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Abstract: Model predictive control (MPC) is usually implemented as a control strategy where the system outputs
are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by
means of the selection of different weights for the output error in the control cost function. A disadvantage of
this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated
at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in
which the set point is an additional variable of the control problem. In this case, the set point is restricted to
remain inside the output zone and an appropriate output slack variable is included in the optimisation
problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a
robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller
is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired
optimal input target. Simulation of a process of the oil refining industry illustrates the performance of the
proposed strategy.
1 Introduction
MPC controllers are usually implemented as part of a
multilevel hierarchy of control functions [1]. At
intermediary levels of this control structure, the process
unit optimiser computes an optimal economic steady state
and passes this information to the MPC in a lower level for
implementation. The MPC is expected to drive the plant
to a more profitable operating point, when minimising the
dynamic error along the path. In several cases, the aim of
the MPC level is not to guide the controlled variables to
set points or desired values, but only to maintain them
inside appropriate ranges or zones. This is what is called
zone control [2]. This strategy is desired, for instance,
when the aim is to drive the feed rate to its maximum
value subject to constraints. Also, the zone control is
adopted in some systems, where there are highly correlated
outputs to be controlled and where there are no inputs
enough to control them independently. Controlling the
dense- and dilute-phase temperatures on an FCC regenerator
is an example of this class of problems. Although not covered
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by the method presented here, another class of zone control
problems relates to using the surge capacity of tanks to
smooth out the operation of a unit. In this case, it is
desired to let the level of the tank float between limits, as
necessary, to buffer disturbances between sections of a
plant. The controller used in this case must be capable of
accounting for integrating systems. The paper by Qin and
Badgwell [3], which represents an excellent survey of the
existing industrial MPC technology, describes a variety of
industrial controllers and mentions that they always provide
a zone control option. Other example of zone control can
be found in [4], where the authors exemplify the
application of this strategy in the real-time optimisation of
an FCC system. Although this strategy shows to have an
acceptable performance, stability cannot be proved, even if
an infinite horizon is used, as the control system keeps
switching from one controller to another throughout the
continuous operation of the process.

In parallel to the zone control formulation, there is a
number of research works that treat the problem of how to
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obtain a stable MPC with fixed output set points. Although
stability of the closed loop is commonly achieved by means of
an infinite prediction horizon, the problem of how to
eliminate output steady-state offset when a supervisory layer
produces optimal economic set points, and how to
explicitly incorporate the model uncertainty into the control
problem formulation for this case, remains an open issue.
For the nominal model case, Rawlings [5], Pannochia and
Rawlings [6] and Muske and Badgwell [7] show how to
include disturbance models to assure that the inputs and
states are led to the desired values without offset. Muske
and Badgwell [7] and Pannochia and Rawlings [6] develop
rank conditions to assure the detectability of the augmented
model.

For the uncertain system, Odloak [8] develops a robust
MPC for the multi-plant uncertainty (i.e. for a finite set of
possible models) that uses a non-increasing cost constraint
[9]. In this strategy, the MPC cost function to be
minimised is computed using a nominal model, but the
non-increasing cost constraint is settled for each of the
models belonging to the set. The stability is then achieved
by means of the recursive feasibility of the optimisation
problem, instead of the optimality. On the other hand,
there exist some recent MPC formulations that are based
on the existence of a controlled Lyapunov function (CLF),
which is independent of the control cost function.
Although the construction of the CFL may not be a trivial
task, these formulations also allow the explicit characterisation
of the stability region subject to constraints and they do not
need an infinite output horizon. Mhaskar et al. [10] explore
this approach for the control of nominal nonlinear systems
and Mhaskar [11] extends the approach for the case of
model uncertainty and control actuator fault. Following a
similar line, the same authors [12] applied the CLF-based
MPC to the control of switched systems by designing a
stable controller for each constituent mode in which the
system operates and by incorporating constraints in the
control problem that ensures that the transition between
modes will result in a stable closed-loop system. They also
extended the approach to the switched system with
uncertainties in the switching times and model parameters, as
well as to the presence of exogenous time-varying
disturbances in the dynamics of the system [13].

The objective of this paper was to develop a robust MPC
that adapts the non-increasing cost constraint strategy to the
case of zone control, that is, to the case where it is desirable to
guide the manipulated input to the target given by a
supervisory stationary optimisation stage, while maintaining
the controlled output in their corresponding zones, taking
into account a finite set of possible models. This problem
that seems to interchange an output tracking by an input-
tracking formulation is not trivial, since once the output
lies outside the corresponding zone (because of a
disturbance, or a change in the output zones), the priority
of the controller is again to control the outputs, even if this
implies that the input must be settled apart from its targets.
The Institution of Engineering and Technology 2009
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2 System representation
Consider a stable system with nu inputs and ny outputs, and
assume that the poles relating any input ui to any output yj are
non-repeated. Odloak [8] considers the following state space
model that is suitable to the implementation of MPC

xs(kþ 1)
xd (kþ 1)

� �
¼

Iny 0
0 F

� �
xs(k)
xd (k)

� �
þ

D0

Dd FN

� �
Du(k) (1)

y(k) ¼ [ Iny C ]
xs(k)
xd (k)

� �
(2)

where

xs
¼ [ x1 � � � xny ]T, xs [ <ny,

xd
¼ [ xnyþ1 xnyþ2 � � � xnyþnd ]T,

xd [ Cnd , F [ Cnd�nd

C ¼

F 0

. .
.

0 F

2
64

3
75, C [ <ny�nd ,

F ¼ [ 1 � � � 1 ], F [ <nuna

In the state equation (1), the state components xs correspond to
the (predicted) output steady state and components xd
correspond to the stable modes of the system. Naturally, when
the system approaches steady state, these last components
tend to zero. F is a diagonal matrix with components of the
form eriT where ri is a pole of the system and T is the
sampling period. It is assumed that the system has nd stable
poles and D0 is the gain matrix of the system. To build up
matrix F, it is also assumed that na is the number of poles
associated to any input ui and any output yj.

With the model structure presented in (1) and (2), model
uncertainty is related to uncertainty in matrices F, D0 and Dd.
There are several practical ways to represent model
uncertainty in model-predictive control. One of the simple
ways to represent model uncertainty is to consider the
multi-plant system [9], where we have a discrete set V of
plants, and the real plant is unknown, but it is assumed to
be one of the members of this set. With this representation
of model uncertainty, we can define the set of possible
plants as V ¼ {u1, . . . , uL} where each un corresponds to a
particular plant un ¼ (Fn, D0

n, Dd
n ), n ¼ 1, . . . , L.

Also, let us assume that the true plant which lies within the
set V is designated as uT and there is a most likely plant that
also lies in V and is designated as uN. In addition, it is
assumed that the current estimated state corresponds to the
true plant.

Badgwell [9] developed a robust linear quadratic regulator
for stable systems with the multi-plant uncertainty. Later,
IET Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
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Odloak [8] extended the method of Badgwell to the output
tracking of stable systems considering the same kind of
model uncertainty. These strategies include a new constraint
corresponding to each of the models lying in V that prevents
an increase in the true plant cost function at successive time
steps. In this work, we combine the approach presented in
Odloak [8] with the idea of including the output set point
as a new restricted optimisation variable to develop a robust
MPC for systems where the control objective is to maintain
the outputs into their corresponding feasible zone, while
reaching the desired optimal input target given by the
supervisory stationary optimisation.

3 Control structure
In this work, we consider the control structure shown in
Fig. 1. In this structure, the economic optimisation stage is
dedicated to the calculation of the desired target, udes,k, for
the input manipulated variables. This stage may be based
on a rigorous stationary model and takes into account the
process measurements and some economic parameters. In
addition, this stage works with a smaller frequency than the
low-level control stage, which allows a separation between
the two stages. The low-level control stage, given by the
MPC controller, is devoted to guide the manipulated input
to the desired values given by the supervisory economic
stage, while keeping the outputs within specified zones. In
general, the target udes,k will vary whenever the plant
operation or the economic parameters changes and this
target satisfies

umin � udes,k � umax

ymin � D0(un)(udes,k � u(k� 1))þ x̂s
n(k) � ymax,

n ¼ 1, . . . , L
(3)

where umin and umax represent the lower and upper bounds of
the input, ymin and ymax represent the lower and upper
bounds of the output, D0(un) is the gain corresponding to
model un and x̂s

n(k) is the estimated steady-state values of
the output corresponding to model un. Note that from the

Figure 1 Control structure
Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
: 10.1049/iet-cta:20070211

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on July 2
control structure depicted in Fig. 1, one has one observer
per each model, and the observer corresponding to the true
model uT is based on the true model matrices. In all these
cases, however, as the model structure adopted here has
integral action (which is given by the incremental form of
the input), the estimation of component xs

n(k) tends to the
measured output at steady state for all the models lying in
V. To clarify this point, consider the equation that defines
the state observer corresponding to model un, applied at
time �k large enough to approach steady state

x̂s
n(�k)

x̂d
n(�k)

" #
¼

I 0

0 F (un)

� �
x̂s

n(�k)

x̂d
n(�k)

" #

þ
D0(un)

Dd (un)F (un)N

" #
Du(�k)þ

Ls
n

Ld
n

� �

� y(�k)� [Iny C]
I 0

0 F (un)

� �
x̂s

n(�k)

x̂d
n(�k)

" # "

þ
D0(un)

Dd (un)F (un)N

" #
Du(�k)

!#

where [LsT

n LdT
n ]T is the observer gain, x̂s

n(�k) and x̂d
n(�k) are

the estimated states at time k̄, corresponding to model un,
and y(k̄) is the measured steady-state output corresponding
to the actual plant. Assuming that Du(�k) ¼ 0 and knowing
that x̂d

n(�k) ¼ 0 at steady state as this last state corresponds
to the stable modes of the system, the state observer for
component xs

n becomes

x̂s
n(�k) ¼ x̂s

n(�k)þ Ls
n[y(�k)� x̂s

n(�k)]

The above relation implies that, if Ls
n [ <ny�ny is full rank,

then

x̂s
n(�k) ¼ y(�k), n ¼ 1, . . . , L (4)

and the output predictions will be unbiased with respect to
the measurements.

Therefore condition (3) assures that, for a large �k, the
desired input should be such that

ymin � D0(un)udes,�k þ [y(�k)�D0(un)u(�k)]

� ymax, n ¼ 1, . . . , L

ymin � D0(un)udes,�k þ dn(�k) � ymax, n ¼ 1, . . . , L

ymin � yc
n,des,�k � ymax, n ¼ 1, . . . , L

(5)

where dn(�k) is the output bias based on the comparison
between the actual output at steady state and the predicted
output at steady state for each model. Note that, since
u(�k) ¼

P�k
j¼0 Du( j), then the term D0(un)u(�k) represents

the output prediction based only on the past inputs.
123

& The Institution of Engineering and Technology 2009

9, 2009 at 14:30 from IEEE Xplore.  Restrictions apply. 



124

&

www.ietdl.org
4 Robust MPC with range control
One way to handle the range control strategy, that is, to
maintain the controlled output inside its corresponding
range, is by means of an appropriate choice of the output
error penalisation in the conventional MPC cost function.
In this case, the output weight is made equal to zero when
the system output is inside the range, and the output
weight is different from zero if the output prediction is
violating any of the constraints, so that the output variable
is strictly controlled only if it is outside the feasible range.
In this way, the closed loop is guided to a feasible steady
state. In [4], an algorithm assigns three possible values to
the output set points used in the MPC controller: the
upper bound of the output feasible range if the predicted
output is larger than the upper bound; the lower bound of
the output feasible range if the predicted output is smaller
than this lower bound; and the predicted output itself, if
the predicted output is inside the feasible range. However,
a rigorous analysis of the stability of this strategy is not
possible even when using an infinite output horizon.
González et al. [14] describe a stable MPC based on the
incremental model defined in (1) and (2) that takes into
account a stationary optimisation of the plant operation.
The controller was designed specifically for a heat exchanger
network with a number of degrees of freedom larger than
zero. In that work, the mismatch between the stationary and
the dynamic model was treated by means of an appropriate
choice of the weighting matrices in the control cost.
However, stability and offset elimination were assured only
when the model was perfect.

Based on the work of González et al. [14], we consider the
following nominal cost function

Vk ¼
X1
j¼0

{(y(kþ j=k)� ysp,k)
TQy(y(kþ j=k)� ysp,k)

þ (u(kþ j=k)� udes,k)
TQu(u(kþ j=k)� udes,k)}

þ
Xm�1

j¼0

Du(kþ j=k)TRDu(kþ j=k)

(6)

where

y(kþ j=k) ¼ [ Iny C ]
Iny 0

0 F j

" #
x̂s(k=k)

x̂d (k=k)

� �
þ [ Iny C ]

�
Iny 0

0 F j�1

" #
D0

Dd FN

" #
Du(k=k)þ � � � þ [ Iny C ]

�
Iny 0

0 F j�m

" #
D0

Dd FN

" #
Du(kþ m� 1=k)

Here Du(kþ j=k) is the control move computed at time k to
be applied at time kþ j, m is the control or input horizon,
Qy, Qu, R are positive weighting matrices of appropriate
The Institution of Engineering and Technology 2009
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dimensions, x̂s(k=k) and x̂d (k=k) are the estimated states at
the present time and ysp,k and udes,k are the output and
input targets, respectively. This cost explicitly incorporates
an input deviation penalty that tries to accommodate the
system at an optimal economic stationary point. However,
as an infinite output horizon is used and the model used to
perform the predictions has integral modes (it is an
incremental model), a terminal constraint must be added to
prevent the cost from becoming unbounded. These
constraints can be written as [14]

xs(k)þ ~D
0
Duk � ysp,k ¼ 0 (xs(kþm=k)� ysp,k ¼ 0)

u(k� 1)þ ~D
u
Duk � udes,k ¼ 0 (u(kþm� 1=k)� udes,k ¼ 0)

where

Duk ¼ [Du(k=k)T
� � � Du(kþm� 1=k)T]T [ <m:nu

~D
0
¼ [ D0

� � � D0 ]|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m

~D
u
¼ [ Inu � � � Inu ]|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

m

The above constraints assume that both the output and input
errors will be null at the end of the control horizon m. As the
input increments are generally bounded, the terminal
constraints frequently result in infeasible problems, which
means that it is not possible for the controller to achieve
the constraints in m time steps, given that m is frequently
small to reduce the computational cost. Then, we need to
incorporate slack variables in these terminal constraints in
order to guarantee that the control problem will be feasible.
Besides, these slack variables must be included in the cost
function with large weights to assure that the constraint
violation will be minimised by the control actions. Thus,
the cost function will be written as

Vk¼
X1
j¼0

(y(kþ j=k)� ysp,k�dk)
TQy(y(kþ j=k)� ysp,k�dk)

þ (u(kþ j=k)�udes,k�dk,u)TQu(u(kþ j=k)�udes,k�dk,u)

þ
Xm�1

j¼0

Du(kþ j=k)TRDu(kþ j=k)þdT
y,kSydy,kþdT

u,kSudu,k

and the terminal constraints become

xs(k)þ ~D
0
Duk� ysp,k�dy,k¼ 0

u(k�1)þ ~D
u
Duk�udes,k�du,k¼ 0

where Sy, Su are positive matrices of appropriate dimension
and dy,k [<ny, du,k [<nuare the slack variables that
eliminate any infeasibility problem. Now, we will focus our
attention on the range control problem. In order to obtain
a nominal stable MPC controller for the case of output
IET Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
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range control, let us consider the following optimisation
problem.

Problem P1:

min
Duk ,ysp,k,dk,dk,u

Vk ¼
X1
j¼0

{( y(kþ j=k)� ysp,k � dy,k)
T

� Qy( y(kþ j=k)� ysp,k � dy,k)

þ (u(kþ j=k)� udes,k � du,k)
T

� Qu(u(kþ j=k)� udes,k � du,k)}

þ
Xm�1

j¼0

Du(kþ j=k)TRDu(kþ j=k)

þ dT
y,kSydy,k þ dT

u,kSudu,k (7)

subject to

�Dumax � Du(kþ j=k) � Dumax,

j ¼ 0, 1, . . . , m� 1
(8)

Du(kþ j=k) ¼ 0, j � m (9)

umin � u(k� 1)þ
Xj

i¼0

Du(kþ i=k) � umax,

j ¼ 0, 1, . . . , m� 1

(10)

ymin � ysp,k � ymax (11)

xs(k)þ ~D
0
Duk � ysp,k � dy,k ¼ 0

(xs(kþ m=k)� ysp,k � dy,k ¼ 0)
(12)

u(k� 1)þ ~D
u
Duk � udes,k � du,k ¼ 0

� (u(kþ m� 1=k)� udes,k � du,k ¼ 0) (13)

In Problem P1, ysp,k, which represents the output set point,
is an additional optimisation variable. Note that, since
variable ysp,k is restricted by constraint (11), the effective
output set point is now the complete feasible zone. If the
output bounds are settled so that the upper bound equals
the lower bound, then the problem becomes the
traditional set-point tracking problem. In the general case,
the output slack variable, dy,k, will be null if and only if
the predicted steady state of the output is inside the
feasible range.

Now, because of terminal constraints (12) and (13), the
objective function defined in (7) can be written as

Vk ¼
Xm�1

j¼0

{(y(kþ j=k)� ysp,k � dy,k)
T

� Qy(y(kþ j=k)� ysp,k � dy,k)
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þ (u(kþ j=k)� udes,k� du,k)
T Qu(u(kþ j=k)� udes,k� du,k)}

þ (xd (kþm=k))T �Qxd (kþm=k)þ
Xm�1

j¼0

Du(kþ j=k)T

�RDu(kþ j=k)þ dT
y,kSydy,kþ dT

u,kSudu,k (14)

where matrix �Q is computed by means of the following
Lyapunov equation

�Q¼CTQyCþF T �QF

It can be shown that the controller produced through the
solution of Problem P1 results in a stable closed-loop
system for the nominal system. However, the aim here is to
extend this formulation to the case of multi-model
uncertainty. To this end, let us consider the following
optimisation problem.

Problem P2:

min
Duk ,ysp,k(un),

dy,k(un),du,k

V1,k(uN ) ¼
X1
j¼0

{(yN (kþ j=k)� ysp,k(uN )� dy,k(uN ))T

� Qy(yN (kþ j=k)� ysp,k(uN )� dy,k(uN ))

þ (u(kþ j=k)� udes,k � du,k)
T

� Qu(u(kþ j=k)� udes,k � du,k)}

þ
Xm�1

j¼0

Du(kþ j=k)TRDu(kþ j=k)

þ dT
y,k(u1)Sydy,k(u1)þ � � �

þ dT
y,k(uL)Sydy,k(uL)þ dT

u,kSudu,k

(15)

subject to

�Dumax � Du(kþ j=k) � Dumax,

j ¼ 0, 1, . . . , m� 1
(16)

Du(kþ j=k) ¼ 0, j � m (17)

umin � u(k� 1)þ
Xj

i¼0

Du(kþ i=k) � umax,

j ¼ 0, 1, . . . , m� 1

(18)
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ymin � ysp,k(un) � ymax, n ¼ 1, . . . , L (19)

x̂s
n(k)þ ~D

0
(un)Duk � ysp,k(un)� dy,k(un) ¼ 0,

n ¼ 1, . . . , L
(20)

u(k� 1)þ ~D
u
Duk � udes,k � du,k ¼ 0 (21)

V2,k(Duk, dy,k(un), du,k, ysp,k(un), un) � V2,k(D~uk,

~dy,k(un), ~du,k, ~ysp,k(un), un), n ¼ 1, . . . , L (22)

where

V2,k ¼
X1
j¼0

{(yn(kþ j=k)� ysp,k(un)� dy,k(un))T

� Qy(yn(kþ j=k)� ysp,k(un)� dy,k(un))

þ (u(kþ j=k)� udes,k � du,k)
T

� Qu(u(kþ j=k)� udes,k � du,k)}

þ
Xm�1

j¼0

Du(kþ j=k)TRDu(kþ j=k)

þ dT
y,k(un)Sydy,k(un)þ dT

u,kSudu,k

D~uk ¼ [Du�(k=k� 1)T
� � � Du�(kþ m� 2=k� 1)T 0 ]T

~ysp,k(un) ¼ y�sp,k�1(un), ~du,k and ~dy,k(un) are such that

u(k� 1)þ ~D
u
D~uk � udes,k �

~du,k ¼ 0 (23)

x̂s
n(k)þ ~D

0
(un)D~uk � ~ysp,k(un)� ~dy,k(un) ¼ 0,

n ¼ 1, . . . , L
(24)

Du�( � =k� 1), d�u,k�1 and y�sp,k�1(un) are the optimal solutions
to this optimisation problem at time step k 2 1. The output
predictions obtained with each model can be computed as

yn(kþ j=k)¼ [ Iny C ]
Iny 0

0 F (un)j

" #

�
x̂s

n(k=k)

x̂d
n(k=k)

� �
þ [ Iny C ]

�
Iny 0

0 F (un) j�1

" #
� � �

Iny 0

0 F (un) j�m

" #" #

�
D0(un)

D(un)F (un)N

" #
Duk

where x̂s
n(k=k) and x̂d

n(k=k) are the estimated states
corresponding to model n, that is, the estimated state
resulting from each state observer (see Fig. 1).
The Institution of Engineering and Technology 2009
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Remark 1: The output prediction yN (kþ j=k) appearing in
the definition of the cost function V1,k(uN ), is based on the
nominal model. However, constraints (20) and (22) are
imposed considering the estimated state of each model
un [ V. Constraint (22) is the non-increasing cost
constraint that assures the convergence of the true state cost
to zero.

Remark 2: Cost V1,k, that is the cost to be minimised,
contains penalisation terms for all of the output slack
variables corresponding to the models lying in V. Cost
V2,k, used in constraint (22), contains only one penalisation
term for the output slack variable corresponding to the
model for which the constraint is written.

Remark 3: The introduction of L set-point variables allows
the simultaneous zeroing of all the output slack variables.
That is, because, whenever possible, the set-point variable
ysp,k(un) will be equal to the output prediction at steady
state represented by xs

n(kþ m), the controller gains some
flexibility to eliminate the output penalisation from the
cost, when the individual output predictions are inside the
output zones. This will allow the controller to better
achieve the other control objectives.

Remark 4: Note that by hypothesis, one of the observers is
based on the actual plant model, and if the initial and the
final steady states are known, then the estimated state x̂T (k)
will be equal to the actual plant state at each time k.

Remark 5: Conditions (23) and (24) are used to update the
pseudo-variables of constraint (22), by taking into account
the current state estimation x̂s

n(k) for each of the models
lying in V, and the last change of the input target.

Lemma 1: If Problem P2 is feasible at time step k, it
will remain feasible at any subsequent time step kþ j,
j ¼ 1, 2, . . . .

Proof: Let us first prove the recursive feasibility of the
proposed controller. Assume that the output zones remain
fixed, and also assume that

Du�k ¼ [Du�(k=k)T
� � � Du�(kþ m� 1=k)T ]T [ <m:nu

(25)

y�sp,k(u1), . . . , y�sp,k(uL), d�y,k(u1), . . . , d�y,k(uL) and d�u,k

(26)

correspond to the optimal solution to Problem P2 at time k.
IET Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
doi: 10.1049/iet-cta:20070211

9, 2009 at 14:30 from IEEE Xplore.  Restrictions apply. 



IET
doi

www.ietdl.org
Consider now the pseudo-variables (D~ukþ1, ~ysp,kþ1

(u1), . . . , ~ysp,kþ1(uL), ~dy,kþ1(u1), . . . , ~dy,kþ1(uL), ~du,kþ1) where

D~ukþ1 ¼ [Du�(kþ 1=k)T
� � � Du�(kþ m� 1=k)T 0 ]T

(27)

~ysp,kþ1(un) ¼ y�sp,k(un), n ¼ 1, . . . , L, ~du,kþ1 and

~dy,kþ1(un) (28)

and

u(k)þ ~D
u
D~ukþ1 � udes,kþ1 �

~du,kþ1 ¼ 0 (29)

x̂s
n(kþ 1)þ ~D

0
(un)D~ukþ1 � ~ysp,kþ1(un)� ~dy,kþ1(un) ¼ 0

n ¼ 1, . . . , L

We can show that the solution defined in (27) and (28)
represent a feasible solution to Problem P2 at time kþ 1,
which proves the recursive feasibility. This means that if
Problem P2 is feasible at time step k, then, it will remain
feasible at all the successive time steps kþ 1, kþ 2 , . . . .

The robust stability of the closed loop resulting from the
later optimisation problem can be stated as follows.

Theorem 1: Suppose that the undisturbed system starts at a
known steady state and one of the state observers is based on
the actual plant model. Consider also that the input target is
moved to a new value, or the boundaries of the output zones
are modified. Then, if condition (3) is satisfied for each
model un [ V, the cost function of the undisturbed true
system will converge to zero.

Proof: Suppose that, at time k the uncertain system starts at a
steady state corresponding to output y(k) and input u(k� 1).
We have already shown that, with the model structure
considered in this work, the model states corresponding to
this initial steady state can be represented as

x̂s
n(k) ¼ y(k), x̂d

n(k) ¼ 0, n ¼ 1, . . . , L

At time k, the cost corresponding to the solution defined in
(25) and (26) for the true model is given by

V �2,k(uT ) ¼
X1
j¼0

{(y�T (kþ j=k)� y�sp,k(uT )� d�y,k(uT ))T

� Qy(y
�
T (kþ j=k)� y�sp,k(uT )� d�y,k(uT ))

þ (u�(kþ j=k)� udes,k � d�u,k)
T

� Qu(u�(kþ j=k)� udes,k � d�u,k)}

þ
Xm�1

j¼0

Du�(kþ j=k)TRDu�(kþ j=k)

þ d�Ty,k (uT )Syd
�
y,k(uT )þ d�Tu,kSud

�
u,k (30)
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At time step kþ 1, the cost corresponding to the pseudo-
variables defined in (27)–(29) for the true model is given by

~V 2,kþ1(uT ) ¼
X1
j¼0

{(y�T (kþ j þ 1=k)� y�sp,k(uT )� d�y,k(uT ))T

� Qy(y
�
T (kþ j þ 1=k)� y�sp,k(uT )� d�y,k(uT ))

þ (u�(kþ j þ 1=k)� udes,k � d�u,k)
T

� Qu(u�(kþ j þ 1=k)� udes,k � d�u,k)}

þ
Xm�1

j¼0

Du�(kþ j þ 1=k)TRDu�(kþ j þ 1=k)

þ d�Ty,k (uT )Syd
�
y,k(uT )þ d�Tu,kSud

�
u,k (31)

Observe that, as the same input sequence is used and the
current estimated state corresponding to the actual model is
equal to the actual state, then the predicted state and
output trajectory will be the same as the optimal predicted
trajectories at time step k. That is, for any j � 1, we have

xT (kþ j=kþ 1) ¼ xT (kþ j=k)

and

yT (kþ j=kþ 1) ¼ yT (kþ j=k)

In addition, for the true model we have ~dy,kþ1(uT ) ¼ d�y,k(uT )
and ~du,kþ1 ¼ d�u,k. However, the first of these later equalities,
are not true for the other models, since in these cases
x̂n(kþ 1=kþ 1) = xn(kþ 1=k) for un = uT .

Now, subtracting (31) from (30) we have

V �2,k(uT )� ~V 2,kþ1(uT ) ¼ (y�T (k=k)� y�sp,k(uT )� d�y,k(uT ))T

� Qy(y
�
T k=kð Þ � y�sp,k(uT )� d�y,k(uT ))

þ (u�(k=k)� udes,k � d�u,k)
T

� Qu(u�(k=k)� udes,k � d�u,k)

þ Du�(k)TRDu�(k)

and, from constraint (22), we have

V �2,kþ1(uT ) � ~V 2,kþ1(uT )

which finally implies

V �2,k(uT )� V �2,kþ1(uT ) � ( y�T (k=k)� y�sp,k(uT )� d�y,k(uT ))T

� Qy(y
�
T (k=k)� y�sp,k(uT )� d�y,k(uT ))þ (u�(k=k)� udes,k

� d�u,k)
TQu(u�(k=k)� udes,k � d�u,k)þ Du�(k)TRDu�(k)

(32)

Since the right-hand side of (32) is positive definite, the
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successive values of the cost will be strictly decreasing and for
a large enough time �k, we will have (V �2,�k(uT )�
V �2,�kþ1(uT )) ¼ 0, which proves the convergence of the cost.

The convergence of V �2,k(uT ) means that, at steady state,
the following relations should hold

y�T (�k=�k)� y�sp,�k(uT ) ¼ d�y,�k(uT )

u�(�k=�k)� udes,�k ¼ d�u,�k

Du�(�k) ¼ 0

At steady state, the state is such that

x̂n(�k) ¼
x̂s

n(�k)
x̂d

n(�k)

� �
¼

ys
n(�k)

x̂d
n(�k)

" #
¼

y(�k)
0

� �

where y(�k) is the actual plant output. Note that the state
component x̂d

n(�k) is null, as the input increment is null at
steady state. Then, constraint (20) can be written as

d�y,�k(un) ¼ y�n(�k=�k)� y�sp,�k(un) ¼ y(�k)� y�sp,�k(un)

n ¼ 1, . . . , L
(33)

This means that if the output of the true system is stabilised
inside the output zone, then the set-point variable
corresponding to each particular model will be placed by
the optimiser exactly at the output predicted values. In this
case, all the output slacks will be null. On the other hand,
if the output of the true system is stabilised at a value
outside the output zone, then the set-point variable
corresponding to each particular model will be placed by
the optimiser at the boundary of the zone. In this case, the
output slack variables will be different from zero, but they
will all have the same numerical value as can be seen from
(33).

Now, to strictly prove the convergence of the input and
output to their corresponding targets, we must show that
slacks du,�k and dy,�k(uT ) will converge to zero. Note that,
since there are not fixed output set points, the desired
input values may be exactly achieved by the true system,
even in the presence of some bounded disturbances. In fact,
with this formulation, the output set point corresponding
to each model may follow in some sense the predicted
output values. Let us now assume that the system is
stabilised at a point where d�y,�k(u1) ¼ � � � ¼ d�y,�k(uL) = 0
and du,�k = 0. In addition, assume that the desired input
value is constant at udes,�k. Then, at time �k large enough, the
optimal cost will be reduced to

V �1,�k,u ¼ dT
y,�k(u1)Sydy,�k(u1)þ�� �þdT

y,�k(uL)Sydy,�k(uL)þdT
u,�kSdu,�k

(34)
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and constraints (20) and (21) become

x̂s
n(�k)� ysp,�k(un)¼ dy,�k(un), n¼ 1, . . . , L (35)

and

u(�k�1)� udes,�k ¼ du,�k

Since x̂s
n(�k)¼ y(�k), n¼ 1, . . . , L, (35) can be written as

y(�k)� ysp,�k(un)¼ dy,�k(un), n¼ 1, . . . , L

Now, we want to show that if u(k�1) and udes,�k are not on
the boundary of the input operating range, then it is
possible to guide the system toward a point in which the
slack variables dy,k(un) and du,k are null, and this point have
a smaller cost than the steady state defined above. Assume
also for simplicity that m ¼ 1. Then, at time �k let us
consider a candidate solution to Problem P2 defined by

D�u(�k=�k)¼ udes,�k�u(�k�1)¼�du,�k (36)

and

�ysp,�k(un)¼ y(�k)�D0(un)du,�k, n¼ 1, . . . , L (37)

The set points given in (37) are the steady-state values of the
outputs corresponding to the input increment given in (36).
Note that these new set points are feasible because it is
assumed that, at steady state, condition (3) holds true.

The variables defined in (36) and (37) must satisfy
constraints (20) and (21) of Problem P2 for all the models
lying in V or

y(�k)�D0(un)du,�k � �ysp,�k(un)� �dy,�k(un) ¼ 0, n ¼ 1, . . . , L

(38)

u(�k� 1)� du,�k

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{�u �kð Þ

�udes,�k �
�du,�k ¼ 0 (39)

Note that �u(�k), �ysp,�k(un), �dy,�k(un) and �du,�k are the solution
variables that will result if the input increment defined in
(36) is implemented at �k instead of the null increment.
Now, combining (36) and (39), we conclude that �du,�k ¼ 0.
This means that, the inputs will reach their target at steady
state, or �u(�k) ¼ udes,�k. Also, substituting (37) into (27)
results in �dy,�k(un) ¼ 0, which means that the predicted
output at steady state (for all the models) is inside the
output zone.
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With these optimisation variables, the objective function
defined in (15) becomes

�V 1,�k ¼ (yN (�k=�k)� �ysp,�k(uN )� �dy,�k(uN ))T

� Qy(yN (�k=�k)� �ysp,�k(uN )� �dy,�k(uN ))

þ (u(�k=�k)� udes,�k �
�du,k)

TQu(u(�k=�k)� udes,�k �
�du,�k)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ (xd
N (�kþ 1=�k))T �Q(uN )xd

N (�kþ 1=�k)

þ Du(�k=�k)TRDu(�k=�k)
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{dT

u,�k
Rdu,�k

þ �d
T

y,�k(u1)Sy
�dy,�k(u1)

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{¼0

þ � � � þ �d
T

y,�k(uL)Sy
�dy,�k(uL)

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{¼0

þ �d
T

u,�kSu
�du,�k

zfflfflfflfflffl}|fflfflfflfflffl{¼0

(40)

Now, using model equations (1) and (2), we have

yN (�k=�k)� �ysp,�k(uN )� �dy,�k(uN )
zfflfflfflffl}|fflfflfflffl{¼0

¼ x̂s
N (�k)þCx̂d

N (�k)� �ysp,�k(uN )

¼ y(�k)þC x̂d
N (�k)
zfflffl}|fflffl{¼0

��ysp,�k(uN ) ¼ D0(uN )du,�k

and

xd
N (�kþ1=�k)¼F (uN )x̂d

N (�k)þDd (uN )F (uN )NDu(�k=�k)

¼F (uN) x̂d
N (�k)|fflffl{zfflffl}
¼0

�Dd (uN)F (uN )Ndu,�k ¼�Dd (uN )F (uN )Ndu,�k

Consequently, the cost represented in (40) can be written as

�V 1,�k,u¼ dT
u,�kSmin

u du,�k

where

Smin
u ¼D0(uN )TQyD0(uN )þN TF (uN )TDd (uN )T

� �Q(uN )Dd (uN )F (uN )N þR

Then, if

Su . Smin
u (41)

the cost corresponding to the decision variables defined in
(36) and (37) will be smaller than the cost obtained in
(34). This means that it is not possible for the system to
remain at a point in which the slack variables dy,k(un), n¼
1, . . . , L and du,k are different from zero.

Thus, as long as the system remains controllable, condition
(41) is sufficient to guarantee the convergence of the system
inputs to their target while the system output will remain
within the output zones.
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Observe that only matrix Su is involved in condition
(41) because condition (3) assures that the corrected
output prediction, yc

des,�k, corresponding to the desired
input values lies in the feasible zone. In this case, for all
positive matrices Sy, the total cost can be reduced by
making the set-point variable equal to the steady-state
output prediction, which is a feasible solution and
produces no additional cost. Matrix Sy, however, must be
large enough to avoid any numerical problem in the
optimisation solution.

Remark 6: We can prove the stability of the proposed zone
controller under the same assumptions considered in the
proof of the convergence. Output tracking stability means
that for every g . 0, there exists a r gð Þ such that if
jj�xT (0)jj , r, then jj�xT (k)jj , g for all k � 0, where the
extended state of the true system �xT (k) is defined as

�xT (k) ¼
es

T (k)
xd

T (k)
eu(k)

2
4

3
5 ¼ x̂s

T (k)� y�sp,k�1 uT

� �
x̂d

T (k)
u(k=k)� udes,k

2
64

3
75

As in the formulation used in this work, the set point is
an optimisation variable (even if the input target remain
constant) the first component of that new state is not a
constant translation of coordinate of the original state
x̂s

T (k). However, as the set-point variable is restricted to
be in the output zone (and the recursive feasibility of
the closed loop is assured), and once inside this zone,
we consider that the state x̂s

T (k) has reached its target,
this extended state is an appropriate state to analyse
stability.

To simplify the proof, we still assume that m ¼ 1, and
suppose that the optimal solution obtained at step k 2 1 is
given by Du�k�1 ¼ Du�(k� 1=k� 1), y�sp,k�1(u1), . . . ,
y�sp,k�1(uL), d�y,k�1(u1), . . . , d�y,k�1(uL) and d�u,k�1.

A feasible solution to Problem P2 at time k is given
by D~uk ¼ 0, ~ysp,k(un) ¼ y�sp,k�1(un), ~du,k and ~dy,k(un) are such
that

u(k� 1)þ ~D
u
D~uk

z}|{¼0

� udes,k �
~du,k ¼ 0 (42)

x̂s
n(k)þ ~D

0
(un)D~uk

z}|{¼0

� ~ysp,k(un)� ~dy,k(un) ¼ 0, n ¼ 1, . . . , L

(43)

In the output tracking of the undisturbed system, slack
variables ~dy,k(un) will be, in general, different from the
previous one, except for the true model, in which case,
since x̂T (k) ¼ A(uT )x̂T (k� 1)þ BDu(k� 1), (43) implies
~dy,k(uT ) ¼ d�u,k�1. In addition, if the input target is
not modified, then ~du,k ¼ d�u,k�1.
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The cost for the actual model uT corresponding to this
feasible solution is then

~V 2,k(uT )¼ ( yT (k=k)� y�sp,k�1(uT )� d�y,k�1(uT ))T

�Qy(yT (k=k)� y�sp,k�1(uT )� d�y,k�1(uT ))

þ (u(k� 1)� udes,k� d�u,k�1)TQu(u(k� 1)� udes,k� d�u,k�1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ (xd
T (kþ 1=k))T �Q(uT )xd

T (kþ 1=k)

þDu(k=k)TRDu(k=k)
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼0

þd�y,k�1(uT )TSyd
�
y,k�1(uT )

þ d�Tu,k�1Sud
�
u,k�1 (44)

Now from (20) and (21), we have

d�y,k�1(uT )¼ x̂s
T (k)� y�sp,k�1(uT )¼ C0 �xT (k)

d�u,k�1 ¼ u(k� 1)� udes,k ¼ u(k=k)� udes,k ¼ C1 �xT (k)

where C0 ¼ [ Iny 0 0 ] and C1 ¼ [ 0 0 Inu ].

Now, considering the model equations (1) and (2) for the
true model, we have

yT (k=k)� y�sp,k�1(uT )� d�y,k�1(uT ) ¼ x̂s
T (k)þCx̂d

T (k)

� y�sp,k�1(uT )� d�y,k�1(uT ) ¼ Cxd
T (k) ¼ C2 �xT (k)

xd
T (kþ 1=k) ¼ Fxd

T (k)þDd FN Du(k=k)
zfflfflfflffl}|fflfflfflffl{¼0

¼ C3 �xT (k)

where C2 ¼ [ 0 C 0 ] and C3 ¼ [ 0 F (uT ) 0 ].

Thus, the cost defined in (44) can be written as

~V 2,k(uT ) ¼ �xT (k)TH1(uT )�xT (k) (45)

where H1 ¼ CT
2 QyC2 þ CT

3
�Q(uT )C3 þ CT

0 SyC0 þ CT
1 SuC1.

Because of constraint (22), the optimal true cost (i.e. the
cost based on the true model, considering the optimal
solution that minimise the nominal cost at time k) will satisfy

V �2,k(uT ) � ~V 2,k(uT ) (46)

and

V �2,kþn(uT ) � V �2,k(uT ) for any n . 1 (47)

By a similar procedure as above and based on the optimal
solution at time kþ n, we can find a feasible solution to
Problem P1 at time kþ nþ 1, for any n . 1, such that

~V 2,kþnþ1(uT ) � V �2,kþn(uT ) (48)
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and from the definition of ~V kþnþ1 we have

~V 2,kþnþ1(uT ) ¼ �xT (kþ nþ 1)TH1(uT )�xT (kþ nþ 1) (49)

Therefore combining inequalities (45)–(49) results

�xT (kþ nþ 1)TH1(uT )�xT (kþ nþ 1)

� �xT (k)TH1(uT )�xT (k) 8n . 1

As H1(uT ) is positive definite, it follows that

k�xT (kþ nþ 1)k � a(uT )k�xT (k)k 8n . 1

a(uT ) ¼
lmax(H1(uT ))

lmin(H1(uT ))

� �1=2

� max
j

lmax(H1(uj))

lmin(H1(uj))

" #1=2

If we restrict the state at time k to the set defined by

k�xT (k)k , r

then the state at tine kþ nþ 1 will be inside the set defined
by

k�xT (kþ nþ 1)k , a(uT )r 8n . 1

which proves stability of the closed-loop system, as �xT will
remain inside the ball k�xTk , a(uT )r, where a(uT ) is
limited, as long as the closed loop starts from a state
inside the ball k�xTk , r. Therefore as we have already
proved the convergence of the closed loop, we can now
assure that under the assumption of state controllability at
the final equilibrium point, the proposed MPC is
asymptotically stable.

Remark 7: It is important to observe that even if condition
(3) cannot be satisfied by the input target, or the input target
is such that one or more outputs need to be kept outside their
zones, the proposed controller will still be stable. This is a
consequence of the decreasing property of the cost function
(inequality (32)) and the inclusion of appropriate slack
variables into the optimisation problem. In this case, the
system will evolve to an operating point in which the slack
variables (that in steady state are the same for all the
models) are as small as possible, but different from zero.
This is an important aspect of the controller, as in practical
applications a disturbance may move the system to a point
from which it is not possible to reach a steady state that
satisfies (3). When this happens, the controller will do the
best to compensate the disturbance, while maintaining the
system under control.
IET Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
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4.1 General case (case in which condition
(3) is not satisfied)

First, we define the global input feasible set q0, as the set
given by

q0 ¼ {u : umin � u � umax}

In addition, we define the more restricted input feasible set,
qu, which is computed taking into account the input and
output constraints and the model gains, as

qu ¼ u : umin � u � umax

and ymin � D0(un)u�D0(un)u(�k)þ x̂s
n(�k)

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{dn(�k)

� ymax,

n ¼ 1, . . . , L

(50)

This set, which depends on the stationary point given by
(u(�k), x̂s

n(�k)), is the intersection of several sets, each one
corresponding to a model of set V. When the output zones
are narrow, the restricted input feasible set is smaller than
the global feasible set, defined solely by the input
constraints. An intuitive diagram of the input feasible set is
shown in Fig. 3, where only three models are used to
represent the uncertainty set.

There are two different feasibility problems because of
which condition (3) could not be satisfied. If qu is not null,
the input target udes,k could be within the global input
feasible set q0, but outside the restricted input feasible set
qu. In this case, the slack variables du,�k and dy,�k(un) cannot
be simultaneously zeroed, and the relative magnitude of
matrices Sy and Su will decide the equilibrium point. If the
priority is to maintain the output into the corresponding
range, the choice must be Sy � Su, while preserving
Su . Smin

u . Then, the controller will guide the system to a
point in which dy,�k(un) ¼ 0, n ¼ 1, . . . , L and du,�k = 0.
On the other hand, if qu is null, that is, if no input
belonging to the global input feasible set q0 simultaneously
satisfy all the zones for the models lying in V, then the
slack variables dy,�k(un), n ¼ 1, . . . , L, cannot be zeroed, no
matter the value of du,�k. In this case (considering that
Sy � Su), the slack variables dy,�k(un), n ¼ 1, . . . , L, will be
made as small as possible, independent of the value of du,�k.
Then, once the output slack is established, the input slack
will be accommodated to satisfy these values of the outputs.

5 Simulation results
The system adopted to test the performance of the robust
controller presented here is part of the FCC system
presented in [15]. This is a typical example of the chemical
process industry, and instead of output set points, this
system has output zones. The objective of the controller is
then to guide the manipulated inputs to the corresponding
targets and to maintain the outputs (that are more numerous
than the inputs) within the corresponding feasible zones.
Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
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The system considered here has two inputs and three
outputs. Three models constitute the multi-model set V on
which the robust controller is based. The parameters
corresponding to each of these models can be seen in the
following transfer functions:

G(u1) ¼

0:4515

2:9846s þ 1

0:2033

1:7187s þ 1
1:5

20s þ 1

0:1886s � 3:8087

17:7347s2 þ 10:8348s þ 1
1:7455

9:1085s þ 1

�6:1355

10:9088s þ 1

2
6666664

3
7777775

G(u2) ¼

0:25

3:5s þ 1

0:135

2:77s þ 1
0:9

25s þ 1

0:1886s � 2:8

19:7347s2 þ 10:8348s þ 1
1:25

11:1085s þ 1

�5

12:9088s þ 1

2
6666664

3
7777775

G(u3) ¼

0:7

1:98s þ 1

0:5

2:7s þ 1
2:3

25s þ 1

0:1886s � 4:8087

15:7347s2 þ 10:8348s þ 1
3

7s þ 1

�8:1355

7:9088s þ 1

2
6666664

3
7777775

In this reduced system, the manipulated input variables are
correspond to u1 the air flow rate to the catalyst regenerator
and u2 the opening of the regenerated catalyst valve. The
controlled outputs to y1 the riser temperature, y2 the
regenerator dense phase temperature and y3 the regenerator
dilute phase temperature.

Following the controller hypothesis, model u1 is assumed
to be the true model, whereas model u3 represents
the nominal model that is used into the MPC cost.
In the discussion that follows the adopted tuning
parameters of the controller are m ¼ 3, T ¼ 1,
Qy ¼ 0:5 � diag( 1 1 1 ); Qu ¼ 0:8 � diag( 1 1 );R ¼
0:05 � diag( 1 1 ); Sy ¼ 105

� diag( 1 1 1 ) and Su ¼

7:103
� diag( 1 1 ). The input and output constraints, as well

Table 1 Output zones of the FCC system

Output ymin ymax

y1, 8C 510 530

y2, 8C 600 610

y3, 8C 530 590

Table 2 Input constraints of the FCC system

Input Dumax umin umax

u1, ton/h 25 75 250

u2, % 25 25 101
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as the maximum input increment, are shown in Tables 1
and 2.

Before starting the detailed analysis of the properties of
the proposed robust controller, we find it useful to justify
the need for a robust controller for this specific system.
We compare the performance of the proposed robust
controller defined through Problem P2, with the
performance of the nominal MPC defined through
Problem P1. We consider the same scenario described
above except for the input targets that are not included
(by simply making Qu ¼ 0 and Ru ¼ 0). This is a
possible situation that may happen in practice when the
controller is operating as a regulator. Figs. 2 and 3 show
the output and input responses, respectively, for the two
controllers when the system starts from a steady state
where the outputs are outside their zones. It is clear
that the conventional MPC cannot stabilise the plant
corresponding to model u3 when the controller uses
model u1 to calculate the output predictions. However,
the proposed robust controller performs quite well and is
able to bring the three outputs to their zones.

We now concentrate our analysis on the application of the
proposed controller to the FCC system. As was defined in
(50), each of the three models produces an input feasible
set, whose intersection constitutes the restricted input
feasible set of the controller. These sets have different
shapes and sizes for different stationary operating points
(since the disturbance dn(k) is included in (50)), except for
the true model case, where the input feasible set remains
unmodified as the estimated states exactly match the true
states. The closed-loop simulation begins at uss ¼
[230.5977 60.2359] and yss ¼ [549.5011 704.2756

Figure 2 Controlled outputs for the nominal (– – –) and
robust (——) MPC
2
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690.6233], which are values taken from the real FCC
system. For such an operating point, the input feasible set
corresponding to models 1, 2 and 3 are depicted in Fig. 4.
These sets are quite distinct from each other, which results
in an empty restricted feasible input set for the controller
(qu ¼ qu(u1) > qu(u2) > qu(u3)). This means that it does
not exist an input that taking into account all the models
gain and all the estimated states satisfies the output
constraints.

The first objective of the control simulation is to stabilise the
system input at u1

des,k ¼ [ 165 60 ]. This input corresponds to
the output y ¼ [ 520 606:8 577:6 ] for the true system,
which results in the input feasible sets shown in Fig. 5a. In
this figure, it can be seen that the input feasible set
corresponding to model 1 is the same as in Fig. 4, whereas

Figure 3 Manipulated inputs for the nominal (– – –) and
robust (——) MPC

Figure 4 Input feasible sets of the FCC system
IET Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
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Figure 5 Input feasible sets

a Initial input feasible sets
b Input feasible sets when the first input target is changed
c Input feasible sets when the second input target is changed
the sets corresponding to the other models adapt their shape
and size to the new steady state. Once the system is stabilised
at this new steady state, we simulate a step change in the
target of the input (at time step k ¼ 200 min). The new
target is given by u2

des,k ¼ [ 175 64 ] and the
corresponding input feasible sets are shown in Fig. 5b. In

Figure 6 Controlled outputs and set points for the FCC
subsystem with modified input target
Control Theory Appl., 2009, Vol. 3, No. 1, pp. 121–135
10.1049/iet-cta:20070211
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this case, it can be seen that the new target remains inside
the new input feasible set q2

u, which means that the cost
can be guided to zero for the true model. Finally, at time
step k ¼ 400 min, when the system reaches the steady state,
a different input target is introduced (u3

des,k ¼ [ 175 58 ]).
Different from the previous targets, this new target is

Figure 7 Manipulated inputs for the FCC subsystem with
different input target
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outside the input feasible set q3
u, as can be seen in Fig. 5c.

Since in this case, the cost cannot be guided to zero and
the output requirements are more important than the input
ones, the inputs are stabilised in a feasible point as close as
possible to the desired target. This is an interesting
property of the controller as such a change in the target is
likely to occur in the real plant operation.

Fig. 6 shows the true system outputs (solid line), the set-
point variables (dotted line) and the output zones (dashed
line) for the complete sequence of changes. Fig. 7, on the
other hand, shows the inputs (dotted line) and the input
targets (solid line) for the same sequence. As was established
in Theorem 1, the cost function corresponding to the true
system is strictly decreasing, and this can be seen in Fig. 8.
In this figure, the solid line represents the true cost function,
whereas the dotted line represents the cost corresponding to
model 3. It is interesting to observe that this last cost
function is not necessarily decreasing, since the estimated
state does not match exactly the true state. Note, in
addition, that in the last period of time the cost does not
reach zero, as the new target is not inside the input feasible set.

Next, we simulate a change in the output zones. The new
bounds are given in Table 3. Corresponding to the new
control zones, the input feasible set changes its dimension
and shape significantly. In Fig. 9, q1

u(u1) corresponds to
the initial feasible set for the true model, and q4

u(u1),
q4

u(u2) and q4
u(u3) represent the new input feasible sets for

the three models considered in the robust controller.
Since the input target is outside the input feasible set
q4

u ¼ q4
u(u1) > q4

u(u2) > q4
u(u3), it is not possible to guide

Figure 8 Cost function corresponding to the true system
(solid line) and cost function corresponding to model 3
(dotted line)

Table 3 New output zones for the FCC subsystem

Output ymin ymax

y1, 8C 510 550

y2, 8C 400 500

y3, 8C 350 500
The Institution of Engineering and Technology 2009
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Figure 10 Controlled outputs and set points for the FCC
subsystem with modified zones

Figure 9 Input feasible sets for the FCC subsystem when a
change in the output zones is introduced

Figure 11 Manipulated inputs for the FCC subsystem with
modified output zones
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the system to a point in which the control cost is null at the
end of the simulation time. As long as the output weight Sy
is kept larger than the input weight Su, all the outputs are
guided to their corresponding zones, while the inputs
show a steady state offset with respect to the target u1

des,k.
The complete behaviour of the outputs and inputs of the
FCC subsystem, as well as the output set points, can be
seen in Figs. 10 and 11, respectively. The final stationary
value of the input is u ¼ [ 155 84 ], which represents the
closest feasible input value to the target u1

des,k. Finally,
Fig. 12 shows the control cost of the two simulated time
periods. Observe that in the last period of time (from 200
to 400 min) the true cost function does not reach zero
since the change in the operating point prevents the input
and output constraints to be satisfied simultaneously.

6 Conclusion
In this work, a robust MPC previously presented in the
literature was extended to the case of output zone control.
The control structure assumes that model uncertainty can
be represented as a discrete set of models (multi-model
uncertainty). The proposed approach assures both recursive
feasibility and stability of the closed-loop system. The main
idea consists in using an extended set of variables in the
control optimisation problem, which includes the set point
to each predicted output. This approach introduces
additional degrees of freedom in the zone control problem.
Stability is achieved by imposing non-increasing cost
constraints that prevent the cost corresponding to the true
plant to increase. The strategy was shown, by simulation, to
have an adequate performance for a 2 � 3 subsystem of a
typical industrial system.
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