v1.77:6) = DoraFok oM (9*)]

0 .
Dpr,1 = WE [U(A > T, Vs QT))]

r=tT,y=yF
0 ~
TS (o)

—1
Dpr2 =Y9pr2—DpR1FpR19DR1

Gpr,1 = a@iT E [§ (rT’ v 9)]‘0"‘
0

e[ (8701510)]

0
FDR2 = BQ—TE [M(0)]

FDR1 =

r=tt,y=yT

Gprp =

=67

’

=067

with
U(A’ T,Y, 0) = IL(A) [Y - q)_l {r(Q’L’ T) + }/A(Q,L, 0)} - A]
— MA,L;0)[Y =@ {r(A, L; 1) + yA(A. L; 0)}],

(e 10 — S(7)
S(z.7:6) = [ A(A, L;0) {Y —® 1 [r(A4, L;7) + yA(A, L; 0)]} ]

and v, T and 6 are the probability limits of 7,7 and /0\ respectively. Note 77 = ¢* and yT = 0 if
model (8) is correctly specified and T = 6* if model (12) is correctly specified. A consistent estimator
of Vpgr can be obtained by replacing in its formula the population variance and each of the popula-
tion means by their sample counterparts and replacing each A*, ¥, yT and 8 with A DR, T, Y and /9\,
respectively. Alternatively, the bootstrap variance estimator can be used.

Following [16], it is possible to show that when both models (8) and (12) are correctly specified, the
asymptotic variance of Lo pr is equal to the semiparametric variance bound for estimation of p¢ in
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the nonparametric model that imposes assumptions C0O, C1, C3 and C4. It follows that when both (8)
and (12) are correctly specified and 7 is the MLE of t under model (8), the asymptotic variance of
Lo, DR is greater than or equal to that of the outcome regression estimator, /Lo, or, because, as indicated
in Section 3.1, [ig,or is the semiparametric MLE of u¢o under the smaller model that, in addition to
CO0, C1, C3 and C4, it also assumes the parametric form (8). The increase in the variance incurred by
Lo, DR, relative to [Lp,or, is the price paid for the additional protection against misspecification of (8).
An analytic comparison between the asymptotic variances of [Lg ;pw and of [lp pr is not possible
because, even though [l ;pw is consistent under correct specification of (12), it does not achieve the
semiparametric variance bound for estimators of 1t under model that, in addition to CO, C1, C3 and C4,
it also assumes (12). Note that, like the ATT contrast but unlike the ATE contrast, the asymptotic effi-
ciency bound for estimation of o under this model is smaller than the bound under a model that does
not impose (12) because, just like E [Y;—¢|4 = 1] but unlike E [Y,—¢], ;£ is a functional that depends
on fur.(:") [17-19].

As indicated earlier, in the special case in which (c(L), d(L)) is equal to the support of A given L and
q(A|L) = A — 6, the identifying formula (2) for o agrees with the formula that identifies the causal
estimand of Diaz Munoz and van der Laan [4]. The estimators proposed by these authors can therefore
also be used to estimate . In fact, our IPW estimator of j1o differs from the IPW proposed in that
paper in that the denominator in formula (13) is replaced by n. By virtue of being a weighted average

(with weights A(A4;, L;; 5)), our IPW estimators, unlike those in Diaz Munoz and van der Laan [4], are
guaranteed to fall in the range of ¥, and thus in the parameter space for (1. Diaz Munoz and van der
Laan [4] present two doubly robust estimators, one in the form of an augmented IPW estimator and
another computed by the method of TML. Our choice of methodology for computing a doubly robust
estimator is based on the following considerations: it is non-iterative, when ®(-) is a canonical link, it
can be implemented easily with standard regression software, and because it has ultimately the form
of an outcome regression estimator, it falls in the parameter space. The augmented IPW estimator is
not guaranteed to fall in the parameter space and requires special programming. TML is a loss-based,
recursive algorithm that produces an estimator of (¢, which has both the form of an outcome regression
and IPW estimator. If the loss function is convex, the TML algorithm converges to a unique solution,
and by virtue of being a substitution estimator, it falls in the parameter space. These two properties are
shared by our non-iterative doubly robust estimator when ® is a canonical link, which, unlike TML, is
non-recursive. All doubly robust estimators have the same limiting distribution when both the treatment
and the outcome regression models (8) and (12) are correctly specified. None dominates the other in
terms of asymptotic efficiency when one of the models is incorrect.

Diaz Munoz and van der Laan [4] provide an estimator of the asymptotic variance of their IPW esti-
mator, which they claim is conservative, citing van der Laan and Robins [20] to support their assertion.
However, the theory in that reference is about inference on estimands that, like E [Y,,] but unlike (¢, do
not depend on the treatment mechanism f4|7,(-|-) and it does not apply to inference about 1o . Specifi-
cally, it is well known (e.g., Section 6.1 of Robins ef al. [21]) that variance estimators of IPW estimators
of E [Y,] that do not account for the fact that the weights have been estimated are conservative. However,
this result heavily relies on the fact that the statistical parameter that is being estimated in lieu of E [Y,],
namely [E(Y|A=a,L =1)dF(l), does not depend on [y (-]-) [22,23]. In contrast, because the
identifying formula for ;1o does depend on fy4z (-|-) (Equation (2)), it is not true that failure to account
for weight estimation yields conservative variance estimators of the IPW estimators of p¢. Yet, the vari-
ance estimators of Diaz Munoz and van der Laan [4] do not account for weight estimation, and thus,
they are not ensured to be conservative. Likewise, their proposed variance estimator of their augmented
IPW and TML estimators can be, contrary to what they claim, also anticonservative when model (12) is
correct and model (8) is incorrect. We provide an example in the Supporting information.

4. Marginal structural models

So far, we have focused on the comparison between a single dosing policy ¢(a,[) with current dos-
ing standards. For the comparison of several candidate dosing policies in a candidate set {gs(a,/) :
8 € Y}, all satisfying C4 for the same c¢(L) and d(L), a model that parametrizes the dependence of
E[Ys|I1(A) = 1] as a function of § is desirable where, for simplicity, throughout Y5 = Yo ,. More gen-
erally, if one wishes to examine how the dependence of the mean of Y5 on § varies across subpopulations
defined by levels of a subset Z, possibly all, of the baseline covariates L, then a model parametrizing
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the dependence of E [Y5|/1(A) = 1, Z] on § and Z might be of interest, that is, a model of the following
form:

E[Ys|IL(A)=1,Z] = o Yg(Z.5: )} (17)

where @~ ! is a given inverse link function, g(-,-;-) is a known function and § is an unknown parame-
ter vector of dimension p. For instance, suppose that in the context of our consultation, A is operative
time, L includes information on comorbid conditions and the surgery that jointly affect operative time
and outcomes, (c(/), d(l)) is the support of A given L = [, gs(a,l) is defined like ¢(a,!) in (3) for §
ranging in Y = [0, 10] and (/) = ¢(I) + 10. If Y is the indicator of a post-surgical complication, and
Z is a binary indicator of gender (Z= 0/1 = female/male), we may take

exp{fo + B16 + B2Z + B3 Z5}
1+ exp{Bo+ P16 + B2Z + B3Z5}

> Hg(Z,8: )} = (18)

Then, exp(B1 + B3) is the proportionate change in the odds of a post-surgical complication in men
caused by each additional reduction of 1 min in the surgery length for men for which such reduction is
feasible. Model ( 17) is the generalization of a marginal structural model for dynamic regimes [24,25]
to modified treatment policies.

From the fact that each E [Ys|/1 (A) = 1, Z] is identified when CO, C1 and C2 hold for each g;(-, ),
we conclude that 8 is identified when these conditions hold simultaneously for all candidate policies.
Just like for A, it is possible to construct three distinct estimators of B as we outline next. The three
estimators will rely on an investigator’s choice of a partition of the set Y into intervals [6;—1, ;) for
t =1,...,T, where §; < § < --- < §7. Although not needed for consistency, to ensure estimators
of B with good efficiency properties, we recommend that the partition be chosen so that the intervals
[6:—1,8;) have roughly the same length and T is at least 10. A similar issue arises in the estimation of
marginal structural models for dynamic regimes [26]. In what follows, T and 0 are the estimators of
subsections 3.1 and 3.2. N

The first estimator, denoted Bog, generalizes the outcome regression estimator of Section 3.1. It
solves the estimating equation

n T
DY s(Zi 8 I, (A) [m(Qs,.i0 Lin T) — @ He(Zi, 83 B)}] = 0 (19)

i=1t=1

where Qs,; = ¢5,(A;, L;) and s(-,-) is a data analyst’s chosen vector-valued function of the same
dimension as B. For example, if ®~! {g(Z;,8,: B)} is as in (18), then we can choose

$(Zi,80) =18, Zi, Z:8,]" . (20)

With this choice, EOR can be computed from any package that carries out logistic regression allowing
continuous outcomes taking values in (0, 1). To implement it, we create an extended dataset composed
of (T'+ 1) xn records, with 7'+ 1 records for each unit i in the sample. Record 7 of unit i contains copies
of the variables L;, A;, Y;, a pseudo covariate D; ; = §; and a pseudo outcome Y; ; = m(Qs, ;, L;, 7).
Then, BOR is the logistic regression estimator of outcome 7,-7, on covariates Z;, D;; and Z; D;; and an
intercept computed from the subset of the extended dataset corresponding to replicates of units i, which
satisfy c(L;) < A; <d (L;).

In the Supporting information, we show that under regularity conditions, (19) has the solution EOR
such that \/n (EOR — B*) converges to a mean-zero Normal random variable when C0O, C1 and C2 and
model (8) hold. In the Supporting information, we provide the expression for the variance of the limiting
Normal distribution and a consistent estimator for it. The bootstrap can also be used as an alternative to
the variance estimator given in the Supporting information.

The second estimator, denoted 31 pw, generalizes the IPW estimator of Section 3.2. It solves the
estimating equation

n T
SN S(Zi80)As, (Ai Liz0) [Yi — @71 {g(Zi.6,:)}] = 0 1)

i=1t=1
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where
J(1)
As, (Ai, Li;0) = Z L {(Hs, i)} we, i (Q)hig,,j (Ai, L;)
j=1
Hs, ;i = hs, j(A;, L;) where for each [, hs, ;(-,1) is the inverse of the function ¢, ; (-,/) and

SfaiL(Hs, jilLi;0)
SaL(Ai|L;i: 0)

If @' {g(Z;,8:PB)} is as in (18), and we choose s(Z, ;) as in (20), then we can compute EIPW
using the aforementioned extended dataset by simply fitting a weighted logistic regression with out-
come Y; (the same for each replicate record of subject i), covariates Z;, D;; and Z; D;; and weights
Aig = As, (Ai, L;i: 0). R

In the Supporting information, we show that under regularity conditions, (19) has a solution S7pw
such that \/n (31 pw — B*) converges to a mean-zero Normal random variable when C0O, C2, C3 and
C4 hold for all § € T and model (12) is correctly specified. In the Supporting information, we provide
the expression for the variance of the limiting Normal distribution and a consistent estimator for it. The
bootstrap can also be used as an alternative to the variance estimator given in the Supporting information.

Finally, the third estimator, denoted E DR, generalizes the doubly robust estimator of Section 3.3, and
it is computed as the result of the following three-stage procedure:

ws, j,i(0) =

Step 1: Compute y by solving

n T
> D (Zi 805, (Ar, Liz0) [ ¥ = 07 {r (i L) + v T5(Z. 825, (1. Liz D) | =

i=1t=1

Step 2: For each unit i in the sample and each t =1, ..., T, define
iig = 7 {F(Qi, Lis®) + 77 5(Zi. 62, (Qi Li D)}

Step 3: Compute E DR by solving

n T
YD s(Zi 8L (A) [ — @7 {g(Ziu 5 B)Y] = 0

i=1t=1

The estimator B\DR can be easily computed if ®~! {g(Z;,8;;B)} is as in (18) and s(Z;, ;) is as in
(20) as follows. First, in the aforementioned extended dataset, we add to rephcate t of subject i, new
variables XOlt = V(AI,L“T) Xllt = Alta Xth = A t8t»X3lt = AltZ and X4lt = AltZ 8t
Next, the estimator ¥ = (¥1,...,74) of step 1 is obtained as the weighted logistic regression estimator
of outcome Y; (same outcome for each replicate ¢ of subject i) on covariates X1 ;;,..., X4, with an

offset Xo,; ;. no intercept, an weight /\, ¢. We then store the variable 77; ;, and finally, the estimator ﬂ DR
is the logistic regression estimator of outcome m,,, on covariates Z;, D;; and Z; D;; and an intercept
computed from the subset of the extended dataset corresponding to replicates of units i, which satisfy
Cc (L,') < A,‘ < d(L,').

In the Supporting information, we show that under regularity conditions, the resulting estimating
equation has a solution E pr that satisfies that /n (E DR — B*) converges to a mean-zero Normal random
variable when C0, C2, C3 and C4 hold for all g5 and model (8) or (12), but not necessarily both, hold.
In the Supporting information, we provide the expression for the variance of the limiting Normal distri-
bution and a consistent estimator for it. The bootstrap can also be used as an alternative to the variance
estimator given in the Supporting information.

5. Application: Operative time and post-surgical outcomes

5.1. Setting

The data that motivated this work were abstracted from clinical databases at Brigham and Women’s
Hospital (Boston, MA) and consist of records on N = 707 individuals who underwent surgical resection
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Figure 1. Boxplots of observed operating times, by resection type. Horizontal dashed lines indicate the
(c(L),d(L)) range restrictions.

for NSCLC between January 2004 and December 2008. Additional inclusion criteria were as follows:
patients were between 21 and 85 years of age at the time of surgery, had a pre-operative forced expiratory
volume in 1 s (FEV) of less than 150% predicted and had a tumor that was less than 20 mm in diameter.

Patients who undergo lung tumor resection have a number of surgical options. The vast majority of
patients receive one of three resection types: (i) lobectomy, where the lobe that contains the tumor (one
of two that healthy individuals have) is removed; (ii) segmentectomy, where the segment that contains
the tumor (one of five that healthy individuals have) is removed; and (ii) wedge resection, where the
tumor and a minimal amount of surrounding lung tissue are removed. In this application, we combine
lobectomies and segmentectomies into a single group of ‘anatomic’ resections. A second dimension to
choice of surgery is whether a patient undergoes a thoracotomy or a minimally invasive video-assisted
thoracoscopic surgery.

5.2. Available data and analyses

Interest in this study lies in evaluating the effect of operative time, defined as the time from initial
incision to the time at which the surgeon was ready to close, on two post-surgical outcomes: (a) the
occurrence of any post-surgical major complications during their hospital stay and (b) a hospital stay of
at least 1 week. Confounders, identified a priori, included the following: surgery type (thoracotomy vs.
video-assisted thoracoscopic surgery), resection type (wedge vs. anatomic), whether or not nodes were
sampled, chronic obstructive pulmonary disease, body mass index and smoking status.

To estimate the causal effect of operative time on the two post-surgical outcomes, we considered an
marginal structural model (MSM) of the same form as that given by (18) with Z taken to be resec-
tion type and ¢g(a,!) defined as in expression (3) with § up to 15 min and h(L) = 45/105 min for
wedge/anatomic resections. The upper bound of 15 min for § was chosen in consultation with the sur-
geons in our consulting project so as to reflect the range of duration reductions considered ethically
and practically feasible. For both outcomes, (c(L), d(L)) was set to (20, 180) min for wedge resection
surgeries and (30, 300) min for anatomic resection surgeries (Figure 1). With these choices, we empha-
size that the interpretation of the results pertain to the population defined by the constraint that the actual
operative time, A, was in the interval (¢ (L), d(L)) but with the intervention (i.e., a reduction of operative
time of § minutes) only having been applied to the subpopulation with A > b(L) + 6.

In the implementation of the analyses, each of the confounders was included in both the outcome
regression model as well as a linear regression model for the treatment (i.e., operative time). For the
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Table I. Point estimates and bootstrap-based approximate 95% confidence intervals
(CD) for the causal odds ratio corresponding to a 15-min reduction in operative time for
two outcomes in the analysis of the lung surgery data.

Wedge resection Anatomic resection
Est. 95% CI* Est. 95% CI*

At least one major complication

OR 0.77 (0.66, 0.89) 0.81 (0.68, 0.98)

IPW 0.89 (0.61, 1.29) 0.69 (0.51, 0.92)

DR 0.87 (0.66, 1.16) 0.71 (0.58, 0.88)

Hospital stay of =7 days

OR 0.80 (0.72, 0.89) 0.82 (0.70, 0.96)

IPW 0.96 (0.72, 1.27) 0.71 (0.54,0.92)

DR 0.91 (0.74, 1.12) 0.74 (0.61, 0.90)
Results are for a marginal structural model given by expression (18) with Z indicating resection
type.

*Based on the bootstrap, with 10,000 bootstrap samples.

former, we also included interaction terms between each of the confounders and treatment. Further, in
all models, surgeon was adjusted for via the inclusion of a surgeon-specific fixed effect. Finally, for all
the IPW and doubly robust estimators, we took the conditional treatment distribution to be a Normal
distribution with a constant variance.

5.3. Results

Table I presents point estimates and bootstrap-based approximate 95% confidence intervals for the causal
odds ratio corresponding to a 15-min reduction in operative time, based on the marginal structural model
given by expression (18) with Z indicating resection type. Based on the outcome regression estimator,
the odds of at least one major complication decrease by 23% (exp{ﬁl,o rt = 0.77; 95% CI: 0.66, 0.89)
for every 15-min reduction in operative time among wedge resections. The point estimates based on the
IPW and doubly robust estimators indicate somewhat of a decreased effect, neither of which are sta-
tistically significant. In contrast, both of these estimators indicate a relatlvely strong causal effect of a

15-min reduction in operative time among anatomic resection surgeries: exp{ ﬁl pw+ ﬁ 3. 7pw = 0.69

(95% CI: 0.51, 0.92) and exp{,BLDR + ﬁ3,DR} = 0.71 (95% CI: 0.58, 0.88), respectively. Again, the
results and conclusions for the second outcome of a hospital stay of >7 days are similar.

Figure 2 presents estimates of E [Ys|c(L) < A <d(L), Z] as a function of § based on our adopted
MSM,; the first row for the major complication outcome and the second for the long length of stay out-
come; the first column for wedge resections and the second for anatomic resections. Consistent with the
point estimates in Table I, in all four panels, the estimated expected outcome rates decrease as a function
of §, with the greatest reductions among the anatomic resection surgeries. For example, given a 15-min
reduction in operative times among patients who underwent an anatomic resection and whose surgery
was at least 105 min long, the overall expected rate of a hospital stay of at least 7 days decreases from
approximately 28.5% to 25.5%. We note that, throughout, the doubly robust estimates can be seen to be
a compromise between the outcome regression and IPW estimates. Finally, while not presented in detail,
we also investigated the inclusion of additional polynomial terms into the MSM; none were statistically
significant indicating no evidence of non-linearity in the MSM as a function of §.

5.4. The treatment-variation irrelevance assumption

As with all causal inference, the ability to learn about any particular treatment intervention relies on the
interplay between the availability of data that is specific to the intervention and assumptions one makes
to allow the borrowing of strength from other observed interventions. In our application, the estimated
causal effect associated with a decrease in operating time of § minutes does not correspond to any single
intervention. Yet, as discussed in [27] and [14], we can interpret the target estimand A as quantifying
the effect of an intervention that reduces the operative time by exactly § minutes of each subject that had
a operative time of A minutes by means of a random mechanism chosen among those used to attain a
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Figure 2. Estimates of E[Ys|c(L) < A <d(L),Z] based on the adopted MSM of Section 5.2 for the two
post-surgical outcomes, stratified by resection type (Z).

time of A — § minutes in the study population. As discussed in Section 1, while such estimands cannot
directly inform current clinical decision making, they are useful nonetheless as they can be used to guide
the choice of promising interventions that can be evaluated in randomized studies.

6. Discussion

In this article, we propose a framework for conducting causal analysis, which relies on estimation of
the outcome mean under a hypothetical world in which every subject receives a deterministic function
of the dose that they actually received, and on changes in the outcome mean as this deterministic func-
tion varies. This setting is different from the standard analytic framework that contemplates hypothetical
worlds where the dose received by every individual can depend at most on baseline covariates, but it is
otherwise the same for all subjects.

We have argued that our framework is appealing in settings like the one that motivated this work,
where the set of feasible treatments for each subject depends on attributes that are not fully captured by
baseline covariates but which are reasonably captured by the treatment actually received.

Identification of the target parameters contemplated in our framework requires weaker exchangeability
conditions than the ones required for identification of the target parameters of standard causal analyses.
Under these identification conditions, the contrast that compares the effect of one specific modified treat-
ment policy to no intervention coincides with a statistical parameter, which was recently studied by Diaz
Munoz and van der Laan [4]. These authors show that under certain identifying conditions, this statistical
parameter is equal to a causal contrast that compares the effect of a stochastic intervention to no inter-
vention. As such, our work offers a different interpretation of the statistical parameter and estimators in
that article. In addition, we have described a marginal structural model whose parameters quantify how
the outcome mean changes with different modified treatment policies.

We have derived three different estimators, an IPW, an outcome regression and a doubly robust
estimator, of the contrast quantifying the effect of a single intervention and of the parameters of the
marginal structural mean model. Our doubly robust estimator is non-iterative, can be implemented easily
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using standard software and always falls in the parameter space. In addition, we have provided analytic
formulae for the variance of the limiting distribution of our estimators and for consistent estimators of it.
Our variance estimators adjust for estimation of the treatment distribution, correctly accounting for the
fact that the statistical parameters are functionals of the treatment distribution. In contrast, the variance
estimators proposed by Munoz and van der Laan [4] do not account for this fact and can, contrary to
what is claimed in that paper, be anticonservative. In the Supporting information, we provide an example
which proves this.
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