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Abstract

Floquet theory combined with a realistic description of the electronic structure of illuminated

graphene and graphene nanoribbons is developed to assess the emergent non-adiabatic and

non-perturbative effects on the electronic properties. Here we introduce an efficient

computational scheme and illustrate its use by applying it to graphene nanoribbons in the

presence of both linear and circular polarization. The interplay between confinement due to

the finite sample size and laser-induced transitions is shown to lead to sharp features in the

average conductance and density of states. Particular emphasis is given to the emergence of

the bulk limit response.

(Some figures may appear in colour only in the online journal)

1. Introduction

Carbon-based materials such as graphene and carbon nano-

tubes constitute a privileged family of novel nanomaterials

with outstanding properties [1–3]. Within this field, graphene

optics and optoelectronics are one of the most exciting areas

for research [4–6]. Besides being one of the best tools for

non-invasive characterization and probing of carbon-based

materials [7], light can also be used as a means for achieving

new functions such as improved energy harvesting [8] or novel

plasmonic properties [9, 10], and there is great hope that even

more will be discovered in the coming years. At the core of

these phenomena we are confronted with fundamental aspects

of the interaction between light and matter in low dimensions.

While the effects of light and other bosonic excitations

on electronic properties is usually treated within the Fermi

golden rule and/or adiabatic approximations, their breakdown

is indeed a possibility in flat graphene [11, 12], as

demonstrated by some remarkable experiments [13].

Illumination with a laser was also proposed to lead

to non-perturbative and non-adiabatic effects in graphene,

including the opening of a bandgap [14] owing to photon-

assisted coupling between electronic states at half the photon

energy, i.e.±h̄�/2. Further studies pointed out that circularly

polarized light may also lead to a Hall effect without a static

magnetic field: the photovoltaic Hall effect [15] which lacks

experimental confirmation.

These puzzling possibilities have attracted much atten-

tion [16–23], and recent atomistic simulations of the dc

electrical response hint that a laser in the mid-infrared

would be optimal for experimental verification [16]. Further

studies focused on the optical response [17, 19] as well as

other interesting issues [20–23]. Recently, the possibility of

inducing topologically protected states by laser illumination
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in semiconductors [24] and in both monolayer [25, 26] and

bilayer [27] graphene has become a hot topic [28, 29] with an

impact on other areas such as condensates [30] and photonic

crystals, where experiments are already available [31].

Most of the results mentioned before have been derived

for bulk monolayer graphene (bilayer graphene was also

studied in [32, 27]) and only a few results are available for

the case of graphene nanoribbons [26, 33]. In this paper, we

extend our previous results [33] giving a more comprehensive

and in-depth view of the numerical scheme used and the

interplay between lateral confinement and photon-assisted

processes in illuminated graphene nanoribbons. To this end,

we apply Floquet theory to a nearest neighbor tight-binding

model to describe the π -orbitals around the Fermi energy in

the presence of a time-periodic field. In this approach, the

average density of states (DOS) and the dc component of

the conductance are calculated through an efficient reduction

of the Floquet Hamiltonian by a recursive decimation

procedure [34]. The power of this technique allows us to

explore the electrical properties of the system for a wide range

of parameters, including arbitrary edge geometries and ribbon

sizes as well as different laser polarizations.

As will be made clear in the following sections, the

non-perturbative character of the field is revealed through

a strong dependence in the laser-induced gaps with respect

to the direction of the polarization. In addition to the

known dynamical gaps developed at ±h̄�/2 [14], further

modifications in the DOS emerge as a consequence of

the inter-mode coupling induced by the laser. The effect

is discussed in both armchair and zigzag nanoribbons for

different orientations of the radiation field. Finally, for

large nanoribbons the effects of both linear and circular

polarizations are also discussed. We show how the above

modifications in the DOS average out around±h̄�/2, thereby

recovering the known solution in the bulk limit [14, 15].

Our work is organized as follows. In section 2 we

introduce the considered model and give a detailed overview

of the simulation scheme. Section 3 is devoted to the

discussion of our results. Finally, we present our conclusions

in section 4.

2. Simulation scheme: Floquet theory applied to
illuminated graphene nanoribbons

In this section we outline the approach used to investigate

the effects of the laser field on the electronic structure and

transport properties of graphene nanoribbons. Our starting

point is the description of the π -orbital electrons using the

following tight-binding Hamiltonian:

Ĥ(t) =
∑

i

ǫiĉ
†
i ĉi −

∑

〈i,j〉
γij(t)ĉ

†
i ĉj, (1)

where ĉ
†
i (ĉi) creates (annihilates) an electron at site i and the

sum in the second term only takes pairs of nearest-neighbor

lattice sites. The potential energy induced by, for example, a

gate voltage or local impurities, is represented by the on-site

energies ǫi while the hopping term γij gives the transition

amplitude between sites i and j.

The time-dependent field is considered by neglecting the

small magnetic component and with an electric field which

is written in a Weyl gauge in terms of a vector potential:

E = −∂A/∂t. The vector potential is included through the

Peierls substitution [35], which introduces an additional phase

in the hopping amplitude connecting two adjacent sites i and

j, i.e.

γij(t) = γ0 exp

[

i
2π

80

∫ ri

rj

A(t) · dr

]

, (2)

where γ0 = 2.7 eV is the typical hopping amplitude at

zero field [3] and 80 is the magnetic flux quantum. For

monochromatic waves, the gauge potential related to the

time-dependent electric field is defined as

A(t) = A0 [cos β cos(�t)x+ sin β cos(�t − ϕ)y] , (3)

where A0 = E0/� and E0 is the amplitude of the electric

field. The direction and polarization of the field are fixed

by the parameters β and ϕ, respectively. In the next section

we will concentrate on three paradigmatic cases, namely

linear polarization along either the (longitudinal) x-axis or

(transverse) y-axis and circular polarization.

To deal with the time-dependence in the electronic

hopping terms, we use Floquet theorem [36, 37]. In the

next subsection, the Floquet Hamiltonian accounting for the

2π/�-periodic real-space Hamiltonian is discussed in detail

together with the technique employed for the derivation of the

observables (DOS and conductance) which are investigated.

2.1. Determination of the matrix elements of the Floquet
Hamiltonian

A diagram of the considered system is shown in figure 1(a),

where the phases of the hopping amplitudes account for the

time-dependent vector potential associated with the laser. For

two adjacent (transverse) arrays in the lattice, we consider the

hopping amplitudes always going from left to right. With the

assumption that the electric field is uniform along the whole

sample, the phases in equation (2) are given by the scalar

product between the vector potential and the vector rij = ri−rj

connecting the two sites. This allows us to fully describe the

system in terms of three possible orientations of the vector rij,

i.e. rij = a(cos αij, sin αij), with a ≃ 0.142 nm the distance

between nearest neighbor carbon atoms and αij = 0,±π/3.

For these orientations, the hopping elements are

γ2+,0(t) = γ0ei2zx cos(�t), (4)

γ+,±(t) = γ0ei(zx±zy cos ϕ) cos(�t)e±izy sin ϕ sin(�t), (5)

respectively, where the indices are now related to the x and y

components of the vectors connecting the carbon atoms. To

simplify the notation, we define adimensional variables zx =
πaA0 cos β/80 and zy =

√
3πaA0 sin β/80 which quantify

the relative strength of the laser.

We divide the real-space Hamiltonian in diagonal blocks

E accounting for the on-site energies in the lattice which

belong to the same transverse array. In homogeneous samples

they are simply zero, i.e. E = 0. The hopping matrices Vi(t)

2
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Figure 1. (a) Scheme of the considered model for the example of
an armchair nanoribbon. The laser field is applied perpendicular to
the lattice and defines the time-dependent hoppings γ+,+(t), γ+,−(t)
and γ2+,0(t). (b) Representation of the real-space Hamiltonian in
terms of diagonal blocks E and hopping matrices Vi(t). The unit cell
for the case of an armchair nanoribbon is indicated by a rectangle.

connecting the arrays alternate periodically depending on

the particular position in the unit cell (see figure 1(b)). The

dimension of these block matrices is given by the number N

of carbon atoms along the transverse direction.

A Fourier decomposition of the time-dependent Hamil-

tonian spans the real space into a composite space R × T

including the 2π/�-periodic functions [36, 37]. The basis of

this Floquet space is made up by the states |i, n〉, where the

first index labels the location of the sites and the second, the

Fourier index, indicates the number of photons. The resulting

time-independent (Floquet) Hamiltonian HF is determined by

the hopping elements connecting the states |i, n〉 and |j, n+m〉

γ m
+,± = γ0

∞
∑

k=−∞
ikJk(zx ± zy cos ϕ)Jm−k(±zy sin ϕ), (6)

γ m
2+,0 = γ0imJm(2zx), (7)

where Jn(z) is the Bessel function of order n. In contrast

to similar treatments of the periodic time-dependent field

based on the k · p approach [14, 15], the present calculations

may involve transitions with more than a single photon.

However, for the mid-infrared regime (h̄� ≃ 140 meV) and

laser power (P = 1–10 mW µm−2) considered here we have

zx, zy ≪ 1, such that these transitions decay rapidly and the

leading contributions still come from the renormalization of

the hoppings (m = 0) and inelastic transitions with a single

photon (m = ±1). The method is illustrated here for the

specific case of armchair nanoribbons, but the same strategy

can be easily adapted to other edge geometries.

Now that we have an explicit expression for the hopping

amplitudes, we can compute the Floquet Hamiltonian by

noticing that each block in figure 1(b) is split into 2NF +
1 ‘replicas’ accounting for states with a different Fourier

index. In this sense, NF denotes the maximum number of

Fourier modes considered and dictates the truncation of the

total Floquet space. The on-site energies in the diagonal

blocks are given as a multiple integer of the photon energy,

i.e. ǫi,n = nh̄�, with n = −NF, . . . , NF. According to this

Fourier expansion, the structure of the Floquet Hamiltonian

can be understood as a block tridiagonal matrix where each

block is of dimension (2NF + 1)N. The diagonal blocks

EF include the arrays with a different Fourier indices. This

group of arrays then form a layer and the off-diagonal blocks

contain the hopping amplitudes connecting them. Since in our

representation each layer contains carbon atoms belonging

to the same sublattice (A or B), the matrix elements of the

diagonal blocks simply read 〈i, n|EF|j, m〉 = nh̄�δijδnm. For

off-diagonal blocks, however, we need to distinguish three

different hopping matrices VF,k, with k = 1, 2 or 3, according

to which layers they interconnect. To account for transitions

with a different number of photons, each matrix is divided, in

turn, into 2NF+1 submatrices such that 〈i, n|VF,k|j, n+m〉 =
〈i|Vm

k |j〉, where

Vm
1 =









γ m
+,+ γ m

+,−
0 γ m

+,+
. . .









,

Vm
2 =









γ m
2+,0 0

0 γ m
2+,0

. . .









, (8)

Vm
3 =









γ m
+,− 0

γ m
+,+ γ m

+,−
. . .









. (9)

This representation of the Floquet Hamiltonian constitutes our

starting point in the analysis of the electronic properties of the

ribbons in the presence of a time-dependent field. In previous

works [16], the particular case of armchair nanoribbons

illuminated by linearly polarized light along the longitudinal

direction was intensively studied. This was motivated by the

fact that this geometry allows for a convenient decomposition

of the Floquet Hamiltonian into normal modes, thereby

making it a suitable model to analyze the bulk limit for a

large lateral size of the ribbon. In the next section, however,

we will concentrate first on relatively small sized ribbons, and

our efforts will be devoted to investigating the role of the laser

field in the characteristics of the electronic structure due to

lateral confinement. After discussing the interplay between

these two effects, we will explore the bulk limit for different

directions of the linear polarization and also for circularly

polarized fields.

2.2. Density of states and conductance

We now comment on the quantities of interest that we want

to address in the next section when taking specific values

for the size and edge geometry of the ribbons as well as

tuning of the laser field. Starting from the above mentioned

3
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Figure 2. Decimation procedure in Floquet space. (a) Effective
representation of HF. Dashed crossing lines denote the reduced
blocks. (b) Effective Hamiltonian after one step: the diagonal block

matrices ẼF,i and the effective hopping matrices Ṽi are
renormalized by the reduced blocks. (c) Homogeneous effective
Hamiltonian after the second step of the decimation procedure.

Floquet Hamiltonian, it is possible to define the retarded

Floquet–Green functions according to [38, 39]

GF(ε) = (ε1−HF)−1 . (10)

Since we want to analyze how the electronic properties of the

ribbon are affected by the laser, we refer to the average DOS

obtained after tracing over the sites with zero photons, i.e.

N0(ε) = −
1

π
lim
η→0

Im

[

N
∑

i=1

〈i, 0|GF(ε + iη)|i, 0〉
]

, (11)

where the (imaginary) regularization energy iη is carefully

chosen to reach the thermodynamic limit along the

longitudinal direction. A ‘brute-force’ calculation of the

inverse of the Floquet Hamiltonian could in principle

represent a hard (or even impossible) task when considering

the full system. However, the decimation technique [40,

34], based on the recursive calculation of the self-energy

correction ΣF(ε) to the diagonal block matrices, constitutes

an appropriate strategy to circumvent this hurdle. Figure 2

shows a scheme where the Floquet Hamiltonian is represented

by an effective linear chain. Here, the squares correspond

to the diagonal blocks EF, which are connected through

the hopping matrices Vi. In this procedure, we calculate

the effective Hamiltonian resulting from the systematic

elimination of blocks in the lattice (dashed crossing lines in

the figure). This reduction of the basis along the longitudinal

direction leads to a renormalization of both the diagonal

blocks and hopping matrices. According to figure 2, after the

first decimation step (panel (b)), these read

ẼF,1 = EF + V1
1

ε1− EF
V

†
1 + V

†
2

1

ε1− EF
V2, (12)

ẼF,2 = EF + V3
1

ε1− EF
V

†
3 + V

†
2

1

ε1− EF
V2, (13)

Ṽ1 = V1
1

ε1− EF
V2, (14)

Figure 3. Scheme of the transport setup. The graphene nanoribbon
is coupled to two metallic contacts. The central region (sample) is
illuminated by a laser field perpendicular to the plane of the ribbon.

Ṽ2 = V3
1

ε1− EF
V2. (15)

The next step in the recursion consists of the reduction of

the blocks with ẼF,2, and provides a homogeneous effective

Hamiltonian (panel (c)) with diagonal blocks and hopping

matrices renormalized by

ẼF = ẼF,1 + Ṽ1
1

ε1− ẼF,2

Ṽ
†
1 + Ṽ

†
2

1

ε1− ẼF,2

Ṽ2, (16)

Ṽ = Ṽ1
1

ε1− ẼF,2

Ṽ2. (17)

By repeating this process M times, the self-energy correction

to the diagonal block EF accounts for a system with 2M layers

along the longitudinal direction. Therefore, the DOS reduces

to

N0(ε)

= − 1

π
lim
η→0

N
∑

i=1

Im〈i, 0| 1

(ε + iη)1− EF −ΣF
|i, 0〉, (18)

which only involves the inversion of a single block matrix.

The above scheme is also of great help for an efficient

evaluation of the dc component of the conductance. In this

case we imagine a situation such as the one represented in

figure 3, where only a finite region of space is affected by

the laser (‘the sample’). If we consider the rest as reservoirs,

then we can compute the Floquet–Green functions for the

sample by representing the α-electrode (α = L, R) through

a self-energy correction Σα = ∆α − iΓα as usual. How are

these Green’s functions connected to the dc current? For

non-interacting electrons, the average (coherent) current over

a period of the modulation is given by

Ī = 2e

h

∑

n

∫

[

T
(n)
R←L(ε)fL(ε)− T

(n)
L←R(ε)fR(ε)

]

dε, (19)

where T
(n)
R←L(ε) are the transmission probabilities from

the left (L) to the right (R) reservoirs involving the

emission/absorption of n photons. These probabilities can

be written in terms of the Floquet–Green functions for the

system [37, 41]:

T
(n)
R←L(ε) = Tr[2ΓR,n(ε)G(R,n)←(L,0)(ε)2ΓL,0(ε)

× G
†
(R,n)←(L,0)

(ε)], (20)

where G(R,n)←(L,0)(ε) is the block matrix for the

Floquet–Green function connecting the left and right

4
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Figure 4. Average density of states for an armchair graphene
nanoribbon with N = 83 in the presence of linearly polarized
radiation along the x-direction (a), y-direction (b) and circular
polarization (c).

electrodes with the exchange of n photons. Here the subindex

F was omitted to simplify the notation. As a consequence of

the thermodynamic limit, the coupling to the (open) leads (see

figure 3) implies a decay rate in the states within the sample

which is accounted for by

Γα,n(ε) = −ImΣα(ε + nh̄�). (21)

Since we assume a laser affecting only the sample region,

these terms can be computed in terms of the ‘bare’ self-energy

correction Σα(ε) obtained in the absence of time-dependent

fields. The calculation of the current is thus completed by

assuming that the asymptotic occupation in the leads, where

no inelastic processes are allowed, is given by the usual Fermi

functions

fα(ε) = 1

1+ eβ(ε−µα)
, (22)

where µα is the electrochemical potential in the α-lead and β

the inverse temperature.

3. Results

In this section we apply the discussed method to investigate

modifications in the electronic properties of graphene

nanoribbons induced by a laser field. In particular, we

scrutinize the case of a laser within the mid-infrared region

of the spectrum, where photon energies can be made smaller

than the typical optical phonon energy while keeping the laser

power small (1–10 mW µm−2). By an appropriate tuning

of the Fermi energy and polarization of the laser, we show

how one can exceptionally tailor the electrical and transport

properties of the ribbons. This is illustrated for ribbons of

different sizes and edge geometries.
Figure 4 shows the DOS (cf equation (18)) of an armchair

ribbon with N = 83 as a function of the Fermi energy. Three

Figure 5. Average density of states for a metallic armchair
nanoribbon N = 52 in the presence of linearly polarized radiation
(h̄� = 140 meV, P = 1 mW µm−2) along the y-direction (solid
red) and x-direction (dotted blue).

cases are analyzed: (a) linear polarization along x, (b) linear

polarization along y, (c) circular polarization. The energy of

the laser is fixed to h̄� = 140 meV, such that modifications

in the DOS are expected to occur in the vicinity of the energy

ε ≃ 70 meV (marked by an arrow in the top panel).

In panel (a), we observe that the interaction with the

laser leads to a gap formation around ε = h̄�/2. The

occurrence of this gap is related to an inelastic backscattering

process that enables transitions between quasi-states in

the Floquet spectrum. In this picture, each mode contains

a series of replicas accounting for excitation states with

different numbers of photons. In the presence of linearly

polarized light along x, the electronic states are connected to

(photoexcited) hole states which belong to the same mode.

Since electron–hole symmetry is now preserved along the

point nh̄� for a replica with n photons, the energy values

at which the gap may form are commensurate with h̄�/2.

Additionally, the width of the gap is shown to be sensitive

to the transverse direction of the momentum operator, such

that it increases with the allowed values of ky. This can be

observed in the structure of the DOS around ε = h̄�/2, where

two concentric gaps are developed, each one of them related

to a different mode.

In panel (b) one can observe that the DOS is drastically

changed. Here the dynamical gap around ε = h̄�/2 is

suppressed and two ‘satellite’ depletion regions, where

the DOS is diminished, appear instead. Depending on the

particular normal mode affected by the field, these depletions

may or not develop as a true gap. For a laser power P =
10 mW µm−2 (solid line), the left depletion is crossed by a

van Hove singularity and a gap is opened in the region of the

first semiconductor band.

Of particular interest is the case of a metallic armchair

nanoribbon, as shown in figure 5. Here the DOS around ε =
h̄�/2 is completely immune to the influence of the laser, such

that no bandgaps appear regardless of the particular direction

of the polarization.

5
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Figure 6. Average density of states for a zigzag nanoribbon with
N = 250 in the presence of linearly polarized radiation
(h̄� = 140 meV) along the y-direction (solid red) and x-direction
(dotted blue) for a laser power P = 1 mW µm−2.

The above features observed in figures 4(a) and (b) can

be combined if the laser field points along any intermediate

direction between the x and y axes. This is shown in panel

(c) where a circularly polarized field is considered. Although

this situation produces similar DOS modifications (for small

samples) as for the linear polarization along the direction

x + y, in the bulk limit these two cases become qualitatively

different.

As mentioned in section 3, the developed technique is not

necessarily restricted to armchair ribbons and can be easily

adapted to other edge geometries. In figure 6 we show the

DOS for a zigzag nanoribbon with N = 250. Compared to

figure 4, the features in the DOS observed in the armchair

case are also present here. The difference now comes from the

change in the relative angle between the lattice orientation and

the direction of the polarization. In this sense, dynamical gaps

around ±h̄�/2 now occur for a laser along the y-direction.

In addition, one can observe small depletions at both sides

of the gap which can be related to the laser-induced coupling

between different normal modes. We will come back to this

point below. By changing the polarization direction to the

x-axis, the dynamical gap is again suppressed and several

depletion regions appear.

An analysis of the bulk situation [15, 16] would only

predict laser-induced depletions or gaps at ±nh̄�/2 and

no dependence on the linear polarization direction. Natural

questions are therefore: Why do these features away from

±nh̄�/2 emerge? How do we reach the bulk limit?

Two different kind of processes are at the heart of

these phenomena: intra-mode and inter-mode photon-induced

transitions [33]. For intra-mode transitions [33], both

the initial and the final electronic states belong to the

same transverse mode and the coupled states are located

symmetrically with respect to the charge neutrality point

which leads to the gaps or depletions at ±nh̄�/2.

In contrast, inter-mode transitions couple states that are

not symmetrically located around the Dirac point. In armchair

ribbons, this is evident for the case of polarization in the

Figure 7. DC component of the conductance for an armchair
graphene nanoribbon with N = 83 in the presence of linearly
polarized radiation along the x-direction (a), y-direction (b) and
circular polarization (c).

y-direction, where it turns out that inter-mode transitions

are the only allowed processes. Therefore, the polarization

direction can be used to tune the relative magnitude of the

different kind of processes: intra- and inter-mode.

We now calculate the dc component of the conductance at

zero temperature. When T
(n)
R←L(ε) = T

(n)
L←R(ε), it is straight-

forward to show (cf equation (20)) that the conductance

reduces to

G(ε) = 2e2

h

∑

n

T
(n)
R←L(ε). (23)

We use this expression, neglecting the small quantum

pumping component (|TR←L − TL←R| ≪ TR←L).

Figure 7 shows the conductance for the same set of

parameters as in figure 4. One observes that the same

qualitative features also appear in this case. By comparing

the panels in the figure one sees that the direction of the

polarization may be used as a ‘knob’ to switch the device

conductance in an efficient way.

3.1. Bulk limit

Now that the origin of the features observed in figures 4

and 7 has been clarified, we turn to the issue of how the

bulk limit is achieved. For a ribbon with a high number

of modes, a very large number of crossings in the Floquet

spectrum ‘accumulate’ in the neighborhood of±nh̄�/2. Once

the separation between these features becomes small enough,

the depletions merge and the system is insensitive to the

particular direction of the (linear) polarization. To illustrate

the emergence of the bulk limit we refer to figure 8 showing

the DOS for an armchair ribbon with N = 300. Linear

polarization along the x, y and x + y directions, respectively,

are considered in panels (a)–(c), while circular polarization

is shown in panel (d). To account for a large number of

6
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Figure 8. Average density of states for an armchair graphene
nanoribbon with N = 300 in the presence of linearly polarized
radiation along the x (a), y (b) and x+ y (c) directions. Circular
polarization is shown in panel (d). For a better visualization of the
bulk limit a large value of � was taken, h̄� = γ0 = 2.7 eV.

bands around the region h̄�/2, we increase significantly the

frequency and power of the laser to get a flavor of the bulk

effects while keeping the dimension of the Floquet space

treatable. A direct observation of panels (a)–(c) shows that

the sharp features observed in figures 4 and 6 for a linearly

polarized laser are now averaged in such a way that the

same DOS is obtained for any direction of the laser. On the

other hand, qualitative differences between linear and circular

polarization become evident in this limit, where one can see

that a strong gap appears in the last case.

4. Conclusions

We have described in detail a computational methodology for

assessing the electrical properties (average conductance and

density of states) of laser-illuminated graphene nanoribbons.

The scheme is based on the application of Floquet theory to a

realistic Hamiltonian which allows the simulation of system

sizes beyond the scope of the usual k · p approximation.

The usefulness of this scheme is illustrated on nanoribbons

under different polarizations (linear and circular). A simple

analysis allowed us to rationalize the emergence of the bulk

two-dimensional limit.
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[28] Cayssol J, Dóra B, Simon F and Moessner R 2013 Phys.

Status Solidi RRL 7 101
[29] Rudner M S, Lindner N H, Berg E and Levin M 2012

arxiv:1212.3324 [cond-mat.mes.hall]
[30] Crespi A, Corrielli G, Valle G D, Osellame R and Longhi S

2013 New J. Phys. 15 013012

7



J. Phys.: Condens. Matter 25 (2013) 144202 H L Calvo et al

[31] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Nolte S,
Segev M and Szameit A 2012 arxiv:1212.3146
[physics.optics]

[32] Abergel D S L and Chakraborty T 2009 Appl. Phys. Lett.
95 062107

[33] Calvo H L, Perez-Piskunow P M, Roche S and
Foa Torres L E F 2012 Appl. Phys. Lett. 101 253506

[34] Pastawski H M and Medina E 2001 Rev. Mex. Fis. 47S1 1
[35] Peierls R E 1933 Z. Phys. 80 763

[36] Shirley J H 1965 Phys. Rev. 138 B979
Sambe H 1973 Phys. Rev. A 7 2203

[37] Kohler S, Lehmann J and Hänggi P 2005 Phys. Rep. 406 379
[38] Martinez D F 2003 J. Phys. A: Math. Gen. 36 9827
[39] Foa Torres L E F 2005 Phys. Rev. B 72 245339
[40] Levstein P R, Pastawski H M and D’Amato J L 1990 J. Phys.:

Condens. Matter 2 1781
[41] Stefanucci G, Kurth S, Rubio A and Gross E K U 2008 Phys.

Rev. B 77 075339

8


