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Natural photonic structures exhibit remarkable color effects such asmetallic appearance and iridescence. A
rigorous study of the electromagnetic response of such complex structures requires to accurately determine
some of their relevant optical parameters, such as the refractive indices of the materials involved. In this
paper, we apply different heuristic optimization strategies to retrieve the real and imaginary parts of the
refractive index of the materials comprising natural multilayer systems. Through some examples, we
compare the performances of the inversionmethods proposed and show that these kinds of algorithms have
a great potential as a tool to investigate natural photonic structures. © 2013 Optical Society of America
OCIS codes: (050.5298) Photonic crystals; (050.1755) Computational electromagnetic methods;

(170.1420) Biology.
http://dx.doi.org/10.1364/AO.52.002511

1. Introduction

There are two main mechanisms to achieve coloration
in the biological world: pigmentary and structural.
The former has a chemical origin and is generated
by the selective absorption of natural light. The later,
also known as structural color, has a physical origin
and is generated through the interference, diffraction,
or scattering phenomena that arise as a consequence
of the interaction between natural light and the mi-
crostructures present in the cover tissues of animals
and plants. In general, color results from a combina-
tion of pigmentary and structural effects [1,2]. Also,

when iridescent colors are produced, the hue changes
with viewing angle, and the color is very intense and
highly saturated [3,4].

In addition to different geometrical features, such
as surface-roughness and/or the presence of periodic/
aperiodic multiple layers, the refractive indices of the
materials involved determine the structural color in
biological specimens. Also, most structurally colored
biological systems contain absorbing pigments [5],
which implies a variation in both the real and the
imaginary parts of the refractive index. Therefore,
a precise knowledge of these constitutive parame-
ters, i.e., the materials that compose the biological
tissues, is essential for the study of this type of sys-
tem [6]. Recently, a few authors reported different
methods to retrieve the complex refractive indices
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of some biological structures. For instance, an effec-
tive medium theory has been applied to a multilayer
film to determine the anisotropic index of refraction
of the cuticle’s material of the wings of the butterfly
Morpho Menelaus [7]. Also, measurements using
index-matching techniques have been used to find
the refractive index of the cuticle material compris-
ing the microstructure of theMorpho butterfly scales
[8]. Leertouwer et al. used Jamin–Lebedeff interfer-
ence microscopy to measure the wavelength depend-
ence of the refractive index of butterfly wing scales
and bird feathers [9]. Furthermore, the complex re-
fractive indices of the natural multilayer reflector in
the beetle Chrysochroa raja were found by the appli-
cation of a known optical characterization technique
[10]. In [11], the authors have proposed an iterative
procedure, based on Cauchy’s and Fresnel’s equa-
tions, to retrieve the refractive index from experi-
mental data, and Arwin et al. used Mueller’s matrix
ellipsometry data to obtain the equivalent refractive
index of the materials that constitute the multilayer
cuticle of different beetles [12].

Together with a rigorous experimental technique,
Noyes et al. [10] employed a recursive fitting
algorithm to retrieve the complex refractive index of
their biological sample. Nevertheless, neither the
operational principles nor issues such as the conver-
gence rate of their approach were discussed. Thus,
given the difficulties to experimentally measure the
constitutive parameters of natural structures, it
seems well worth exploring further the possibilities
of inversion strategies such as the one proposed in
[10], as they could provide an alternative way not only
to determine optical or geometrical parameters of bio-
logical samples, but also to characterize and mimick
their optical response for specific applications [13].
To this end, in this work we employ an inversion
scheme based on heuristic optimization algorithms.
These techniques have been extensively and success-
fully applied for the solution of different approxima-
tion problems such as near-field optics microscopy
or random rough surfaces profilometry [14,15], the
dispersion modeling of the optical constants of metals
[16,17], the optimization of plasmonic structures
[18,19], or very recently, the optimization of some res-
onant properties of metallic star-like nanostructures
[20,21]. Therefore, heuristic optimization appears as
a very good candidate to be applied for the retrieval
of relevant parameters of natural microstructures
as, for example, the complex refractive indices of
multilayer systems like those found in plants [22],
spiders [23], and beetles [10,24–28].

This paper is structured as follows: In Section 2 we
outline the hybrid approach used to retrieve the
parameters of interest and give the theoretical
details of the methods employed. Also, we briefly de-
scribe the operational principles of the two different
bio-inspired techniques to be used in this work:
evolution strategies (ES), through their elitist (EL)
and nonelitist (NE) variants, and particles swarm op-
timization (PSO). Section 3 is devoted to illustrate

the performance of the retrieval method proposed
through some validation and application examples.
In particular, we estimate the dielectric constants
of the multilayer structure that composes the elytra
of the Ceroglossus suturalis beetle (Coleoptera order)
from experimental reflectance measurements. Finally,
concluding remarks are provided in Section 4.

2. Theoretical Approach

The essential idea of the inversion method proposed
in this work is sketched in Fig. 1, which shows
the basic stages to obtain an optical signal, e.g.,
reflectance spectrum, from a biological sample. The
hatched pink arrows illustrate the experimental
measurement of the optical signal. Also, the
top-hatched blue arrow shows the importance of a
precise characterization of the sample’s microstruc-
ture, through different microscopy techniques, on the
establishment of an adequate geometrical model.
Once this is done, a rigorous electromagnetic method
(analytical or numerical) is employed to calculate
the optical signal for different geometrical and con-
stitutive parameters of the natural system. As
indicated by the solid blue arrow, this should lead
to a theoretical curve that, in principle, must agree
with the experimental one. What has been just
described corresponds to the solution of the direct
or forward problem. However, as indicated with
the solid red arrow, in this contribution we aim at re-
trieving the constitutive parameters of the natural
system from the experimental/theoretical reflectance
information. Then, as shown by the solid blue arrow,
we include an inversion loop that couples the forward
electromagnetic model with a particular heuristic
optimization technique.

A. Heuristic Optimization: Evolution Strategies and
Particles Swarm Optimization

As stated previously, any forward electromagnetic
method can be used to compute the reflected and
transmitted fields. Nevertheless, the relationship
between this information and the geometrical and
material features of the microstructure is not a
trivial one. Consequently, the establishment of an
inversion scheme directly from the forward electro-
magnetic model is a formidable task itself. This sit-
uation could be overcome through some simplifying
assumptions that would lead to an analytical model.
However, the validity of this approach would be lim-
ited only to a few specific cases. An alternative way to
solve this kind of inverse problem is to reformulate it
in terms of Approximation Theory. For this, we define
the functional

f �pT� � ‖Iexp�λ� − Ithe�λjpT�‖22; (1)

where ‖‖2 is the Euclidean Norm, the components of
vector pT are the parameters to be retrieved, and
Iexp�λ� and Ithe�λjpT�, respectively, represent the ex-
perimentally measured and numerically generated
spectra. At least in principle, the minimization of
Eq. (1) should lead, if the solution is unique, to a
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set of parameters that reproduce the experimental
optical signal. In the examples to be treated, these
parameters are the dielectric constants, real and
imaginary parts, of the multilayer structure studied.
However, this choice is not restrictive and could be
the thicknesses of the layers or any other magnitude
of interest.

1. Evolution Strategies
We have found in previous contributions that ES, a
variant of the so-called evolutionary algorithms,
are a suitable and versatile tool for the optimization
of functionals similar to that defined in Eq. (1)
[14,15]. Since we will employ these techniques in
the present work, we consider it convenient to suc-
cinctly describe their operational principles in the
following paragraphs. For a more detailed depiction,
we refer the interested reader to the excellent work
of Beyer [29].

The first step prior to the beginning of the optimiza-
tion process is the random generation of an ensemble
of vectors pT that will conform the initial population
Phgi
μ jg�0, where μ is the number of elements within

the population and g is the associated iteration of
the algorithm. A canonical evolutionary optimization
algorithm is based on the application, over a defined
number of iterations, of two genetic operators with
well defined roles. The first is the recombination,
which exploits the search space through the exchange
of information between ρ different elements of the
population. The second operator is the mutation,
which is used to explore the search space through the
introduction of random variations in the population.
The application of these genetic operators over the ini-
tial population leads to the generation of a secondary
population Phgi

λ of λ elements. It is at this stage of the
evolutionary loop that the link between the physics of
the problem studied and the optimization algorithm is

established. In the present work, this is done through
the minimization of the functional defined in Eq. (1),
which can also be interpreted as a measure of the
closeness between the reflectance data and those com-
puted with a previously established model. Each
element of the secondary population will be evaluated,
and only those elements of Phgi

λ that minimize the
Euclidean norm will be retained, through some selec-
tion scheme, as part of the population Phg�1i

μ for the
next iteration of the evolutionary loop. The procedure
is repeated until a defined termination criterion has
been achieved. The respective sizes of the initial
and the secondary populations, Phgi

μ and Phgi
λ , remain

constant throughout the entire search process.
It is convenient to mention that the initial popula-

tions can be selected, throughout the evolutionary
loop in two different ways: NE (ES − �μ∕ρ; λ�) and
EL (ES − �μ∕ρ� λ�). The main difference between
these two schemes is that the former selects the best
elements only from the mutated population. The
latter, on the other hand, selects the best elements
from an intermediate population generated from
the junction of the initial and mutated populations.
Consequently, a promising element belonging to the
first initial population can survive throughout the
entire optimization process. Although this attribute
of the EL strategy guarantees a monotonic decre-
ment or increment of the fitness function, it can also
make it prone to premature convergence into a local
optimum.

2. Particles Swarm Optimization
The PSO is a fairly recent heuristic optimization
method proposed by Eberhart and Kennedy in
the mid-1990s [30]. The underlying biological
mechanism of this population-based technique is
not related to the evolution of the elements belonging
to a population, as is the case for the genetic
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l
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l

l
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l

Fig. 1. Scheme of the inversion procedure proposed to retrieve the relevant parameters of biological microstructures.
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algorithms [31] or the ES [32]. Instead, the PSO
imitates, throughout its search for the optimum,
the social and collaborative behavior of a group of
individuals such as, for example, a flock of birds, a
school of fish or a swarm of bees, during their quest
for eatables. This search for a region of the space
potentially rich in food depends on the exchange of
information based on both, the common knowledge
of the swarm and the individual experience of each
of its elements.

Although different variants have been proposed
through the years, and excellent works on the theory
of the PSO can be found elsewhere [33,34], we will
briefly summarize its operational principles in the
following paragraphs. For the sake of clarity, we will
use the same notation as that for the ES.

The first step prior to the search for the optimum
is the random generation of a population of μ par-
ticles. Each of them is composed of n variables that,
depending on the context of the problem studied,
represent the quantities of interest that need to be
optimized. Also, these variables are interpreted as
the coordinates of each particle in an n-dimensional
space.

Once the initial locations and speeds have been
generated, the search process starts with the evalu-
ation of the individual fitness pbest of each particle in
the population. The global optimum of the swarm,
gbest, is then obtained from the set of optima pbest
previously computed. This information will then
serve to modify the location of the swarm through
the operator

xhg�1i
m;i � xhgim;i � Δtvm;i; (2)

where m � 1; 2;…; μ and i � 1; 2;…; n represent an
element of the swarm and the corresponding variable
of interest, respectively. The index g is associated
to a specific iteration of the search process. The factor
Δt is usually assumed to be one. The speed vm;i is
modified through the weighted sum

vm;i � wvm;i � c1U1�pbestm;i − xm;i�
� c2U2�gbesti − xm;i�; (3)

where 0.0 ≤ Uα ≤ 1.0 with α � 1; 2 are two uniformly
distributed random numbers that will serve to
include the unpredictable behavior of the swarm
throughout the entire search. The coefficients c1 and
c2 are two scale factors to respectively determine the
influence that the individual fitness (pbest) and
the global fitness of the swarm (gbest) will have on
the particle’s new speed and location for the next iter-
ation of the search process. The coefficient 0.0 ≤ w ≤
1.0 is called the inertia factor and measures how
much the original location of the particle is affected
by the personal and global optima pbest and gbest,
respectively. The steps just described are repeated
until a previously established stop criterion has been
reached. This can be the number of iterations or the

convergence of the population to the optimum. It is
noteworthy that the size of the population, as is
the case for the ES, does not change throughout
the entire optimization process.

B. Forward Electromagnetic Solver

In general, different natural microstructures, such as
thin films, diffraction gratings, photonic crystals,
etc., can be identified as responsible for the color
effects. Therefore, depending on the type of struc-
ture, the forward electromagnetic model should be
chosen. In many biological structures, the iridescent
response is clearly governed by the periodic multi-
layers present in the most external cover tissues.
These structures usually exhibit imperfections, such
as surface roughness and nonuniform thickness, and
their distribution is not perfectly periodic. However,
as a first approach, a periodic planar multilayer ap-
pears as a suitable model to represent such system,
as schematically shown in Fig. 2. The 4 × 4 transfer
matrix method for one-dimensional multilayer sys-
tems is used to find the solution of the direct prob-
lem, i.e., to compute the scattered electromagnetic
response given all the parameters of the structure.
This method consists in combining Maxwell equa-
tions with the corresponding constitutive relations
to obtain a differential system for the unknown elec-
tric and magnetic field components in each layer. For
structures with translational invariance and assum-
ing plane wave illumination, this system can be re-
duced to a 4 × 4 differential system, whose unknowns
are the tangential components of the electric and the
magnetic fields. Imposing the boundary conditions at
each interface, one ends with a 4 × 4 matrix system
for the unknown amplitudes outside the structure,
i.e., transmitted and reflected. It is important to
remark that this method is suitable for dealing with
periodic and nonperiodic multilayer structures, and
can also handle general media described by arbitrary
permittivity and permeability tensors. The details of
the method can be found in [35].

3. Results

At this stage, some examples are convenient to
illustrate the possibilities of the inversion scheme
just proposed. To validate our approach and assess

Fig. 2. Scheme of the planar periodic multilayer model.
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its performance, we retrieve the dielectric constants
of a multilayer system from numerically generated
reflectance spectra. Then, in a second example, we
look for the relevant parameters from experimen-
tally measured spectra. The results are discussed
in the last part of this section.

A. Validation Example

In this first example, we numerically generate, by
means of the 4 × 4 method, the target reflectance
spectrum from where we aim at retrieving the com-
plex values of ϵ1 and ϵ2. The incident field is assumed
to be a p- or s-polarized plane wave. Also, we consider
a periodic bilayer structure that comprises nine
periods, with layers of thicknesses d1 � 60 nm and
d2 � 100 nm (see Fig. 2). The respective dielectric
constants of these layers are ϵ1 � 2.3829� i0.434
and ϵ2 � 2.8215� i0.1008, as reported byNoyes et al.
for the Buprestid beetle [10]. The incidence medium
is air and the dielectric constant of the substrate was
taken to be �ϵ1 � ϵ2�∕2, as reported for other beetles’
structures [28].

Concerning the ES, throughout this numerical
experiment we set the sizes of the initial and the
secondary populations to μ � 14 and λ � 100, respec-
tively. Furthermore, we fixed the number of elements
to be recombined to ρ � 2. The number of genera-
tions in the evolutionary loop was set to g � 100
and it provided the termination criterion. In this
example, each element of the population was a set
of randomly generated values of ϵ1 and ϵ2, this means
that we will look for four unknowns: the real and
imaginary parts of each dielectric constant. Thus,
to define the search space, we set the lower and
upper bounds −10 ≤ Rfϵ1g; Ifϵ1g;Rfϵ2g;Ifϵ2g ≤ 10.

Our in-home implementations of the NE and EL,
�μ∕ρ; λ� and �μ∕ρ� λ�, ES were tested for their relative
success looking for the solution from two hundred
different initial states. Also, for completeness, we
searched for the parameters Rfϵ1g;Ifϵ1g;Rfϵ2g,
and Ifϵ2g employing our in-home implementation
of the PSO. To make the comparison with the ES −

�μ∕ρ� λ� in an objective manner, we set the size of
the swarm μPSO � μ� λ, where μ and λ are previously
established sizes of the initial and secondary popula-
tion of the EL strategy. Furthermore, we considered
the same number of iterations for the optimiza-
tion loop, in this way, the fitness function was evalu-
ated by the PSO the same number of times as the
ES − �μ∕ρ� λ�. In Fig. 3 we show the target spectra
for different incidence angles and for both polariza-
tion modes (lines), and their corresponding optimized
spectra (markers) found using the three strategies:
ES − �μ∕ρ� λ�, ES − �μ∕ρ; λ�, and PSO. Since all the
optimized spectra completely overlap, only a single set
of markers is shown for each curve.

In Figs. 4 and 5, we summarize the results ob-
tained with the three inversion schemes. Each histo-
gram represents the number of realizations for which
the unknowns (real and imaginary parts of ϵ1 and ϵ2)
fall within the established interval. For instance, in

the case of Rfϵ1g, we only consider values that fall
between 2.3 and 2.4. In both figures, panels (a) and
(b) correspond to the ES − �μ∕ρ; λ� strategy, (c) and
(d) to the ES − �μ∕ρ� λ� strategy, and (e) and (f) to
the PSO. In each panel we include all the values
retrieved, considering both polarization modes and
the following four angles of incidence: 0°, 30°, 45°,
and 60°. This means that we evaluated the target
function considering seven different illumination
conditions, as for normal incidence, the response is
the same for both polarizations. We repeated each
numerical experiment 200 times, making a total of
1400 realizations.

Some typical results obtained by means of the
three strategies are summarized in Table 1, where
we show the percentage of relative success for each
variable in the retrieval of the dielectric constants
for the different strategies. In each percentage, we
considered the retrieved values of the unknowns that
fall within the established intervals, which in this
case are [2.3, 2.4] and [0.42, 0.44] for the real and
imaginary parts of ϵ1, respectively, and [2.8, 2.9] and
[0.1, 0.102] for the real and imaginary parts of ϵ2, re-
spectively. As mentioned before, a direct comparison
between the ES and the PSO is not possible because
of the different biological paradigms on which each
technique is based. Nevertheless, putting aside that
none of the global optimization methods reported in
the literature can guarantee the convergence to the
global optimum, the numerical results shown in
Table 1 suggest the existence of what seems to be a
unique solution. It is important to remark that in
each histogram, we include the results of seven inde-
pendent processes (two polarizations, four incidence
angles, as explained above), and all the converged
values of the unknown variables fall within a very
narrow interval. These results are refreshing and
provide some confidence in our approach, as any of

Fig. 3. Target and optimized reflectance spectra from a bilayer
periodic structure with nine periods, layers’ thicknesses
d1 � 60 nm, d2 � 100 nm, and dielectric constants ϵ1 � 2.3829�
i0.434 and ϵ2 � 2.8215� i0.1008, for different angles of incidence.
The incidence medium is air and the dielectric constant of the sub-
strate is �ϵ1 � ϵ2�∕2.
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the three strategies could be used to retrieve the un-
known parameters throughout this work. However,
at least for this first example, the EL strategy ap-
pears to be the less suitable option.

B. Application Example: The Ceroglossus suturalis Beetle

Ceroglossus suturalis beetles mostly live endemically
in the forests of the Argentinean Patagonia and the
south of Chili. They exhibit a characteristic irides-
cent coloration that can vary between yellow-green
and brown-copper, as shown in Fig. 6(a). The struc-
tural arrangement that produces color in this species
is a periodic multilayer composed of alternating
layers of materials with different optical density,
located in the epicuticle [36]. Scanning (SEM) and
transmission electron microscopy (TEM) images
of a transversal cut of the cuticle reveal a periodic
multilayer system. Each period comprises two layers

of different materials, as shown in Fig. 6(b). A total
of nine periods was found in the analyzed sample,
the layers’ thicknesses being 100 and 60 nm. These
values were obtained after an exhaustive study and
analysis of several SEM and TEM images using the
ImageJ software [37]. The parameter extraction was
completed with a statistical analysis.

The specular reflectance spectrum of the elytron
was measured using two optical fibers. One end of
the first fiber was connected to a tungsten lamp,
and the output beam was directed to the sample
after being focused and linearly polarized. The light
reflected by the sample was collected by the second
fiber after passing through a Glan Thompson polar-
izer, and delivered to an Ocean Optics USB650
spectrometer. In Fig. 7 (solid line) we show the
measured results for an incidence angle of 15° and
for s polarization. To retrieve the complex dielectric
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Fig. 4. Histograms of the retrieved values of the real and imaginary parts of ϵ1 corresponding to the same structure of Fig. 2, for the
three inversion schemes: (a)–(b) ES − �μ∕ρ� λ�; (c)–(d) ES − �μ∕ρ; λ�; (e)–(f) PSO. In each figure the converged results for both polarization
modes and for the four incidence angles considered (0°, 30°, 45°, and 60°) are included.
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constants of the materials that comprise this natural
system (the dielectric constant of the substrate is as-
sumed to be the average of those of the individual
layers), we assumed a perfectly periodic planar mul-
tilayer structure with known values of the layers’
thicknesses (60 and 100 nm). The sizes of the initial
and secondary populations of the ES, as well as that

of PSO population, were the same as in the previous
example. Also, we searched for the solution from 50
different initial states with the three optimization
strategies. The number of generations was set to
g � 200 and it provided the termination criterion.

In the search for the optimized solution by using
the three strategies, we found two sets of values of
ϵ1 and ϵ2, as shown in Table 2. These two sets appear
with different frequencies in the solutions given by
the different strategies, and also exhibit different
values of the fitness function: ≈0.96 for set 1 and
≈1.2 for set 2. In Table 3, we show the occurrence rate
(percentage) of set 1 and set 2, for each one of the
three strategies. As observed, the relative success
of the ES − �μ∕ρ; λ� strategy for the retrieval of set 1 is
significantly lower than that achieved by the ES −

�μ∕ρ� λ� and the PSO [notice there is a remaining
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Fig. 5. Histograms of the retrieved values of the real and imaginary parts of ϵ2 corresponding to the same structure of Fig. 4, for the three
inversion schemes: (a)–(b) ES − �μ∕ρ� λ�; (c)–(d) ES − �μ∕ρ; λ�; (e)–(f) PSO. In each figure, the converged results for both polarization modes
and for the four incidence angles considered (0°, 30°, 45°, and 60°) are included.

Table 1. Relative Success (percentage) of the Different
Strategies for the Retrieval of the Real and Imaginary Parts of the

Dielectric Functions of Both Materials that Comprise the
Multilayer System for the Numerically Generated Example

Rfϵ1g Ifϵ1g Rfϵ2g Ifϵ2g
NE 99.36 86.57 94.86 85.71
EL 91.07 82.36 89.93 80.50
PSO 92.29 92.07 92.57 90.21
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percentage of solutions given by the ES − �μ∕ρ; λ�
(26%) that is not included in the table since they give
extremely large values of the fitness function]. Set 1
has the lowest fitness achieved, and then it appears
as the best candidate for the global optimum that we
are looking for. On the other hand, since the fitness
value for set 2 is higher than that of set 1, it seems to
correspond to a local optimum, and should be dis-
carded. Physically, the retrieved value of Rfϵ1g in
set 2 is higher than those corresponding to biological
media, and then set 2 does not constitute an accept-
able solution of the present problem. The perfor-
mance of the ES − �μ∕ρ� λ� and the PSO strategies
seem to be very successful in the retrieval of the
correct values of the dielectric constants. This fact
suggests that elitism is the most adapted strategy

in the present context. In Fig. 7, we compare the
target experimental spectrum and the corresponding
spectra generated with the parameters retrieved by
each strategy. Since the values of the dielectric con-
stants of set 1 are almost nearly the same for the
three strategies, i.e., only differ in the third signifi-
cant digit, the corresponding curves are completely
overlapped. There is a very good agreement between
the experimental and the retrieved optimized spec-
tra. The main peak is very well reproduced both
in spectral location as well as in reflectance value,
and the overall features of the experimental curve
are also satisfactorily described by the optimized re-
flectance. Although the dielectric constant values of
the materials comprising the Ceroglossus suturalis
multilayer are unknown, the retrieved values of their
real and imaginary parts lie within the range of
values that are widespread in nature [3]. However,
to ensure the uniqueness of the solution and the
convergence to the actual values of the dielectric con-
stants, reflectance measurements for several angles
of incidence, as well as for p- and s- polarization
states, should be simultaneously included in the fit-
ness function.

C. Discussion

The results of the last example show that heuristic
optimization techniques constitute a powerful tool
to retrieve, from experimental reflectance data, the di-
electric constant of biological tissues. However, there
are several aspects that have to be taken into account
when applying these tools to obtain the values of not
precisely known parameters in biological structures.

Photonic structures found in nature are essentially
complex and three-dimensional. In the particular
case of Coleoptera, the cuticle, the complex system
of various layers, is at the origin of the numerous
optical phenomena resulting in the physical colors
of these beings [3]. Even these multilayer structures,

Fig. 6. (a) View of the dorsal side of a Ceroglossus suturalis specimen. (b) SEM image of a transversal cut of the cuticle. Inset: TEM image
of the multilayer structure.
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Fig. 7. Specular reflectance spectra of the Ceroglossus suturalis
beetle for an incidence angle of 15° and s polarization. The red solid
line corresponds to the experimental measurement; the blue stars,
the black circles, and the green triangles correspond to the
ES − �μ∕ρ� λ�, ES − �μ∕ρ; λ� strategies and PSO, respectively.

Table 2. Real and Imaginary Parts of the Retrieved Dielectric
Functions of Both Materials that Comprise the Multilayer System

in the Ceroglossus suturalis Beetle

Rfϵ1g Ifϵ1g Rfϵ2g Ifϵ2g
Set 1 2.85 0.008 3.530 0.24
Set 2 4.1 2.10−7 2.138 0.39

Table 3. Percentage of Occurence of Each Solution for the
Different Strategies

NE EL PSO

Set 1 62 100 96
Set 2 12 0 4
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which appear to be among the simplest photonic
structures found in nature, are very difficult to char-
acterize, not only due to the highly precise cuts that
must precede the electron microscopy images, for
instance, the layers’ thicknesses are altered if the
cut is not perfectly perpendicular to the top surface,
but also due to the variation of the structure in differ-
ent samples or even in different sections of the same
sample. Although average parameters, such as the
layers’ thicknesses, can be estimated from different
images, we cannot guarantee the parameters of
the measured sample.

Another important aspect that must be taken into
account is the capability of the proposed model,
usually ideal in one or more aspects, to reproduce
the response of the natural system under study. In
multilayer structures, for instance, the perfect perio-
dicity imposed by the model or the abrupt change
in the refractive index of adjacent layers might result
in the failure of the optimization techniques to find
a successful solution, which implies the impossi-
bility of finding reasonable values for the dielectric
constants. Also, it has to be mentioned that the
experimental reflectance measurements of biological
structures can suffer from additional error sources
originated in characteristics of the sample, such
as the curvature and the roughness, which might
significantly affect the measured values.

4. Conclusion

We have proposed a heuristic inversion tool to re-
trieve some relevant parameters of natural photonic
structures. We considered a multilayer periodic
structure and investigated and compared the perfor-
mance of three different optimization strategies
for the retrieval of the refractive indices of the con-
stituent materials. As an application example, we
investigated the Ceroglossus suturalis beetle, which
exhibits an iridescent coloration produced by the
interaction of light with the multilayer structure
present in its epicuticle. It was shown that the two
different bio-inspired techniques explored in this
paper, i.e, ES (mainly the EL one) and the PSO, pro-
vide good estimates of the real and imaginary parts
of the dielectric constants of the layers’ materials.
It is noteworthy to mention that nowadays, the
actual values are not yet precisely known. Also, it
is important to remark that the choice of the illustra-
tive examples presented in this work is not restric-
tive and the relevant parameters of different and
more complex biological structures could be equally
retrieved if an appropriate model is used.

Despite the promising results obtained, there are
still different aspects of the inversion schemes
proposed that must be improved to guarantee, in
all cases, the uniqueness of the solution and the con-
vergence to what could be thought of as the global
optimum. One way to constrain the search space
would be to simultaneously include, in the fitness
function, the information of several angles of inci-
dence, as well as that of the p- and s-polarization

states. Moreover, a local optimizer could be employed
to refine the solution found by the ES and the PSO.
However, the iterative nature of these strategies
would certainly lead to another important issue that
must be taken into account: the performance of
each strategy with respect to the computing time,
as the number of realizations and generations should
be adapted tominimize the time required to converge
to the right solution. One possible way to bypass this
situation, although further work is still required, is
to employ fitness prediction, a hybrid technique that
makes use of neural networks to predict the fitness
value and to avoid costly evaluations with the
electromagnetic model.

Work is already in progress toward an approach
that should make themodel more realistic and useful
for the retrieval of the relevant parameters of biologi-
cal structures. It consists in the inclusion, within the
optimization loop, of a Debye’s or a Cole–Cole model
to describe the frequency-dependent dielectric per-
mittivity of the layers’ materials. The goal in this
case is not to obtain the dielectric function directly
from the spectrum but, instead, to optimize the
parameters of the dielectric function’s model. Also,
it is well known that many biological tissues exhibit
anisotropic properties, and then the inclusion of
more general constitutive relations for the materials
involved would constitute a valuable contribution
for the knowledge of the optical properties of natural
materials.
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(UBA-20020100100533). A. V. and D. M. gratefully
acknowledge Dr. C.-A. Duhamel for fruitful dis-
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