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Rats, people, and many other omnivores eat in meals rather than continuously. We show by experimental test that
eating in meals is regulated by a simple bang-bang control system, an idea foreshadowed by Le Magnen and many
others, shown by us to account for a wide range of behavioral data, but never explicitly tested or tied to
neurophysiological facts. The hypothesis is simply that the tendency to eat rises with time at a rate determined by
satiety signals. When these signals fall below a set point, eating begins, in on-off fashion. The delayed sequelae of
eating increment the satiety signals, which eventually turn eating off. Thus, under free conditions, the organism eats in
bouts separated by noneating activities. We report an experiment with rats to test novel predictions about meal
patterns that are not explained by existing homeostatic approaches. Access to food was systematically but
unpredictably interrupted just as the animal tried to start a new meal. A simple bang-bang model fits the resulting
meal-pattern data well, and its elements can be identified with neurophysiological processes. Hypothalamic inputs can
provide the set point for longer-term regulation carried out by a comparator in the hindbrain. Delayed gustatory and
gastrointestinal aftereffects of eating act via the nucleus of the solitary tract and other hindbrain regions as neural
feedback governing short-term regulation. In this way, the model forges real links between a functioning feedback
mechanism, neuro-hormonal data, and both short-term (meals) and long-term (eating-rate regulation) behavioral
data.
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Introduction

Feeding, the prototypical motivational system, involves
both internal and external factors; it can be studied both
behaviorally by looking at patterns of eating, and physiolog-
ically by looking at neural and hormonal factors that initiate
or suppress eating. Historically, most attention has been
devoted to internal factors, such as levels of circulating
glucose and lipid-related hormones [1-3]. Eating rate is
affected by external factors such as taste (the evolutionary
predictor of food quality), learning and habits, social
situation, stress and emotion, and many others, and the way
that these variables interact is complex and not fully
understood [4,5]. Nevertheless, there are some simple
regularities in temporal patterns of eating. Most omnivores,
such as rats and guinea pigs—as well as human beings—eat
not at fixed intervals of time, or at random times, but in meals,
bouts of concentrated eating that are approximately periodic
and separated by periods when behavior other than eating
occurs. The duration and frequency of meals adjust to
perturbations such as food deprivation or forced feeding in
such a way as to regulate overall food intake [6-8]. Common
observation tells us that in the presence of ad libitum food,
eating probability increases with time, but then once eating
has begun, its probability decreases with time [9]. The
dynamics look relatively simple—simple enough that almost
no research has been done on the dynamics of eating per se
and still less on the possible role of neural mechanisms in
behavioral dynamics.

The first step is to find the neuropsychological components
that correspond to parts of the control circuit for feeding
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(comparator, feedback loop, and reference). Endogenous
factors that modify the size of an ongoing meal are called
satiety signals (SSs). These signals, generated during and after
a meal, provide information to the brain that inhibits feeding
and leads to meal termination [10]. The SSs are generated in
the gastrointestinal tract and abdominal viscera, as well as in
the oral cavity (i.e., taste factors [11,12]). They provide
information about mechanical (e.g., stomach stretch, volume)
and chemical properties of food (e.g., via peptides such as
cholecystokinin, ghrelin, and peptide YY [PYY]), which have
been linked to short-term (within-a-day) feeding behaviours
[13]. Other peptides secreted from the gastrointestinal system
have been reported to control meal size when administered
systemically [14-17]. In addition, amylin [18] and glucagons
[19], which are secreted from the pancreatic islets during
meals, also reduce meal size. SSs are relayed to the hindbrain,
mainly to the nucleus of the solitary tract (NTS), either
indirectly via nerves from the gastrointestinal tract, especially
the vagus (e.g., cholecystokinin and glucagon), or else
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circulate via the blood and interact with local receptors in the
hindbrain (e.g., amylin) [20].

The hindbrain (mainly the NTS) also receives, via several
hypothalamic nuclei, signals that reflect the fat mass of the
body. The best-known signals are the adiposity signals leptin
and insulin—hormones secreted into the blood in direct
proportion to the amount of stored body fat. Leptin is
secreted from fat cells (adipocytes) in direct proportion to
the amount of stored fat [21,22]. Insulin is secreted from
pancreatic B cells in response to increases of glucose.
Moreover, basal insulin in the absence of elevated glucose,
as well as every increment of insulin above baseline during
meals, is in direct proportion to total body fat or adiposity
[23,24]. Obese individuals have relatively high basal insulin,
whereas lean individuals have relatively low levels [25]. In this
way, circulating leptin and insulin levels are each a good
indicator of body fat, and both hormones are able to enter
the brain from the blood and stimulate specific neural
receptors.

These two adiposity signals (leptin especially) have been
linked to longer-term weight regulation (over months and
years) [13]. Some gut-related peptides are also long-term
regulators. Rodents and humans with reduced PYY levels in
response to food intake tend toward obesity, for example.
Chronic administration of PYY reduces adiposity in rodents
[26]. Also, PYY-null mice (unable to produce the hormone
because the gene for PYY has been knocked out) are
hyperphagic and develop marked obesity but are hyper-
sensitive to exogenous PYY. Moreover, chronic treatment
with PYY reverses their obesity phenotype [27]. The effect of
this hormone was also studied in obese children, where there
is a reciprocal relationship between obesity and PYY [28].

Finally, animals and humans with defects in the central
melanocortin system display a characteristic melanocortin
obesity phenotype characterized by increased adiposity and
hyperphagia [29]. The central melanocortin system interacts
with long-term regulators of energy homeostasis such as
leptin and also with the gut-released peptides involved in the
short-term regulators (e.g., cholecystokinin, ghrelin, and
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PYY). All these data suggest that there is a large degree of
redundancy in the orexigenic (appetite-stimulating) path-
ways, showing an evolutionary bias toward energy storage.
Despite this redundancy, the neurophysiological pathways
suggest that feeding is regulated by a feedback loop, where
the hypothalamus provides the long-term regulatory input to
the NTS that acts as the set point. It also receives SSs as
feedback inputs, acting as short-term regulators. The SSs have
been referred to as direct controls [30], because food acts
directly on receptors along the gastrointestinal tract. All
other controls, such as metabolic, rhythmic, and ecologic,
have been referred to as indirect controls [30]. They act by
modulating the central effects of the direct controls.

Many areas of the brain are sensitive to long-term
regulators. Leptin receptors have been found on paraven-
tricular nucleus (PVN) and lateral hypothalamic (LHA)
neurons, implicating them as direct targets for regulation
by circulating adiposity signals. PVN stimulation inhibits
food intake, whereas the opposite is true of stimulation of the
LHA [31] and adjacent perifornical area [32]. Conversely,
bilateral PVN lesions cause a hyperphagic obesity syndrome,
whereas bilateral lesioning of the LHA causes anorexia and
weight loss [31,33]. Consistent with these results, several
neuropeptides synthesized in PVN neurons reduce food
intake and body weight when administered centrally.
Hypothalamic areas including the PVN, zona incerta,
perifornical area, and LHA are richly supplied by axons
from the arcuate nucleus, which has greater concentrations
of leptin and insulin receptors than other hypothalamic sites
[34-38]. The arcuate nucleus has at least two distinct
populations of neurons with opposing actions on food
intake, responding not only to leptin and insulin, but also
to gut hormones (the best studied are ghrelin and, recently,
PYY). The first population produces orexigenic neuropeptide
Y and agouti-related protein (NPY/AgRP). The second
population produces the anorexigenic (appetite-suppressing)
proopiomelanocortin and cocaine and amphetamine-regu-
lated transcript (POMC/CART) [17,39-41].

The NTS has been identified as a “satiety center” [13].
Several workers have suggested that the NTS integrates
inputs transmitted through the vagus and sympathetic fibers
[42-44] and hypothalamic input [34,45-48] involved in energy
homeostasis [34]. When it is lesioned in rats, it causes them to
eat less and even starve to death [13,49]. In this way, net
neuronal output from the NTS (and other hindbrain regions)
controls meal size [50]. Taken together, these facts about
neural targets in the NTS provide the ingredients for a simple
homeostatic account of the nonassociative (i.e., unlearned)
aspects of feeding dynamics.

Even though it is generally accepted that depletion of the
body’s energy reserves can cause eating at a time when it
would not normally occur, current thinking is that most
meals are initiated at times that are convenient or habitual—
based on social or learned factors rather than on the
regulation of energy balance. Nevertheless, animals continue
to regulate their food intake even under constant environ-
mental conditions, implying the existence of some basic
regulatory process, albeit one that is normally overlaid by the
effects of learning. If the competition among motivational
systems (hunger versus sex, versus thirst, etc.) is ignored for
the moment, the endogenous factor is regulatory and tends to
oppose anything that forces eating rate to be reduced below
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Figure 1. Meal Patterns in Rats under Free Feeding and with Unpredictable Interruptions

Compares rasters of meals in a single rat and a group (A,B) and as simulated by the model (C,D).
(A,C) Show the meals the day before beginning the interruptions for all rats (1 d per rat).
(B,D) Shows ten consecutive days for a single rat, the first with no interruptions and the following with interruptions. The diamonds show times when

the rat attempted to start a new meal, but was interrupted.
doi:10.1371/journal.pcbi.0030097.g001

an optimal value, the set point. The exogenous factors are
approximately additive and cause eating rates to be higher or
lower than the set point; accordingly, they are positive or
negative [5].

An Integrative Model

A model for feeding dynamics gains support in several
ways. It can explain existing data from behavioral studies in
which food access is restricted in various ways: it can be tested
experimentally via biochemical and neural interventions, and
also by behavioral experiments explicitly designed to test
model predictions. We have already shown that a simple
lagged-effect (cascaded-integrator [CINT]), bang-bang con-
trol behavioral model can account for a wide range of
existing behavioral data [51,52]. The CINT model provides a
unifying account that can explain both eating-rate regulation
and the broad features of meal duration and timing. It
explains why rats adapt to changes in reward size by adjusting
meal size rather than intermeal interval (IMI), and why
interruption of feeding affects primarily the first post-
interruption meal (PIM). It also explains the effects on eating
rate of imposing a minimum interpellet interval as well as
other operant-schedule constraints such as cost and “pro-
curement size” in a wide variety of closed-economy experi-
ments (see [53] and other papers in that issue for a review of
these procedures). The bang-bang CINT model also accounts
quantitatively for the complexities of meal-intermeal corre-
lations [50] (see also [9,54]).

In previous work, we attempted to explain existing
behavioral data in a unified way, but did not explicitly test
the CINT model. We now show how the model can handle
experimental data not explained by existing homeostatic
feeding models. If the behavioral model can be readily
interpreted in terms of existing neural data, the next step is
to see how physiological manipulations affect its components.

We studied meal patterns in free feeding and after
interrupting food access (for different amounts of time) at
the moment when rats start a new meal. Meal duration and
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the time between meals (IMI) were compared under free-food
conditions and after interruptions. The overall temporal
patterns of eating, as well as correlations between preceding
and following IMI and meal duration under these two
conditions, were then compared with the predictions of the
CINT model. With only a slight modification (to incorporate
a limit on IMI duration), the same CINT model also fits real-
time experimental data.

Results

Eating Pattern: Effect of Interruptions

The eating pattern is shown in the raster plots of Figure 1.
The top left panel shows meals the day before the beginning
of interruptions for all rats, 1 d per rat. On the top right,
there are ten consecutive days for an individual rat; the first
day has no interruptions and the following days have them at
onset times indicated by diamonds. The figure also shows that
the model (bottom two panels), discussed in detail below,
duplicates the general eating pattern.

The average size of meals (number of pellets eaten; M)
preceding, just after, and after that (i.e., meal sizes My, My,
and My, where meal N immediately follows an interruption)
are shown in Figure 2. The data are analyzed for three
interruption durations: 1, 2, or 3 h. The size of PIM size
(middle light gray columns) is substantially larger than the
size of preceding and subsequent meals (flanking light gray
columns). The IMI preceding the meal (excluding the
interruption period) is shown in the narrow dark gray
columns: there is no relation between preinterruption
interval and the PIM size.

A linear-regression analysis showed that the difference y
between size of the first meal after the interruption (V) and
preinterruption (N — 1) meal size (i.e., My — M), increased
linearly as function of the interruption duration x (F 59 =
7.86, n =54, p=0.007, ¥ =0.13; y=24.83x + 51.03). Thus, the
number of pellets in the first meal after an interruption
increases as a linear function of the interruption time, and is
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Figure 2. Effect of Interruptions on Meal Pattern

Mean values of the number of pellets (clear gray columns) and the
previous IMI (without interruption; thin dark gray columns) in the
postinterruption (middle column), preceding (left column), and following
(right column) meals. Three conditions are shown: when the interruption
duration was 1 h (A), 2 h (B), or 3 h (Q). In all cases, the number of pellets
eaten in the first meal after the interruption (middle columns) is greater
than in the preceding and subsequent meals (flanking columns),
independent of the previous IMI.
doi:10.1371/journal.pcbi.0030097.9g002

greater than the preceding and subsequent meals (Figure 3).
Even though after the same interruption duration, not all
meals have the same sizes (number of pellets), they are always
relatively larger.

The size of the meal after the PIM was compared by one-
way ANOVA with the sizes of other meals (excluding the
PIM). The test shows no significant differences (F; 205 = 1.946,
p > 0.1). Thus, an interruption affects only the first PIM. We
have called this the first-meal effect.

To assess any pattern of IMIs under free-feeding con-
ditions, IMIs after PIMs were compared with other IMIs at
night (meals that began or ended in the daytime, and the PIM
and following IMI, were excluded). The mean value of the first
postinterruption IMI is 2.078 h, and the mean value of the
second IMI is 1.43 h. One-way ANOVA shows a significant
difference (F{; 950)=18.03, p < 0.0001). Thus, the IMI after the
extra-large PIM is longer than usual. Nevertheless, there was
no correlation between the sizes of individual PIMs and
subsequent IMIs; and, as we said, the following meal size is not
significantly different from the size of meals not perturbed by
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interruptions. In this way, the IMI after the PIM is longer than
others, and the effect of interruption is compensated for solely
by the PIM.

We also looked at the relationship between IMI and meal
size for free-feeding meals that began and ended at night (as
before). We wanted to see if, under free conditions, larger
meals were followed by longer IMIs and vice versa. The
answer was yes. Under homogeneous conditions in the
“night” portion of the day-night cycle, IMI and meal size
increased linearly as a function of previous meal size or IMI,
respectively. Linear regression analysis showed that the IMI y
increased as a function of the previous meal size x (F(; 208 =
30.532, n=210, p < 0.0001, 2= 0.1279; y=0.01x+ 0.683). Also,
a linear-regression analysis showed the meal size y increased
as a function of the previous IMI x (F; 207y = 10, n =209, p <
0.005, 7* = 0.046; y = 5.314x + 55.44).

Figure 4 shows the cumulative number of IMIs less than a
given value. Less than 10% of IMIs are longer than 4.15 h,
which seems to be an asymptote. For each animal, IMI values
greater than 75% of its maximum value are reached after its
previous PIMs of 97 pellets (the minimum size is 52 pellets
and the maximum is 220 pellets). Even though there is no
correlation between the PIM size and the following IMI, the
fact that the maximum values are reached near the first
quartile of the meal-size distribution shows that the post-
interruption IMI has a saturation value.

PIM sizes were compared with other meals after intermeal
intervals of a similar length (of interruption plus the previous
IMI) that occurred spontaneously (i.e., without interruptions).
The IMIs with no interruption were chosen at night, as
before. In the absence of interruption, the mean meal size was
71.32 pellets, and 176.12 pellets with interruption. The data
were compared using one-way ANOVA, which showed
significant differences (F; 154 = 185.26, p < 0.0001). Thus,
interruption (plus the previous IMI) evokes a larger sub-
sequent meal size than a spontaneous IMI of similar length
(Figure 5).

CINT Model of Feeding Regulation

The feedback loop is closed not solely by glucose, as in the
glucostatic theory, but by SSs acting as short-term regulators.
As we noted earlier, the NTS (and other hindbrain regions)
integrates inputs transmitted through the parasympathetic
and sympathetic fibers and blood as well as the hypothalamic
input that provides the set point for longer-term regulation.
Thus, the NTS output controls meal size, and may act as a
comparator in a feedback loop in the CINT model [51,52].

The CINT model has three properties: (1) the SSs are
simulated by one variable, a lagged aftereffect of eating; (2)
feeding occurs when the SS declines below a set point (0); and
(3) when the SS falls below the set point, it turns on feeding in
an all-or-none fashion (bang-bang control: the all-or-none
assumption may need to be relaxed to take account of
incentive effects; see [52], Chapter 9). We suggest that the set
point corresponds to hypothalamic input to the NTS.

The value of the set point expresses the long-term
motivation for eating. A low set point corresponds to high
energy reserves, a high set point to low reserves.

The delay between eating and a rise in the SS is simulated
by a cascade of leaky integrators: a first-order linear system is
the simplest way to model a lagged effect.
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doi:10.1371/journal.pcbi.0030097.9g003

Simulations

The parameters of the model (see Methods) were chosen as
follows: a; =\, a; = a;_y + M1 — a;_y), b; = 1.7(1- @) (i.e., three
stages, but only two free parameters). For all the simulations,
the parameters were A = 0.985, ® = 1.1. One time step =1 s.
Because rats eat much more in the 12-h dark phase of these
experiments than in the light phase, we allowed the set point,
0, to vary smoothly between two saturation values, 04, and
Otighe: 0 (t+1)=0 (t) X (1 = 0.00005) + 0.00005 X (Og,y + noise);
Oday could take two values depending on the simulated period
(light or dark): Ogak = 0.13, O}, = 0.12.

To simulate observed spontaneous variation in meal size
and IMI, the set point varied randomly by adding noise= white
noise (amplitude = 0.007).

The set time to eat a pellet was 6 s, followed by a refractory

50
40 + Lo !
30 | .

20 -+

Cumulative Number < X

Figure 4. Cumulative Distribution of IMI PIM Sizes

The values are calculated in bins of .5 h from .15 h to 6.15 h. The IMIs
were measured at night; those that began or ended in daytime, and the
PIM and the following IMI, were excluded. Less than 10% of the IMls
following PIMs are longer than 4.15 h.
doi:10.1371/journal.pcbi.0030097.g004
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period of 4 s before another pellet could be eaten. A meal
began with the first pellet after V; < 0 and was considered to
end after 3 min of no eating (V; > 0; the 3 min were not
included in meal duration). At the beginning of each
condition, V; and V, were set to 0; V3 = .12, to allow for
eating on the previous day. To simulate the limit on IMI, V;
was bounded between zero and 0.0017 + 6.

This version of the CINT model matches the new data and
better fits data simulated previously [51,52], for which we
added the following assumption to translate eating tendency
into operant lever pressing: when eating tendency >0, lever-
press rate was 2/s (estimated from observational data). The
simulation matched essentially all the statistical properties of
free and interrupted eating just described. (1) The CINT
model reproduces the eating pattern shown in the raster of
Figure 1. On the bottom left there are simulated meals in the
day before of the beginning of the interruptions for all rats: 1
d per rat is shown. On the bottom right, there are ten
consecutive days of the same rat; the first day has no
interruptions, and the following days have them, as in the
actual experiment. (2) It explains (as in the previous version)
the linear relations between IMI and meal size. (3) It
immediately accounts for the “first-meal effect”: when eating
is interrupted for a few hours at preprogrammed times, the
first (and only the first) meal is extra long. Eating rate and
meal size thereafter both revert to normal values [7,55]. The
model also accounts for the data shown in Figure 2: even
though our procedure is different from Le Magnen’s [7], the
effect is similar. (4) The model also explains how the
difference between the first meal size (pellets) after the
interruption and the pre-interruption meal increases linearly
as a function of interruption duration. Because the SS value
is bounded, the simulation fits the experimental data of
Figure 3 (the solid line shows the simulated data and the
dashed line the linear regression of data in rats). (5) Here, the
effect of the interruption is compensated only in the first
PIM. The larger PIM provokes larger subsequent IMI, but
because there is a maximum IMI, the following meal size is
not greater than average. (6) We compared the effect on meal
size of an interruption plus its previous IMI with the effect of
a spontaneous IMI of similar total duration. The easiest way
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Figure 5. Effect on the Meal Sizes when Previous IMIs of Similar Length Include or Do Not Include Enforced Interruptions

Compares the number of pellets eaten after IMIs with interruptions (filled diamonds) and others (measured in the same way as in Figure 4) without
them (empty circles). Solid line shows the linear regression of the simulated data: the IMIs with interruptions (gray diamonds) and without (gray circles).

doi:10.1371/journal.pcbi.0030097.g005

to do this was to reduce 0 after an arbitrary meal to get an
IMI duration of interruption plus it previous IMIL Specifi-
cally, the white noise in the computation of 0 has an
amplitude of 0.05. In Figure 5, the solid line shows the
simulated data: the IMIs with interruptions (gray diamonds)
and without them (gray circles). The simulation fits the
experimental data: the interruption plus the previous IMI
provokes larger meal size than after an IMI of a similar length
without interruptions.

Discussion

For many years, perhaps beginning with Le Magnen [55],
repletion-depletion has been implicitly assumed to be the
process that underlies feeding behavior. This approach has
led to numerous attempts to identify the physiological signal
that triggers eating [2,9]. However, there was still some
uncertainty about other parts of the physiological feedback
loop.

Part of the problem may be that the black-box dynamics of
the process are still not fully understood. Thus, our approach
had been predominantly behavioral until the present article,
which draws attention to recent physiological developments
that bring the behavioral and physiological data into closer
registry. As we said above, the NTS (and other hindbrain
regions) integrates inputs transmitted through the para-
sympathetic and sympathetic fibers and blood: SSs control-
ling short-term regulation (over the day); and hypothalamic
input controlling the long-term regulation (over months and
years), mediating energy homeostasis. Thus, the NTS may act
as a comparator, and the feedback loop is closed not by
glucose, as in the old theory, but by short-term regulators:
SSs. The long-term regulators act as the set point. The CINT
model can explain these data. Here, we refine it to fit better
the real-time experimental pattern of previous data and to
simulate behavioral experiments designed as an explicit test
and not explicable by existing feedback models.

First, we analysed the correlation between the meal and the
following IMI, because there are contradictory results. Next,
we found that at night under free conditions, larger meals
were followed by longer IMIs, and vice versa. We studied the
eating pattern in rats when feeding is unpredictably
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interrupted: we looked at meal patterns after an interruption
initiated by an attempt by the animal to start a new meal. We
found that the PIM is larger than the size of preceding and
subsequent meals, and the difference between the number of
pellets of the PIM and the number of pellets of the previous
meal is a linear function of duration of the interruption. We
also analysed the IMI after the PIM, and found that it is longer
than usual, though smaller than the saturation value, and that
there is no correlation between the two. The size of the meals
after the PIM is not significantly different from other meals.
These results show that IMI is not a linear function of the
previous PIM, and there is a saturation value. Finally, the
interruption (plus the previous IMI) evokes a larger sub-
sequent meal size than a spontaneous IMI of similar length,
indicating a change in the animal’s motivation to eat.

In this CINT version, as in the previous one, the set point
(long-term regulator) is slightly modulated by the light-dark
cycle, but here, the transition between the two values is
smooth, following an exponential function. The SSs (short-
term regulators) are a delayed effect of eating—simulated as
a cascade of integrators, the simplest way to simulate a
delay. The effect of the saturation of the IMI following the
PIM was simulated by truncating the SSs at a maximum
value (independent of the size of the PIM). The SSs are
feedback to the comparator, the output of which controls
when to eat.

The bang-bang CINT model can explain many relevant
experimental data and can easily incorporate new data. It is
both regulatory (i.e., homeostatic—a physiological property)
and generates feeding in meals (an adaptation to ecological
considerations). It is also important to note that the major
predictions of the CINT model—first-meal effect, meal-
intermeal correlations, regulation of eating rate, effect of
meal size on meal duration but not IMI, etc.—depend on the
structure of the model, not on particular parameter values.
We also note that this simple model does not deal with the
kinds of interaction among motivational systems that are
necessary to explain prandial drinking and other apparent
deviations from homeostasis. The model does not attempt to
explain learning and incentive effects (we have made some
suggestions on this point in [52], Chapter 9).

The simulations make three simple points: (1) feeding
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regulation in rats is bang-bang rather than proportional
control. Eating is regulated in on-off fashion under most
conditions rather than being proportional to the difference
between set point and SSs. (2) The satiating effects of eating
are delayed in a way that can be modelled by a simple first-
order linear system. Finally, (3) long-term regulation (i.e.,
control of body weight) is separable from short-term
regulation (i.e., control of meal pattern). Long-term regu-
lation is controlled by a set point provided by the
hypothalamic input; short-term regulation is controlled by
SSs that vary from minute to minute rather than over days.

Materials and Methods

Subjects. The subjects were six experimentally naive 45-d-old male
Sprague-Dawley rats.

Apparatus. An experimental chamber was located in a soundproof
box maintained at 22 * 2 °C with lights on from 9 a.m. to 9 p.m. Each
stainless steel cage measured 43 cm wide X 31 cm deep X 21 cm high
and was equipped with a drinking tube, a food cup with a 45-mg
pellet dispenser, a running wheel, and a nest. The nest was made of
black Plexiglas (19 cm wide X 14 cm deep X 11 c¢m high). Infrared
photobeams monitored head entries into the food cup, pellet entry
into the V-shaped cup, and the presence of the pellet in a cup. A clear
red light and the noise of the pellet dropping signaled pellet-in-cup.

Procedure. Pellet delivery was scheduled as follows. When the rat’s
head broke the photobeam inside the feeder, the first pellet was
delivered. Once the rat removed it, a new pellet was delivered. This
process continued until a pellet remained uneaten for 10 min, when
it was removed by an air puff. Water was freely available from a
drinking tube mounted on one side of the cage.

The times when each pellet is dropped and eaten, the times each
session was started and ended, the interruption, and duration times
were all recorded to the nearest millisecond.

The rats were housed individually and continuously in the
experimental chamber, except for a maintenance period of about
30 min each day, when they were weighed, food and water was
replenished, and the apparatus was cleaned and tested (this is known
as a “closed economy”). For the first 3 d of the experiment, each rat
had free access to food to habituate it to the apparatus.

After the third day, food delivery was interrupted during the night
(from 9 p.m. to 9 a.m.) at one of three randomly selected times and
for one of three randomly selected durations so the animals could not
anticipate either the onset or offset of food availability. The
interruption duration was either 1, 2, or 3 h. There was only one
interruption per day. The interruption period began when the
animal put its head inside the feeder to start a new meal after one of
three times: 10 p.m., 1 a.m., and 4 a.m,, called the interruption time.
Note that the interruption time specifies the time of food-availability
onset in the same way as a response-initiated delay reinforcement
schedule (i.e., interruption onset time is equal to the interruption
time plus the time to the next response). For example, suppose that
on a given night, the selected interruption time is at 4 a.m. for an
interruption duration of 2 h. If the animal first looks for a pellet
(interrupts the photobeam) at 4:45 a.m. (the interruption onset time),
the interruption timer starts and runs for 2 h, at which point a pellet
is delivered and the red signal light is turned on.

The interruption and duration times were chosen at random
without replacement, one pair of times per night. In this way, in 9 d
each animal was tested on all combinations.

The dependent variables in the experiment were M, defined as the
number of pellets eaten in a meal, and IMI. The end of the meal is
when a pellet is eaten and then followed by at least 3 min with no
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Figure 6. Sketch of the Model

The block diagram of a system modeling long- and short-term regulation
of feeding. Eating leads to delayed SSs (grouped in V;). When the SSs falls
below the set point, the command is “eat”: otherwise, the command is
“do not eat.”
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further eating. Meal onset is defined as the time when at least 3 min of
no eating precedes the eating of a pellet. IMI is the time between meal
end and meal onset.

Model. To explain the new data, the CINT model was modified
slightly (Figure 6) to include the observed limit on IMI values (Figure
4 and the fact that the maximum values are reached near the first
quartile of the meal-size distribution) by imposing a similar bound on
the SS.

If the feeding schedule is ad libitum (i.e., food is always available),
then the equations for the I-unit cascaded system are:

x(t) = @, if V; < 0; otherwise, x(t) = 0 (1)
where x(f) is the satiation value which is input at each discrete time
step, and @ is a constant which is some function of the physical
properties of the food (e.g., weight, type, caloric value, etc.) provided
by the experimenter (i.e., bang-bang control): if the SS is below set
point: eat (satiation value = ®@); otherwise, do not eat.

The SS is the output of a cascaded series of leaky integrators where
the output of integrator ¢ is the input to the next integrator i + 1. V,
the SS, is the output of the last integrator in the series, which is
determined as follows. In discrete time, for the first integrator:

Vi(t+1) = a1 Vi(t) + byx(1), (2)

and for subsequent integrators:

Vi(t+1)idi‘/}(t)+biVi,l(t),l<i<I (3)
where V; is the state of integrator i, g; is the time parameter of
integrator 7 (0 < a; < 1), and b; is the input weight. Two integrators
are the minimum necessary to produce a delayed SS, but three (/= 3)
gives a better fit to our data.

Eating occurs when V3, the output of the third integrator, falls
below 0, and ceases when it exceeds 0.
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