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Abstract 

In response to light, as part of a two-component system, the Brucella blue light-activated 

histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of 

this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, 

for which there is no structural information. The HWE family is exclusively present in 

proteobacteria and usually coupled to a wide diversity of light sensor domains. This work 

reports the crystal structure of the Brucella HK domain, which presents two different 

dimeric assemblies in the asymmetric unit: one similar to the already described canonical 

parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with 

distinct relative subdomain orientations and dimerization interfaces. Contrary to these 

crystallographic structures and unlike other HKs, in solution the Brucella HK domain is 

monomeric and still active, showing an astonishing instability of the dimeric interface. 

Despite this instability, using cross-linking experiments, we show that the C dimer is the 

functionally relevant species. Mutational analysis demonstrates that the 

autophosphorylation activity occurs in cis. The different relative subdomain orientations 

observed for the NC and C states highlight the large conformational flexibility of the HK 

domain. Through the analysis of these alternative conformations by means of molecular 

dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK. 

 

Keywords 

Signal transduction; two-component system; X-ray crystallography; molecular dynamics 

simulations; autophosphorylation mechanism  
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LOV-HK, blue light-activated histidine kinase; HK, histidine kinase; C, canonical; NC, non-

canonical; SHK, sensor histidine kinase; DHp, dimerization/histidine phosphoacceptor 

subdomain; CA, catalytic and ATP-binding subdomain; LOV, blue-light sensor; ACP, AMP-

PCP; S-SAD, sulfur single-wavelength anomalous dispersion method; SEC-SLS, static 

light scattering assay coupled to size-exclusion chromatography; MW, molecular weight; 

DLS, dynamic light scattering. 

 

Highlights 

 The crystal structure of the Brucella HK domain reveals two distinct dimers. 

 In solution the Brucella HK domain is an active monomer. 

 The canonical dimer is the functionally relevant species. 

 The autophosphorylation occurs in cis. 

 A catalytic mechanism for Brucella LOV-HK is proposed.  
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Introduction 

 

Bacteria make use of two-component systems in order to sense and adapt to changing 

environmental conditions. The signaling process starts by signal detection, which results in 

the autophosphorylation of a conserved histidine residue in the sensor histidine kinase 

(SHK). Subsequent transfer of the phosphoryl group from the histidine of the histidine 

kinase (HK) to a conserved aspartate residue of its cognate response regulator 

propagates the signal and triggers the cellular response [1, 2]. SHKs are modular proteins 

that typically assemble as homodimers [3], although a monomeric SHK has also been 

recently identified [4]. SHKs bear at least a sensor domain connected to a HK domain, 

whereas they can increase in complexity with multiple domains on the same polypeptide 

chain presenting considerable architectural variety across the superfamily. There are 

several well established models of HK that have been thoroughly studied, namely the 

dimeric HK853 from Thermotoga maritima [5, 6], EnvZ from Escherichia coli [7, 8], DesK 

from Bacilus subtilis [9, 10], CpxA from E. coli [11] and the monomeric EL346 from 

Erythrobacter litoralis [4]. 

The HK domain is comprised of the dimerization/histidine phosphoacceptor subdomain 

(DHp) and the catalytic and ATP-binding subdomain (CA), which are connected by a 

flexible linker. The DHp subdomain, with two helices (α1 and α2) connected by a hairpin 

loop, forms a homodimeric four-helix bundle. The catalytic histidine residue is located on 

the solvent-exposed side of the α1 helix. The CA subdomain is a highly conserved α/β 

sandwich, called the Bergerat fold, with three α helices packed against five antiparallel β 

strands. The nucleotide binds between two helices and is held by a loop known as the 

ATP lid. The HK superfamily includes several conserved motifs: the H box corresponding 
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to the region flanking the phosphorylatable histidine residue and the N, G1, G2, G3 and F 

boxes, which comprise conserved nucleotide-binding sequences [12]. 

Autophosphorylation occurs when the ATP molecule bound to the CA phosphorylates the 

histidine residue in the DHp. The available structural evidence shows that the relative 

orientations of these subdomains greatly impact the proximity of the bound ATP to the 

histidine phosphoacceptor, however the mechanistic details of the activation of the HK 

domain as an autokinase remain unclear. 

HK dimerization implies that the directionality of the autophosphorylation reaction can 

proceed either in a cis (intramolecular) or in a trans (intermolecular) manner [5, 13, 14]. 

Biochemical data have confirmed the existence of both cis and trans mechanisms in 

different HKs [5, 10, 13, 15]. It has been postulated and proven for several HKs that the cis 

vs. trans autophosphorylation propensity stems from the intrinsic handedness of the 

hairpin loop between the DHp helices (α1-α2 loop) [16, 17]. If this loop turns right (looking 

from the N-terminus to the C-terminus of α1), the catalytic domain of one monomer is 

believed to be closer to the catalytic histidine residue of the dimeric partner, and 

autophosphorylation proceeds in trans. In the alternative case, the loop turns left and the 

catalytic domain is closer to its own histidine residue, and autophosphorylation occurs in 

cis. 

The blue light-activated SHK (LOV-HK) discovered in Brucella abortus, the causative 

agent of brucellosis, was identified to be crucial in its pathogenesis [18, 19] and is involved 

in the general stress response system of this microorganism [20].  Brucella LOV-HK 

comprises an N-terminal blue-light sensor (LOV) domain, followed by a central PAS 

domain and a C-terminal HK domain (Figure 1A). 
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The HK domain from Brucella LOV-HK belongs to a bioinformatically identified family 

called HWE [21]. There is no structural information available for this family. The HWE HK 

domains are present in LOV-HKs and bacteriophytochromes, among other proteins. 

Members of this family differ from most others by the absence of a recognizable F box and 

the presence of several uniquely conserved residues, including a histidine residue in the N 

box and a Trp-X-Glu sequence in the G1 box, which was used to define the family. A 

tyrosine residue can also be found at the position of the histidine residue in the N box, as it 

is the case for the HK domain from Brucella LOV-HK (see Figure S5). 

In order to gain insight into the structure of the HWE family and to elucidate the 

mechanism of light activation, in this work we performed an in depth structural and 

functional study of the HK domain from Brucella LOV-HK by means of X-ray 

crystallography, molecular modeling and in-solution biophysical and biochemical 

approaches. Brucella HK forms a canonical homodimer with unusual instability at the 

dimer interface, presenting an in cis autophosphorylating activity. 

 

 

Results 

 

The crystal structure of the HK domain from Brucella LOV-HK shows two different 

dimeric assemblies. 

We designed a HK construct that is truncated immediately after the PAS domain, 

comprising residues 266 to 489 (Figure 1A). The protein was crystallized in complex with 

the ATP analogue AMP-PCP (ACP) and Mg2+ and its structure was solved at 2.51 Å 

resolution by means of the sulfur single-wavelength anomalous dispersion method (S-
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SAD) in the P21 space group [22]. The final model was refined to R = 0.202 and Rfree = 

0.242 with very good stereochemistry (Table 1). Ramachandran statistics show that over 

95% of the residues lie in the most favored region of the plot. Four polypeptide chains 

were found in the asymmetric unit of the crystal, forming two types of dimers (Figure S1 

and Figure 1B and C). Residues 480-489 from chain A, 266-277, 307-309, 412-413 and 

480-489 from chain B, 266-308 and 480-489 from chain C and 266-308, 433-435 and 478-

489 from chain D could not be located in the electron density and were excluded from the 

crystallographic model. Additionally, several residues show weak or missing electron 

density for their side chains and were therefore modeled only up to their beta carbon 

atoms. One ACP molecule was found for each chain, whereas Mg2+ was found only 

associated with chains A and B. 

The dimer formed by chains A and B corresponds to a canonical (C) HK dimer, consisting 

of the parallel four helix bundle known as the DHp comprising α1 and α2, and the CA, 

which consists of α3-α5 and β1-β7 (Figure 1B). Additionally, chain A includes an extra 

three-residue long β strand (β-1), which corresponds to the C-terminus of the PAS domain. 

Chain B lacks electron density for strands β-1 and the N terminus of α1 (266-278). The 

other dimeric conformation, which is composed of chains C and D, will be referred to as 

the “non-canonical” (NC) dimer and consists of an antiparallel dimer. The β-1 strand and 

the whole α1 helix (residues 266-308) are missing, presumably due to an enhanced 

flexibility in the protein at the α1- α2 loop. All helices (α2-α5) are involved in dimerization. 

The α2 helices from each monomer are located adjacent to each other in an antiparallel 

orientation (Figure 1C). 

The monomers belonging to the same dimer (chains A-B and chains C-D) are nearly 

identical to each other, with Cα r.m.s.d. values of 0.45 and 0.70 Å, respectively. For this 
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reason from now on chains A and B will be referred to as “canonical monomers” and 

chains C and D will be called “non-canonical monomers”. 

The CA subdomains from the C and NC monomers are very similar - Cα r.m.s.d. values 

range from 0.99 to 1.18 Å- (Figure S2), whereas the relative orientations of the CA with 

respect to the DHp differ significantly (Figure 2A). First, the long axis of the CA is nearly 

parallel to α2 in the C monomer and approximately orthogonal in the NC monomer. 

Second, the CA embraces either the outer or inner side of the α2 helix, in the C or NC 

monomer, respectively. We use the term “inner” to describe the side of the α2 helix that 

faces the four-helix bundle in the C dimer, and similarly describe the opposite side of the 

helix as “outer”. This difference is driven by the fact that the α2-α3 loop, which hinges the 

CA to the principal helical axis, adopts two alternative conformations. The alternation of the 

α2-α3 loop configurations corresponds to different torsion angles adopted by the residues 

Glu335 and Trp337 in the C and NC forms as observed in the Ramachandran plot (Figure 

2B). 

 

The HK domain is a monomer in solution and presents autokinase activity. 

In order to determine the oligomeric state of the HK domain in solution, we performed a 

static light scattering assay coupled to size-exclusion chromatography (SEC-SLS). The 

protein eluted as a single and symmetric peak with a molecular weight (MW) of 26 kDa, 

which is compatible with the expected value for the monomer. This experiment showed 

that contrary to the two dimeric assemblies observed in the crystal structure and those of 

other reported HKs, the HK domain from Brucella LOV-HK is monomeric in solution 

(Figure 3A). However, a marginal tendency to dimerize is observed in static and dynamic 

light scattering (DLS) experiments. SEC-SLS experiments with increasing amounts of 
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protein show a displacement of the unique peak to smaller elution volumes with larger 

average MW (Figure S3A). The hydrodynamic diameter of the HK domain estimated by 

DLS corresponds to an intermediate value between the one expected for the monomer 

and the one expected for the C dimer and increases with the protein concentration (Figure 

S3B). In order to have a measured value of the dimer a stabilized C dimer (mutant I286C, 

see below) was included in the experiment. 

According to the dimerization interface area and the nature of the contacts analyzed by the 

PISA server (see interface area in Table S1) both the C and the NC dimers may exist in 

solution. However, a comparative analysis indicates that both dimerization interfaces may 

be less stable than those of other dimeric HKs (see ΔGdiss in Table S1). In agreement, the 

C dimer also appears to be less stable compared to other HKs in molecular dynamics 

simulations (see discussion). 

We analyzed whether the HK domain was able to present autokinase activity. For this 

purpose, we performed an activity assay using radio-labeled ATP. The results show that 

the HK domain is active (Figure 3B). The results allow two possible and not exclusive 

interpretations: the monomer is active or the dimer is active but not stable in solution.  

Taken together, these experiments demonstrate that the isolated HK domain is a monomer 

in solution, with a slight tendency to dimerize and presents autokinase activity. 

 

Cysteine cross-linking experiments show that the C dimer can be stabilized and is 

active in solution. 

In order to evaluate the biological relevance of the two dimeric species observed in the 

crystal structure, we engineered disulfide bonds exclusively at the dimerization interface of 

either the C (mutants I286C, V282C and A287C-L333C) or the NC (mutants L322C-
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L325C, L441C and F437C-H329C) dimers and evaluated their ability to cross-link, as well 

as their autophosphorylation activity (Figure 4). According to their retention volumes in 

SEC experiments and their far UV CD spectra, all mutants fold as the wild type protein 

(Figure S4). The dimer formation in each case was evaluated by SDS-PAGE with and 

without the addition of DTT as a reducing agent. SEC-SLS experiments were also 

performed, in the absence of DTT. 

For the three mutants designed to cross-link the C dimer, the main peak in the SEC-SLS 

experiments corresponds to the dimer (51-56 kDa). Accordingly, a band at the height of the 

dimer (52 kDa) is observed in the SDS-PAGE gels in the absence of DTT. This band 

presents autokinase activity. Even in the absence of DTT, some activity at the height of the 

monomer is present for the I286C and V282C mutants. 

On the contrary, for the NC cross-linked mutants the main peak corresponds to a 

monomer-dimer equilibrium displaced towards the monomer (29-31 kDa) in SEC-SLS 

experiments. Residual or no band is observed at the height of the dimer in the SDS-PAGE 

gels. Activity at the height of the monomer was detected for the L322C-L325C and L441C 

mutants. 

Taken together, the cross-linking analysis suggests that a functional HK can be stabilized 

by specifically cross-linking the C dimer. Additionally, the existence of activity at the height 

of the monomer in the SDS-PAGE gels strongly suggests that the monomer is active.  

 

The C dimer is functionally relevant. 

We noted that the activity of the three C cross-linked dimers, I286C, V282C and A287C–

L333C was different. The Ile286 and the Val282 mutations are located in the α1 helix N-

terminal to the histidine phosphoacceptor. In these two cases a single mutation to cysteine 
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was enough to generate a cross-linked dimer as both Ile286 and Val282 are adjacent to 

the same position in the partner subunit. The third mutant was designed based on the 

proximity of Ala287 in the α1 helix to Leu333 in the α2-α3 loop. In order to compare the 

autophosphorylation activity of the three mutants, we isolated the three cross-linked 

dimers and the wild-type HK domain by gel filtration and measured their activities (Figure 

5). We found that one of the disulfide-linked mutants, I286C, was actually more active than 

the wild-type HK, underlining the biological relevance of the C dimer. The activity of the 

isolated V282C dimer is lower than the wild-type, followed by the A287C–L333C mutant 

with the lowest autokinase activity. The diminished activity of the A287C–L333C dimer was 

anticipated since a disulfide bridge in this position would restrict the flexibility of the α2-α3 

loop. The difference in activity between the I286C and V282C dimer, however, was not 

expected since these residues are just one helical turn apart, both at the dimeric interface 

of the C dimer. 

The fact that a cross-linked C dimer with higher activity than the monomer was identified is 

a strong evidence of the biological relevance of the C dimer. 

 

The crystallographic C dimer: insights into the HWE HK family 

Having established the biological relevance of the crystallographic C dimer we focused on 

the analysis of its structure. 

In the DHp (Figure 6B), formed by α1 and α2 and their connecting loop, most of the 

interactions at the dimer interface comprise the inner face of the α1 helix contacting either 

the α1 helix (Val282–Val282´, Ile286–Ile286´, Phe290–Phe290´) or the α2 helix (Phe290–

His329´, Lys291–Asp330´) of its partner. The residue Phe318, which is located in the α2 

helix, interacts with the same residue from the neighboring molecule. Most of these 
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positions present a high degree of conservation within the LOV-PAS-HWE_HK proteins 

(Figure S5). Despite the structural conservation of the four-helix bundle among several 

well studied HKs, their sequences strongly differ within the superfamily (Figure S6). The 

α1-α2 loop is 10 residues long (304-313) and left-handed (Figure 6B). The length of this 

loop, but not its sequence, is conserved within the LOV-PAS-HWE_HK proteins (Figure 

S5). 

The overall structure of the CA is highly conserved, consisting of an α/β sandwich with its 

three helices (α3, α4 and α5) packed against one of the faces of the β-sheet, which 

consists of five antiparallel β strands (β2, β4, β5, β6 and β7, see Figure 1B). The 

nucleotide binding pocket is very well conserved (Figure 6C). In this sense, Asn388 and 

Lys391 from the N box contact the β-phosphate of the ACP molecule, while Glu384 also 

from the N box contacts the Mg2+ ion. As already described [21] the F box is absent. In 

Brucella HK and in all HWE family the ATP lid, which comprises the F and the G2 boxes, is 

shorter in comparison with those of the HisKA family (Figure S5, Figure S6 and Figure S7). 

It is worth noting that DesK and E. litoralis LOV-HK also lack the F box (Figure S6). In 

Brucella HK, the phosphate groups bind residues Arg434, Arg435, Gly436, Gly438 and 

Gln439. Glu423 and Phe458 from the G1 and G3 boxes, respectively, bind the adenine 

moiety of the ACP molecule. Additionally, Tyr392 interacts with the adenine ring and the 

ribose moiety of ACP (Figure 6C). 

The conserved Trp421 residue, after which the HWE family was named, is located at the 

β5 strand of Brucella HK and interacts with Phe382, Leu385 and Ala386 from the α4 helix. 

Other HKs present a valine residue at this position (Figure S6), which interacts in a similar 

way with the α4 helix. This position in the β5 strand seems to have an essential role in the 

stabilization of the Bergerat fold. In Brucella HK, the distance between the β-strand and 
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the α4 helix is longer than in other HKs, due to the presence of Trp421. Two residues 

ahead, Glu423, after which the HWE family was also named, interacts with the amine 

group of the nucleotide adenine ring. The same interaction is observed in other HKs, which 

have an aspartate residue at this position (Figure S6). The substitutions Val to Trp and Asp 

to Glu could be correlated, since a longer β5-α4 distance implies also longer distance 

between the acidic residue and the nucleotide. 

Apart from the defined boxes, the LOV-PAS-HWE_HK proteins have two extra conserved 

motifs located between the H and the N boxes, which we name the R box, containing an 

invariable arginine residue (Arg321 in Brucella HK) and the G0 box. Interestingly, Arg321 

from the α2 helix of the DHp contacts Glu384, Tyr383 as well as the γ-phosphate from 

ACP, closing the binding pocket (Figure 6C). 

The C dimer was trapped in the crystal in an inactive conformation, since the distance 

between the phosphorylatable histidine residue and the γ-phosphate of ACP is 27 Å 

(Figure 6A). The following interactions between the DHp and the CA stabilize the inactive 

conformation: Gln303–Arg440, Arg289–Asp372, Asn292–Arg373 and the already 

mentioned contacts of Arg321 (Figure 6D). In order to evaluate the role of the interactions 

of Arg321 in the stabilization of the inactive conformation we performed an activity assay 

on the R321A mutant. We expected an increase of activity or no effect, if the Arg321 

interactions are essential or not for the stabilization of the inactive form, respectively. 

Contrary to our expectation, the R321A has no autophosphorylation activity (Figure S8). 

In summary, despite the low sequence similarity of Brucella HK with other HK structures 

present in the PDB, its overall structure is conserved. The structural hallmarks of the HWE 

family are (a) the instability of the DHp dimerization interface, (b) the shorter ATP lid, which 

corresponds to the shorter G2 box and the lack of the F box and (c) the presence of the R 
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box, with a conserved arginine residue in the α2 helix anchoring the ATP in the inactive 

state. 

 

Autophosphorylation occurs in cis in the dimer. 

To further probe the activation mechanism of the HK domain, we studied whether 

autophosphorylation occurred in cis or trans. Two evidences put on to the cis- 

autophosphorylation: the fact that the monomer is active and the left-handedness of the 

α1-α2 loop. We evaluated the reconstitution of activity from the mix of two non-active 

mutants: H288A, lacking the phosphorylatable histidine residue and N388A, which is 

unable to bind ATP [6, 23, 24]. We expected an onset of activity for a trans-

autophosphorylation mechanism, as a subunit able to bind the ATP molecule can transfer 

the phosphate group to the histidine residue of the other subunit. No activity was 

observed, indicating that the autophosphorylation occurs exclusively in cis (data not 

shown). To confirm this result, based on a classic approach [5, 13, 17] we generated 

heterodimers formed by a long (L, the HK domain plus a 23 kDa tag, 49kDa) and a short 

(S, 26 kDa) version of the HK domain to distinguish which subunit within the heterodimer 

was phosphorylated. Additionally, the short version has the N388A mutation, which impairs 

its autophosphorylation capacity. Finally, both versions have the I286C mutation in order to 

control the dimer formation with a reducing agent. The purified long and short HK domains 

were mixed in equimolar proportions, incubated with DTT and then extensively dialyzed 

before the phosphorylation assay (Figure 7). Both the long homodimer (98 kDa) and the 

heterodimer (75 kDa) are expected to be active and the short homodimer (52 kDa) 

inactive, regardless of the directionality of the autophosphorylation. After adding DTT in the 

loading buffer, however, the radio-labeled phosphate must be found on the short version if 
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the phosphotransfer occurred in trans, and on the long version if in cis. Since only the long 

monomer was phosphorylated, the results clearly show that the phosphotransfer 

exclusively occurs in cis. 

The cis activation is compatible with our observation of the active monomer. These results 

suggest that the dimerization of the HK domain through the DHp subdomain enhances its 

autokinase activity by specifically influencing the dynamics of the CA. 

 

A catalytic mechanism is proposed through molecular modeling and simulations. 

Having established the functional relevance of the C dimer, we considered whether the 

artefactual NC crystallographic conformation could provide structural insight into the 

activation of the HK domain. We were able to construct two models of the active 

monomeric HK, one of which is compatible with the C dimer interface. 

The different relative subdomain orientations observed for the NC and C conformations 

highlight the large conformational flexibility of the HK domain (Figure 2A). As mentioned 

above, the region responsible for this behavior is the α2-α3 loop (residues 333 to 341), 

which hinges the CA to the DHp, more specifically the residues Glu335 and Trp337 (Figure 

2B). By only transforming Glu335 from its C to its NC conformation, the CA moves from 

the outer to the inner side of the α2 helix, and with the C-to-NC transformation of Trp337, 

the CA changes its orientation with respect to the α2 helix (Figure 2C). Importantly, the 

conformational changes in this loop determine the proximity of the bound ATP to the 

histidine phosphoacceptor. Therefore, we reasoned that its motion could allow access to 

the active conformation. 

We performed rigid-body rotations of the CA about Trp337, sweeping its dihedral space 

and monitoring the resulting His288-ATP distance. In this sweep of the Trp337 dihedral 
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space, we obtained a potentially active conformation, with the ATP γ-phosphate within 7 Å 

of the histidine phosphoacceptor, and the CA perpendicular to the principal helical axis 

(Figure 8A, left). Consistent with the in cis activity of the HK, this model illustrates an 

intramolecular conformational change of a single monomer of the crystallographic C dimer. 

Interestingly, the modeled active C monomer is essentially a mirror image of the NC 

monomer. The key difference between the two conformations is that the CA wraps around 

the outer side of the α2 in the C conformation instead of around the inner side of the α2 in 

the NC conformation. Indeed, we modeled the missing α1 helix of the crystallographic NC 

monomer, using its crystal neighbor α2 as a template, and the ATP γ-phosphate was again 

positioned within 7 Å of the histidine phosphoacceptor, resulting in an alternative active 

monomeric conformation (Figure 8A, right). Thus, in the monomeric species the CA 

domain may wrap around either the outer or inner side of the α2 and approach the His288 

phosphoacceptor. 

To evaluate both potentially active conformations, we performed a total of 0.5 

microseconds of classical molecular dynamics simulations (MD), in five independent trials. 

We considered only the monomeric active models because the crystallographic C dimer 

was not particularly stable in MD simulations (Figure S9), supporting the tendency to 

dissociate, observed in solution.  For both active models we specifically monitored their 

stability (Figure S9) as well as the distance between the γ-phosphate and the histidine 

phosphoacceptor (Figure 8B). To our surprise, we found that the CA in both cases was 

able to further approach the histidine phosphoacceptor, exploring potential catalytic 

conformations with reactive distances of 4 Å. We note that the reactive distance in a 

comparable simulation of the histidine kinase CpxA, crystallized in the active conformation 

is 3.9 ± 0.9 Å. 
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Taken together, the MD simulations show that, in the monomeric HK domain, the 

phosphotransfer may occur by the CA wrapping around either side of the α2 helix. We 

should point out that the modeled active NC monomer, with the CA wrapped around the 

inner side of the α2 helix would disrupt the formation of the four-helix bundle at the 

canonical dimeric interface, whereas the transformation about Trp337 that brought the 

bound ATP molecule within 7 Å of the phosphoacceptor in the modeled active C monomer 

is permitted in the canonical dimer context. Based on this model we propose a catalytic 

mechanism (Figure 9 and see discussion below). 

 

 

Discussion 

Here we report the crystal structure of the HK domain from Brucella LOV-HK, the first 

determined structure from the HWE family of histidine kinases. Two different dimeric 

assemblies were observed in the crystal: the parallel C dimer and an antiparallel NC dimer, 

each of which capture different CA-DHp relative orientations. Contrary to these 

crystallographic structures and unlike other HKs, we found that the Brucella HK domain is 

monomeric in solution. Using cross-linking mutagenesis we demonstrated that the C dimer 

interface is functionally relevant and when stabilized, enhances its in cis activity. By means 

of MD and exploring the different CA-DHp relative orientations, we also propose a catalytic 

mechanism. 

The crystal structure of Brucella HK, together with in-solution biophysical assays unveiled 

as a structural hallmark of the HWE family the instability of the DHp. In agreement, we 

note that MD simulations of the HK C dimer revealed a great deal of plasticity in the 10-15 

N-terminal residues of the α1 helices at the dimer interface (Figure S9). In contrast, the 
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DHp of another truncated HK domain of T. maritima HK853 retain a stable dimeric 

interface on simulations of the same timescale (data not shown). Contrary to the general 

understanding of the structure of HKs, the DHp dimerization interface in Brucella LOV-HK 

evidently does not suffice to preserve the dimeric assembly in solution. Because the 

canonical dimeric interface could be stabilized using cross-linking, and, once stabilized, 

could even augment the autokinase activity, we believe that the C dimer is the biologically 

relevant species, being the monomer an artifact derived from working with the isolated HK 

domain. We envision that the LOV and PAS domains play important roles in stabilizing the 

dimeric HK. Moreover, since the residues at the dimeric interface are highly conserved 

throughout the HWE family with shared architecture, we expect the role in the dimerization 

of the LOV and the PAS domains to be a conserved feature. Supporting this idea, two HKs 

coupled to a PAS domain, VicK from Streptococcus mutans [25] and a LOV domain, the 

chimeric YF1 [26] were reported, where both the LOV and PAS domains play an important 

role in dimerization. On the contrary, another LOV-HK, EL346, has been recently identified 

as the first full-length monomeric HK [4]. This difference in the oligomeric state could be 

due to the divergence in domain architecture, as Brucella LOV-HK has a central PAS 

domain between its LOV and HK domains. Future structural studies of full-length HKs from 

the HWE family are needed to understand the roles of LOV and PAS domains in promoting 

dimerization. 

Consistent with recent evidence indicating that the directionality of the autophosphorylation 

reaction is determined by the handedness of the α1-α2 loop, here we demonstrated that 

the autophosphorylation reaction occurs intramolecularly, or in cis in the left-handed 

Brucella HK. A cis autophosphorylation allows the monomeric activity observed although it 

may not be natural. 
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Stabilization of the canonical dimer interface achieved in the cross-linking studies limits the 

conformational freedom of the CA domain, in particular prohibiting the formation of a NC 

active structure. All three of the engineered cross-linked C dimers bear autokinase activity, 

and one in particular resulted in an increase in activity. This enhanced activity suggests 

that the formation of the four-helix bundle is critical in directing the dynamics of the CA 

domains, even if the resulting autophosphorylation reaction occurs intramolecularly. In the 

context of thermodynamic coupling, the I286C mutation can be thought of as a way to 

stabilize the on-state of the DHp, which in turn promotes the formation of the active 

complex. 

The C dimer was trapped in the crystal in an inactive conformation. A conserved arginine 

residue, in the R box (Arg321) binds the conserved glutamate (Glu384) and tyrosine 

(Tyr383) residues in the binding pocket and the γ- phosphate of the nucleotide (Figure 5C). 

These interactions seem to stabilize the inactive conformation. The same interactions are 

present in EL346, in which the mutation R175A resulted in an increase of activity [4]. On 

the contrary, the replacement of Arg321 to alanine here impaired autokinase activity. The 

loss of activity of the R321A mutant may be a consequence of a diminished ATP affinity, 

taking into account the interaction between the ATP analogue and Arg321 (Figure 6C). 

Recently, two structures of the ATP-bound Michaelis complex primed for 

autophosphorylation were reported [11, 17]. The autophosphorylation Michaelis complex is 

defined by a close approach between the CA and DHp; about 10–15 Å in the Michaelis 

complex vs. 20–30 Å in other states. Additionally, these autophosphorylation complexes, 

and even a third putative active structure [25], have been characterized by an angular 

preference of the CA with respect to the DHp [3]. Interestingly, the modeled active 

canonical conformation presents a similar inter-subdomain orientation (Figure S11). In the 
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two Michaelis complex structures, the carboxylic side chain of the acidic residue which 

follows the histidine phosphoacceptor binds to the Nδ atom of the histidine residue (see in 

Figure S4 residues Glu261 and Asp244 of HK853 and EnvZ, respectively). The acidic 

residue is proposed as a general base in the reaction, as it might abstract a proton from 

the histidine to induce its appropriate tautomeric form for the nucleophilic attack of Nε atom 

to the ATP γ-phosphate. This hypothesis is supported by the fact that the mutation of the 

corresponding acidic residue in several HisKA HKs has a similar deleterious effect in the 

kinase reaction [17, 27, 28]. At the same time, its side chain forms a hydrogen bond to an 

asparagine residue of the N box (see in Figure S4 residues Asn376 and Asn343 in HK853 

and EnvZ, respectively), helping the close positioning of the ATP and the histidine 

phosphoacceptor. In the HWE and HisKA2 families an arginine residue (Arg289 for 

Brucella HK), instead of the conserved acidic residue found in the HisKA family, follows 

the histidine phosphoacceptor. The mutation of the basic arginine residue following the 

histidine phosphoacceptor in EL346 impaired its autophosphorylation activity [4]. In the 

canonical catalytic complex observed in MD simulations (Figure 9), Arg289 forms a salt 

bridge with Glu384, which is located at the same position as the asparagine residue of 

EnvZ and HK853, in the N box. Both Arg289 and Glu384 are conserved within the HWE 

family (Figure S5). As already mentioned, this glutamate residue interacts with Arg321 in 

the inactive conformation, presumably switching from Arg321 in the inactive state to 

Arg289 in the active state. The general base in the reaction in the HWE family could be a 

glutamate residue located near the histidine phosphoacceptor, which is conserved in the 

LOV-PAS-HWE_HK family (Glu285 for Brucella HK, Figure 9). 
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The structure reported here is the first one from the HK HWE family, providing structural 

information about the family, particularly about the flexibility of the dimeric interface of DHp. 

This work also proposes an autophosphorylation mechanism for the HWE HK families. 

 

 

Materials and Methods 

 

Site-directed mutagenesis 

All point mutant versions of the HK domain were achieved by site-directed mutagenesis 

using Q5 High-Fidelity DNA Polymerase (New England Biolabs), specific primers and a 

pET24d recombinant vector containing residues 266 to 489 from Brucella abortus LOV-HK 

and a C-terminal 6xHis tag [22]. The final constructs were checked by DNA sequencing. 

 

Protein purification 

Escherichia coli BL21(DE3) competent cells (Stratagene, La Jolla, California, USA) were 

transformed with the expression plasmids mentioned above. Precultures were grown 

overnight in 5 ml of LB medium added with 25 µg ml-1 kanamycin at 37 ºC with agitation 

(200 rev min-1), and then diluted to 500 ml and grown to an absorbance (at 600 nm) of 0.6. 

At this point, isopropyl β-D-1-thiogalactopyranoside was added to a final concentration of 

0.5 mM and the cultures were further incubated overnight at 20 ºC with agitation (200 rev 

min-1). The purification for protein crystallization is described elsewhere [22]. The bacteria 

were centrifuged at 5000g for 10 min at 4 ºC. Pellets were resuspended and sonicated in a 

solution containing 50 mM sodium phosphate, 0.5 M sodium chloride, 20 mM imidazole, 1 

mM DTT and 1 mM PMSF (pH 7.5, buffer A) and then centrifuged at 160000g in a 
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Beckman Coulter L7-65 ultracentrifuge (Brea, California, USA) for 60 min at 4 ºC. The 

supernatant was filtered through a 0.45 µm membrane and loaded onto a HisTrap HP 

column (all columns were from GE Healthcare, Little Chalfont, England). Elution was 

performed with a linear gradient of buffer B containing 50 mM Na phosphate, 0.5 M sodium 

chloride, 0.5 M imidazole, 1 mM DTT and 1 mM PMSF (pH 7.5). A major peak was 

observed. The appropriate fractions were pooled and dialyzed extensively overnight at 4 

ºC against buffer C (50 mM MES, 0.25 M sodium chloride and 1 mM PMSF, pH 6.5). The 

protein was aliquoted and stored at -70 ºC at a concentration of approximately 1 mg/ml. 

The quality of the final preparation was checked by SDS–PAGE (15% gel) and UV 

spectrophotometry. For the experiment of Figure 8 the dimers of I286C, V282C and 

A287C-L333C mutants and the wild type version of the HK domain were further purified by 

Superdex-75 in a buffer containing 50 mM MES pH 6.5 and 250 mM sodium chloride. The 

concentration of the protein was estimated using the absorbance at 280 nm and the molar 

extinction coefficient calculated from the sequence using the ProtParam tool from the 

Expasy server (http://web.expasy.org/protparam/). 

 

Crystallization, X-ray data collection and structure resolution 

Detailed information about the crystallization of the HK domain, together with diffraction 

data collection and processing, phasing, model building and refinement, is provided 

elsewhere [22]. Briefly, a total of three HK crystals were used for highly redundant sulfur 

anomalous data collection ( = 1.80 Å) at the PROXIMA 1 beamline at the SOLEIL 

Synchrotron (France), taking into advantage the natural content of cysteine and 

methionine residues of the protein (11 S sites in 242 residues). After successful S-SAD 
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phasing and partial model building, native data ( = 0.98 Å) from a fourth HK crystal 

diffracting to 2.51 Å resolution were used for the refinement of the model. The final 

coordinates were subjected to validation with MolProbity [29] and with the validation 

module implemented in Coot [30]. Detailed statistics on the refinement process are found 

in Table 1. 

 

Coordinates representation 

Coordinates representation were performed in Pymol (http://www.pymol.org) and Visual 

Molecular Dynamics (VMD) [31] software. 

 

Crystallographic coordinate analysis 

The PDBePISA server [32] was used to evaluate the dimerization interfaces 

(http://www.ebi.ac.uk/pdbe/pisa) 

 

Size exclusion chromatography - Static light scattering measurements 

The average MW of wt and mutant HK domains in solution were determined on a 

Precision Detectors PD2010 90º light scattering instrument tandemly connected to a high-

performance liquid chromatography and a LKB 2142 differential refractometer and to a 486 

Absorbance Detector (Waters), set at 280 nm. The columns used were Superdex 75 GL 

10/300 (GE Healthcare). 500 μL of each purified protein were injected into the column, and 

the chromatographic runs were performed with a buffer containing 50 mM MES pH 6.5, 

250 mM sodium chloride under isocratic conditions at a flow rate of 0.4 mL/min at 20º C. 

The concentration of the injected samples was ~40 μM, except for the experiments of 

Figure S3A. The MW of each sample was calculated relating its 90° and RI signals and 
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comparison of this value with the one obtained for BSA (MW: 66.5 kDa) as a standard 

using the software Discovery32. The reported MW values are an average between the 

values relating RI and UV with scattering. 

 

Autokinase assays 

For all experiments, wild-type and mutant versions of the HK domain were incubated at 

37°C at a concentration of 25 µM (192 pmol) in a buffer containing 100 mM Tris-HCl pH 8, 

5 mM MgCl2, 100 µM [γ-32P] ATP 1 µCi/nmol (PerkinElmer Life Sciences). After incubation 

for 30 min or at the indicated times, the reactions were stopped with Laemmli sample 

buffer. Samples were separated on a 15% SDS-PAGE gel, exposed to a Storage 

Phosphor Screen (GE Healthcare), and scanned by a Storm 840 Molecular Imager (GE 

Healthcare). For cis-trans autophosphorylation experiments, the purified long and short HK 

domains were mixed in equimolar proportions, incubated with 100 mM DTT and then 

extensively dialyzed in a buffer containing 50 mM MES pH 6.5, 250 mM sodium chloride 

and 1mM PMSF before the phosphorylation assay. PageRuler Prestained Protein Ladder 

(Thermo Scientific) and Low Molecular Weight Marker (AmershamTM GE Healthcare) were 

used as MW standards. For several experiments, the intensity of each band signal was 

estimated using the ImageQuant 5.2 program (Molecular Dynamics). 

 

Construction of active structural models 

Modeled active C monomer (Figure S10A). Beginning with chain A of the canonical crystal 

structure, we performed a sweep of the backbone dihedral space of Trp337. The dihedral 

sweep was performed on a square grid ranging from -180 to 180 degrees and points 

placed at 10 degree intervals. Using VMD software [31], rigid-body transformations of the 
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catalytic subdomain were made about residue Trp337 such that its (φ, ψ) dihedral angles 

took values on the grid. The active conformation was chosen based on the proximity of the 

resolved ATP analogue to His288, which took a value of 7 Å with Trp337 at (50,-100). This 

structure was then refined to remove any clashes. 

Modeled active NC monomer (Figure S10B). Beginning with chain C of the non-canonical 

structure, we used the software Modeller v 9.14 [33] to first align the sequence between 

the missing α1 helix and the α2 helix, and then model the missing α1 helix using the α2 

helix of chain D as a template structure, resulting in the γ-phosphate of the resolved ATP 

analogue within 7 Å of His288.  

 

MD simulations  

Solvation and equilibration. Each model was solvated in a 10.0 Å octahedron, and chloride 

counterions were added to neutralize the net charge. The parameters for the protein were 

taken from the AMBER ff99SB force field, with the ildn modification for isoleucine, leucine, 

aspartate and asparagine residues [34]. The TIP3P water model was used for solvent, with 

the updated Lennard Jones parameters for ions [35]. The coordinates of the resolved ACP 

molecules were used to position the corresponding ATP molecules. ATP and Mg2+ 

parameters were taken from the Bryce group [36]. The system was heated to 300K at 

constant volume, with restraints on the protein that were gradually reduced from 200 to 0 

kcal/mol/Å2 over a period of 150ps. The Langevin thermostat was used with a collision 

frequency of 1.0 ps-1. The SHAKE algorithm was employed to constrain bonds to non-polar 

hydrogens, and a 1.0 fs time-step was used during dynamics [37]. An 8.0 Å cutoff was 

used for non-bonded interactions. 100 Ps equilibration runs were done in the NPT 

ensemble, using isotropic pressure scaling and a pressure relaxation time of 2.0 ps. 
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Production simulations. For each system, five independent 100 ns simulations were 

started from different snapshots from the equilibration simulations (taken at arbitrary 

intervals after density of water box was equilibrated) with randomized velocities. All 

production runs were done in the same NVT conditions described in 'Solvation and 

equilibration', with the exception of a 2.0 fs time-step. All simulations were performed on 

GPUs using the PMEMD (cuda) module within the Amber11 simulation package [38]. 

Analysis of MD simulations was performed using PTRAJ from AmberTools (distances, 

RMSD, radius of gyration) or VMD (solvent-accessible surface area). 

 

Coordinates deposition 

The X-ray crystallographic coordinates of the HK domain from Brucella LOV-HK have been 

deposited at the Protein Data Bank, under the code 5EPV. Residue numbering follows the 

Uniprot sequence for Brucella LOV-HK Gene BAB2_0652 (Q2YKK7-1). 
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Figures and figure legends 

 

Figure 1. The crystal structure of the HK domain from Brucella LOV-HK shows two 

different dimeric assemblies. Crystal structure of the HK domain from Brucella LOV-HK 

photoreceptor. A. Domain architecture of Brucella LOV-HK. The crystal structure 

corresponds to the HK domain colored in yellow. The residue numbers of the domain 

boundaries are indicated. B. Canonical dimer. C. Non-canonical dimer. The protein is 

represented as ribbons. The four chains are shown in different colors, with the same color 

code along the article. AMP-PCP (ACP) is depicted as sticks and Mg2+ as a sphere. The 

secondary structure elements and the Dimerization and Histidine phosphotransfer (DHp) 

and the Catalytic and ATP binding (CA) subdomains are indicated. Secondary structure 

elements are also indicated. 

 

Figure 2. Apart from the parallel- antiparallel disposition, the canonical and the non-

canonical dimers differ in the relative orientation of their CA with respect to their 

DHp. A. Ribbon representation of the canonical (C) monomer (yellow) compared to the 

non-canonical (NC) monomer (light blue). The α2 helices from both monomers are 

superimposed. The surface representation of the CA shows their different orientations 

between the C and the NC monomers. The two alternative conformations of the α2-α3 loop 

(residues 333 to 341) are highlighted in orange (A) and blue (C) within a light oval. CA 

subdomains and α2-α3 loops are indicated. B. Ramachandran plot of the C (yellow) and 
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the NC (light blue) monomers, highlighting the change in the torsion angles of Glu335 and 

Trp337. C. Resulting changes in relative subdomain orientations upon transforming either 

Trp337or Glu335 from their C to NC conformations. 

 

Figure 3. In solution, the HK domain is active as a monomer. A. Oligomeric state of 

the HK domain in solution. The HK domain was subjected to SEC coupled to a light-

scattering instrument connected in tandem to a differential refractometer detector and an 

absorbance detector tuned at 280 nm. The MW estimated by the relation of scattering/RI 

or UV signals is plotted in the inset. B. Autophosphorylation activity of the HK domain. The 

HK domain was incubated at 37°C with radiolabeled ATP and Mg2+. The phosphorylated 

protein was visualized by SDS-PAGE and autoradiography. The incubation time in minutes 

is indicated above. The MW standard values are shown on the left. 

 

Figure 4. Cysteine cross-linking experiments show that the canonical dimer, but not 

the non-canonical dimer, exists and is active in solution. The following cysteine 

mutations were introduced in the HK domain in order to cross-link either the canonical 

(I286C, V282C and A287C-L333C) or the non-canonical (L322C-L325C, L441C and 

F437C-H329C) dimer. The mutations are mapped on the dimeric structures in the upper 

panels. The proteins were purified and subjected to SEC-SLS in the absence of reducing 

agents (middle panels). The numbers above the peaks correspond to the estimated MW 

values in kDa. Their activity was analyzed by the incubation with radiolabeled ATP, 

followed by SDS-PAGE and autoradiography (bottom panels). The samples were 

subjected in parallel to SDS-PAGE and stained with Coomassie Blue. The MW standard 

values (kDa) are shown on the left. 
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Figure 5. The canonical dimer is functionally relevant. A. The dimers of three 

canonical cysteine mutants (I286C, V282C, and A287C–L333C) and the wild-type protein 

were isolated by gel filtration before autophosphorylation assay. The incubation time (min) 

is indicated in the upper part of the gel. B. The band intensities were quantified and plotted 

vs. incubation time for each mutant and the wild-type protein. 

 

Figure 6. The crystallographic canonical dimer. A. The overall canonical dimer is 

shown. The histidine phosphoacceptor (His288), Arg321 and the ACP molecule are shown 

as sticks and Mg2+ as a sphere. The distance between His288 and the ACP molecule (Å) is 

indicated in blue. Red, black and green boxes with dashed borders correspond to panels 

B, C and D, respectively. B. Dimerization contacts in the DHp. The residues involved are 

shown as sticks and labeled. The molecule is rotated 90° clockwise in the y axis with 

respect to panel A. C. Bottom view of the nucleotide binding site. The relevant side chains 

are shown as sticks and labeled. D. CA-DHp interface. 

 

Figure 7. Autophosphorylation occurs in cis in the dimer. Two different versions of the 

HK domain: one long (L, the HK domain plus a 23 kDa tag, 49kDa) and other short (S, 26 

kDa) were generated. The short version has the N388A which impairs the phosphorylation 

capacity. Both versions have the I286C mutation. The purified long and short HK domains 

were mixed in equimolar proportions, incubated with 100 mM DTT and then extensively 

dialyzed before the phosphorylation assay. The species present in the experiments and 

the possible autophosphorylation outcome are shown schematically at the left side. The 

possible phosphorylated subunits, according to a cis- or a trans directionality, are 
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highlighted in red. On the right side is shown the electrophoretic analysis of the 

autophosphorylation activity of the S, L and the mix in the presence and in the absence of 

DTT by SDS-PAGE and [γ-32P] ATP autoradiography. The samples were subjected in 

parallel to SDS-PAGE and stained with Coomassie Blue. The bands corresponding to 

each species (LL, SL, SS, L and S) are labelled. The MW standard values (kD) are shown 

on the left. 

 

Figure 8. Molecular modeling and simulations of the HK domain.  A. Active structural 

models of HK monomer, based on the C (orange) and NC (blue) crystallographic 

conformations. Arrows highlight opposing routes of autophosphorylation. B. Histogram of 

the His288-ATP distance in 0.5-μs MD simulations of the C (orange) and NC (blue) active 

structural models. 

 

Figure 9. Proposed autophosphorylating center based on the active C monomeric 

model. The relevant side chains are shown as sticks and labeled. Mg2+ ion is shown as a 

sphere. The distance between the γ-phosphate of the ATP molecule and the Nδ of His288 

is indicated. Glu285 might act as a general base in the phosphotransferase reaction. The 

Arg289-Glu384 interaction would stabilize the active conformation. 
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Table 1. Refinement and validation statistics. a 

   HK from B. abortus 

   
Refinement   
   
Resolution range (Å)  48.6-2.51 
Number of protein atoms  5614 
Number of ligand atoms  126 
Number of water molecules  - 
R  0.202 

Rfree  0.242 

Rms deviations from ideal values b   
   Bond lengths (Å)  0.010 
   Bond angles (º)  1.2 

B-factor (average, Å2)  74 

   
MolProbity validation c   
   
Clashscore  6.77 
Poor rotamers (%)  10.6 
Ramachandran plot   
   Favoured (%)  95.8 
   Allowed (%)  4.1 
   Disallowed (%)   0.1 
   
Deposition   
   
PDB code  5EPV 
   

      
a Data collection, processing and phasing statistics are presented elsewhere [22]. 
 b [39] 
c [29] 
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Figure 1 
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Figure 2 
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Figure 9 
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Graphical abstract 
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Highlights 
 

The crystal structure of the Brucella HK domain reveals two distinct dimers. 

In solution the Brucella HK domain is an active monomer. 

The canonical dimer is the functionally relevant species. 

The autophosphorylation occurs in cis. 

A catalytic mechanism for Brucella LOV-HK is proposed. 


