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Abstract 

A method to control a heat-exchanger network (HEN) is presented where 

both, the control objective and the economic objective are taken into 

account. It is assumed that we have a two-level structure in which the steady 

state economic optimisation is performed in the upper level and the MPC 

controller is used to enforce the optimal operating point defined by the 

economic layer. Since HENs are multivariable highly interactive systems, 

which integrate large energy consumers of a process plant, stability of the 

proposed structure becomes one of the issues of the HEN control problem. 

In this approach, integration is achieved through the definition of an 

extended cost-function that provides the controller with the ability of driving 

the system to optimal conditions. The proposed MPC algorithm uses a 

linear state space model that is particularly suitable to the development 

proposed in this work. The method is exemplified with the simulation of a 

HEN system that shows the typical characteristics of an industrial system. 

 

Keywords: model predictive control, heat-exchanger networks, minimum 

utility consumption, stable control 
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Introduction 

 

Large chemical plants are intensive energy consumers and usually require energy recovery 

systems to maintain the operation at a competitive economic level. To help achieve this goal, 

heat-exchanger networks (HENs) usually play an important role mainly in oil refineries and 

petrochemical plants where a large number of hot process streams that leave the process can 

be used to increase the thermal energy of cold streams that are fed to the process. A 

complicating factor in this scenario is that the thermal outlet condition of several process 

streams must be controlled close to desired values associated to products specifications, 

environmental restrictions and safety constraints without reducing the operation efficiency. 

Consequently, the usual requirement of satisfying the control targets must be accomplished 

without reducing heat integration, or almost equivalently, maintaining low utility 

consumption.  

In the last two decades, the design of a proper control structure for the HEN system has 

become a subject to academic research, mainly after it was realized that hard constraints in the 

manipulated inputs plays an important part in the control problem. Most works that appeared 

in the literature focused on the design problem of the HEN control system, producing several 

procedures to define the appropriate control structure. Some initial contributions related to 

this topic can be found in Marselle et al. (1982), Beautyman and Cornish (1984), Calandranis 

and Stephanopoulos (1988), Huang and Fan (1992) and Mathisen et al. (1992). More recently, 

Aguilera and Marchetti (1998) studied the integration of on-line optimisation and control of 

HENs. In their study, it was emphasized the necessity of defining the degrees of freedom of 

the HEN system with regard to the steady-state optimisation. Glemmestad et al. (1999) 

propose an approach for the optimal operation of HENs in which a periodic steady-state 

optimisation is integrated to a fixed control structure. In the practical field, Giovanini and 

Marchetti (2003) have shown that low-level Distributed Control Systems (DCS) are capable 

of handling some HEN control structures, but in general, there are some limitations to 

reaching the most convenient operation point. 

For those continuous systems that exhibit constraints in the manipulated inputs, using MPC 

seems a natural alternative to pursue the economic optimal operating point. Model Predictive 

Control (MPC), also known as Moving Horizon Control or Receding Horizon Control, has 
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been extensively applied in the process industry due to its ability to handle input constraints 

for highly interacting systems as the HEN system. The controller uses a dynamic model of the 

process to predict the output trajectories and performs a constrained on-line optimisation to 

determine the optimal future input sequence. The first control move is injected in the real 

plant and the procedure is repeated in the next sampling time. Detailed overviews of MPC and 

comparisons of commercial MPC controllers can be found in Maciejowski (2002) and Qin 

and Badgwell (2003). 

 

A simple method to obtain a stable MPC is to include in the control optimization problem, a 

terminal state constraint (Keerthi and Gilbert, 1988, Mayne and Michalska, 1990). This state 

constraint assures that, at the end of the output prediction horizon, the state will lie at the 

origin. This method is easy to codify but it is difficult to implement in practice for systems 

that show unmeasured persistent output disturbances and systems that have more outputs than 

inputs. In such cases, the optimization problem, which is solved by MPC, may easily become 

infeasible at normal operating conditions. Some authors (Michalska and Mayne, 1993, 

Scokaert et al. 1999) have proposed an alternative approach, in which the terminal state is 

expanded to a terminal set around the origin. This terminal set is such that it is positive 

invariant when in closed loop with the Linear Quadratic Regulator. In this method, the region 

in which the controller is feasible still depends on the control horizon and on the magnitude of 

the disturbances that enter the system.  

 

Another method to obtain a stable MPC is to consider an infinite prediction horizon. Rawlings 

& Muske (1993) have shown that for linear stable systems with constraints in the inputs and 

states, the infinite horizon MPC is stable independent of the other tuning parameters. 

Rodrigues & Odloak (2003) and Odloak (2004) extended the infinite horizon approach to 

systems with model uncertainty and unknown steady state. The method was also extended to 

non-square systems where the number of outputs is larger than the number of inputs. The new 

approach is based on the softening of the terminal state constraint. Here, the method of 

Odloak (2004) is further extended to include an economic objective in the MPC optimization 

problem, in such a way that a nominally stable MPC for the HEN system is obtained. 

Although a large number of articles focusing on applications of MPC to a variety of process 

systems can be found in the control literature, the application of MPC to HEN systems has not 
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been fully evaluated. There is no justification for this lack of interest of the control 

community in the control of HEN systems. These systems present challenging operating 

features, which combine heat integration and low utility consumption with the dynamic 

regulation of the temperature of several process streams. 

This paper is organized as follows: Section 2 describes the HEN steady-state optimisation as 

presented by Aguilera and Marchetti (1998) and discusses how to integrate the economic 

optimisation into the multivariable control structure of MPC. Section 3 presents the 

development of the infinite horizon MPC associated with the state space model form that is 

used here. It is also included a discussion on how to extend the controller of Odloak (2004) to 

be applied to the HEN system. In Section 4, a description of the network application example 

and its degrees of freedom are discussed. Section 5 provides simulation results with and 

without the insertion of set points to the manipulated variables. Finally, in Section 6 the paper 

is concluded. 

 

2. The optimal operating point of the HEN system 

 

The main purpose of the HEN system is to recover as much energy as possible from high-

temperature process streams and to transfer this energy to cold-process streams. The benefits 

are savings in steam and fuels. However, the HEN system has to provide the proper thermal 

conditioning of some of the process streams involved in the heat transfer network. This means 

that a control system must be included in order to drive the exit process-stream temperatures 

to the desired values in the presence of external disturbances and input constraints, The 

control system should be designed in such a way that it can lead the HEN system to the point 

of minimum utility consumption. 

There are two classes of heat-exchanger units in a HEN system: those in which energy is 

exchanged between process streams (referred here as “heat exchangers” or “E units”) and 

those in which heat is exchanged between a process stream and a utility stream as steam or 

water (referred here as “services” or “S units”). It is desirable that the global task executed by 

the services be minimized in order to achieve the highest energy integration. The weighted 
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sum of utility flowrates is then used as an index function to represent the network in terms of 

energy recovery efficiency. 

The usual manipulated variables in a HEN system are the flowrates at bypasses around heat 

exchangers, the flowrates of utility streams in service units and the splits of process streams. 

Usually, the HEN system has more control inputs than outlet temperatures to be controlled 

and so, the set of input values satisfying the output targets is not unique. The possible 

operation points may result in different levels of heat integration and utilities consumption. 

Hence, the optimal operation of HEN systems requires the development of a strategy that in a 

first step determines the inputs that produce the lowest service-cost, and in a second step 

defines how to dynamically guide the process towards this optimal point. Thus, the strategy 

involves two separate optimization problems whose variables are not exactly the same. The 

first problem is a steady-state optimization problem wherein the objective function can be 

written as  

,
min ,

i i j j
c hi j

c c h hw w i j
c w c w i H j C

 
+ ∈ 

 
∑ ∑ ∈ ,      (1) 

 
where H and C are the sets of hot and cold streams respectively, wci stands for the cold-utility 

flowrate of the service unit related to hot stream i , whj is the hot-utility flowrate of the service 

unit related to the cold stream j, cci and chj are the utility costs. 

Associated with the above objective we have several equality and inequality constraints 

defining the heat exchanger network model, constraints in heat duties, valves opening bounds, 

flow limits, temperature targets, etc. A complete definition of this problem can be found in 

Aguilera and Marchetti (1998). 

Assuming that the structure of heat exchanger network is fixed, the solution to the above 

problem is a set of optimal values for flowrates of process streams and utilities. If the 

controller of the HEN system can steer these variables to the desired optimal values while 

maintaining the outlet temperatures at their targets, then the operation of the HEN system will 

be optimal. One type of controller that is a natural candidate to this kind of assignment is 

MPC, and in the next section we discuss the extension of a stable MPC of the control 

literature to the control of HEN systems. 
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3. The infinite horizon MPC applied to the HEN system 

A simple strategy to obtain a stable MPC is to consider an infinite prediction horizon as 

proposed by Rawlings and Muske (1993), who designated this controller as IHMPC. The 

controller developed by these authors focused only on the regulator case. IHMPC was 

recently extended to the output tracking case in the presence of unmeasured disturbances or 

unknown steady state. Rodrigues & Odloak (2003) proposed an approach in which the output 

prediction is treated as a continuous function of time. Odloak (2004) presented another 

version of the same controller for the case wherein the prediction time is discretized. Here, we 

will extend the method of Odloak (2004) to control a system like the HEN system where the 

economic objective imposes targets to the inputs. 

The MPC strategy consists in obtaining a control sequence that minimizes, at each sample 

step, the predicted future error along the prediction horizon, subject to constraints on the 

amplitude of the control input and input move. From this control sequence, only the first 

component is implemented in the real system. At the next sample step the whole procedure is 

repeated. 

For stable systems with nu inputs and ny outputs, assuming that the poles relating any input ui 

to any output yj are non-repeated, a state space model that is suitable to the implementation of 

IHMPC can be represented in the following form: 

0( 1) ( )
( )

0( 1) ( )

s s
ny

d d

Ix k x k B
u k

Fx k x k B

      +
     = + 
     +       

s

d
∆



d

     (2) 

( )
( )

( )

s

ny d

x k
y k I

x k

 
  = Ψ    

        (3) 

where 

1
Ts

nyx x x =   , , , ,   s nx ∈ y
1 2

Td
ny ny ny ndx x x x+ + + =  

d nx ∈ nd ndF ×∈

Φ 0
Ψ

0 Φ

 
 =  
  

,       Ψ ,       Φ ,    Φ  ny nd×∈ [ ]1 1= nu na∈
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In the state equation (2), the state components xs correspond to the output steady state and 

components xd correspond to the stable modes of the system. When the system approaches 

steady state these components tend to zero. F is a diagonal matrix with components of the 

form  where rirT

s

k kδ

0

e i is a pole of the system and T is the sampling period. The system has nd 

stable poles. Matrix  is the gain matrix of the system. To build up matrix , it is assumed 

that na is the number of poles associated to any input u

B Φ

i and any output yj. 

The extended IHMPC cost function can be written as: 
1

0 0
( ( ) ) ( ( ) ) ( ) ( )

m
TT T

k k k
j j

V e k j Q e k j u k j R u k j S
∞ −

= =

= + − δ + − δ + ∆ + ∆ + + δ∑ ∑   (4) 

where ,  is the output prediction, k is the present sampling time, 

r is the output reference, m is the control horizon and δ ∈  is a vector of slack variables. 

,  and  are assumed positive definite. The slack variables 

allow the controller to be applied to the cases in which there are not enough degrees of 

freedom to zero the error at steady state on all the system outputs. 

( ) ( )e k j y k j r+ = + −

ny ny× nu nuR ×∈

( )y k j+

nyS ×∈

ny
k

Q∈ ny

It can be shown that the control objective defined in (4) will be bounded only if 

          (5) ( )s
kx k m r+ − δ − =

With such constraint, the expression of the control cost becomes 

 
( ) ( )

0

-1

0

( ) ( ) ( ) (

( ) ( )

m T d T d
k k k

j

m
T T

k k
j

V e k j Q e k j x k m Q x k m

u k j R u k j S

=

=

= + − δ + − δ + + +

+ ∆ + ∆ + + δ δ

∑

∑

)
   (6) 

where ny ny×∈Q  is such that 

T T TQ F QF F Q F− = Ψ Ψ         (7) 

Using model equations (2) and (3) to represent the output prediction as a function of the 

future control actions and the current state, the control objective represented in (6) can be 

written as follows: 

      (8) 2k kT T T
k k k f

k k

u u
V u H c

∆ ∆    = ∆ δ + +     δ δ   
c

where 

 
7



( ) ( ) ( )
( )

1 1 1 2 1 1 1

1 1 1

T Ts s T s
m u m u u u m u

T s T
m u

B F Q B F F Q F R B F Q
H

I Q B F S I Q I Q

 +Ψ +Ψ + + − +Ψ =  
− +Ψ + +  

I
  (9) 

( ) ( ) ( )
( )

1 1 1 2

1 1

( ) ( ) ( )

( ) ( ) ( )

T Ts s d
m u x u x

f T s d
x

B F Q Ie k F x k F Q F x k
c

I Q Ie k F x k Q e k

 +Ψ +Ψ + =
 − +Ψ −  

d
     (10) 

( ) ( ) ( ) ( )1 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T TT s d s d d

x x xc e k Qe k Ie k F x k Q Ie k F x k F x k Q F x k= + +Ψ +Ψ + d
x  

            (11) 

ny

ny

I
I

I

 
 =
 
  

,  ,  
0s

s
m

s s

B
B

B B

 
 =
 
  

( )

( 1
k

u k
u

u k m

∆ 
 
 
 ∆ + − 

   
)

∆ =

2

1 2

0 0

,

d

d d

x u

m m d m d d

F B
F FB B

F F

F F B F B B− −

  
  
  = =
  
  
    

 

1 [ ]
m

Q diag Q Q= ,  2 [0 0 ]
m

iag Q=Q d ,   and 

 

1 [ ]
m

R diag R R=

1 [ ]
m

diagΨ = Ψ Ψ

( ) ( )s se k x k r= −  

Analogously, the constraint represented in (5) can be written as follows: 

( ) 0s s
k ke k B u+ ∆ −δ =          (12) 

where  s s sB B B=   

 

Finally, the control optimization problem of the infinite horizon MPC proposed by Odloak 

(2004) can be formulated as: 

 

Problem P1 

,
min

k k
k

u
V

∆ δ
           (13) 
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subject to equations (8) and (12) and the following inequalities: 

max max

min max

0

( )
( ) 0;

( 1) ( ) ; 0,1, ,
j

i

u u k j u
u k j j m

u u k u k i u j m
=

−∆ ≤ ∆ + ≤ ∆
∆ + = ≥

≤ − + ∆ + ≤ = −∑ 1

u

u

     (14) 

It can be proved that if the system remains controllable along the trajectory from the present 

state to the steady state corresponding to the desired output reference, then the control law, 

resulting from the solution of Problem P1 at successive time steps, will drive the system 

output asymptotically to the desired reference. If the system is not controllable at the desired 

output reference, the closed loop with the controller obtained from Problem P1 is still stable 

for open loop stable systems, but the controller will not be able to drive the outputs to the 

reference values. 

However, driving the HEN system outputs to their desired values is not sufficient to achieve 

the required energy integration. As mentioned before, the control general purpose is not only 

to reach the output set points, but also to guide the process to an optimal condition from the 

point of view of energy integration. The approach presented in this paper assumes that the 

optimal operating point has been calculated at a supervisor level, and the results translated 

into desired values for a selected set of manipulated inputs. Then, to include the economic 

objective into the control objective, the cost function defined in Eq. (6) has to be extended 

with new terms that penalize the distance between the predicted control actions and the 

desired target. Hence, the extended IHMPC cost function is written as follows: 

( ) ( ) ( ) ( ), , ,
0 0

1

, ,
0

( ) ( ) ( ) ( )

( ) ( )

TT
k u k k u k u u u k

j j

m
T TT

k k k u u k u
j

V e k j Q e k j e k j Q e k j

u k j R u k j S S

∞ ∞

= =

−

=

= + − δ + − δ + + − δ + − δ +

+ ∆ + ∆ + + δ δ + δ δ

∑ ∑

∑
 (15) 

where  

( ) ( )ue k j u k j r+ = + − ,  r  is the vector of desired values for the system inputs u

,k uδ  is a vector of slack variables related to the inputs, which have economic targets 
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Qu and Su are positive weighting matrices of appropriate dimensions 

To deal with the new control objective function of the IHMPC, it is convenient to redefine the 

state space model as follows 

( 1) ( )0 0

( 1) 0 0 ( ) (
( ) 0 0 ( 1)

s s
ny

d d

nu nu

x k x k BI

x k F x k B u k
u k I u k I

     +             + = + ∆        −           

)

s

d



0

c

    (16) 

( )
0( )

( )
( ) 0 0 ( 1)

s

ny d

u nu

x k
Iy k

x k
y k I u k

 
 Ψ   =         − 
 

      (17) 

In order to force the extended objective function defined in (15) to be bounded, the constraint 

represented in Eq. (12) must be satisfied, and a new constraint related to state xu have to be 

imposed also. This new constraint is similar to the constraint represented in Eq. (12) and has 

the following form: 

         (18) ,( 1)u u
k k ue k B u− + ∆ −δ =

where  

( 1) ( 1)u
ue k u k r− = − − ,    [ ]u

nu nuB I I=

With this extended state space model defined in Eqs. (16) and (17), the control cost defined in 

Eq. (15) can be written as follows 

     (19) , , ,

, ,

2
k k

T T T T
k u k k k u u k f u k u

k u k u

u u
V u H c

   ∆ ∆
   

 = ∆ δ δ δ + δ +    
   δ δ      

where 
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( )
( )

11 1 1 ,1

1 1 1

,1 ,1
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T s T
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H I Q B F S I Q I Q

I Q B I Q I
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= − +Ψ + + 
 
 −
 

uI

u R

 

( ) ( )11 1 1 1 2 ,1 1
T Ts s T u

m u m u u u m u mH B F Q B F F Q F B Q B= +Ψ +Ψ + + +  

( ) ( ) ( )
( )

1 1 1 2 ,1

, 1 1

,1

( ) ( ) ( ) ( )

( ) ( ) ( )
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T TTs s d d u u
m u x u x m u

T s d
f u x

Tu u u
u

B F Q Ie k F x k F Q F x k B Q I e k
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I Q I e k

 +Ψ +Ψ + + 
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 −  

u

 

( ) ( )
( ) ( )

1 1 1

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

TT s d s d
u x

T Td d u T u u u
x x

c e k Qe k Ie k F x k Q Ie k F x k

F x k Q F x k e k I QI e k

= + +Ψ +Ψ +

+ +

x
 

nu
u

nu

I
I

I

 
=
 
 


u,  ,  Q d  

nu nu
u
m

nu nu

I I
B

I I

 
 
 
 

,1 [ ]
m

u uiag Q Q=

 

Thus, the IHMPC control problem adapted to the HEN system, in which targets to the 

manipulated inputs are defined by economics, can be formulated as follows: 

 

Problem P2 

,
,

, ,
min
k k k u

k u
u

V
∆ δ δ

          (20) 

subject to constraints defined in (19), (14), (12) and (18). 

It can be shown that Problem P2 is always feasible and the control law produced by the 

solution of this problem stabilizes the closed loop system. However, the complete definition 

of the targets to the manipulated inputs is a subject that needs more attention, mainly when the 

performance of the closed loop system is concerned. For instance, the number of input 

variables, which have targets to be reached, may affect not only the speed of convergence to 

the optimal steady state, but it may also affects the dynamic performance of the system. 
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Including targets for all the input variables may render a too rigid system with possible offset 

in the controlled outputs. On the other side, including targets for too few inputs, or inadequate 

inputs, may not produce the expected benefits. Another important point is the selection of 

weighting matrix Qu that is an additional tuning parameter of the extended IHMPC. This 

parameter plays an important role in the controller performance and must be carefully selected 

to obtain a satisfactory performance of the HEN control system. 

We should observe that depending on the degrees of freedom of the HEN system, the outputs 

may reach the desired set points, but this does not imply that the inputs have reached their 

optimal value. The inclusion of input targets tends to prevent this problem as long as an 

adequate number of inputs are chosen to receive targets from the economic optimisation layer. 

A simple criterion to verify if a given set of inputs can be selected to receive targets without 

introducing offsets in the controlled outputs is provided by González et al. (2004). For 

instance, if we want to send targets for the first d inputs of the HEN system, the following 

matrix should be full rank: 

s

D
d

B
G

I
 

=  
 

,     , 
1 0 0

0 1
d

d

I

 
 
 =  
 
  

0

where Bs is the process-gain matrix. It can be shown that if this condition is satisfied, then the 

extended IHMPC can drive the controlled outputs and the selected inputs to their desired 

optimal values. 

 

4. The HEN system 

 

The HEN system studied here is represented schematically in Figure 1. It is a small system 

with only three recovery exchangers and three service units. There are two hot process 

streams and two cold process streams that take part of the heat exchange process. We have 

also three utility streams that can be used to help reaching the desired outlet temperatures. As 

it is shown in Fig. 1, this HEN system has six manipulated inputs (three bypasses and three 
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utility flow rates) and four outputs to be controlled (process stream temperatures). The 

objective is to obtain a control strategy that performs well for disturbance rejection and output 

tracking, while minimizing the amount of utilities expended at any operating condition. 

 

H1 E1
 

u1 

y2 

y1 

y3 

y4 

C1 

E2

 

u2 

S1
 

u3 

S1 

E3

 

u4 

H2 S1

1 

S2 

u5 

S3

 

u6 

S3 

C2 

 

Figure 1. Schematic representation of the HEN system 

In the study presented here, the HEN system is simulated through a rigorous nonlinear model 

and the controller uses a linearized state space model for state and output prediction. For the 

system represented in Fig. 1, the connection structure translates into a transfer function model 

that has the following form: 

2 2 2

2 2 2

-0.1870s+0.0068 -0.2681s+0.0243 -0.1462s-0.0223 0 0 0
s +0.0279s+0.0005 s +0.0726s+0.0019 s +0.1058s+0.0043

0.6443s-0.0923 -1.6799s+0.5050 -0.7948s-0.12990 0
s +0.1696s+0.0054 s +0.6830s+0.0382 s +0.0862s+0.001( )G s =

2 2 2

2 2

0
8

1.4335s-0.2796 0.2553s-0.0727 0.8848s+0.00230 0 0
s +0.1096s+0.0117 s +0.2377s+0.0101 s +0.0313s+0.0001

-0.0694s+0.0130 -118.476s-5.0140 0 0 0 0
s +0.0511s+0.0010 s +2.6870s+0.2586

 
 
 
 
 
 
 
 
 
 
  

 

The general control structure is represented in Figure 2, which shows the integration of the 

two-optimisation stages and the variables used to connect them. An important remaining 

question about this structure is the selection of the input variables that will be used to 

interface the economic optimisation to the control dynamic optimisation. As there are 

differences between the HEN true nonlinear model and the linear model on which the IHMPC 

 
13



is based, using the exact number of inputs that reduces the degrees of freedom to zero may not 

be the best policy. If there are negligible differences between the model gain matrix Bs and the 

actual plant gain, and matrix GD is full rank, then the convergence of the all the inputs and 

outputs to the desired values is ensured. However, in actual HEN systems these conditions are 

not always fulfilled and it is necessary to determine by trial and error which input variables 

should be commanded by the economic optimisation level. For the network represented in 

Figure 2, the gain matrix of the linearized system corresponding to the nominal operation 

point is: 

14.0849 11.8967 -8.3808 0 0 0
-18.0248 0 0 14.6536 -70.7115 0
-25.1961 0 0 -7.5913 0 23.6918
13.5323 -17.7732 0 0 0 0

sB

 
 
 =
 
  

 

Table 1 shows all the different combinations of two control inputs available in this HEN 

system that might be selected to receive set points from the economic layer. We observe that 

any combination of the first three control inputs yields a rank deficient matrix GD, showing 

they cannot be used to drive the system to the optimal operation point. However, we see that 

there are many pairs of inputs that can be used to drive the HEN system to the optimal 

operating point. 

 

Figure 2. Controller and optimiser structure of the HEN system 
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Control inputs with set points Rank of GD 

u1 u2 
u1 u3 
u1 u4 
u1 u5 
u1 u6 
u2 u3 
u2 u4 
u2 u5 
u2 u6 
u3 u4 
u3 u5 
u3 u6 
u4 u5 
u4 u6 
u5 u6 

5 
5 
6 
6 
6 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 

Table 1: Rank of GD matrix for all combinations of two inputs with set points 

5. Simulation results 
 

In this section, to represent the true HEN system shown in Fig.1, it is used a simulator based 

on a nonlinear model of shell-and-tubes heat exchangers developed by Correa and Marchetti 

(1987). As discussed in the previous sections, for the HEN system, not only the dynamic 

performance of the control system is important, but also the cost associated with the resulting 

operating condition must be taken into account. Thus, in this section, we study the operation 

of the HEN system depicted in Fig. 1, with the extended IHMPC, considering or not the 

inclusion of economic optimization term in the control objective function. This corresponds to 

the inclusion or not of desired values for an appropriate set of manipulated variables. To 

quantify the economic efficiency of the HEN system represented in Fig.1, we use the utility 

cost that is defined as follows: 

utility cost 1 3 2 5 3 6J c u c u= + + c u .        (19) 

Figures 3a to 3c show the dynamic responses of the HEN system operating with IHMPC 

without the economic term in the controller cost function. This means that the controller 

manipulates the six inputs indicated in Fig. 1 (u1 to u6) to control the outlet temperatures of 

the four process streams. We consider the output tracking operation obtained when the 
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following sequence of changes is introduced into the system: after stabilizing at nominal 

conditions, the set point of the outlet temperature of process stream C1, which corresponds to 

controlled variable y3 is changed from 80 to 70 C; next, the set point of the process stream C2 

(controlled variable y4) is changed from 40 to 45 C; and finally, the set point of the outlet 

temperature of stream H2 (controlled variable y2) is moved from 100 to 90 C. The optimal 

steady states corresponding to these operating conditions are indicated in Table 2, as fractions 

of maximum utility flowrates in utility units, or as bypass fractions in heat exchangers (E). 

According to the notation adopted in the extended IHMPC, the controller tuning parameters 

are the following: 

T = 3, m = 2, Q = diag(5 1 1.5 2), R = 5000Inu, S = 500Iny, = 0.15 [1 1 1 1 1 1]maxu∆ T. 

 

case u1 (opt) u2 (opt) u3 (opt) u4 (opt) u5 (opt) u6 (opt) Utility Cost ($/Kg) 

Nominal 0 0.1463 0.0590 0.6739 0.1001 0 4.9500 

1 70out
cT = °C  0.0687 0.2010 0.1060 1 0.2260 0 10.2780 

2 45out
cT = °C  0.3741 0 0.2041 0.7737 0.1200 0 10.3353 

2 90out
hT = °C  0.3741 0 0.2041 0.7737 0.2200 0 13.3353 

Table 2. Fractions of valve openings obtained by the NLP optimization for different steady 

states. 

 

It is clear that in this case, parameters Qu and Su, which are related to the economic objective, 

are both equal to zero. Figure 3a shows that the controller can follow the set point without 

major difficulties. Fig. 3b shows that the controller uses all the six manipulated inputs to force 

the outputs to follow their set points. It is also clear that the control inputs tend to a steady 

state that is substantially different from the optimal steady state shown in Table 2. This is 

translated into a significant departure from the optimal utilities consumption as can be seen in 

Fig. 3c, which shows that the obtained utilities cost can be as high as twice the optimal cost. 

Tuning IHMPC to improve the economic performance can reduce the gap between the 

optimal utilities consumption and the utilities consumption obtained with the controller. 

Figures 4a to 4c show the system responses when the slack variables weight is reduced to 
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S=20Iny, while the other controller parameters remained the same as in the previous case. 

Fig.4c shows that in this case, the economic behavior is better than in the previous case as true 

cost is only about 50% higher than the optimal cost. However, the dynamic response of the 

system is significantly worse than in the previous case as shown Fig. 4a wherein we can see 

that the response of output y4 is much slower than in the previous case while the response of 

y2 is too much oscillatory. 

 

 

Figure 3a. Controlled outputs of the HEN system without economic objective 
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Figure 3b. Manipulated inputs of the HEN system without economic objective 

 

Figure 3c. Utilities cost for the HEN system without economic objective 
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Figure 4a. Controlled outputs of the HEN system without economic objective and S = 20Iny 

 

Figure 4b. Manipulated inputs of the HEN system without economic objective and S = 20Iny 
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Figure 4c. Utilities cost for the HEN system without economic objective and S = 20Iny 

 

Next, we observe the dynamic responses of the HEN system with the IHMPC extended with 

the economic objective. In the case simulated here, we assume that inputs u3, u5 and u6 receive 

optimal set points from the economic optimization level. Observe that, as shown in Table 1, 

considering set points to only two of these inputs is sufficient to guarantee that matrix GD has 

rank 6 and consequently to assure that the controller will guide the HEN system to the optimal 

operating point. Here, we consider set points to three of the manipulated inputs and 

consequently the system becomes over specified. If the model is perfect and the set points to 

the inputs are consistent, there are no consequences to the control problem as the controller is 

capable of reducing the control cost to zero and stability of the closed loop system is assured. 

If the set points to the three manipulated inputs are not consistent with the optimal steady 

state, off sets in the controlled and manipulated variables will develop. However, there will be 

no consequences to the stability of the closed loop, because it can be proved that with the 

presence of the slack variables δ  and δ  in the cost function, the cost will be nonincreasing 

and stability is preserved.  

k ,k u
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Assuming the same output-tracking scenario described above, Figs. 5a to 5c show the 

dynamic responses of the HEN system with the extended IHMPC with the following tuning 

parameters: 

T = 3, m = 2, Q = diag(5 1 1.5 2), Qu = diag(0 0 1 0 1 1), R = 5000Inu, S = 5000Iny,  

Su = 5000diag(0 0 1 0 1 1), = 0.15 [1 1 1 1 1 1]maxu∆ T. 

Comparing Figs. 5a and 3a, we observe that the inclusion of the economic objective in the 

infinite horizon MPC causes a small deterioration on the responses of the controlled outputs. 

However this loss of performance is acceptable if we compare Figs. 5c and 3c that show the 

utilities cost in both cases. The extended IHMPC approaches very closely the optimal 

operation at steady state and the period of time that the HEN system departs from the optimal 

operation during transient conditions is acceptable. From Fig. 5b, we observe that all the 

inputs also approach closely to their optimal values showing that the system nonlinearity is 

mild. 

 

Figure 5a. Controlled outputs of the HEN system with economic objective 
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Figure 5b. Manipulated inputs of the HEN system with economic objective 

 

Figure 5c. Utilities cost for the HEN system with economic objective 
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6. Conclusion 

In this work, it has been shown how to extend a nominally stable linear MPC to a HEN 

system in which the minimization of the utilities cost is one of the major challenges. This was 

achieved by extending the objective function (control cost) of an infinite horizon MPC 

developed in a previous work, with the inclusion of an economic term. This additional term 

assumes that the same inputs can be treated simultaneously as controlled outputs and 

manipulated inputs. To prevent the control cost to become unbounded new slack variables 

were introduced into the dynamic optimization problem. With this approach, the new 

controller inherited the already proved stabilizing properties of an existing controller (Odloak, 

2004).  

Tuning the new controller is a little more complicated than tuning a conventional MPC, as the 

extended IHMPC has a larger number of tuning parameters than the conventional MPC. A 

correct balance between dynamic performance of the output variables and the speed of 

approach of the inputs to their optimal values is a key point in the tuning procedure. However 

the additional tuning effort is not prohibitive in practical terms and the proposed approach 

seems quite promising. 

The proposed controller was tested in a HEN system of small dimension, but that has the main 

characteristics of a typical industrial system. For the output tracking operation, in which the 

optimal operating conditions were changed significantly, the new controller performed quite 

well with a reasonable dynamic performance and an economic yield that surpassed 90% of the 

maximum benefit. 
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